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On random shifted standard Young
tableaux and 132-avoiding sorting networks

Svante Linusson, Samu Potka & Robin Sulzgruber

Abstract We study shifted standard Young tableaux (SYT). The limiting surface of uniformly
random shifted SYT of staircase shape is determined, with the integers in the SYT as heights.
This implies via properties of the Edelman–Greene bijection results about random 132-avoiding
sorting networks, including limit shapes for trajectories and intermediate permutations. More-
over, the expected number of adjacencies in SYT is considered. It is shown that on average
each row and each column of a shifted SYT of staircase shape contains precisely one adjacency.

1. Introduction
A shifted standard Young tableau (SYT) of staircase shape is an increasing filling of
the shifted diagram of the partition (n − 1, . . . , 2, 1) with the integers 1, 2, . . . ,

(
n
2
)
.

See Figure 1a for an example and Section 2 for the exact definition. Shifted diagrams
and tableaux are important combinatorial objects that appear in various contexts.
In representation theory shifted Young diagrams correspond to projective characters
of the symmetric group, and shifted tableaux lend themselves to being studied via
RSK-type methods [32, 40]. In the theory of partially ordered sets, shifted diagrams
alongside non-shifted Young diagrams and rooted trees form the three most interest-
ing families of d-complete posets, which are in turn connected to fully commutative
elements of Coxeter groups [41, 28]. The most salient property of d-complete posets
is the fact that their linear extensions (in our case shifted SYT) are enumerated by
elegant product formulas involving hook lengths, see [28, 23]. Shifted diagrams also
appear as order filters in the root poset of type Bn, and shifted SYT play an impor-
tant role in the enumeration of reduced words of elements of the Coxeter group of
type Bn [15, 18]. Moreover, as is topical in this paper, shifted SYT are also relevant
to the study of certain reduced words in the symmetric group. Recently, Elizalde and
Roichman related shifted diagrams and tableaux to unimodal permutations [7].

The topics of this paper can be divided into three parts.
In Section 3 we study the surface obtained by viewing the integers in random

SYT as heights. The study of limit phenomena for partitions and tableaux is an
active field of research combining methods from combinatorics, probability theory
and analysis. We refer to [30] for a general survey. Shifted objects have been treated
as well, for example Ivanov [16] proves a central limit theorem for the Plancherel
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(a) A shifted SYT of staircase shape. (b) The limit shape of uniformly random
shifted SYT of staircase shape.

Figure 1

measure on shifted diagrams. In the present paper we determine the limiting surface
for uniformly random shifted SYT of staircase shape, see Figure 1b and Theorem 3.7.
The deduction of our results relies on a paper by Pittel and Romik [27] where the
limit shape for random rectangular SYT is determined. In fact, we end up with the
same variational problem, and the limit surface for shifted staircase SYT is half of the
surface for square SYT. This analogy is in part explained by a combinatorial identity
in Proposition 3.1 relating shifted and non-shifted tableaux. There are few shapes for
which the limit surface has been explicitly described previously. As far as we know the
only other case is that of staircase SYT, where again the same limit surface appears,
but cut along a different diagonal [1]. However, it was pointed out to us by one of the
referees that Biane [2] provides a general method for computing such limits for SYT.
Recently, Matsumoto and Śniady developed an analogous framework for shifted SYT
which, combined with the results of [2] and [27], allowed them to partially recover
Theorem 3.7 in [22, Sec. 8.4]. Results of this type have applications in other fields of
mathematics such as geometric complexity theory [26].

Secondly, we study 132-avoiding sorting networks, which are by definition reduced
words w1 . . . w(n2) of the reverse permutation such that sw1 · · · swk is 132-avoiding for
any 1 6 k 6

(
n
2
)
. These objects have received considerable recent interest and also

appear in different guises, for example as chains of maximum length in the Tamari
lattice [3]. Fishel and Nelson [9] showed that 132-avoiding sorting networks are in bi-
jection with shifted SYT of staircase shape via the Edelman–Greene correspondence.
This has been rediscovered several times [36, 5, 20]. They are also in bijection with
reduced words of the signed permutation (−(n − 1),−(n − 2), . . . ,−1) via the shift
si 7→ si−1 as was remarked in [36, Sec. 1.3]. In Sections 4 and 5 the Edelman–Greene
bijection is used to transfer the limit shape of shifted SYT to determine the limit
shapes of intermediate permutations (Theorem 4.2) and trajectories (Theorem 5.4) in
random 132-avoiding sorting networks. These results are motivated by a remarkable
paper of Angel, Holroyd, Romik and Virág [1] that contains a number of tantalising
conjectures about random sorting networks, now proven by Dauvergne [4]. See Sec-
tion 2 for a description of some of them. Our results are a parallel to their (former)
conjectures restricted to a subclass of random sorting networks. The 132-avoiding
sorting networks are much easier to treat than the general case. The main reason for
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this is that the Edelman–Greene bijection simplifies significantly when it is restricted
to 132-avoiding sorting networks.

We remark that the limit surface for shifted SYT of staircase shape contains com-
plete information on the limit surface for SYT of square shape. This suggests the
perhaps less intuitive idea that the relatively small subset of 132-avoiding sorting
networks contains a lot of information on random sorting networks in general.

The third set of results is obtained in Section 6 and concerns patterns in 132-
avoiding sorting networks. We first observe that adjacencies in a shifted SYT (that
is, integers i and i+1 in neighbouring cells) translate directly to adjacencies in a 132-
avoiding sorting network (that is, j and j+1 next to each other in the reduced word).
Corollary 6.5 asserts that the expected number of adjacencies in each column and each
row in a shifted SYT of staircase shape is exactly 1. The proof uses promotion and
evacuation techniques very similar to the methods used by Schilling, Thiéry, White
and Williams [36] to derive results on Yang–Baxter moves (that is, patterns of the
form j(j ± 1)j) in 132-avoiding sorting networks. Related results on general sorting
networks are due to Reiner [29] and Tenner [43].

2. Background
In this section we fix notation and review some facts about partitions, tableaux and
random sorting networks.

For n ∈ N let [n] = {1, . . . , n}. Throughout this paper we denote N =
(
n
2
)
.

2.1. Partitions and tableaux. A partition is a weakly decreasing sequence λ =
(λ1, . . . , λn) of positive integers. If a partition is strictly decreasing it is called strict.
The sum

∑
λi is called the size of the partition λ and is denoted by |λ|. The number

of entries λi is called the length of the partition and is denoted by `(λ). Define the
staircase partition as

∆n = (n− 1, . . . , 2, 1).
The Young diagram of a partition λ is defined as the set

λdg = {(i, j) : i ∈ [`(λ)], j ∈ [λi]}.

The elements (i, j) are indexed with matrix notation and typically referred to as cells
of λ. The conjugate partition λ′ of the partition λ is the partition corresponding to
the Young diagram {(j, i) : (i, j) ∈ λdg}. Given a strict partition λ we also define its
shifted Young diagram as

λsh = {(i, j + i− 1) : i ∈ [`(λ)], j ∈ [λi]}.

Thus the shifted Young diagram is obtained from the normal Young diagram by
shifting rows to the right. These definitions are illustrated in Figure 2.

Figure 2. The Young diagram λdg (left) and the shifted Young
diagram λsh (right) of the strict partition λ = (6, 4, 2, 1) drawn in
English convention, that is, (1, 1) is the top left cell. We have |λ| = 13,
`(λ) = 4 and λ′ = (4, 3, 2, 2, 1, 1).
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Let u = (i, j) be a cell in the Young diagram of a partition λ. The hook-length of
u, denoted by hλ(u), is defined as the number of cells in the same row as u that lie to
the right of u plus the number of cells in the same column as u that lie weakly below
u (that is, including u itself). Thus, hλ(u) = λi− j+λ′j − i+ 1. Given a cell u = (i, j)
in the shifted Young diagram of a strict partition, we define its shifted hook-length
hsh
λ (u) as the number of cells in the same row as u that lie to the right of u, or in the

same column and weakly below u, plus the number of cells in the (i + j)-th row of
the shifted Young diagram. See Figure 3.

9 7 5 4 2 1

6 4 2 1

3 1

1

10 8 7 6 3 1

6 5 4 1

3 2

1

Figure 3. The (shifted) Young diagram of λ = (6, 4, 2, 1) with the
(shifted) hook-lengths filled into each cell.

Given a cell u = (i, j) ∈ Z2, define the north, east, south, and west neighbour of u as
nu = (i− 1, j), eu = (i, j + 1), su = (i+ 1, j) and wu = (i, j − 1),

respectively. A tableau of shape λdg is a map T : λdg → Z. A tableau T is called a
standard Young tableau (SYT) if T : λdg → [n] is a bijection and T (u) < T (eu) and
T (u) < T (su) whenever the respective cells lie in λdg. Similarly a shifted standard
Young tableau of shape λsh is a bijection T : λsh → [n] such that T (u) < T (eu) and
T (u) < T (su) whenever the respective cells lie in the shifted Young diagram λsh. Let

Tn = {T : T is a shifted SYT of shape ∆sh
n }.

For example, Figure 1a shows a shifted standard Young diagram of shape ∆sh
5 .

The number of SYT is given be the following nice product formula.

Theorem 2.1 (Hook-length formula [11, 44]). Let λ be a partition. Then the number
of SYT of shape λdg is given by

fλ = |λ|!∏
u∈λdg hλ(u) .

If λ is strict then the number of shifted SYT of shape λsh is given by

f sh
λ = |λ|!∏

u∈λsh hsh
λ (u)

.

The literature offers a variety of proofs of different flavours for Theorem 2.1, for
example using hook-walks [13, 31] or by means of jeu de taquin [24, 8].

2.2. Random 132-avoiding sorting networks. The reader is referred to [17] for
background on pattern avoidance in permutations.

For i ∈ [n− 1] let si = (i, i+ 1) denote the i-th adjacent transposition. The reverse
permutation w0 ∈ Sn is defined by w0(i) = n − i + 1 for i ∈ [n]. A reduced word of
w0 is a word w = w1 · · ·wN in the alphabet [n− 1] such that w0 = sw1 · · · swN .

We will adopt the convention that multiplying a permutation by si from the right
interchanges the numbers in positions i and i + 1 (or swaps columns i and i + 1 of
the permutation matrix, see below). This means equivalently that multiplying by si
from the left interchanges the positions of the values i and i + 1 (or swaps rows i
and i + 1 of the permutation matrix). As an example consider the word w = 1213,
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corresponding to composing s1s2s1s3, which yields the permutation 3241. In terms of
permutation matrices, we have

2 1 3 4


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

s1

2 3 1 4


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

s1s2

3 2 1 4


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1
s1s2s1

3 2 4 1


0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0
s1s2s1s3

where we can see that multiplying by si from the right corresponds to swapping the
columns i and i+ 1.

Angel, Holroyd, Romik and Virág introduced n-element random sorting networks
in [1] as the set of reduced words of the reverse permutation w0 ∈ Sn equipped
with the uniform probability measure. In the same paper, Angel et al. pose several
striking conjectures about random sorting networks, which have now been proven by
Dauvergne [4].

• Suppose w = w1 . . . wN is a sorting network. Then w1 . . . wk defines the in-
termediate permutation σk = sw1 · · · swk ∈ Sn for all k ∈ [N ]. One of the
consequences of [4, Thm. 2] (previously [1, Conj. 2]) is that asymptotically
the permutation matrices corresponding to the intermediate configurations
coming from random sorting networks are supported on a family of ellipses.
In other words, their 1s occur inside an elliptic region of the matrix. In par-
ticular, at half-time the permutation matrix is supported on a disc. Figure 4
provides an illustration.
• For 0 6 α 6 1, [4, Thm. 1] (previously [1, Conj. 1]) states that the scaled
trajectories defined by

fw,i(α) = 2σ−1
αN (i)
n

− 1

for αN ∈ Z, and by linear interpolation otherwise, converge to random sine
curves. See Figure 5.

• The permutahedron is an embedding of Sn into Rn defined by

σ 7→ (σ−1(1), . . . , σ−1(n)).

Every permutation σ ∈ Sn lies on the sphere

Sn−2 =
{
z ∈ Rn :

n∑
i=1

zi = n(n+ 1)
2 and

n∑
i=1

z2
i = n(n+ 1)(2n+ 1)

6

}
.

Random sorting networks correspond to paths on the permutahedron. The
strongest theorem, [4, Thm. 4] (previously [1, Conj. 3]), which implies both
of the previous ones, states that these paths are close to great circles in Sn−2.

This paper considers similar questions restricted to 132-avoiding sorting networks,
that is, those reduced words w1 . . . wN of the reverse permutation in Sn such that
sw1 · · · swk is 132-avoiding for all k ∈ [N ]. With a random 132-avoiding sorting net-
work we will refer to uniform distribution on all 132-avoiding sorting networks of a
fixed length. Understanding them is easier than random sorting networks since the
Edelman–Greene correspondence restricted to 132-avoiding sorting networks has a
much simpler description than the general bijection. This is discussed next.

The connection between 132-avoiding sorting networks and shifted SYT is the
following. Let w = w1 . . . wN be a 132-avoiding sorting network. Then, for k ∈ [N ],
define a SYT Qw1...wk by letting its j-th column consist of the indices m ∈ [k] such
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Figure 4. The intermediate permutation matrices of σbαNc of a
1000-element random sorting network at times α = 1

4 ,
1
2 and 3

4 .

Figure 5. The scaled trajectories of the elements 200, 400, 600 and
800 in a 1000-element random sorting network.

w = 1213423121

1 2 4 5

3 6 7

8 9

10

1 2 4 5

3 6 7

8 9

10

Figure 6. The Edelman–Greene correspondence for a 5-element
132-avoiding sorting network.

that wm = j. Furthermore, define a shifted SYT Q→w1...wk
by shifting the rows of

Qw1...wk . Figure 6 shows an example.

Theorem 2.2 ([9, Thm. 3.3 and Thm. 4.6]). For all n ∈ N, the map w 7→ Q→w is a
bijection from n-element 132-avoiding sorting networks to shifted SYT of shape ∆sh

n .
The map w 7→ Qw agrees with the restriction of the Edelman–Greene correspondence
to 132-avoiding sorting networks.

The same bijection was also described in [20], in [36, Fig. 4] in terms of heaps, and
in [5, Prop. 5.2] in terms of descent sets.

Algebraic Combinatorics, Vol. 3 #6 (2020) 1236



On random shifted SYT and 132-avoiding sorting networks

We conclude this section with two more facts about 132-avoiding sorting networks,
see [20] for proofs. First, reversing a sorting network preserves the property of being
132-avoiding.

Proposition 2.3. A reduced word w1 . . . wN is a 132-avoiding sorting network if and
only if wN . . . w1 is.

Proof. This can be seen by flipping Q→w about the anti-diagonal and replacing each
entry k by N + 1− k. �

Secondly, the set of 132-avoiding and 312-avoiding sorting networks coincide.

Proposition 2.4 ([20, Prop. 3.10]). A reduced word w is a 132-avoiding sorting net-
work if and only if w is a 312-avoiding sorting network.

3. The limit shape
In this section we derive a limit shape for random shifted SYT of staircase shape. We
may interpret a shifted SYT T ∈ Tn as the graph of a function

LT :
{

(x, y) ∈ R2 : 0 < x < y < 1
}
→ R>0

by viewing the entries as heights

LT (x, y) = 1
N
T
(
dnxe , dnye).

Our main result, Theorem 3.7, states that by this choice of scaling, the functions
LT (n) converge with probability 1 to the surface depicted in Figure 1b, where each
T (n) ∈ Tn is chosen uniformly at random. The proof of Theorem 3.7 relies heavily on
the work of Pittel and Romik [27].

Recall our conventions from Section 2.1. Given a strict partition λ define a partition
Λ by letting its Young diagram equal

Λdg =
{

(i, j + 1) : (i, j) ∈ λsh} ∪ {(j, i) : (i, j) ∈ λsh}.
It is easy to see that this really is the Young diagram of a partition. See Figure 7. We
call Λ the double of λ. The diagram of Λ is at times, for example in [21], denoted by
D(λ). The motivation for this definition is the fact that shifted hook-lengths of the
cells in λsh correspond to hook-lengths of the corresponding cells in Λdg.

The following proposition is not new and can be obtained by extracting coefficients
from an identity of symmetric functions found in [21, Chap. III, Sec. 8, Example 9.(b)].
We include a proof nevertheless since it is short and needs no additional terminology.

Figure 7. The double Λ = (7, 6, 5, 5, 2, 1) of the strict partition
λ = (6, 4, 2, 1).

Proposition 3.1. Let λ be a strict partition and Λ its double. Then

(1) fΛ = (f sh
λ )2 ·

(
2 |λ|
|λ|

)
· 2−`(λ).
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Proof. We show that

(2)
∏
u∈Λdg

hΛ(u) = 2`(λ)
( ∏
u∈λsh

hsh
λ (u)

)2
.

This is obvious if λ is a staircase and Λ is a rectangle. In this case

(3) hΛ(i, i) = 2hΛ(i, `(λ) + 1) = 2hsh
λ (i, `(λ)),

as in Figure 8a, and

(4) hΛ(i, j) = hΛ(j, i) = hsh
λ (i, j − 1),

when i < j 6 `(λ) as in Figure 8b.

8

6

4

2

4

3

2

1

(a) The hook-lengths on the diagonal and
in the last column of Λ satisfy hΛ(i, i) =
2hΛ(i, `(λ) + 1) = 2hsh

λ (i, `(λ)).

7 6 5

5 4

3

7

6 5

5 4 3

(b) The off-diagonal hook-lengths to the left
of the last column of Λ satisfy hΛ(i, j) =
hΛ(j, i) = hsh

λ (i, j − 1).

Figure 8. Matching the hook-lengths of a staircase partition λ and
its double Λ, a rectangle.

The identity in (2) follows inductively as it is easy to verify that (3) and (4)
are preserved when a cell (i, k) with `(λ) < k is added to λsh. Adding a cell to
row i increases hsh

λ (i, `(λ)) by 1 and hΛ(i, i) by 2, hence the equality in (3) still
holds. Moreover, since (k, i) and (i, k + 1) are added to Λdg, the equality in (4) is
preserved. For the remaining cells we have hΛ(i′, j′) = hΛ(j′ − 1, i′) = hsh

λ (i′, j′ − 1)
for i′ 6 `(λ) < j′. See Figure 9.

The claim then follows from the hook-length formula (Theorem 2.1). �

3

1

8 6 4 3 2

8

6

3

3 1

4

2

19 7 6 4 3

9

7

4

14 2

Figure 9. The effect of adding a cell on the hook-lengths in a shifted
diagram and its double.

The following two results provide an estimate for the probability that a fixed sub-
diagram λsh of size k of the shifted staircase contains precisely the entries 1, . . . , k in
a shifted SYT of shape ∆sh

n chosen uniformly at random.
Let m,n ∈ N, � = (nm), and λ be a partition. If λdg ⊆ �dg define a partition

�r λ by setting

(�r λ)dg =
{

(m− i+ 1, n− j + 1) : (i, j) ∈ �dg r λdg} .
Algebraic Combinatorics, Vol. 3 #6 (2020) 1238
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This is a 180◦ rotation of the skew diagram of � r λ. Moreover, if λ is strict and
λsh ⊆ ∆sh

n , define a strict partition ∆n r λ by setting
(∆n r λ)sh =

{
(n− j, n− i) : (i, j) ∈ ∆sh

n r λsh},
which is the reflection of ∆sh

n r λsh through the diagonal i = j. See Figure 10.

Figure 10. The partition �7 = (76). The shifted diagram of λ =
(6, 4, 2, 1) is in grey in the upper left part, which is the diagram of
Λ = (7, 6, 5, 5, 2, 1). The diagram of �7 r Λ = (6, 5, 2, 2, 1) is a 180◦
rotation of the lower right part. The shifted diagram of ∆7rλ = (5, 3)
is the reflection through the diagonal i = j of the grey region in the
lower right part. The partition �7 r Λ = (6, 5, 2, 2, 1) is the double
of ∆7 r λ.

Lemma 3.2. Let n ∈ N, λ be a strict partition of size k with λ1 < n, and let Pn denote
the uniform probability measure on Tn. Then

(5) Pn
(
T ∈ Tn : T (λsh) = [k]

)
=
(
N

k

)−1
·

√(
2N
2k

)
fΛ · f�nrΛ

f�n
,

where Λ and �n are the doubles corresponding to λ and ∆n respectively.

Proof. The left hand side of (5) is equal to

(6) Pn
(
T ∈ Tn : T (λsh) = [k]

)
=
f sh
λ · f sh

∆nrλ

f sh
∆n

.

It is not difficult to see that �n rΛ is the double of ∆n r λ. See Figure 10. Thus (6)
can be computed by means of Proposition 3.1 above. �

The right hand side of (5) is similar to [27, Eq. (7)]. This allows us to prove an
analogue of [27, Lem. 1] for the shifted staircase. Note that �n denotes an n × n
square in [27], whereas here it is an (n− 1)× n rectangle.

We now describe scaled and rotated boundary functions of partitions. We use the
same conventions as Pittel and Romik. Fix n and let λ be a partition with |λ| = k.
Define a function γλ : R>0 → R>0 by

γλ(x) = 1
n
λdnxe ,

where by convention λi = 0 for i > `(λ). See Figure 11. It is often more convenient
to work with rotated coordinates

(7) u = x− y√
2
, v = x+ y√

2
.

Define gλ : R→ R>0 by
gλ(u) = sup

{
v : v = |u| or x(u, v) > 0, y(u, v) 6 γλ(x(u, v))

}
,
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y

x
4
n

γλ

v

u
− 3
√

2
n

2
√

2
n

gλ

Figure 11. The functions γλ and gλ for the partition (6, 4, 2, 1).

where x(u, v) and y(u, v) are given by the inverse of the transformation in Equa-
tion (7). The function gλ is just a rotated version of the function γλ, however, it has
the advantage of being 1-Lipschitz while γλ is only non-increasing. Note that∫ ∞

0
γλ(x) dx =

∫
R
gλ(u)− |u|du = k

n2 .

If the partition λ is strict we define Gλ : R60 → R>0 by

Gλ(u) = sup
{
v : v = |u| or x > 0, y 6 γλ(x) + dnxe − 1

n

}
,

where implicitly x = x(u, v) and y = y(u, v). The function Gλ describes the boundary
of the scaled shifted Young diagram λsh. See Figure 12.

v

u
− 3
√

2
n

0

Gλ

-0.6 -0.4 -0.2 0.2 0.4 0.6

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 12. Left: the function Gλ for the partition (6, 4, 2, 1). Right:
the curves v = gα(u) for α = 0.05, 0.1, . . . , 0.95.

Lemma 3.3. Let α ∈ (0, 1), k = k(n) be a sequence such that k/N → α as n → ∞,
and let Pn denote the uniform probability measure on Tn. Then, as n→∞,

Pn
(
T ∈ Tn : T (λsh) = [k]

)
= exp

(
−
(
1 + o(1)

)n2

2
(
I(γΛ) +H(α) + C

))
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uniformly over all strict partitions λ of k with λ1 < n, where

C = 3
2 − 2 ln 2,

H(α) = −α ln(α)− (1− α) ln(1− α),

I(γ) =
∫ 1

0

∫ 1

0
ln
∣∣γ(x) + γ−1(y)− x− y

∣∣d y dx,

γ−1(y) = inf{x ∈ [0, 1] : γ(x) 6 y} ,

and Λ denotes the double of λ.

Proof. We use Lemma 3.2 and proceed exactly as in the proof of [27, Lem. 1]. Com-
pared to [27] our partitions lie inside an (n − 1) × n rectangle rather than a square,
however, the obtained error is small as n tends to infinity. Also note that

− ln
((

N

k

)−1
·

√(
2N
2k

))
= −1

4 ln
(
α(1− α)πN

)
+O(1)

as n → ∞ by Stirling’s approximation, thus these terms do not contribute to the
analysis. �

Results of the type of Lemma 3.3 lead to a so-called large deviation principle.
Suppose that λ is the strict partition of size k with λ1 < n such that its double Λ
minimises the integral I(γΛ). If µ is a different strict partition of size k with µ1 <
n then by Lemma 3.3 the probability that µ contains the numbers 1, . . . , k in a
random shifted SYT T ∈ Tn decays exponentially as µ deviates from λ. This means
that the shape formed by the entries 1, . . . , k in a random shifted SYT will be close
to the minimising partition λ with high probability. One is therefore lead to the
variational problem of identifying the function γ within a certain search space of
functions depending on α that minimises the integral I(γ).

A function
g : [−

√
2/2,
√

2/2]→ [0,
√

2]
is called α-admissible if it is 1-Lipschitz and satisfies∫ √2/2

−
√

2/2
(g(u)− |u|) du = α .

As is explained in [27, Sec. 2.2] our problem is equivalent to the following formulation:
For each α ∈ (0, 1) find the unique α-admissible function g which is symmetric, that
is, g(−u) = g(u), and minimises the integral

(8) K(g) = −1
2

∫ √2/2

−
√

2/2

∫ √2/2

−
√

2/2
g′(s)g′(t) ln |s− t|d sd t .

The only difference between our situation and the situation in [27] is the fact that our
search space of admissible functions g is smaller since we require that Λ is the double
of a strict partition. In [27, Sec. 2 and 3] Pittel and Romik show that the variational
problem (8) without the assumption g(−u) = g(u) has the unique solution g̃α given
by

(9) g̃α(u) =
{
gα(u) if |u| 6

√
2α(1− α),

|u| if
√

2α(1− α) 6 |u| 6
√

2/2,

where
gα : [−

√
2α(1− α),

√
2α(1− α)]→ R
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is defined as

gα(u) = 2u
π

tan−1

(
(1− 2α)u√

2α(1− α)− u2

)
+
√

2
π

tan−1

(√
2(2α(1− α)− u2)

1− 2α

)
,

if 0 < α < 1/2, and
g̃α(u) =

√
2− g̃1−α(u)

for 1/2 < α < 1, and

g̃1/2(u) =
√

2
2 .

The family of functions gα is illustrated in Figure 12. Since this solution already
exhibits the additional symmetry g̃α(−u) = g̃α(u) as tan−1 is odd, we may apply it
to the shifted case as well.

Let
L :
{

(u, v) ∈ R2 : −
√

2/2 6 u 6 0, |u| 6 v 6
√

2− |u|
}
→ R>0

be the surface defined by the level curves v = gα(u) for α ∈ (0, 1). Let
L :
{

(x, y) ∈ R2 : 0 6 x 6 y 6 1
}
→ R>0

be the rotated version of L, that is, L(x, y) = L(u, v), where (x, y) and (u, v) are
related as in (7).

The following lemma collects analytic results on the integralK(g) and the functions
g̃α that are found in [27].

Lemma 3.4.
(i) There exists a constant cK > 0 such that for all 1-Lipschitz functions g, h we

have
|K(g)−K(h)| 6 cK ‖g − h‖∞ .

(ii) There exists a function c : (2, 3) → R>0 such that for all r ∈ (2, 3) and all
α-admissible functions g we have

K(g) +H(α)− ln 2 > c(r) ‖g − g̃α‖r∞ .

(iii) Let (x, y) ∈ (0, 1) × (0, 1), let (u, v) be given as in (7), set α = L(u, v), and
set

σ(x, y) = min
(
xy, (1− x)(1− y)

)
.

Then there exist constants c1 > 0 and c2 > 0 such that for all β ∈ (0, 1) and
all δ < c2σ(x, y)2 we have

|g̃α(u)− g̃β(u)| < δc1
√
σ(x, y) ⇒ |α− β| < δ .

Proof. Claim (i) follows from the proof of [27, Lem. 2]. Claim (ii) is an immediate
consequence of [27, Thm. 5 and Lem. 4]. Claim (iii) is precisely the statement of [27,
Lem. 5]. �

The last ingredient that is needed to obtain the limit shape for random shifted
SYT of staircase shape is a bound on the expected number of entries less than k in
the first row of such a tableau. We start with an auxiliary result. Given a partition λ
let λ+ denote the partition obtained from λ by adding a cell to the first row, that is,
λ+ = (λ1 + 1, λ2, . . . , λ`(λ)).

Lemma 3.5. Let m,n ∈ N, � = (nm) be a rectangle and λ a partition such that
(λ+)dg ⊆ �dg. Then

fλ · f�rλ+

fλ+ · f�rλ
= (m+ λ1)(n− λ1)

(|λ|+ 1)(mn− |λ|) .
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Proof. This was proved by Pittel and Romik in the case where � is an n times n
square [27, Eq. (71)]. The proof of the generalisation to rectangles relies on the same
idea.

First note that

(10) fλ
fλ+

= |λ|!
(|λ|+ 1)!

∏
u∈λdg

hλ+(u)
hλ(u) = 1

(|λ|+ 1)

λ1∏
j=1

hλ+(1, j)
hλ(1, j) .

Divide [λ1] into maximal sub-intervals [ir, jr] such that λ′j = λ′ir for all ir 6 j 6 jr.
After even more cancellations (10) is equal to

1
(|λ|+ 1)

∏
r

hλ+(1, ir)
hλ(1, jr)

= 1
(|λ|+ 1)

∏
r

λ1 − ir + λ′ir + 1
λ1 − jr + λ′jr

,

which we rewrite as

(11) χ

(|λ|+ 1)
∏

(u1,u2)∈A

(λ1 − u2 + u1)−1
∏

(u1,u2)∈B

(λ1 − u2 + u1) ,

where A denotes the set of cells u ∈ λdg such that eu, su /∈ λdg, B denotes the set of
cells u ∈ �dg r λdg such that nu,wu /∈ (�dg r λdg), and

χ =
{

(m+ λ1) if `(λ) = m,

1 otherwise.

Divide the set [m − 1] into maximal sub-intervals [ir, jr] such that (� r λ+)j =
n− λm+1−ir for all ir 6 j 6 jr. Then

f�rλ+

f�rλ
= n− λ1

(mn− |λ|)
∏
r

h�rλ(n− λ1, ir)
h�rλ+(n− λ1, jr)

,

which can be written as

(12) (n− λ1) · χ
(mn− |λ|)

∏
(u1,u2)∈A

(λ1 − u2 + u1)
∏

(u1,u2)∈B

(λ1 − u2 + u1)−1 ,

where A and B are defined as above, and

χ =
{

1 if `(λ) = m,

(m+ λ1) otherwise.

The claim now follows from the observation that almost all factors that appear in (11)
and (12) cancel. �

The following lemma provides us with an analogue of [27, Eq. (75)] for the shifted
case. Given n, k ∈ N with k < N , let In,k : Tn → {0, 1} denote the random variable
that takes the value 1 if the entry k is contained in the first row, and 0 otherwise.
Moreover, let Jn,k =

∑k
i=1 In,i denote the number of entries at most k in the first row

of a shifted SYT.

Lemma 3.6. Let k, n ∈ N with 1 < k < N , and let En denote the expected value with
respect to the uniform probability measure Pn on Tn. Then

(En[In,k])2
< En

[
2N − (Jn,k−1)2

k(N − k + 1)

]
.
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Proof. Our proof is very similar to the first part of the proof of [27, Lem. 10].
Let Yn,k denote the set of all strict partitions λ of size k with λ1 < n−1. Note that

En[In,k] = Pn
(
T ∈ Tn : T−1(k) = (1, j) for some j ∈ [n− 1]

)
=

∑
λ∈Yn,k−1

f sh
λ · f sh

∆nrλ+

f sh
∆n

=
∑

λ∈Yn,k−1

f sh
λ+ · f sh

∆nrλ+

f sh
∆n

· f
sh
λ

f sh
λ+
.

Using the fact that µ 7→ f sh
µ · f sh

∆nrµ/f
sh
∆n

defines a probability measure on the set of
strict partitions µ of size k with µ1 < n, and the convexity of the square function we
obtain

(En[In,k])2 6
∑

λ∈Yn,k−1

f sh
λ+ · f sh

∆nrλ+

f sh
∆n

·
(
f sh
λ

f sh
λ+

)2

=
∑

λ∈Yn,k−1

f sh
λ · f sh

∆nrλ

f sh
∆n

·
f sh
λ · f sh

∆nrλ+

f sh
λ+ · f sh

∆nrλ
.

(13)

Let L,M and �n denote the doubles of λ, λ+ and ∆n, respectively. Proposition 3.1
yields
(14)
f sh
λ · f sh

∆nrλ+

f sh
λ+ · f sh

∆nrλ
= 4 ·

√
(k − 1

2 )(N − k + 1
2 )

k(N − k + 1) ·

√
fL · f�nrM
fM · f�nrL

= 4 ·

√
(k − 1

2 )(N − k + 1
2 )

k(N − k + 1) ·

√
fL · f�nrL+

fL+ · f�nrL
·

√
f(L+)′ · f(�nrM)′

fM ′ · f(�nrL+)′
.

Using M ′ = ((L+)′)+ and Lemma 3.5 twice we obtain
fL · f�nrL+

fL+ · f�nrL
·
f(L+)′ · f(�nrM)′

fM ′ · f(�nrL+)′
= (n+ λ1)2(n− λ1 − 1)2

16(k − 1
2 )(N − k + 1)k(N − k + 1

2 )
.

Inserting this into (14) we obtain

(15)
f sh
λ · f sh

∆nrλ+

f sh
λ+ · f sh

∆nrλ
= (n+ λ1)(n− λ1 − 1)

k(N − k + 1) <
2N − λ2

1
k(N − k + 1) .

The claim now follows from∑
λ∈Yn,k−1

f sh
λ · f sh

∆nrλ

f sh
∆n

· 2N − λ2
1

k(N − k + 1) = En
[

2N − (Jn,k−1)2

k(N − k + 1)

]
.

To see this note that the first factor in the summand is the probability that the
entries 1, . . . , k − 1 of a random shifted SYT of shape ∆sh

n are contained precisely in
the shifted diagram λsh. Hence the value λ1 in the summand counts the number of
entries less than k that appear in the first row. �

We now prove the limit shape theorem for shifted SYT of staircase shape chosen
uniformly at random. Our result is an analogue of [27, Thm. 1]. The obtained limit
shape is the same as the limit shape for random SYT of square shape except that the
domain is restricted from a square to a triangle.

In particular (16) provides point-wise convergence to the limit surface, while (17)
specifies the rate of convergence if we assume a sufficient distance to the short sides
of the triangle.
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Theorem 3.7. For n ∈ N let ∆n denote the staircase partition of size N =
(
n
2
)
, Tn

the set of shifted SYT of shape ∆sh
n , and Pn the uniform probability measure on Tn.

Then for all ε > 0

(16) lim
n→∞

Pn
(
T ∈ Tn : max

(i,j)∈∆sh
n

∣∣∣∣T (i, j)
N

− L
( i
n
,
j

n

)∣∣∣∣ > ε

)
= 0 .

Moreover for all p ∈ (0, 1/2) and all q ∈ (0, p/2) such that 2p+ q < 1

(17) lim
n→∞

Pn

(
T ∈ Tn : max

(i,j)∈∆sh
n

σ(i/n,j/n)>n−q

∣∣∣∣T (i, j)
N

− L
( i
n
,
j

n

)∣∣∣∣ > n−p

)
= 0 ,

where σ(x, y) = min{xy, (1− x)(1− y)}.

Proof. The first part (16) is proven in the same way as [27, Thm. 1 (i)] in [27, Sec. 4]
with Lemma 3.6 taking the place of [27, Eq. (75)]. The proof of (17) is essentially the
same as the proof of [27, Thm. 1 (ii)] given in [27, Sec. 2.3] using Lemma 3.3 in place
of [27, Lem. 1]. Below we only demonstrate the details for (17), for which [27] seems
to contain a small inaccuracy.

Let p′(k) denote the number of strict partitions of size k. Then

(18) p′(k) ∼ 33/4

12k3/4 exp
(
π
√
k/3
)
,

as k →∞. Confer [10, Fig. I.9].
Given k = αN and a tableau T ∈ Tn let λT,k denote the partition with shifted

Young diagram λsh
T,k = T−1([k]). Let ΛT,k denote the double of λT,k. Note that given

the double Λ of a strict partition λ of k, the function gΛ is 1-Lipschitz but not α-
admissible, since ∫

R
gΛ(u)− |u| du = 2αN

n2 = α
(

1− 1
n

)
.

However, we can always choose an α-admissible function ĝΛ such that

(19) ‖gΛ − ĝΛ‖∞ 6
√

2
n
.

This is needed below for using Lemma 3.4 (ii). There exists a constant C > 0 such
that for all r ∈ (2, 3) and all ε1 > 0

Pn
(
T ∈ Tn :

∥∥gΛT,k − g̃α
∥∥
∞ > ε1

)
=

∑
λsh⊆∆sh

n ,|λ|=k
‖gΛ−g̃α‖∞>ε1

Pn
(
T ∈ Tn : T (λsh) = [k]

)
Lemma 3.3
6 p′(k) max

λsh⊆∆sh
n ,|λ|=k

‖gΛ−g̃α‖∞>ε1

exp
(
− (1 + o(1))n

2

2
(
K(gΛ) +H(α)− ln 2

))
(19) and

Lemma 3.4 (i)= p′(k) max
λsh⊆∆sh

n ,|λ|=k
‖gΛ−g̃α‖∞>ε1

exp
(
− (1 + o(1))n

2

2
(
K(ĝΛ) +H(α)− ln 2

))
(18) and

Lemma 3.4 (ii)
6 exp

(
Cn− c(r)

2 n2εr1

)
,

(20)

as n→∞.
For (i, j) ∈ ∆sh

n set β = L(i/n, j/n). Note that if (u, v) corresponds to (x, y) =
(i/n, j/n), then g̃β(u) = v, and since T (λT,T (i,j)) = [T (i, j)], GλT,T (i,j)(u) = v by the
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definition of G. Given T ∈ Tn set αT = T (i, j)/N . For all r ∈ (2, 3) and all δ > 0 that
satisfy

δ < c2σ(i/n, j/n)2 ,

if n is large enough, then

(21) Pn

(
T ∈ Tn :

∣∣∣∣T (i, j)
N

− L
( i
n
,
j

n

)∣∣∣∣ > δ

)
= Pn

(
T ∈ Tn : |αT − β| > δ

)
Lemma 3.4 (iii)

6 Pn
(
T ∈ Tn : |g̃αT (u)− g̃β(u)| > δc1

√
σ(i/n, j/n)

)
= Pn

(
T ∈ Tn :

∣∣GλT,T (i,j)(u)− g̃αT (u)
∣∣ > δc1

√
σ(i/n, j/n)

)
6 Pn

(
T ∈ Tn :

∣∣gΛT,T (i,j)(u)− g̃αT (u)
∣∣ > δc1

√
σ(i/n, j/n)−

√
2
n

)

6 Pn
(
T ∈ Tn :

∥∥gΛT,T (i,j) − g̃αT
∥∥
∞ >

δc1
2
√
σ(i/n, j/n)

)
(20)
6 exp

(
Cn− c(r)

2

(c1
2

)r
n2
(
δ
√
σ(i/n, j/n)

)r )
.

Suppose δ = n−p and σ(i/n, j/n) > n−q for some p > 0 and q > 0 such that p > 2q
and

p+ q

2 <
1
2 − ε2 .

Then for n large enough
δ = n−p < n−2q < c2σ(i/n, j/n)2

and
δc1
2
√
σ(i/n, j/n) > c1

2 n
−p−q/2 > n−1/2+ε2 .

For all ε2 > 0 there exists ε3 > 0 such that the choice
ε1 > n−1/2+ε2 , r = 2 + ε3

yields

lim
n→∞

exp
(
Cn− c(r)

2 n2εr1

)
= 0 .

Thus since the number of cells in ∆sh
n is only quadratic in n, we obtain (17) by taking

the union bound in (21) over all possible cells. �

4. Intermediate permutations
This section contains the derivation of a limit shape of intermediate permutation
matrices in a random 132-avoiding sorting network, a parallel to [4, Thm. 2] (previ-
ously [1, Conj. 2]).

The (Rothe) diagram of a permutation σ is the set
D(σ) =

{
(i, j) ∈ N2 : i ∈ [i′] and j ∈ [j′] for all i′, j′ with M(σ)i′,j′ = 1

}
of cells left unshaded when we shade all the cells weakly to the east and south of
1-entries in the permutation matrix M(σ). Recall the definition of Qw above Theo-
rem 2.2.

Theorem 4.1 ([20, Thm 3.1, Cor. 3.4]). Let w = w1 · · ·wN be a 132-avoiding sorting
network and k ∈ [N ]. Then Qw1...wk is of shape D(σk), where σk = sw1 · · · swk .
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Recall the definition of the extension g̃α of gα to the full interval [−
√

2/2,
√

2/2]
in (9). See also Figure 13a. The theorem below uses Theorem 4.1 to describe the limit
shape of intermediate permutation matrices in terms of the extended level curves g̃α.
Since we use diagrams of permutations, we have to do this in two parts — first for
the indices j ∈ [n] for which σbαNc(j) 6 σbαNc(1), that is, the columns of M(σbαNc)
in which the 1-entry is weakly above the 1-entry in column 1. The set containing
these indices is denoted by Jw(α). Secondly, the limit shape can be extended for
j ∈ [n] r Jw(α) using a symmetry argument.

Theorem 4.2. Let σ0 = id and σk = sw1 · · · swk for k ∈ [N ], where w = w1 . . . wN
is a sorting network. Let Pn be the uniform probability measure on R132

n , the set of
n-element 132-avoiding sorting networks. Finally, let

Jw(α) =
{
j ∈ [n] : σbαNc(j) 6 σbαNc(1)

}
and Jcw(α) = [n] r Jw(α). For all 0 6 α 6 1 and ε > 0,

Pn
(
w ∈ R132

n : max
j∈Jw(α)

∣∣∣∣σbαNc(j)n
− 1√

2

(
g̃α

(
−j
n
√

2

)
− j

n
√

2

)∣∣∣∣ > ε

)
→ 0,

as n→∞. By symmetry, for all 0 6 α 6 1 and ε > 0,

Pn
(
w ∈ R132

n : max
j∈Jcw(α)

∣∣∣∣σbαNc(j)n
+ 1√

2

(
g̃1−α

(
−j
n
√

2

)
− j

n
√

2

)
− 1
∣∣∣∣ > ε

)
→ 0,

as n→∞.

(a) The extended level
curves v = g̃α(u) for
α = 0.05, 0.1, . . . , 0.95.

(b) The curves (x + y)/
√

2 =
g̃α((x − y)/

√
2) (the previous

picture after rotation).

(c) The curves (2x + y)/
√

2 =
g̃α(−y/

√
2) (the previous pic-

ture after shifting to the left).

Figure 13. Translating the limit shape of shifted staircase SYT into
the limit of the diagrams of the intermediate permutations. The blue
curves in (c) are the limit curves of the diagrams of the intermedi-
ate permutations at times α = 0.05, 0.1, . . . , 0.95. The dashed curves
correspond to the values α = 0.25, 0.5 and 0.75, and also appear in
Figure 14.
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Figure 14. The intermediate permutation matrices of a random
132-avoiding sorting network with 2000 elements at times α = 1

4 ,
1
2

and 3
4 . Compare with Figure 13c which contains the upper parts of

the blue curves (dashed), and also with the general sorting network
case in Figure 4.

Proof. By Theorem 3.7 and Theorem 4.1, the diagram of the intermediate permu-
tation matrix at time α scaled by 1/n converges in probability to a (un)shifted ver-
sion of the (rotated) level curve x+y√

2 = g̃α(x−y√2 ) (Figure 13b). The shift can be per-
formed by sending y to y + x since yshifted = ynon-shifted + x. Thus we get the curve
2x+y√

2 = g̃α(−y√2 ) and consequently the explicit limit formula x = 1√
2 (g̃α(−y√2 ) − y√

2 )
for x = σbαNc(bync)/n. See Figure 13c. The missing part of the limiting permutation
matrix is obtained from the diagram by the symmetry in Proposition 2.3. �

In particular, at α = 1
2 the diagram is bounded by the line y = 1− 2x, which can

be seen in Figure 14. Note that (x, y) = 0 is in the top-left corner.

5. Trajectories
Next, inspired by the former sine trajectories conjecture [1, Conj. 1] of Angel et al.
(now [4, Thm. 1]), we study trajectories in random 132-avoiding sorting networks.

The trajectory of the element i ∈ [n] in w = w1 . . . wN is the function k 7→ σ−1
k (i).

See Figure 15.

s1 s2 s1 s3 s2 s1

1

2

3

4

Figure 15. Trajectories in the 132-avoiding sorting network 121321.
The permutations σk are σ0 = 1234, σ1 = 2134, σ2 = 2314, σ3 =
3214, σ4 = 3241, σ5 = 3421 and σ6 = 4321. Hence the trajectory of
the element 3 is (3, 3, 2, 1, 1, 1, 2).

The scaled trajectory fi(α) = fw,i(α) of i in an n-element 132-avoiding sorting
network w is defined by

fi(α) = σ−1
αN (i)
n
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for αN ∈ Z, and by linear interpolation for other α ∈ [0, 1]. Figure 16 contains some
examples.

Figure 16. The scaled trajectories of the elements 1, 250, 500, 750
and 1000 in a random 132-avoiding sorting network with 1000 el-
ements together with points (in black) from their limits in Theo-
rem 5.4. Compare with Figure 5.

The heights at which different trajectories intersect are deterministic.
Proposition 5.1. In any 132-avoiding sorting network, i and j with i < j are inter-
changed by sj−i.
Proof. We show that all elements between i and j have to pass i, and that all elements
smaller than i have to pass both i and j before i and j can be swapped. Note that
elements k such that i < k < j cannot be swapped with j before they have been
swapped with i. Otherwise an intermediate permutation would have the pattern 132.
Similarly, all k′ with k′ < i have to pass i and hence also j before i and j can be
swapped. �

In general the element k starts to move when 1 reaches position k, that is, at the
smallest t such that the first row of the tableau Qw1...wt (defined above Theorem 2.2)
has length k − 1. Figure 16 shows how the trajectories are constant until they are
intersected by the trajectory of 1. This time is given by the limit shape of shifted
SYT of staircase shape, and is equal to (1−

√
1− x2)/2, where x = k/n. This is the

content of the proposition below.
Proposition 5.2. For n ∈ N let R132

n denote the set of n-element 132-avoiding sorting
networks and Pn be the uniform probability measure on R132

n . Then for all ε > 0,

lim
n→∞

Pn
(
w ∈ R132

n : sup
06α61

∣∣fw,1(α)− t0(α)
∣∣ > ε

)
= 0,

where

t0(α) =
{

2
√
α− α2 if 0 6 α 6 1

2 ,

1 if 1
2 < α 6 1.

Proof. By the Edelman–Greene bijection, fw,1(α) is the length of the first row of
Qw1...wbαNc , scaled by 1/n. Let 0 6 α 6 1

2 . By Theorem 3.7 and using that

L
(

0, j
n

)
=

1−
√

1− (j/n)2

2
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by the definition of L via its level curves v = gβ(u), for every ε > 0

lim
n→∞

Pn

(
T ∈ Tn : max

j∈[n−1]

∣∣∣∣∣T (1, j)
N

−
1−

√
1− (j/n)2

2

∣∣∣∣∣ > ε

)
= 0.

The function
1−
√

1− x2

2
is continuous and strictly increasing. Hence its inverse is also continuous, so for every
ε > 0 there exists a δ > 0 such that∣∣∣∣∣T (1, j)

N
−

1−
√

1− (j/n)2

2

∣∣∣∣∣ < δ ⇒

∣∣∣∣∣∣ jn − 2

√
T (1, j)
N

−
(
T (1, j)
N

)2
∣∣∣∣∣∣ < ε.

This proves the claim with fw,1(α) = j/n and α = T (1, j)/N . Note that since
2
√
α− α2 = 1 at α = 1

2 , t0(α) has to equal 1 for 1
2 < α 6 1. �

Note that by symmetry, the limit shape of the trajectory of n can be obtained by
the transformation α 7→ 1− α.

In general, the limit shapes of trajectories are determined by the limit shape of
shifted SYT of staircase shape. The lemma below states that we can read the steps
at which the element m switches position — and hence the position of m at a given
step — by reading the entries of Qw first along the anti-diagonal i + j − 1 = m − 1
and then along the column i = m.

Lemma 5.3. The trajectory of an element m ∈ [n] in any n-element 132-avoiding
sorting network w is determined by Qw along the anti-diagonal i+ j− 1 = m− 1 and
the row i = m. Namely, let

Dm =
{

(i, j) ∈ ∆n : i+ j − 1 = m− 1 or i = m
}
.

Then

σ−1
k (m) =

{
m, if k < Qw(1,m),
pr2(Q−1

w (max{k′ 6 k : Q−1
w (k′) ∈ Dm})), otherwise,

where pr2(i, j) = j.

Proof. This follows from Theorem 4.1 by the observation that the element m can only
switch places with elements m′ < m until m reaches the first column, and that m′+1
cannot pass m before m′ has, that is, the row m′ has reached length m −m′. This
proves the part concerning the anti-diagonal i + j − 1 = m − 1. The remaining part
follows by the symmetry in Proposition 2.3. �

The next theorem formulates Lemma 5.3 in the limit in terms of the limit shape
in Theorem 3.7. The function fβ(α) below is the non-constant part of the limit of the
trajectory of bβnc and is determined by the limit surface.

Theorem 5.4. Fix m/n = β. Let
Dβ =

{
(x, y) ∈ R2 : 0 6 x 6 y 6 1, y = β or x = β

}
.

Define fβ(α) = y − x, where L−1(α) = (x, y) ∈ Dβ, and

tβ(α) =


β if 0 6 α 6 1−

√
1−β2

2 ,

fβ(α) if 1−
√

1−β2

2 < α <
1+
√

2β−β2

2 ,

1− β if 1+
√

2β−β2

2 6 α 6 1.
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Finally, let R132
n denote the set of n-element 132-avoiding sorting networks and let

Pn be the uniform probability measure on R132
n . Then for all ε > 0,

lim
n→∞

Pn
(
w ∈ R132

n : sup
06α61

∣∣fw,bβnc(α)− tβ(α)
∣∣ > ε

)
= 0.

Proof. This is simply a shifted and scaled version of Lemma 5.3 together with Theo-
rem 3.7. Note that L(x, y) restricted to Dβ is continuous by the continuity of L(x, y)
and also strictly increasing since Dβ intersects each level curve exactly once. �

Informally, by the result above we can trace the trajectory of bβnc by following the
limit shape along y = β until x = y, and then along x = β. If the height α = L(x′, y′)
is given by some point (x′, y′) along this curve, then the trajectory of bβnc is at height
y′ − x′ at time α. Figure 17 illustrates this. Combined with the implicit definition of
L(x, y), this means that it is difficult to compute the trajectories of arbitrary elements
explicitly. However, certain values are obtainable for all of the trajectories. In the limit,
with high probability, the trajectory of bβnc is at height 1 at

α =


1
2 −

1
2
√

1+tan2(πβ)
if 0 6 β < 1

2 ,

1
2 if β = 1

2 ,
1
2 + 1

2
√

1+tan2(πβ)
if 1

2 < β 6 1.

Note that by the proof of Lemma 5.3, this is the time α at which the diagonal side of
Q→w1...wbαNc

has reached length bβnc. On the other hand, at time α = 1
2 , the trajectory

of bβnc is at height b(1− 2β)nc with high probability. Points from some of the scaled
limit trajectories predicted by Theorem 5.4 are plotted in Figure 16 together with the
corresponding sampled scaled trajectories.

Figure 17. A curve (in red) determining the trajectory of bβnc,
β = 0.4, shown on the right from the limit shape.

6. Adjacencies
Motivated by the former great circle conjecture [1, Conj. 3] (now [4, Thm. 4]) and
trying to understand the geometry of random 132-avoiding sorting networks on the
permutahedron, we next study adjacencies. Note that by [1, Thm. 5] and the previous
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two sections, random 132-avoiding sorting networks are not likely to be close to any
fixed great circle.

Let w be a reduced word of the longest element w0 in Sn. An index k ∈ [N − 1] is
called an adjacency of w if |wk+1 − wk| = 1. Geometrically, adjacencies are special in
the following sense.
Proposition 6.1. In the permutahedron, an adjacency k in a reduced word w corre-
sponds to a pair of edges at a π

3 angle. Otherwise the edges corresponding to consec-
utive letters wk and wk+1 are orthogonal.

Proof. An adjacency corresponds to a pair of adjacent edges of length
√

2 with direc-
tion vectors of the form (0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0) where the indices of either
the 1s or the −1s coincide. Hence their scalar product is 1 and the edges constitute an
angle of π

3 . In the case of |wk+1 − wk| > 1 the edges corresponding to wk and wk+1
are orthogonal. �

Adjacencies in a 132-avoiding sorting network w correspond directly to adjacencies
in the SYT Q→w defined above Theorem 2.2 as follows. Let λdg be a Young diagram. A
pair (T, u) of a cell u ∈ λdg and a SYT T of shape λdg is called a horizontal adjacency
if T (eu) = T (u)+1. The pair (T, u) is called a vertical adjacency if T (su) = T (u)+1.
An adjacency (T, u) is said to lie in column j of λdg if u = (i, j). Likewise, in such
a case (T, u) is said to lie in row i of λdg. The definitions are the same for shifted
diagrams λsh. For example, consider the tableau T in Figure 18. Then (T, (1, 1)),
(T, (1, 2)) and (T, (2, 2)) are horizontal adjacencies whereas (T, (2, 3)) is a vertical
adjacency. The adjacencies lie in columns 1, 2, 2, and 3 (and rows 1, 1, 2 and 2),
respectively.

1 2 3

4 5

6

T = τ4(T )
1 2 4

3 5

6

τ3(T )

Figure 18. The three shifted SYT T, τ3(T ) and τ4(T ).

Proposition 6.2. Let w be a 132-avoiding sorting network. Then wk+1 = wk + 1 if
and only if (Q→w , (Q→w )−1(k)) is a horizontal adjacency. Similarly wk+1 = wk − 1 if
and only if (Q→w , (Q→w )−1(k)) is a vertical adjacency.
Proof. This follows from the fact that wi is inserted in column wi of Qw1...wi−1 in the
Edelman–Greene bijection, and that Qw can be shifted. �

Our next goal is to enumerate adjacencies in SYT. To this end define

τk(T ) =
{
T if (T, T−1(k)) is an adjacency,
sk ◦ T otherwise.

In other words, τk(T ) exchanges the positions of k and k+1 if possible, that is, unless
they are adjacent in T . See Figure 18.

We consider the bijection ∂k = τ|λ|−1◦· · ·◦τk+1◦τk from the set of (possibly shifted)
SYT of shape λ to itself, where |λ| is the largest entry in an SYT of shape λ. Applying
∂k to T can be described by the following procedure called partial promotion:

(1) Form the sequence of cells u0, . . . , um, called the promotion path, such that
• u0 = T−1(k),
• ul+1 = arg min{T (eul), T (sul)}. If at some l = m both are undefined,
we stop.
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(2) Remove the label of u0 and slide the entries T (u0)← T (u1)← · · · ← T (um).
(3) Subtract 1 from each label at least k + 1 and insert |λ| into um.
The inverse of ∂k can be described in a similar way:
(1) Form the sequence of cells um, . . . , u0, called the inverse promotion path, such

that
• um = T−1(|λ|),
• ul+1 = arg max{T (wul), T (nul)},
• and u0 is the last possible cell in the sequence such that T (u0) > k.

(2) Remove the label of um and slide the entries T (u0)→ · · · → T (um).
(3) Add 1 to each label at least k. Insert k into u0.
See Figure 19 for an example. In the case k = 1 partial promotion becomes

Schützenberger’s promotion [37]. See also [39]. Let Ac(T ) be the set of horizontal
adjacencies (T, (i, c)) in column c of a (possibly shifted) standard Young tableau T .
Let λ be a (possibly shifted) shape and let Ac(λ) = ∪TAc(T ) where T runs over all
SYT of shape λ.

∂2

1 2 4 5

3 6 7

8 9

10

1 2 3 4

5 6 8

7 9

10

∂−1
2

1 2 3 4

5 6 8

7 9

10

1 2 4 5

3 6 7

8 9

10

Figure 19. Partial promotion ∂2 and its inverse, with the promotion
paths highlighted.

Theorem 6.3. For any column c of a (possibly shifted) shape λ, partial promotion
gives a bijection between Ac(λ) and the set of SYT of shape λ with largest entry in
or after column c+ 1. The corresponding result for vertical adjacencies is obtained by
replacing “column” with “row”.

Proof. Consider a tableau T of shape λ and assume the largest entry |λ| is in column
c+ 1 or greater. Then the inverse promotion path of τ1 ◦ τ2 ◦ · · · ◦ τ|λ|−1 has to cross
from column c+1 to c at some unique k(T ), that is, k(T ) is the first index at which the
path of ∂−1

k(T ) = τk(T ) ◦ · · · ◦ τ|λ|−1 ends in column c of T . By the definition of inverse
partial promotion, the choice of k(T ) ensures that k(T ) and k(T ) + 1 are horizontally
adjacent with k(T ) in some cell u in column c of ∂−1

k(T )(T ). This is illustrated in
Figure 20. Hence, by letting φ(T ) = (∂−1

k(T )(T ), u) we obtain a map φ : Sc(λ)→ Ac(λ).

k k k+1

Figure 20. The bijection in the proof of Theorem 6.3 with k = k(T )
and the path of τk(T ) ◦ · · · ◦ τ|λ|−1 coloured.

If (S, u) is an adjacency in column c, the largest entry of ∂S(u)(S) has to
be in column c + 1 or greater as there is at least one entry in column c + 1.
Hence, by defining ψ(S, u) = ∂S(u)(S) we obtain a map ψ : Ac(λ) → Sc(λ).
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Given the adjacency (∂−1
k(T )(T ), u) in column c, note that ∂−1

k(T )(T )(u) = k(T ),
so ψ(φ(T )) = ∂k(T )(∂−1

k(T )(T )) = T . On the other hand, if (S, u) is an adja-
cency in column c, then ∂−1

S(u)(∂S(u)(S)) = S so k(∂S(u)(S)) = S(u). Hence,
φ(ψ(S, u)) = φ(∂S(u)(S)) = (∂−1

S(u)(∂S(u)(S)), u) = (S, u). Thus φ and ψ are inverse
bijections and the proof is complete.

The proof works for vertical adjacencies as well if one replaces “column” by “row”
since promotion and its inverse are symmetric in rows and columns. �

Techniques similar to those used in the proof of Theorem 6.3 also appear in [36],
for example in the proof of Theorem 1.3 in [36, Section 3]. Theorem 6.3 is true in a
greater generality, for example for many skew shapes. The important feature is that
every possible promotion path from the maximal entry has to cross column c.

A (shifted) Young diagram is called a (shifted) rectangle if all standard tableaux
of its shape contain the largest entry in the same cell. That is, λ = (λ1, . . . , λ`) is a
shifted rectangle if and only if λi = λ1 − i + 1 for all 1 6 i 6 `. Note that shifted
staircases are shifted rectangles.
Corollary 6.4. Let λdg (resp. λsh) be a (shifted) rectangle and fix a column c of
λdg (resp. λsh). Then the number of horizontal (alt. vertical) adjacencies in column
c < λ1 (alt. row r < `) is equal to fλ (resp. f sh

λ ).
Proof. This a special case of Theorem 6.3. �

The below result, in turn, is a corollary of Corollary 6.4.
Corollary 6.5. The expected number of horizontal (resp. vertical) adjacencies in
column c < λ1 (resp. row r < `) of a uniformly random (shifted) rectangle SYT is
equal to 1.
Proof. Apply Corollary 6.4, the definition of expectation, and the fact that each
tableau occurs with the same probability. �

Corollary 6.5 finally yields the following.
Corollary 6.6. The expected number of adjacencies in a random 132-avoiding sort-
ing network of length N is 2(n− 2).
Proof. This is a consequence of Corollary 6.5 by linearity of expectation and Propo-
sition 6.2, since shifted staircases are shifted rectangles. �

Compare this with the result of Schilling et al. below.
Theorem 6.7 ([36, Thm. 1.3]). The expected number of patterns of the form
wkwk+1wk+2 = i (i + 1) i for some i ∈ [n − 1] in a random 132-avoiding sorting
network of length N is 1.

We note that for some (shifted) rectangles the variance of the total number of
horizontal (or vertical) adjacencies seems to be an integer.
Conjecture 6.8. Let λ = (n)n. The variance of the number of horizontal (alt. ver-
tical) adjacencies in a SYT of shape λdg is n − 1. The variance of the number of
horizontal (alt. vertical) adjacencies in a shifted SYT of shape ∆sh

n is n− 3.
By Proposition 6.2, this would give the variance of the number of i ∈ [n− 1] such

that wi+1 = wi + 1 (alternatively, wi+1 = wi − 1) in a random 132-avoiding sorting
network w of length N . In the same vein, Reiner has a conjecture [29, Conj. 3] on the
variance of the number of i (i + 1) i, 1 6 i 6 n − 1, in a random sorting network of
length N , namely that it is N−4

N−2 for n > 4.
Some other corollaries of Theorem 6.3 are listed next.
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Corollary 6.9. Let λ be a strict partition. Then the number of horizontal adjacencies
in shifted SYT of shape λsh in column c < `(λ) is equal to f sh

λ .

Proof. This is a special case of Theorem 6.3. Note that in a shifted SYT of shape λsh

the largest entry must always lie in column `(λ) or greater. �

The result below follows from Corollary 6.9 in the same way as Corollary 6.5 from
Corollary 6.4.

Corollary 6.10. For any strict partition λ, the expected number of horizontal adja-
cencies in column c < `(λ) of a random shifted SYT of shape λsh is 1.

Our final corollary may be obtained from Corollary 6.4 by noting that the left-hand
side in both equations counts the total number of horizontal adjacencies. Note that
both could also be written in terms of vertical adjacencies, that is {u, su}. Recall the
definitions of �r ν and ∆n r ν above Lemma 3.2.

Corollary 6.11. Let � = (nm) be a rectangle. Then∑
µdg⊆νdg⊆�dg

fµ · f�rν = (n− 1)f�,

where the sum is taken over all Young diagrams such that νdg = µdg ∪ {u, eu} for
some cell u ∈ �dg r µdg. Similarly,

(22)
∑

µsh⊆νsh⊆∆sh
n

f sh
µ · f sh

∆nrν = (n− 2)f sh
∆n
,

where the sum is taken over all shifted Young diagrams such that νsh = µsh ∪ {u, eu}
for some cell u ∈ ∆sh

n r µsh.

Compare (22) to the identities

(23)
∑

µsh⊆νsh⊆∆sh
n

f sh
µ · f sh

∆nrν = f sh
∆n
,

where the sum is taken over all shifted Young diagrams such that νsh = µsh ∪
{u, eu, esu} for some cell u ∈ ∆sh

n r µsh, and

(24)
∑

µsh⊆νsh⊆∆sh
n

f sh
µ · f sh

∆nrν =
(
n

2

)
f sh

∆n
,

where the sum is taken over all shifted Young diagrams such that νsh = µsh ∪{u} for
some cell u ∈ ∆sh

n r µsh. The first identity follows from the result in [36] mentioned
above and the second is trivially true.

Open problem 6.12. Can equations (22), (23) and (24) be generalised?

If w = siv is a reduced word for the reverse permutation in Sn, then so is vsn−i−1.
Thus we know that the probability of an adjacency is the same at every position in a
random sorting network. This implies that the expected number of adjacencies before
any position in a random sorting network grows linearly. Experiments suggest that the
distribution of adjacencies converges also in probability to the uniform distribution,
see Figure 21. Also the number of adjacencies in a 132-avoiding sorting network seems
to grow in a nice manner.

Conjecture 6.13. Let Yn(α) and Xn(α) denote the number of adjacencies 1 6 k <
α
(
n
2
)
in a random sorting network and in a random 132-avoiding sorting network of

size n respectively.
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Figure 21. The number of adjacencies in an initial segment of a
random sorting network of size n = 1000, (left) seems to grow linearly.
The number of adjacencies in an initial segment of a random 132-
avoiding sorting network of size n = 2000 (right) seems to grow like
a square root for the first half.

Then Yn(α)/E[Yn(1)] converges in probability to cα for some constant c and

lim
n→∞

P
(

max
06α61

|Xn(α)/(2(n− 2))− g(α)| > ε

)
= 0,

where

g(α) =
{√

α
2 if α ∈ [0, 1

2 ],
1−

√
1−α

2 if α ∈ [ 1
2 , 1].

As an interesting problem for further study, we would also like to mention the
following.

Open problem 6.14. What is the behaviour of |wk−wk+1| for k ∈ [N−1] in random
sorting networks w of length N? See Figure 22.

Figure 22. The number of occurrences of distances between adja-
cent entries in a random sorting network of size n = 1500 (left) and
a random 132-avoiding sorting network of size n = 2000 (right).

For example, if {wk, wk+1} = {j, j + 2} in a 132-avoiding sorting network, then k
and k + 1 are diagonally adjacent in the corresponding shifted SYT Q→w .
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