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Semi-infinite Young tableaux and standard
monomial theory for semi-infinite

Lakshmibai–Seshadri paths

Motohiro Ishii

Abstract We introduce semi-infinite Young tableaux, and show that these tableaux give a com-
binatorial model for the crystal basis of a level-zero extremal weight module over the quantized
universal enveloping algebra of untwisted affine type A. The definition and characterization of
these tableaux are based on standard monomial theory for semi-infinite Lakshmibai–Seshadri
paths and a tableau criterion for the semi-infinite Bruhat order on affine Weyl groups of type
A, which are also proved in this paper.

1. Introduction
The aim of this paper is to introduce semi-infinite Young tableaux (see Defini-
tion 4.2 (2)). These tableaux give a new combinatorial model for the crystal basis of a
level-zero extremal weight module (see § 2.3) over the quantized universal enveloping
algebra of untwisted affine type A. In order to accomplish our purpose, we investigate

(i) a characterization of the image of the strict embedding ΦLT
λ|q=0 (see § 3.1) of

crystals in terms of the semi-infinite Bruhat order (see Theorem 3.4), and
(ii) a tableau criterion for the semi-infinite Bruhat order on affine Weyl groups of

type A in Grassmannian cases (see Theorem 4.7).
Note that the image of ΦLT

λ|q=0 is an isomorphic image of the crystal basis of the
extremal weight module of extremal weight λ (of level-zero) into the tensor product
of crystal bases of extremal weight modules associated with level-zero fundamental
weights.

Various generalizations and variations of (semi-standard) Young tableaux are con-
cerned in many areas such as algebraic combinatorics, representation theory, alge-
braic geometry, and so forth. In particular, Littelmann ([21, 22]) introduced the
Lakshmibai–Seshadri paths for all symmetrizable Kac–Moody root data, which can
be thought of as a type-free generalization of Young tableaux. Soon after, Joseph ([7])
and Kashiwara ([13]) independently proved that, for a dominant integral weight Λ of
a symmetrizable Kac–Moody Lie algebra g, the set of Lakshmibai–Seshadri paths of
shape Λ equipped with Littelmann’s root operators is isomorphic, as a g-crystal, to the
crystal basis of the integrable (irreducible) highest weight module of highest weight Λ

Manuscript received 30th September 2019, revised 29th May 2020, accepted 1st June 2020.
Keywords. Semi-infinite Young tableau, semi-infinite Lakshmibai–Seshadri path, semi-infinite
Bruhat order, affine Weyl group, quantum affine algebra, extremal weight module, crystal basis.
Acknowledgements. This work was supported by JSPS KAKENHI Grant-in-Aid for Young Sci-
entists (B) 16K17577, Japan.

ISSN: 2589-5486 http://algebraic-combinatorics.org/

https://doi.org/10.5802/alco.130
http://algebraic-combinatorics.org/


Motohiro Ishii

over the quantized universal enveloping algebra associated with g. In view of Kashi-
wara’s crystal (basis) theory, further generalizations and variants of Littelmann’s path
model are investigated; e.g. generalized Lakshmibai–Seshadri paths for Borcherds–
Kac–Moody root data ([5, 8]), quantum Lakshmibai–Seshadri paths and semi-infinite
Lakshmibai–Seshadri paths for untwisted affine root data ([6, 20]). Among these gen-
eral theories, it should be emphasized that the original Young tableaux have especially
nice combinatorial structures (see for instance [4, 17]) due to the fact that every fun-
damental representation of finite type A is minuscule; namely, the Weyl group acts
transitively on the crystal basis of any fundamental representation in the case of finite
type A. Similarly, in the case of untwisted affine type A, every extremal weight module
associated with a level-zero fundamental weight is minuscule (see Proposition 4.3 (2));
in this case, the affine Weyl group acts transitively on the crystal basis. Therefore, it
is natural to try to find a tableau model for crystal bases of level-zero extremal weight
modules in the case of untwisted affine type A.

Let us give an explanation of our strategy to introduce semi-infinite Young
tableaux.

For this purpose, we first briefly sketch a standard monomial theoretic character-
ization of (ordinary) Young tableaux in terms of crystal basis theory as follows: let
Uq(sln(C)) be the quantized universal enveloping algebra of type An−1 (see [9, § 4.8
TABLE Fin]). Let $i, 1 6 i 6 n − 1, be the i-th fundamental weight; we identify a
dominant integral weight λ =

∑n−1
i=1 mi$i, mi ∈ Z>0, 1 6 i 6 n− 1, with the Young

diagram such that the number of the columns of length i is mi for 1 6 i 6 n − 1
(see Remark 4.1). For a dominant integral weight λ, let L(λ) be the irreducible finite-
dimensional highest weight Uq(sln(C))-module of highest weight λ, and let B(λ) be
the crystal basis of L(λ). It follows that B($i) is parametrized by the set CST($i) of
column-strict tableaux of shape $i with entries in {1, 2, . . . , n} (see for instance [15,
Proposition 3.3.1 (i)]). We have an injective homomorphism

L(λ) −→
n−1⊗
i=1

L($i)⊗mi(1)

of Uq(sln(C))-modules sending a highest weight vector to the tensor product of highest
weight vectors. Further, this homomorphism induces a strict embedding

B(λ) −→
n−1⊗
i=1

B($i)⊗mi ∼=
n−1∏
i=1

CST($i)mi ∼= CST(λ)(2)

of Uq(sln(C))-crystals, where CST(λ) denotes the set of column-strict tableaux of
shape λ with entries in {1, 2, . . . , n}. Since the symmetric group of degree n acts tran-
sitively on CST($i), each element in CST(λ) is labeled by a tuple of N :=

∑n−1
i=1 mi

cosets in the symmetric group; the symmetric group of degree n will be viewed as
the Weyl group of type An−1. Let T ∈ CST(λ), and assume that T corresponds to
the tuple (w̄1, w̄2, . . . , w̄N ) of N cosets in the symmetric group. Then T is in the
image of the strict embedding (2) if and only if there exist coset representatives
wν ∈ w̄ν , 1 6 ν 6 N , such that w1 � w2 � · · · � wN in the Bruhat order � on the
symmetric group (see [23, Theorem 10.1]). In consequence, a column-strict tableau
satisfying this condition is just a Young tableau, and vise versa ([3, Theorem 2.6.3
(Tableau Criterion)]; see also [15, Theorem 3.4.2 (i)]). This gives an isomorphism of
Uq(sln(C))-crystals between B(λ) and the set of Young tableaux of shape λ. For an
explicit description of the Uq(sln(C))-crystal structure on the set of Young tableaux,
see [15, Theorem 3.4.2 (ii)].

In the case of untwisted affine type A, our basic idea is to use the semi-infinite
Bruhat order on the affine Weyl group in place of the Bruhat order on the symmetric
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group. Let U be the quantized universal enveloping algebra of (arbitrary) untwisted
affine type, and let Iaf = {0} t I be the index set for the simple roots. By abuse of
notation, we use the same symbol $i, i ∈ I, for the i-th level-zero fundamental weight
of U. For λ =

∑
i∈I mi$i, with mi ∈ Z>0, i ∈ I, let V (λ) be the extremal weight

U-module of extremal weight λ, and let B(λ) be the crystal basis of V (λ) (see for
instance [14, § 3.1]). Similarly to (1), we have a canonical homomorphism

Φλ : V (λ) −→
⊗
i∈I

V ($i)⊗mi(3)

of U-modules sending an extremal weight vector to the tensor product of extremal
weight vectors. The main difficulty in carrying out the argument similar to the above is
that the associated map Φλ|q=0 at q = 0 of Φλ does not necessarily induce a morphism
B(λ) →

⊗
i∈I B($i)⊗mi of U-crystals. In fact, each Φλ|q=0(b), b ∈ B(λ), is a linear

combination of crystal basis elements whose terms are in one-to-one correspondence
with the terms of a product of some Schur polynomials (see [2, § 4.2]). To overcome
this difficulty, by taking the “leading term” ΦLT

λ|q=0(b) of Φλ|q=0(b) (see Remark 3.2),
we introduce a strict embedding

ΦLT
λ|q=0 : B(λ) −→

⊗
i∈I
B($i)⊗mi(4)

of U-crystals, which will be viewed as a counterpart of (2) in this paper (see (38)
and Lemma 3.1). In the case that U is of untwisted affine type A, it follows that
B($i) is parametrized by CST($i) × Z, and the affine Weyl group acts transitively
on CST($i)×Z (see Proposition 4.3). Consequently,

⊗
i∈I B($i)⊗mi is parametrized

by CST(λ)×ZN , where N :=
∑
i∈I mi, and each element in CST(λ)×ZN is labeled

by a tuple of N cosets in the affine Weyl group. Let T ∈ CST(λ) × ZN , and assume
that T corresponds to the tuple (x̄1, x̄2, . . . , x̄N ) of cosets in the affine Weyl group.
Then T is in the image of the strict embedding (4) if and only if there exist coset
representatives xν ∈ x̄ν , 1 6 ν 6 N , such that x1 � x2 � · · · � xN in the semi-
infinite Bruhat order � on the affine Weyl group (see Theorem 3.4). Such decreasing
sequences are explicitly described in terms of tableaux (see Definition 4.2 (1) and
Theorem 4.7). We are thus led to the definition of semi-infinite Young tableaux (see
Definition 4.2 (2)).

Let us give an example of a semi-infinite Young tableau (by using the notation in
§ 4.1). Let n = 7 and

λ = $1 + 3$2 + 2$4 = .(5)

We claim that

T =

 5 2 3 1 1 1
3 4 5 3 4

4 5
6 7

, (−3; 5, 4,−1; 8, 7)

 ∈ CST(λ)× Z6(6)

is a semi-infinite Young tableau of shape λ. Indeed, T is a semi-infinite Young tableau
if (and only if) its rectangle components

( 5 , −3) ,
(

2 3 1
3 4 5 , (5, 4,−1)

)
,

 1 1
3 4
4 5
6 7

, (8, 7)

(7)

are semi-infinite Young tableaux. Also, a tableau

(T1T2 · · ·Tm, (c1, c2, . . . , cm)) ∈ CST(m$i)× Zm(8)
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of rectangle shape is a semi-infinite Young tableau if (and only if)
(i) c1 > c2 > · · · > cm, and
(ii)

(
Tν(u+ cν − cν+1) > Tν+1(u) if 1 6 u 6 i− cν + cν+1

)
for every 1 6 ν < m,

where Tν(s) denotes the s-th entry (from top) of the ν-th column Tν .
This paper is organized as follows. In § 2, we set up notation and terminology on

untwisted affine root data and crystals. Also, we have compiled some basic facts on
extremal weight modules over quantized universal enveloping algebras of untwisted
affine types, the semi-infinite Bruhat order on affine Weyl groups, and semi-infinite
Lakshmibai–Seshadri paths. In § 3, we introduce a strict embedding ΦLT

λ|q=0 of crystals.
Then we state and prove a characterization of the image of ΦLT

λ|q=0, which can be
thought of as standard monomial theory for semi-infinite Lakshmibai–Seshadri paths
(see Theorem 3.4). In § 4, we will restrict our attention to the case of untwisted affine
type A. We introduce semi-infinite Young tableaux. We prove that the set Y∞2 (λ) of
semi-infinite Young tableaux of shape λ equals the image of ΦLT

λ|q=0 (see Theorem 4.5),
by showing a tableau criterion for the semi-infinite Bruhat order (see Theorem 4.7).
Consequently, this proves that Y∞2 (λ) is isomorphic, as a U-crystal, to the crystal
basis B(λ) (see Corollary 4.6). We give an explicit description of the crystal structure
on Y∞2 (λ) (see Proposition 4.17).

2. Preliminaries
2.1. Untwisted affine root data. Let gaf be an untwisted affine Lie algebra over
C with a Cartan subalgebra haf . Let {αi}i∈Iaf ⊂ h∗af = HomC(haf ,C) and {hi}i∈Iaf ⊂
haf be the sets of simple roots and simple coroots, respectively. Here Iaf denotes the
vertex set of the (affine) Dynkin diagram of gaf . Let 〈·, ·〉 : haf × h∗af → C be the
canonical pairing. We take and fix an integral weight lattice Paf ⊂ h∗af satisfying the
conditions that αi ∈ Paf and hi ∈ HomZ(Paf ,Z) for all i ∈ Iaf , and for each i ∈ Iaf
there exists Λi ∈ Paf such that 〈hj ,Λi〉 = δij for all j ∈ Iaf . Let δ =

∑
i∈Iaf

aiαi ∈
h∗af and c =

∑
i∈Iaf

a∨i hi ∈ haf be the null root and the canonical central element,
respectively. We take and fix 0 ∈ Iaf such that a0 = a∨0 = 1. Set I = Iaf r {0}; note
that the subset I of Iaf corresponds to the vertex set of the Dynkin diagram of a
complex finite-dimensional simple Lie subalgebra g of gaf . For each i ∈ Iaf , define
$i = Λi − 〈c,Λi〉Λ0 and call it the i-th level-zero fundamental weight; note that
$0 = 0, 〈c,$i〉 = 0 for all i ∈ Iaf , and 〈hi, $j〉 = δij for all i, j ∈ I.

Let Waf = 〈ri | i ∈ Iaf〉 be the (affine) Weyl group of gaf , where ri denotes the
simple reflection with respect to αi. The subgroup W = 〈ri | i ∈ I〉 ⊂ Waf is the
(finite) Weyl group of g. Let ` : Waf → Z>0 be the length function. Let e ∈ Waf be
the unit element. Let (·, ·) be aWaf -invariant non-degenerate symmetric bilinear form
on h∗af such that (δ, λ) = 〈c, λ〉 for all λ ∈ h∗af . Set α∨i = 2αi

(αi, αi)
∈ h∗af for i ∈ Iaf . The

action of Waf on h∗af is given by ri(λ) = λ− (α∨i , λ)αi = λ− 〈hi, λ〉αi for i ∈ Iaf and
λ ∈ h∗af . Set

Q =
⊕
i∈I

Zαi, Q∨ =
⊕
i∈I

Zα∨i , P+ =
∑
i∈I

Z>0$i.(9)

We know from [9, § 6.5] that Q∨ ⊂ Q. For ξ ∈ Q∨, we denote by tξ ∈ Waf the
translation by ξ (see [9, §6.5]). We know from [9, Proposition 6.5] that {tξ | ξ ∈ Q∨}
forms an abelian normal subgroup of Waf , for which tξtζ = tξ+ζ , ξ, ζ ∈ Q∨, and
Waf = W n {tξ | ξ ∈ Q∨}. For w ∈W and ξ ∈ Q∨, we have

wtξλ = wλ− (ξ, λ)δ if λ ∈ h∗af satisfies 〈c, λ〉 = 0.(10)
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Let ∆ be the root system of g. Set ∆+ = ∆∩
∑
i∈I Z>0αi. For a subset J ⊂ I, set

QJ =
⊕
j∈J

Zαj , Q∨J =
⊕
j∈J

Zα∨j , ∆J = ∆ ∩QJ , ∆+
J = ∆+ ∩QJ .(11)

Denote by ∆af the set of real roots of gaf , and by ∆+
af the set of positive real roots of

gaf ; we know from [9, Proposition 6.3] that

∆af = {α+ nδ | α ∈ ∆, n ∈ Z}, ∆+
af = ∆+ t {α+ nδ | α ∈ ∆, n ∈ Z>0}.(12)

For β ∈ ∆af , let β∨ = 2β
(β, β) ∈ h∗af , and let rβ ∈Waf be the reflection with respect to

β; if β = α+ nδ, α ∈ ∆ and n ∈ Z, then rβ = rαtnα∨ .
Let d be the smallest positive integer such that (αi, αi)/2 ∈ (1/d)Z for all i ∈ Iaf .

Let q be an indeterminate, and set qs = q1/d. Let U be the quantized universal
enveloping algebra over Q(qs) associated with gaf . Let U′ be the Q(qs)-subalgebra of
U corresponding to the derived subalgebra [gaf , gaf ] of gaf (see for instance [2, § 2.2]).

2.2. Crystals. In this subsection, we set up notation and terminology on crystals.
For a fuller treatment, we refer the reader to [1, 11, 12, 14].

A set B together with the maps wt : B → Paf (resp. wt : B → Paf/(Paf ∩ Cδ)),
ei, fi : B → B t {0}, i ∈ Iaf , and εi, ϕi : B → Z t {−∞} is called a U-crystal
(resp. U′-crystal) if the following conditions are satisfied:
(C1) ϕi(b) = εi(b) + 〈hi,wt(b)〉 for all i ∈ Iaf ,
(C2) wt(eib) = wt(b) + αi if eib ∈ B,
(C3) wt(fib) = wt(b)− αi if fib ∈ B,
(C4) εi(eib) = εi(b)− 1 and ϕi(eib) = ϕi(b) + 1 if eib ∈ B,
(C5) εi(fib) = εi(b) + 1 and ϕi(fib) = ϕi(b)− 1 if fib ∈ B,
(C6) fib = b′ if and only if b = eib

′ for b, b′ ∈ B and i ∈ Iaf ,
(C7) if ϕi(b) = −∞, then eib = fib = 0.

The maps ei, fi : B → B t {0}, i ∈ Iaf , are called the Kashiwara operators. For a
subset B′ of a crystal B, we say that B′ is stable under the Kashiwara operators if
eiB′, fiB′ ⊂ B′ t {0} for all i ∈ Iaf .

Let B1 and B2 be U-crystals or U′-crystals. A morphism Ψ : B1 → B2 is, by
definition, a map B1 t {0} → B2 t {0} such that
(M1) Ψ(0) = 0,
(M2) if b ∈ B1 and Ψ(b) ∈ B2, then wt(Ψ(b)) = wt(b), εi(Ψ(b)) = εi(b), and

ϕi(Ψ(b)) = ϕi(b) for all i ∈ Iaf ,
(M3) if b, b′ ∈ B1, Ψ(b),Ψ(b′) ∈ B2 and fib = b′, then fiΨ(b) = Ψ(b′) for all i ∈ Iaf .

A morphism Ψ : B1 → B2 is called strict if Ψ(fib) = fiΨ(b) and Ψ(eib) = eiΨ(b) for
all b ∈ B1 and i ∈ Iaf . A morphism Ψ : B1 → B2 is called a strict embedding if it is a
strict morphism and the associated map B1t{0} → B2t{0} is injective. A morphism
Ψ : B1 → B2 is called an isomorphism if the associated map B1 t {0} → B2 t {0} is
bijective.

The tensor product B1 ⊗B2 of crystals B1 and B2 is defined to be the set B1 ×B2
whose crystal structure is defined as follows:
(T1) wt(b1 ⊗ b2) = wt(b1) + wt(b2),
(T2) εi(b1 ⊗ b2) = max{εi(b1), εi(b2)− 〈hi,wt(b1)〉},
(T3) ϕi(b1 ⊗ b2) = max{ϕi(b2), ϕi(b1) + 〈hi,wt(b2)〉},

(T4) ei(b1 ⊗ b2) =
{

(eib1)⊗ b2 if ϕi(b1) > εi(b2),
b1 ⊗ (eib2) if ϕi(b1) < εi(b2),
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(T5) fi(b1 ⊗ b2) =
{

(fib1)⊗ b2 if ϕi(b1) > εi(b2),
b1 ⊗ (fib2) if ϕi(b1) 6 εi(b2).

Here, we write b1⊗b2 for (b1, b2) ∈ B1×B2, and we understand that b1⊗0 = 0⊗b2 = 0.
Let B be a regular U-crystal (resp. regular U′-crystal) in the sense of [14, § 2.2].

By [11, § 7], we have a Waf -action S : Waf → Bij(B), x 7→ Sx, on (the underlying set)
B given by

Srib =
{
f
〈hi,wt(b)〉
i b if 〈hi,wt(b)〉 > 0,
e
−〈hi,wt(b)〉
i b if 〈hi,wt(b)〉 6 0,

(13)

for each b ∈ B and i ∈ Iaf . Note that wt(Sxb) = xwt(b) holds for all x ∈ Waf and
b ∈ B. An element b ∈ B of weight λ ∈ Paf (resp. λ ∈ Paf/(Paf ∩ Cδ)) is called an
extremal element if we can find elements bx ∈ B, x ∈Waf , such that

(E1) be = b,
(E2) if 〈hi, xλ〉 > 0, then eibx = 0 and f 〈hi,xλ〉i bx = brix,
(E3) if 〈hi, xλ〉 6 0, then fibx = 0 and e−〈hi,xλ〉i bx = brix.

Then bx = Sxb holds for all x ∈Waf .

2.3. Extremal weight modules and their crystal bases. In this subsection,
following [2, 11, 14], we review some of the standard facts on extremal weight modules
and their crystal bases.

For λ ∈ P+, let V (λ) be the extremal weight U-module generated by an extremal
weight vector uλ of extremal weight λ, and let (L(λ),B(λ)) be the crystal basis of
V (λ) ([11, Proposition 8.2.2]; see also [14, § 3.2]). Note that B(λ) is a regular U-
crystal in the sense of [14, § 2.2] (see § 2.2). Let B0(λ) be the connected component
of the crystal graph of B(λ) containing uλ mod qsL(λ).

Let zi, i ∈ I, be the U′-linear automorphism of V ($i) of weight δ introduced
in [14, § 5.2]; zi sends a (unique) global basis element of weight $i to a (unique)
global basis element of weight $i + δ. Then zi induces a Q-linear automorphism
of L($i)/qsL($i) and an automorphism of B($i) as a U′-crystal; by abuse of no-
tation, we use the same letter zi for the automorphism of B($i). The U′-module
W ($i) = V ($i)/(zi − 1)V ($i) is called a level-zero fundamental representation. We
know from [14, Theorem 5.17] that W ($i) is a finite-dimensional irreducible U′-
module and has a (simple) crystal basis.

For λ =
∑
i∈I mi$i ∈ P+, with mi ∈ Z>0, i ∈ I, let Ṽ (λ) =

⊗
i∈I V ($i)⊗mi

and ũλ =
⊗

i∈I u
⊗mi
$i ∈ Ṽ (λ). For each i ∈ I and 1 6 ν 6 mi, let zi,ν be the U′-

linear automorphism of Ṽ (λ) obtained by the action of zi on the ν-th factor V ($i)
of V ($i)⊗mi in Ṽ (λ). The U-submodule

V̆ (λ) = U
[
zi,ν , z

−1
i,ν i ∈ I, 1 6 ν 6 mi

]
ũλ ⊂ Ṽ (λ)(14)

has a crystal basis (L̆(λ), B̆(λ) =
⊗

i∈I B($i)⊗mi) such that L̆(λ) ⊂
⊗

i∈I L($i)⊗mi
([14, Theorem 8.5]). Let B̆0(λ) be the connected component of the crystal graph of
B̆(λ) containing ũλ mod qsL̆(λ). Since V̆ (λ) contains an extremal weight vector ũλ
of weight λ, we have a U-linear homomorphism Φλ : V (λ)→ V̆ (λ) sending uλ to ũλ.
We know from [2, § 4.2] that the map Φλ is injective, commutes with the Kashiwara
operators ei, fi, i ∈ Iaf , and induces an injectiveQ-linear map Φλ|q=0 : L(λ)/qsL(λ)→
L̆(λ)/qsL̆(λ); note that Φλ|q=0(B(λ)) 6⊂ B̆(λ), in general (see Theorem 2.1 (2)).
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For λ =
∑
i∈I mi$i ∈ P+, with mi ∈ Z>0, i ∈ I, set

Par(λ) =
{
ρ =

(
ρ(i)
)
i∈I

ρ(i) is a partition of length less than mi for each i ∈ I
}

;

(15)

we understand that a partition of length less than 1 is an empty partition ∅. For a par-
tition ρ = (ρ1 > ρ2 > · · · > ρl > 0), set |ρ| =

∑l
ν=1 ρν . For ρ =

(
ρ(i))

i∈I ∈ Par(λ), set

wt(ρ) = −
∑
i∈I

∣∣∣ρ(i)
∣∣∣ δ.(16)

Let ρ =
(
ρ(i))

i∈I ∈ Par(λ). Let S−ρ be the (PBW-type) basis element of weight
wt(ρ) of the negative imaginary part of U constructed in [2, the element S−c0

in § 3.1;
see also Remark 4.1]. Define

sρ(z−1) =
∏
i∈I

sρ(i)(z−1
i,1 , z

−1
i,2 , . . . , z

−1
i,mi

),(17)

where the right-hand side is a product of Schur polynomials in the variables z−1
i,ν ,

i ∈ I, 1 6 ν 6 mi.

Theorem 2.1 ([2, § 4.2]; see also [14, § 13]). Let λ ∈ P+.

(1) We have

(18)
B(λ) =

{
g1g2 · · · glS−ρ uλ mod qsL(λ)∣∣∣ gk ∈ {ei, fi | i ∈ Iaf}, 1 6 k 6 l, l ∈ Z>0, ρ ∈ Par(λ)

}
r {0} .

(2) We have

(19)
Φλ|q=0

(
g1g2 · · · glS−ρ uλ mod qsL(λ)

)
= g1g2 · · · glsρ(z−1)ũλ mod qsL̆(λ)

= sρ(z−1)g1g2 · · · glũλ mod qsL̆(λ)

for g1g2 · · · glS−ρ uλ mod qsL(λ) ∈ B(λ). In particular,

Φλ|q=0(B(λ)) =
{
sρ(z−1)b mod qsL̆(λ) ρ ∈ Par(λ), b ∈ B̆0(λ)

}
,(20)

and the map Φλ|q=0 induces an isomorphism of U-crystals from B0(λ) to
B̆0(λ).

(3) Let Bρ(λ) be the connected component of B(λ) containing S−ρ uλ mod qsL(λ).
Then we have B(λ) =

⊔
ρ∈Par(λ) Bρ(λ). Moreover, for each ρ ∈ Par(λ),

there exists an isomorphism of U′-crystals from B0(λ) to Bρ(λ) sending uλ
mod qsL(λ) to S−ρ uλ mod qsL(λ).

2.4. Semi-infinite Bruhat order on affine Weyl groups. In this subsection,
we recall some basic facts on the semi-infinite Bruhat order on affine Weyl groups
(see [6, 18, 25] for more details).

We take and fix J ⊂ I. Let WJ = 〈rj | j ∈ J〉, and let W J be the set of minimal
coset representatives for W/WJ (see [3, Corollary 2.4.5 (i)]). For w ∈ W , we denote
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by bwc ∈W J the minimal coset representative for the coset wWJ ∈W/WJ . Define

(∆J)af = {α+ nδ | α ∈ ∆J , n ∈ Z} ⊂ ∆af ,(21)
(∆J)+

af = (∆J)af ∩∆+
af = ∆+

J t {α+ nδ | α ∈ ∆J , n ∈ Z>0},(22)
(WJ)af = WJ n {tξ | ξ ∈ Q∨J} = 〈rβ | β ∈ (∆J)+

af〉,(23)
(W J)af = {x ∈Waf | xβ ∈ ∆+

af for all β ∈ (∆J)+
af};(24)

note that (W∅)af = {e} and (W∅)af = Waf .

Lemma 2.2 ([25]; see also [18, Lemma 10.5]). For each x ∈ Waf , there exist a unique
x1 ∈ (W J)af and a unique x2 ∈ (WJ)af such that x = x1x2. In particular, (W J)af is
a complete system of coset representatives for Waf/(WJ)af .

Define a map ΠJ : Waf → (W J)af by ΠJ(x) = x1 if x = x1x2 with x1 ∈ (W J)af
and x2 ∈ (WJ)af .

Lemma 2.3 ([25]; see also [18, Proposition 10.8]).
(1) ΠJ(w) = bwc for w ∈W .
(2) ΠJ(xtξ) = ΠJ(x)ΠJ(tξ) for x ∈Waf and ξ ∈ Q∨.

For simplicity of notation, we let Tξ = T Jξ stand for ΠJ(tξ) ∈ (W J)af for ξ ∈ Q∨.
The next lemma follows immediately from (23) and Lemmas 2.2–2.3.

Lemma 2.4.
(1) (W J)af = {wTξ | w ∈W J , ξ ∈ Q∨}.
(2) Let ξ, ζ ∈ Q∨. If ξ ≡ ζ mod Q∨J , then T Jξ = T Jζ .

Set ρJ = (1/2)
∑
α∈∆+

J
α; we abbreviate ρJ to ρ if J = I. For x = wtξ ∈Waf with

w ∈W and ξ ∈ Q∨, define

`
∞
2 (x) = `(w) + 2(ξ, ρ).(25)

Define the (parabolic) semi-infinite Bruhat graph SiBJ to be the ∆+
af -colored di-

rected graph with vertex set (W J)af and edges of the form x
β−−→ rβx for x ∈ (W J)af

and β ∈ ∆+
af , where rβx ∈ (W J)af and `

∞
2 (rβx) = `

∞
2 (x) + 1.

The semi-infinite Bruhat order is a partial order � on (W J)af defined as follows:
for x, y ∈ (W J)af , we write x � y if there exists a directed path from x to y in SiBJ .

Proposition 2.5 ([6, Proposition A.1.2]). Let w ∈ W J , ξ ∈ Q∨ and β ∈ ∆+
af . Write

β = wγ + χδ with γ ∈ ∆ and χ ∈ Z>0. Then rβwTξ ∈ (W J)af and there exists an
edge wTξ

β−−→ rβwTξ in SiBJ if and only if γ ∈ ∆+ r ∆+
J and one of the following

conditions holds:
(B) χ = 0 and `(wrγ) = `(w) + 1; in this case, we have rβwTξ = wrγTξ and

wrγ ∈W J .
(Q) χ = 1 and `(bwrγc) = `(w) + 1−2(γ∨, ρ−ρJ); in this case, we have rβwTξ =

bwrγcTξ+γ∨ .

Remark 2.6.
(1) If wTξ

β−−→ ΠJ(rβwTξ) in SiBJ , then rβwTξ = ΠJ(rβwTξ) ∈ (W J)af (see [6,
Appendix A]).

(2) The condition (B) (resp. (Q)) for w ∈ W J and γ ∈ ∆+ r ∆+
J in Proposi-

tion 2.5 corresponds to the existence of the Bruhat edge (resp. quantum edge)
w

γ−−→ bwrγc in the (parabolic) quantum Bruhat graph forW J (see [19, § 4]).
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2.5. Semi-infinite Lakshmibai–Seshadri paths. In this subsection, we give a brief
exposition of the U-crystal of semi-infinite Lakshmibai–Seshadri paths; see [6] for more
details.

Let λ ∈ P+ and set Jλ = {j ∈ I | 〈hj , λ〉 = 0}. For a rational number 0 < a 6 1,
define SiB(λ; a) to be the subgraph of SiBJλ with the same vertex set but having only
the edges of the form

x
β−−→ y with a(β∨, xλ) ∈ Z;(26)

note that SiB(λ; 1) = SiBJλ . A semi-infinite Lakshmibai–Seshadri path of shape λ is,
by definition, a pair (x;a) of a decreasing sequence x : x1 � x2 � · · · � xl of elements
in (W Jλ)af and an increasing sequence a : 0 = a0 < a1 < · · · < al = 1 of rational
numbers such that there exists a directed path from xu+1 to xu in SiB(λ; au) for each
u = 1, 2, . . . , l − 1. Let B∞2 (λ) denote the set of semi-infinite Lakshmibai–Seshadri
paths of shape λ.

Following [6, § 3.1], we equip the set B∞2 (λ) with a U-crystal structure. For η =
(x1, . . . , xl; a0, a1, . . . , al) ∈ B∞2 (λ), define the map η̄ : [0, 1]→ R⊗Z Paf by

η̄(t) =
u−1∑
p=1

(ap − ap−1)xpλ+ (t− au−1)xuλ for t ∈ [au−1, au], 1 6 u 6 l.(27)

Define wt : B∞2 (λ)→ Paf by wt(η) = η̄(1) ∈ Paf . Set
hηi (t) = 〈hi, η̄(t)〉 for t ∈ [0, 1], mη

i = min{hηi (t) | t ∈ [0, 1]}.(28)

We define eiη, i ∈ Iaf , as follows: if mη
i = 0, then we set eiη = 0. If mη

i 6 −1, then
we set {

t1 = min{t ∈ [0, 1] | hηi (t) = mη
i },

t0 = max{t ∈ [0, t1] | hηi (t) = mη
i + 1}.

(29)

Let 1 6 p 6 q 6 l be such that ap−1 6 t0 < ap and t1 = aq. Then we define
eiη = (x1, . . . , xp, rixp, . . . , rixq, xq+1, . . . , xl;

a0, . . . , ap−1, t0, ap, . . . , aq = t1, . . . , al);
(30)

if t0 = ap−1, then we drop xp and ap−1, and if rjxq = xq+1, then we drop xq+1 and
aq = t1.

Next, we define fiη, i ∈ Iaf , as follows: if mη
i = hηi (1), then we set fiη = 0. If

hηi (1)−mη
i > 1, then we set{

t0 = max{t ∈ [0, 1] | hηi (t) = mη
i },

t1 = min{t ∈ [t0, 1] | hηi (t) = mη
i + 1}.

(31)

Let 1 6 p 6 q 6 l − 1 be such that t0 = ap and aq < t1 6 aq+1. Then we define
fiη = (x1, . . . , xp, rixp+1, . . . , rixq+1, xq+1, . . . , xl;

a0, . . . , ap = t0, . . . , aq, t1, aq+1, . . . , al);
(32)

if t1 = aq+1, then we drop xq+1 and aq+1, and if xp = rixp+1, then we drop xp and
ap = t0.

For η ∈ B∞2 (λ) and i ∈ Iaf , define{
εi(η) = −mη

i ,

ϕi(η) = hηi (1)−mη
i .

(33)

Now we assume that λ =
∑
i∈I mi$i, with mi ∈ Z>0, i ∈ I. Set Jcλ = I r

Jλ = {i ∈ I | mi > 0}. Following [6, Equation (7.2.2)], we define an element
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ηρ ∈ B∞2 (λ) of weight λ + wt(ρ) for each ρ =
(
ρ(i))

i∈I ∈ Par(λ), with ρ(i) =(
ρ

(i)
1 > ρ

(i)
2 > · · · > ρ

(i)
mi−1

)
(see (15)). Let s be the least common multiple of {mi |

i ∈ Jcλ}. Let ci(ξ) ∈ Z denote the coefficient of α∨i in ξ ∈ Q∨. For ξ, ζ ∈ Q∨, write
ξ � ζ if ξ − ζ ∈

∑
i∈I Z>0α

∨
i , and write ξ � ζ if ξ � ζ and ξ 6= ζ. Let ζ1, . . . , ζs ∈ Q∨

be such that

(i) ci(ζt) = ρ
(i)
u if i ∈ Jcλ and s(u− 1)

mi
< t 6

su

mi
, and

(ii) cj(ζt) = 0 for all j ∈ Jλ and 1 6 t 6 s;
note that ζ1 � · · · � ζs and ζs = 0. Assume that

ζ1 = · · · = ζs1 � ζs1+1 = · · · = ζs2 � · · · · · · � ζsk−1+1 = · · · = ζsk ,(34)

where 1 6 s1 < · · · < sk−1 < sk = s. Set

ηρ =
(
Tζs1

, . . . , Tζsk−1
, e; 0, s1

s
, . . . ,

sk−1

s
, 1
)
.(35)

Theorem 2.7 ([6, Theorems 3.1.5 and 3.2.1]). Let λ ∈ P+.
(1) The set B∞2 (λ) equipped with the maps wt, ei, fi, i ∈ Iaf , and εi, ϕi, i ∈ Iaf ,

defined above, is a U-crystal.
(2) There exists a unique isomorphism of U-crystals from B(λ) to B∞2 (λ) sending

S−ρ uλ mod qsL(λ) to ηρ for every ρ ∈ Par(λ).

For λ1, . . . , λN ∈ P+, let B∞2 (λ1)∗ · · · ∗B∞2 (λN ) be the set of symbols η1 ∗ · · · ∗ηN ,
with ην ∈ B∞2 (λν), 1 6 ν 6 N . We define a U-crystal structure on B∞2 (λ1) ∗ · · · ∗
B∞2 (λN ) in a way similar to the above. For η = η1 ∗ · · · ∗ηN ∈ B∞2 (λ1)∗ · · · ∗B∞2 (λN ),
define η̄ : [0, 1]→ R⊗Z Paf by

η̄(t) =
µ−1∑
ν=1

η̄ν(1) + η̄µ(Nt− µ+ 1) for µ− 1
N

6 t 6
µ

N
, 1 6 µ 6 N,(36)

where each η̄ν : [0, 1]→ R⊗Z Paf , 1 6 ν 6 N , is defined by (27). Define wt(η) = η̄(1).
By the same way as in (28), we define hηi (t) and mη

i for η = η1 ∗ · · ·∗ηN by using (36).
We define eiη (resp. fiη) ∈ B∞2 (λ1) ∗ · · · ∗ B∞2 (λN ) t {0} as follows: if mη

i = 0
(resp. mη

i = hηi (1)), then we set eiη = 0 (resp. fiη = 0). Assume that mη
i 6 −1

(resp. hηi (1)−mη
i > 1), and let 0 6 t0 < t1 6 1 be as in (29) (resp. (31)). We see that

there exists 1 6 ν 6 N such that ν − 1
N

6 t0 < t1 6
ν

N
. Then we set eiη = η1 ∗ · · · ∗

ην−1 ∗eiην ∗ην+1 ∗ · · · ∗ηN (resp. fiη = η1 ∗ · · · ∗ην−1 ∗fiην ∗ην+1 ∗ · · · ∗ηN ). We define
the functions εi, ϕi as in (33). The proof of the next proposition is straightforward.

Proposition 2.8. Let λ1, . . . , λN ∈ P+. The map B∞2 (λ1) ⊗ · · · ⊗ B∞2 (λN ) →
B∞2 (λ1)∗· · ·∗B∞2 (λN ), η1⊗· · ·⊗ηN 7→ η1 ∗· · ·∗ηN , is an isomorphism of U-crystals.

3. Standard monomial theory for semi-infinite
Lakshmibai–Seshadri paths

3.1. Strict embedding ΦLT
λ|q=0. Let λ =

∑
i∈I mi$i ∈ P+, with mi ∈ Z>0, i ∈ I.

Recall the automorphisms zi,ν , i ∈ I, 1 6 ν 6 mi, of the U′-crystal B̆(λ) (see § 2.3).
For ρ = (ρ(i))i∈I ∈ Par(λ), with ρ(i) = (ρ(i)

1 > ρ
(i)
2 > · · · > ρ

(i)
mi−1 > 0), i ∈ I, define

the automorphism z−ρ of the U′-crystal B̆(λ) by

z−ρ =
∏
i∈I

z
−ρ(i)

1
i,1 z

−ρ(i)
2

i,2 · · · z
−ρ(i)

mi−1
i,mi−1 .(37)
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Define the map ΦLT
λ|q=0 : B(λ)→ B̆(λ) by

g1g2 · · · glS−ρ uλ mod qsL(λ) 7−→ g1g2 · · · glz−ρũλ mod qsL̆(λ),(38)

where gk ∈ {ei, fi | i ∈ Iaf}, 1 6 k 6 l, l ∈ Z>0, and ρ ∈ Par(λ) (cf. (19)). Set
B̆ρ(λ) = z−ρ

(
B̆0(λ)

)
⊂ B̆(λ); note that B̆ρ(λ) is a connected component of B̆(λ),

and is isomorphic to B̆0(λ) as a U′-crystal.

Lemma 3.1. The map ΦLT
λ|q=0 is well-defined, and is a strict embedding of U-crystals.

Proof. It suffices to show that the map ΦLT
λ|q=0 induces an isomorphism of U-crystals

from Bρ(λ) to B̆ρ(λ) for every ρ ∈ Par(λ). We know that the maps Bρ(λ) → B0(λ)
in Theorem 2.1 (3), Φλ|q=0 : B0(λ) → B̆0(λ) in Theorem 2.1 (2), and z−ρ : B̆0(λ) →
B̆ρ(λ) are isomorphisms of U′-crystals. We check at once that the composition of
these maps is describe by (38), which proves that ΦLT

λ|q=0 is well-defined and induces
an isomorphism of U′-crystals from Bρ(λ) to B̆ρ(λ). Since wt(S−ρ uλ) = λ+ wt(ρ) =
wt(z−ρũλ), ΦLT

λ|q=0 is a morphism of U-crystals. �

Remark 3.2. If we think of the Schur polynomials as the generating functions of the
weights of Young tableaux (see [4, Page 3]), then the term z−ρ in sρ(z−1) (see (17))
corresponds to the tuple of the Littlewood–Richardson tableaux of shapes ρ(i), i ∈ I
(see [4, § 5.2]), and the coefficient of z−ρ in sρ(z−1) is 1.

3.2. Characterization of the image of ΦLT
λ|q=0. In this subsection, we give a

characterization of the image of the map ΦLT
λ|q=0 in terms of semi-infinite Bruhat

order via semi-infinite Lakshmibai–Seshadri paths.
Recall the notation Jλ = {i ∈ I | 〈hi, λ〉 = 0}, λ ∈ P+.

Definition 3.3. Let λν ∈ P+ and η(ν) =
(
x

(ν)
1 , . . . , x

(ν)
lν

; a(ν)
)
∈ B∞2 (λν), 1 6 ν 6

N . We say that there exists a defining chain for
⊗N

ν=1 η
(ν) ∈

⊗N
ν=1 B

∞
2 (λν) if there

exists x̃(ν)
s ∈Waf , 1 6 s 6 lν , 1 6 ν 6 N , such that

(DC1) ΠJλν (x̃(ν)
s ) = x

(ν)
s for all 1 6 s 6 lν , 1 6 ν 6 N ,

(DC2) x̃(ν)
p � x̃(ν)

q for all 1 6 p 6 q 6 lν , 1 6 ν 6 N , and
(DC3) x̃(ν)

lν
� x̃(ν+1)

1 for all 1 6 ν < N ,
where � denotes the semi-infinite Bruhat order on Waf defined by using SiB∅ (see
§ 2.4). The tuple (x̃(ν)

s )16s6lν ,16ν6N above is called a defining chain for
⊗N

ν=1 η
(ν).

Let λ =
∑
i∈I mi$i ∈ P+. Recall the notation Jcλ = I r Jλ. Set B̆∞2 (λ) =⊗

i∈Jc
λ
B∞2 ($i)⊗mi . We know from Theorem 2.7 that there exists an isomorphism

Ψλ : B̆(λ)→ B̆
∞
2 (λ)(39)

of U-crystals defined as the tensor product of the isomorphisms B($i) → B∞2 ($i)
sending u$i to (e; 0, 1), i ∈ I. Write

Ψλ(b) =
⊗
i∈Jc

λ

Ψ(i)
λ (b) ∈ B̆

∞
2 (λ), where Ψ(i)

λ (b) ∈ B
∞
2 ($i)⊗mi , i ∈ Jcλ.(40)

Set

S̆
∞
2 (λ) =

{
η ∈ B̆

∞
2 (λ) there exists a defining chain for η

}
.(41)
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Theorem 3.4. Let λ ∈ P+. For b ∈ B̆(λ), the following conditions are equivalent:
(1) b ∈ ΦLT

λ|q=0(B(λ)).
(2) Ψλ(b) ∈ S̆∞2 (λ).
(3) Ψ(i)

λ (b) ∈ S̆∞2 (mi$i) for every i ∈ Jcλ.
In particular, S̆∞2 (λ) =

⊗
i∈Jc

λ
S̆∞2 (mi$i) (cf. [2, Remark 4.17]; see also [14, Con-

jecture 13.1 (iii)]), S̆∞2 (λ) is stable under the Kashiwara operators, and the map
Ψλ ◦ ΦLT

λ|q=0 : B(λ)→ S̆∞2 (λ) is an isomorphism of U-crystals.

Remark 3.5.
(1) Our argument in the proof of Theorem 3.4 in § 3.3 does not imply [14, Con-

jecture 13.1 (iii)] since [2, Remark 4.17] is used in the proof of Theorem 2.7
([6, Theorems 3.1.5 and 3.2.1]).

(2) Similar result to Theorem 3.4 is obtained in [16, Theorem 3.1], where they
proved that, for any λ, µ ∈ P+, the subset S∞2 (λ+µ) of elements in B∞2 (λ)⊗
B∞2 (µ) having a defining chain is stable under the Kashiwara operators, and
is isomorphic to B∞2 (λ+ µ) as a U-crystal. But the proof is slightly different
from ours. The main task in the proof of [16, Theorem 3.1] is to construct
an isomorphism of U-crystals between S∞2 (λ + µ) and B∞2 (λ + µ). This is
achieved by giving an explicit parametrization of the connected components
of S∞2 (λ + µ). In contrast of this, our argument starts from a specific choice
of a map (see (38)), and aims to give an explicit description of the image of
this map; in fact, there are infinitely many strict embeddings of U-crystals
from B(λ) to B̆(λ), in general.

3.3. Proof of Theorem 3.4. This subsection is devoted to the proof of Theo-
rem 3.4.

We see from [14, Theorem 5.17] that, for each i ∈ I, there exists a strict surjective
morphism of U′-crystals from B($i) to the crystal basis of a finite-dimensional U′-
module W ($i) (see § 2.3). Hence, the next lemma follows from [1, Lemmas 1.5–1.6].
Lemma 3.6. Let i1, . . . , iN ∈ I.

(1) Any connected component of
⊗N

ν=1 B($iν ) contains an extremal element.
(2) If b =

⊗N
ν=1 b

(ν) ∈
⊗N

ν=1 B($iν ) is an extremal element, then Sxb =⊗N
ν=1 Sxb

(ν) for all x ∈Waf .
(3)

⊗N
ν=1 b

(ν) ∈
⊗N

ν=1 B($iν ) is an extremal element if and only if there exist
w ∈W and ξ1, . . . , ξN ∈ Q∨ such that b(ν) = Swtξν u$iν for 1 6 ν 6 N .

By Theorem 2.7, theWaf -action on B(λ) (see (13)) induces aWaf -action on B∞2 (λ).
The next lemma follows from Theorem 2.7 (2) and Lemmas 2.3–2.4 and 3.6.

Lemma 3.7. Let i1, . . . , iN ∈ I.
(1) Any connected component of

⊗N
ν=1 B

∞
2 ($iν ) contains an extremal element.

(2) If η =
⊗N

ν=1 η
(ν) ∈

⊗N
ν=1 B

∞
2 ($iν ) is an extremal element, then Sxη =⊗N

ν=1 Sxη
(ν) for all x ∈Waf .

(3)
⊗N

ν=1 η
(ν) ∈

⊗N
ν=1 B

∞
2 ($iν ) is an extremal element if and only if there exist

w ∈ W and σν ∈ Z, 1 6 ν 6 N , such that η(ν) = Sw

(
T
Ir{iν}
σνα∨iν

; 0, 1
)
∈

B∞2 ($iν ) for 1 6 ν 6 N .
We also denote by zi the automorphism, as a U′-crystal, of B∞2 ($i) corresponding

to the automorphism zi of B($i). Recall that ci(ξ) denotes the coefficient of α∨i in
ξ ∈ Q∨.

Algebraic Combinatorics, Vol. 3 #5 (2020) 1152



Semi-infinite Young tableaux

Lemma 3.8. Let λ =
∑
i∈I mi$i ∈ P+.

(1) For each i ∈ I, we have zki (e; 0, 1) =
(
T
Ir{i}
−kα∨

i
; 0, 1

)
in B∞2 ($i) for all k ∈ Z.

In particular, for every ρ = (ρ(i))i∈I ∈ Par(λ), with ρ(i) = (ρ(i)
1 > · · · >

ρ
(i)
mi−1 > 0), i ∈ I, we have

Ψ(i)
λ (z−ρũλ) =

(
T
Ir{i}
ρ

(i)
1 α∨

i

; 0, 1
)
⊗ · · · ⊗

(
T
Ir{i}
ρ

(i)
mi−1α

∨
i

; 0, 1
)
⊗ (e; 0, 1)(42)

in B∞2 ($i)⊗mi for each i ∈ I.
(2) Any connected component of B̆∞2 (λ) contains an extremal element of the form⊗

i∈Jc
λ

mi⊗
ν=1

(
T
Ir{i}
ρ

(i)
ν α∨

i

; 0, 1
)
,(43)

where ρ(i)
ν ∈ Z, 1 6 ν 6 mi, i ∈ Jcλ, and ρ

(i)
mi = 0 for all i ∈ Jcλ.

Proof. (1): Since zki (e; 0, 1) is an extremal element of weight $i + kδ, there exists
x ∈ (W Ir{i})af such that zki (e; 0, 1) = Sx(e; 0, 1) = (x; 0, 1) by [14, Proposition 5.4 (i)].
If we write x = wT

Ir{i}
ξ , w ∈ W , ξ ∈ Q∨, then wt(x; 0, 1) = w$i − (ξ,$i)δ =

w$i − ci(ξ)δ, which implies that w = e and ci(ξ) = −k. By Lemma 2.4 (2), we have
T
Ir{i}
ξ = T

Ir{i}
−kα∨

i
, which proves that zki (e; 0, 1) =

(
T
Ir{i}
−kα∨

i
; 0, 1

)
.

(2): By Lemma 3.7, any connected component C of B̆∞2 (λ) contains an extremal

element of the form η =
⊗

i∈Jc
λ

⊗mi
ν=1

(
T
Ir{i}
σ

(i)
ν α∨

i

; 0, 1
)
, with σ

(i)
ν ∈ Z, 1 6 ν 6 mi,

i ∈ Jcλ. Set ρ
(i)
ν = σ

(i)
ν −σ(i)

mi and ξ = −
∑
i∈Jc

λ
σ

(i)
miα

∨
i . By Lemmas 2.4 (2) and 3.7 (2),

C 3 Stξη =
⊗
i∈Jc

λ

mi⊗
ν=1

Stξ

(
T
Ir{i}
σ

(i)
ν α∨

i

; 0, 1
)

=
⊗
i∈Jc

λ

mi⊗
ν=1

(
T
Ir{i}
ρ

(i)
ν α∨

i

; 0, 1
)
,(44)

which is the desired conclusion. �

For J ⊂ I, set Jc = I r J . Let [ · ]J : Q∨ = Q∨J ⊕ Q∨Jc → Q∨J be the projection.
Recall that we write ξ � ζ for ξ, ζ ∈ Q∨ if ξ − ζ ∈

∑
i∈I Z>0α

∨
i .

Lemma 3.9.
(1) For ξ1, ξ2 ∈ Q∨, T Jξ1

� T Jξ2
in (W J)af if and only if [ξ1]Jc � [ξ2]Jc in Q∨.

(2) For x, y ∈ Waf and ξ ∈ Q∨, x � y in Waf if and only if xtξ � ytξ in Waf . In
particular, we have wtξ � tξ in Waf for all w ∈W .

(3) For any y ∈Waf and ξ ∈ Q∨, there exists ϑ ∈ Q∨ such that ϑ � ξ in Q∨ and
tϑ � y in Waf .

(4) Let J,K ⊂ I be such that Jc ∩Kc = ∅. Then, for any x, y ∈Waf , there exist
ϑ1 ∈ Q∨J and ϑ2 ∈ Q∨K such that ΠJ(xtϑ1) = ΠJ(x), ΠK(ytϑ2) = ΠK(y) and
xtϑ1 � ytϑ2 in Waf .

(5) Let J ⊂ I and x, y ∈Waf . If x � y in Waf , then ΠJ(x) � ΠJ(y) in (W J)af .

Proof. (1): This is a special case of [6, Lemma 6.2.1].
(2): The assertion follows immediately from the formula `∞2 (xtξ) = `

∞
2 (x)+2(ξ, ρ).

(3): Let y = vtζ , v ∈W and ζ ∈ Q∨, and let v = ri1ri2 · · · ril , i1, i2, . . . , il ∈ Iaf , be
a reduced expression. If we set wk = ri1ri2 · · · rik and γk = wkαik for k = 1, 2, . . . , l,
then

y = wltζ
δ+γl−−−→ wl−1tζ+α∨

il

δ+γl−1−−−−−→ · · · δ+γ1−−−→ tζ+α∨
i1

+α∨
i2

+···+α∨
il

in SiB∅,(45)
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which proves that ϑ′ = ζ + α∨i1 + α∨i2 + · · · + α∨il ∈ Q
∨ satisfies tϑ′ � y. We see that

ϑ =
∑
i∈I max{ci(ξ), ci(ϑ′)}α∨i satisfies ϑ � ξ, ϑ � ϑ′, and hence tϑ � tϑ′ by (1).

(4): Assume that x = wtξ with w ∈ W and ξ ∈ Q∨. By (3), there exists ϑ ∈ Q∨
such that ϑ � ξ and tϑ � y. If we set ϑ1 = [ϑ − ξ]J and ϑ2 = [ξ − ϑ]K , then
ΠJ(xtϑ1) = ΠJ(x) and ΠK(ytϑ2) = ΠK(y). Moreover, we have ξ + ϑ1 � ϑ + ϑ2,
because ϑ � ξ, ξ + ϑ1 = [ξ]Jc + [ϑ]Kc + [ϑ]J∩K since J = Kc t (J ∩ K), and
ϑ+ ϑ2 = [ξ]Jc + [ϑ]Kc + [ξ]J∩K since K = Jc t (J ∩K). Then (1)–(2) shows that

xtϑ1 = wtξ+ϑ1 � tξ+ϑ1 � tϑ+ϑ2 = tϑtϑ2 � ytϑ2 .(46)

(5): By induction on `
∞
2 (x) − `∞2 (y), the assertion follows from [6, Lemma 6.1.1

for K = ∅]. �

Proof of Theorem 3.4. We first prove that (2) and (3) are equivalent. Clearly, (2) im-
plies (3). We prove that (3) implies (2). The proof is by induction on #Jcλ. If #Jcλ = 1,
then (2) and (3) are equivalent. Assume that #Jcλ > 1, b ∈ B̆(λ) satisfies (3), and
Ψλ(b) = Ψ(i)

λ (b)⊗
⊗

j∈Jc
λ
r{i}Ψ(j)

λ (b). By (3), there exists a defining chain (x1, . . . , xN )
for Ψ(i)

λ (b). By induction hypothesis, there exists a defining chain (y1, . . . , yM ) for⊗
j∈Jc

λ
r{i}Ψ(j)

λ (b). Applying Lemma 3.9 (4) to x = xN , y = y1, J = I r {i}, and
K = Jλ ∪ {i} to obtain ϑ1 ∈ Q∨Ir{i} and ϑ2 ∈ Q∨Jλ∪{i} such that xN tϑ1 � y1tϑ2 .
By Lemma 3.9 (2), we conclude that (x1tϑ1 , . . . , xN tϑ1 , y1tϑ2 , . . . , yM tϑ2) is a defining
chain for Ψλ(b).

We next prove that (1) and (2) are equivalent. The proof is completed by showing
that

(i) S̆∞2 (λ) is stable under the Kashiwara operators, and
(ii) each connected component of S̆∞2 (λ) contains Ψλ(z−ρũλ) for some ρ ∈

Par(λ),
because Ψλ ◦ ΦLT

λ|q=0 : B(λ) → B̆∞2 (λ) is a strict embedding of U-crystals, and
Ψλ(z−ρũλ) ∈ S̆∞2 (λ) for every ρ ∈ Par(λ); indeed, by Lemmas 3.8 (1) and 3.9 (1),

we have a defining chain
(
t
ρ

(i)
1 α∨

i

, . . . , t
ρ

(i)
mi−1α

∨
i

, e

)
for Ψ(i)

λ (z−ρũλ) for every ρ =

(ρ(i))i∈I ∈ Par(λ), with ρ(i) = (ρ(i)
1 > · · · > ρ

(i)
mi−1 > 0), i ∈ I, and hence there exists

a defining chain for Ψλ(z−ρũλ) by the implication (3) ⇒ (2).
We prove (i) only for the action of ej , j ∈ Iaf ; the proof for fj is similar. Let

η =
⊗

i∈Jc
λ
η(i) ∈ S̆∞2 (λ), with η(i) ∈ S̆∞2 (mi$i), i ∈ Jcλ. By tensor product rule and

the implication (3) ⇒ (2), we only need to show that, for each i ∈ Jcλ, if ejη(i) 6= 0,
then ejη(i) ∈ S̆∞2 (mi$i). Write η(i) =

⊗mi
ν=1 η

(i)
ν , with η(i)

ν ∈ B∞2 ($i), 1 6 ν 6 mi,
and let (x[ν]

s )16s6lν ,16ν6mi be a defining chain for η(i); by Lemma 3.9 (5), we may
assume that x[ν]

s ∈ (W Ir{i})af , 1 6 s 6 lν , 1 6 ν 6 mi. By tensor product rule,
ejη

(i) = η
(i)
1 ⊗ · · · ⊗ ejη

(i)
ν ⊗ · · · ⊗ η(i)

mi for some 1 6 ν 6 mi. Let 1 6 p < q 6 lν be as
in (30) for η(i)

ν . It follows from Proposition 2.8 and [6, Lemma 4.1.6] that the tuple(
x

[1]
1 , . . . , x

[ν−1]
lν−1

, x
[ν]
1 , . . . , x[ν]

p , rix
[ν]
p , . . . , rix

[ν]
q , x

[ν]
q+1, . . . , x

[ν]
lν
, x

[ν+1]
1 , . . . , x

[mi]
lmi

)
(47)

is a defining chain for ejη(i), and hence ejη(i) ∈ S̆∞2 (mi$i).
Finally, we prove (ii). Let C be an arbitrary connected component of S̆∞2 (λ); we see

from (i) that C is a connected component of B̆∞2 (λ). By Lemma 3.8 (2), C contains

an element of the form η =
⊗

i∈Jc
λ

⊗mi
ν=1

(
T
Ir{i}
ρ

(i)
ν α∨

i

; 0, 1
)
, with ρ(i)

mi = 0, i ∈ Jcλ. Since
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there exists a defining chain for η, we see from Lemma 3.9 (1) that ρ(i) = (ρ(i)
1 >

ρ
(i)
2 > · · · > ρ

(i)
mi−1) is a partition of length less than mi for each i ∈ I; here, we set

ρ(i) = ∅ if i ∈ Jλ. Hence ρ = (ρ(i))i∈I ∈ Par(λ). We have Ψλ(z−ρũλ) = η ∈ C by
Lemma 3.8 (1), which proves (ii). �

4. Semi-infinite Young tableaux
Throughout this section, we will make the following assumptions: gaf is of type A(1)

n−1
(see [9, § 4.8 TABLE Aff1]), and I = {1, 2, . . . , n− 1} satisfies

(αi, αj) =


2 if i = j,

−1 if i− j ≡ ±1 mod n,

0 otherwise
(48)

for all i, j ∈ Iaf = {0} t I. In this case, α∨i = αi, i ∈ Iaf , and hence Q∨ = Q. We
sometimes think ofW as the permutation group of {1, 2, . . . , n}, namely the symmetric
group of degree n, where ri, i ∈ I, acts as the transposition (i i + 1). Observe that
this action extends to the Waf -action, where r0 acts as the transposition (n 1); note
that each tξ, ξ ∈ Q, acts as the identity.

4.1. Semi-infinite Young tableaux and isomorphism theorem. We identify
each element λ =

∑
i∈I mi$i ∈ P+ with the Young diagram such that the number of

the columns of length i is mi for each i ∈ I. A column-strict tableau of shape λ ∈ P+

with entries in {1, 2, . . . , n} is, by definition, an assignment of a number in {1, 2, . . . , n}
to each box of the Young diagram λ such that the entries are strictly increasing from
top to bottom in each column. Let CST(λ) be the set of column-strict tableaux of
shape λ with entries in {1, 2, . . . , n}. For a tuple (T1,T2, . . . ,TM ) of column-strict
tableaux of one-column shapes, let

∏M
ν=1 Tν = T1T2 · · ·TM denote the column-strict

tableau whose ν-th column is Tν . For T ∈ CST($i), let T(s) ∈ {1, 2, . . . , n}, 1 6 s 6 i,
denote the s-th entry (from top) of T.

Remark 4.1. In this paper, we consider a Young diagram as a collection of boxes,
arranged in right-justified rows, with a weakly decreasing number of boxes in each row
from top to bottom. For example, the Young diagram λ = 5$1+3$2+4$3+2$4+$6
is as follows:

(49)

Definition 4.2.
(1) Define the partial order � on CST($i) × Z as follows: for (T, c), (T′, c′) ∈

CST($i)× Z, set (T, c) � (T′, c′) if(
c 6 c′

)
and

(
T(u) 6 T′(u+ c′ − c) if 1 6 u 6 i− c′ + c

)
.(50)

(2) Let λ =
∑
i∈I mi$i ∈ P+, mi ∈ Z>0, i ∈ I, and N =

∑
i∈I mi. Let

T =
(
n−1∏
i=1

mi∏
ν=1

T(i)
ν , (c(i)ν )16ν6mi,16i6n−1

)
∈ CST(λ)× ZN ,(51)

where T(i)
ν ∈ CST($i) and c

(i)
ν ∈ Z for 1 6 ν 6 mi, i ∈ I. We call T a

semi-infinite Young tableau of shape λ if

(T(i)
1 , c

(i)
1 ) � (T(i)

2 , c
(i)
2 ) � · · · � (T(i)

mi , c
(i)
mi) in CST($i)× Z for every i ∈ I.(52)
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Let Y∞2 (λ) be the set of semi-infinite Young tableaux of shape λ; note that
Y∞2 ($i) = CST($i)× Z.

In § 4.3, we define a U-crystal structure on Y∞2 ($i), and prove the next proposi-
tion.
Proposition 4.3. Let i ∈ I.

(1) There exists a unique isomorphism Υi : B($i)→ Y∞2 ($i) of U-crystals.
(2) We have B($i) = {ux := Sxu$i | x ∈ (W Ir{i})af}, and the map

(W Ir{i})af → B($i), x 7→ ux, is bijective. In particular, V ($i) is a
minuscule representation of U.

Remark 4.4. It follows from Theorem 2.7 (2) and Proposition 4.3 that B∞2 ($i) =
{(x; 0, 1) | x ∈ (W Ir{i})af}, and the map B($i) → B∞2 ($i), ux 7→ (x; 0, 1), x ∈
(W Ir{i})af , equals the isomorphism in Theorem 2.7 (2).

Let λ =
∑
i∈I mi$i ∈ P+ and N =

∑
i∈I mi. We have a bijection from⊗n−1

i=1 Y∞2 ($i)⊗mi to CST(λ)× ZN defined by
n−1⊗
i=1

mi⊗
ν=1

(
T(i)
ν , c(i)ν

)
7−→

(
n−1∏
i=1

mi∏
ν=1

T(i)
ν , (c(i)ν )16ν6mi,16i6n−1

)
,(53)

where (T(i)
ν , c

(i)
ν ) ∈ Y∞2 ($i), 1 6 ν 6 mi, i ∈ I. Define a U-crystal structure on

CST(λ) × ZN to be such that the map (53) is an isomorphism of U-crystals. From
now on we assume that B̆(λ) =

⊗n−1
i=1 B($i)⊗mi = B($1)⊗m1 ⊗· · ·⊗B($n−1)⊗mn−1 .

Theorem 4.5. Let λ =
∑
i∈I mi$i ∈ P+ and N =

∑
i∈I mi. Then, Y

∞
2 (λ) equals the

image of the composition of the maps

B(λ)
ΦLT
λ|q=0−−−−→
§ 3.1

B̆(λ) =
n−1⊗
i=1
B($i)⊗mi

⊗n−1
i=1 Υ⊗mi

i−−−−−−−−→
Proposition

4.3 (1)

n−1⊗
i=1

Y
∞
2 ($i)⊗mi

∼=−−→
(53)

CST(λ)× ZN .

(54)

Since the map (54) is a strict embedding of U-crystals, we have the following.
Corollary 4.6. Let λ =

∑
i∈I mi$i ∈ P+ and N =

∑
i∈I mi. Then, Y∞2 (λ) is

stable under the Kashiwara operators on
⊗n−1

i=1 Y∞2 ($i)⊗mi ∼= CST(λ) × ZN , and is
isomorphic, as a U-crystal, to the crystal basis B(λ).

Theorem 4.5 follows from Theorem 3.4, Definition 4.2, Remark 4.4, and the fol-
lowing tableau criterion for the semi-infinite Bruhat order.
Theorem 4.7. Let i ∈ I and x, y ∈ (W Ir{i})af . Write Υi(ux) = (T, c) and Υi(uy) =
(T′, c′). The following conditions are equivalent:

(1) x � y in (W Ir{i})af .
(2) c 6 c′ and T(u) 6 T′(u+ c′ − c) if 1 6 u 6 i− c′ + c.
Theorem 4.7 will be proved in § 4.4.

4.2. Explicit description of (W J)af . In this subsection, following [19, § 3], we
give an explicit description of (W J)af for later use.

We take and fix J =
⊔k
m=1 Im ⊂ I, where I1, I2, . . . , Ik are the sets of vertices of

the connected components of the Dynkin diagram of ∆J ; note that ∆J =
⊔k
m=1 ∆Im

and each ∆Im , 1 6 m 6 k, is of finite type A. Set (Im)af = {0}tIm ⊂ Iaf , 1 6 m 6 k.
For 1 6 s 6 t 6 n− 1, set αs,t =

∑t
i=s αi; note that αs = αs,s. It follows that

∆ = {±αs,t | 1 6 s 6 t 6 n− 1}.(55)
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Set

QJ = {ξ ∈ Q | (ξ, α) ∈ {−1, 0} for all α ∈ ∆+
J }.(56)

Lemma 4.8 ([19, Equation (3.6)]). For each ξ ∈ Q there exist a unique φJ(ξ) ∈ QJ
and a unique (j1, j2, . . . , jk) ∈

∏k
m=1(Im)af such that

ξ + φJ(ξ) +
k∑

m=1
$jm ∈

⊕
i∈IrJ

Z$i ⊕ Cδ.(57)

In particular, ξ + φJ(ξ) ∈ QJ for any ξ ∈ Q, and hence QJ is a complete system of
coset representatives for Q/QJ .

For a subset K ⊂ I, let wK0 be the longest element of WK . For jm ∈ (Im)af , set

vImjm = wIm0 w
Imr{jm}
0 ∈WIm ⊂WJ ;(58)

note that vIm0 = e. For ξ ∈ Q, define

zξ = zJξ = vI1
j1
vI2
j2
· · · vIkjk ∈WJ ,(59)

where (j1, j2, . . . , jk) ∈
∏k
m=1(Im)af , satisfying (57) for ξ, is determined uniquely by

Lemma 4.8; note that zξ = zζ if ξ ≡ ζ mod QJ .

Lemma 4.9 ([19, Lemma 3.7]).We have Tξ = ΠJ(tξ) = zξtξ+φJ (ξ) for every ξ ∈ Q.
Therefore, by Lemma 2.3, ΠJ(wtξ) = bwczξtξ+φJ (ξ) for every w ∈W and ξ ∈ Q, and
we have a bijection W J ×QJ → (W J)af , (w, ξ) 7→ wTξ. In particular,

(W J)af = {wTξ = wzξtξ | w ∈W J , ξ ∈ QJ}.(60)

4.3. Crystal structure on Y∞2 ($i). In this subsection, we define a U-crystal
structure on Y∞2 ($i), and give a proof of Proposition 4.3.

We know from [3, Lemma 2.4.7] that

W Ir{i}= {w ∈W | w(1)<w(2)< · · ·<w(i), and w(i+ 1)<w(i+ 2)< · · ·<w(n)}.
(61)

For w ∈W Ir{i}, set

Tw =

w(1)

w(2)

...

w(i)

∈ CST($i).(62)

By (61), we have CST($i) = {Tw | w ∈ W Ir{i}} and the map W Ir{i} → CST($i),
w 7→ Tw, is bijective. Let ci(ξ) be the coefficient of αi (= α∨i ) in ξ ∈ Q. It follows from
Lemma 4.8 that QIr{i} = {cαi + φIr{i}(cαi) | c ∈ Z}, and the maps Z → QIr{i},
c 7→ cαi + φIr{i}(cαi), and QIr{i} → Z, ξ 7→ ci(ξ), are inverses of each other. We
have thus proved that the map

Yi : (W Ir{i})af → Y
∞
2 ($i), wTξ 7→ Yi(wTξ) = (Tw, ci(ξ)) ,(63)

is bijective, where w ∈W Ir{i} and ξ ∈ QIr{i} (see Lemma 4.9).
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Following [26, § 3.7] (see also [10, § 4.1]), we equip the set CST($i) with a U′-
crystal structure as follows: let T ∈ CST($i). For k ∈ {1, 2, . . . , n}, write k ∈ T if
T(s) = k for some 1 6 s 6 i.

(i) Define wt(Tw) = w$i (mod Cδ) for w ∈W Ir{i}.
(ii) For j ∈ I, if T(s) = j + 1 and j /∈ T, then we define ejT ∈ CST($i) to be

such that (ejT)(s) = j and (ejT)(u) = T(u) for 1 6 u 6 i, u 6= s.
(iii) If 1 ∈ T and n /∈ T, then we define e0T ∈ CST($i) to be such that (e0T)(i) =

n and (e0T)(u) = T(u+ 1) for 1 6 u 6 i− 1.
(iv) Otherwise, we set ejT = 0 for j ∈ Iaf .
(v) For j ∈ I, if T(s) = j and j + 1 /∈ T, then we define fjT ∈ CST($i) to be

such that (fjT)(s) = j + 1 and (fjT)(u) = T(u) for 1 6 u 6 i, u 6= s.
(vi) If 1 /∈ T and n ∈ T, then we define f0T ∈ CST($i) to be such that (f0T)(1) =

1 and (f0T)(u) = T(u− 1) for 2 6 u 6 i.
(vii) Otherwise, we set fjT = 0 for j ∈ Iaf .
(viii) Define

εj(T) =
{

1 if ejT 6= 0,
0 if ejT = 0,

ϕj(T) =
{

1 if fjT 6= 0,
0 if fjT = 0.

(64)

Remark 4.10. The U′-crystal CST($i) defined above is isomorphic to the crystal ba-
sis of the U′-module W ($i) (see § 2.3). Indeed, we see from [14, Theorem 5.17 (ix)]
(see also [24, Remark 3.3]) that W ($i) is isomorphic to a Kirillov–Reshetikhin mod-
ule, whose crystal basis is a perfect crystal of level 1 in the sense of [10, Defini-
tion 1.1.1]. It follows that the U′-crystal CST($i) and the crystal basis of W ($i)
satisfy the conditions in [10, Proposition 1.2.1 for l = 1], and hence they must be
isomorphic to each other.

The set Y∞2 ($i) = CST($i) × Z can be identified with the affinization of the
U′-crystal CST($i) in the sense of [14, § 4.2]. We have thus obtained a U-crystal
structure on Y∞2 ($i) as follows: for w ∈W Ir{i}, c ∈ Z, T ∈ CST($i), and j ∈ Iaf ,

wt(Tw, c) = w$i − cδ,
ej(T, c) = (ejT, c− δj,0), fj(T, c) = (fjT, c+ δj,0),
εj(T, c) = εj(T), ϕj(T, c) = ϕj(T);

(65)

we understand that (0, c) = 0. By (10), (63), and (65), we have wt(Yi(x)) = x$i for
all x ∈ (W Ir{i})af .

Proof of Proposition 4.3. (1): Since Y∞2 ($i) is isomorphic to the affinization of the
crystal basis of W ($i) (see Remark 4.10), we see from [14, Proposition 5.4 (ii) and
Theorem 5.17 (vii)] that B($i) is isomorphic, as a U-crystal, to Y∞2 ($i). Note that
(Te, 0) ∈ Y∞2 ($i) (and hence u$i ∈ B($i)) is a unique element of weight $i; indeed,
by (65), wt(Tw, c) = $i holds if and only if w = e and c = 0. This and the connected-
ness of B($i) (see [14, Proposition 5.4 (ii)]) prove the uniqueness of the isomorphism
between B($i) and Y∞2 ($i).

(2): By (1) and (64)–(65), we see that εj(b), ϕj(b) ∈ {0, 1} for all j ∈ Iaf and
b ∈ B($i). Hence ejb = Srj b (resp. fjb = Srj b) if ejb 6= 0 (resp. fjb 6= 0) for j ∈ Iaf
and b ∈ B($i). Since B($i) is connected ([14, Proposition 5.4 (ii)]), this proves that
the action of Waf is transitive. We have {x ∈ Waf | Sxu$i = u$i} = (WIr{i})af
(see (23)) by [6, Proposition 5.1.1], and hence B($i) = {Sxu$i | x ∈ (W Ir{i})af} by
Lemma 2.2. �
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4.4. Tableau criterion for semi-infinite Bruhat order. This subsection is
devoted to the proof of Theorem 4.7.

We take and fix i ∈ I. It is easily seen from (55) that

∆+ r ∆+
Ir{i} = {αs,t | 1 6 s 6 i 6 t 6 n− 1}.(66)

We have

(67) Υi(ux) = Yi(x) for all x ∈ (W Ir{i})af

(see Proposition 4.3 (1) and (63)) because both elements are of weight x$i, and there
is only one element of weight x$i in Y∞2 ($i).

Proposition 4.11. Let w ∈ W Ir{i}, ξ ∈ QIr{i}, β = wγ + χδ ∈ ∆+
af , γ = αs,t ∈

∆+ r ∆+
Ir{i}, 1 6 s 6 i 6 t 6 n − 1, and χ ∈ Z>0. Write Yi(wTξ) = (T, c) and

Yi
(
ΠIr{i}(rβwTξ)

)
= (T′, c′). Then rβwTξ ∈ (W Ir{i})af and there exists an edge

wTξ
β−−→ rβwTξ in SiBIr{i} if and only if one of the following conditions holds:

(B) c′ = c, T′(s) = T(s) + 1, and T′(u) = T(u) for 1 6 u 6 i, u 6= s.
(Q) c′ = c+ 1, T′(1) = 1, T′(u) = T(u− 1) for 2 6 u 6 i, and T(i) = n.

Remark 4.12.Under the assumptions of Proposition 4.11, the following holds:
(1) (B) is equivalent to w(s) ∈ I and (T′, c′) = fw(s)(T, c) in Y∞2 ($i); note that

T = Tw and T′ = Twrγ in this case.
(2) (Q) is equivalent to (T′, c′) = f0(T, c) in Y∞2 ($i); note that T = Tw and

T′ = Tbwrγc in this case.

Proposition 4.11 is established by combining Proposition 2.5 and Lemmas 4.13–4.15
below.

Lemma 4.13.Under the assumptions of Proposition 4.11, we have the following:
(1) χ = 0 is equivalent to c′ = c.
(2) χ = 1 is equivalent to c′ = c+ 1.

Proof. It suffices to prove that c′ = c + χ. We have rβwTξ = rwγtχwγwzξtξ =
wrγzξtξ+χz−1

ξ
γ , and hence ΠIr{i}(rβwTξ) = bwrγcTξ+χz−1

ξ
γ by Lemma 2.3. This gives

c′ = ci(ξ+χz−1
ξ γ) = ci(ξ)+χci(z−1

ξ γ) = c+χci(z−1
ξ γ). Since z−1

ξ ∈WIr{i}, it follows
that z−1

ξ γ ∈ ∆+ r ∆+
Ir{i}. Therefore ci(z

−1
ξ γ) = 1 by (66). �

Lemma 4.14 ([3, Proposition 2.4.8]). Let w ∈ W Ir{i} and γ = αs,t ∈ ∆+ r ∆+
Ir{i},

1 6 s 6 i 6 t 6 n− 1. The following conditions are equivalent:
(1) `(wrγ) = `(w) + 1.
(2) wrγ ∈W Ir{i}, wrγ(s) = w(s) + 1, and wrγ(u) = w(u) for 1 6 u 6 i, u 6= s.

Lemma 4.15. Let w ∈ W Ir{i} and γ ∈ ∆+ r ∆+
Ir{i}. The following conditions are

equivalent:
(1) `(bwrγc) = `(w) + 1− 2(γ, ρ− ρIr{i}).
(2) bwrγc(1) = 1, bwrγc(u) = w(u− 1) for 2 6 u 6 i, and w(i) = n.

For the proof of Lemma 4.15, we need the following lemma. Let (i1 i2 · · · il) ∈
W denote the cyclic permutation i1 7→ i2 7→ · · · 7→ il 7→ i1, where l ∈ Z>2 and
i1, i2, . . . , il ∈ {1, 2, . . . , n} are all distinct.
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Lemma 4.16.
(1) QIr{i} ∩ (∆+ r ∆+

Ir{i}) = {αi}.
(2) 2(γ, ρ− ρIr{i}) = n for γ ∈ ∆+ r ∆+

Ir{i}.
(3) `(w) = (w(1)− 1)i+

∑i
u=2(w(u)−w(u− 1)− 1)(i− u+ 1) for w ∈W Ir{i}.

(4) zIr{i}αi = (1 2 · · · i)(n n− 1 · · · i+ 1).

Proof. (1): It is clear that αi ∈ QIr{i} ∩ (∆+ r∆+
Ir{i}). Let γ = αs,t ∈ ∆+ r∆+

Ir{i},
1 6 s 6 i 6 t 6 n − 1. If s < i (resp. i < t), then αs ∈ ∆+

Ir{i} (resp. αt ∈ ∆+
Ir{i})

and (γ, αs) = 1 (resp. (γ, αt) = 1). This proves that γ /∈ QIr{i} unless s = t = i.
(2): The assertion follows from 2(ξ, ρ − ρIr{i}) = 0 for ξ ∈ QIr{i}, γ ≡ αi

mod QIr{i} for γ ∈ ∆+ r ∆+
Ir{i}, and 2(αi, ρ − ρIr{i}) = 2(αi, ρ) − 2(αi, ρIr{i}) =

2 + #(I r {i}) = n.
(3): This is an immediate consequence of (61) and the fact that the length of a

permutation equals the number of its inversions (see [3, Proposition 1.5.2]).
(4): Let I1 = {1, . . . , i− 1} and I2 = {i+ 1, . . . , n− 1} be connected components of

Ir{i}. We see that (i−1, i+ 1) ∈ (I1)af × (I2)af satisfies the condition in Lemma 4.8
for αi, because αi ∈ QIr{i} by (1), (αi, αi−1) = −1 if 1 < i, and (αi, αi+1) = −1 if
i < n− 1. Therefore

zIr{i}αi = vI1
i−1v

I2
i+1 = wI1

0 w
I1r{i−1}
0 wI2

0 w
I2r{i+1}
0 .(68)

Now the assertion is shown by the fact that the longest element of the symmetric
group of degree N is the permutation j 7→ N − j + 1, j ∈ {1, 2, . . . , N}. �

Proof of Lemma 4.15. We see from [18, Proof of Theorem 10.16] that (1) is equiva-
lent to

(3) `(wrγ) = `(w) + 1− 2(γ, ρ) and wrγtγ ∈ (W Ir{i})af .
It follows immediately from Lemmas 4.9 and 4.16 (1) that (3) is equivalent to

(4) γ = αi, `(w) = `(wri) + 1 and wri = bwriczIr{i}αi .
Let us prove that (1) (and (4)) imply (2). By (4) and Lemma 4.16 (4), we have

bwric = wri(zIr{i}αi )−1 = w(i i+ 1)(i · · · 2 1)(i+ 1 · · · n− 1 n).(69)

Hence bwric(1) = w(i+ 1).
We first assume that i = 1. Then bwr1c(1) = w(2). The condition `(w) = `(wr1)+1

in (4) shows, by [3, Proposition 1.5.3], that w(1) > w(2). Since w ∈W Ir{1}, it follows
from (61) that w(2) = 1 and, in consequence, bwr1c(1) = 1. Since bwr1c ∈ W Ir{1},
this implies that bwr1c = e and hence w = (n n − 1 · · · 2 1) by (69). This gives
w(1) = n.

We next assume that 1 < i 6 n − 1. By (69), bwric(u) = w(u − 1) for 2 6 u 6 i.
As bwric ∈ W Ir{i} we have 1 6 bwric(1) < bwric(2) = w(1). Since w ∈ W Ir{i}, we
see from (61) that w(i+ 1) = 1, and so bwric(1) = 1. It follows from Lemma 4.16 (3)
that

`(bwric) = (w(1)− 2)(i− 1) +
i−1∑
u=2

(w(u)− w(u− 1)− 1) (i− u),(70)

`(w) = (w(1)− 1)i+
i∑

u=2
(w(u)− w(u− 1)− 1) (i− u+ 1),(71)

which gives `(bwric) − `(w) = 1 − w(i). By (1), (4) and Lemma 4.16 (2), we have
`(bwric)− `(w) = 1− 2(αi, ρ− ρIr{i}) = 1− n, and consequently w(i) = n.

Algebraic Combinatorics, Vol. 3 #5 (2020) 1160



Semi-infinite Young tableaux

Finally, we prove that (2) implies (1). In a way similar to the above, we have
`(bwrγc)− `(w) = 1− w(i) = 1− n. Lemma 4.16 (2) now shows that (1) holds. �

Proof of Theorem 4.7. If x � y, then c 6 c′ by Proposition 4.11. Therefore, we may
assume that d := c′ − c > 0. The proof is by induction on d.

If d = 0, then it is obvious from Proposition 4.11 that x � y is equivalent to
T(u) 6 T′(u) for all 1 6 u 6 i.

Let d > 0. We first assume that T(u) 6 T′(u+ d) if 1 6 u 6 i− d, and show that
x � y. Let x1, x2 ∈ (W Ir{i})af be such that Yi(x1) = (T1, c

′),Yi(x2) = (T2, c
′ − 1) ∈

Y∞2 ($i), where
(1) T1(1) = 1 and

T1(u) =

T′(u) if T′(u) < n− i+ u,

T′(u)− 1 if T′(u) = n− i+ u
(72)

for 2 6 u 6 i,
(2) T2(u) = T1(u+ 1) for 1 6 u 6 i− 1, and T2(i) = n.

By Proposition 4.11, we have x2 ≺ x1 � y. If we prove that

T(u) 6 T2(u+ d− 1) if 1 6 u 6 i− (d− 1),(73)

then x � x2 by induction hypothesis, and hence x � y. Note that

(74) T2(u+ d− 1)

=


T′(u+ d) if 1 6 u+ d− 1 6 i− 1 and T′(u+ d) < n− i+ u+ d,

T′(u+ d)− 1 if 1 6 u+ d− 1 6 i− 1 and T′(u+ d) = n− i+ u+ d,

n if u+ d− 1 = i.

We prove (73) as follows.
(1) If 1 6 u+d−1 6 i−1 and T′(u+d) < n− i+u+d, then T(u) 6 T′(u+d) =

T2(u+ d− 1).
(2) If 1 6 u+d−1 6 i−1 and T′(u+d) = n−i+u+d, then T2(u+d−1)−T(u) =

T′(u+ d)− 1− T(u) > (n− i+ u+ d)− 1− (n− i+ u) = d− 1 > 0.
(3) If u+ d− 1 = i, then T(u) 6 n = T2(u+ d− 1).
We next assume that x � y, and show that T(u) 6 T′(u+ d) if 1 6 u 6 i− d. We

see from Proposition 4.11 that there exist x3, x4 ∈ (W Ir{i})af such that
(1) x � x4 ≺ x3 � y,
(2) Yi(x3) = (T3, c

′),Yi(x4) = (T4, c
′ − 1) ∈ Y∞2 ($i),

(3) T3(u) 6 T′(u) for 1 6 u 6 i,
(4) T3(1) = 1, T3(u+ 1) = T4(u) for 1 6 u 6 i− 1, and T4(i) = n.

By induction hypothesis, T(u) 6 T4(u + d − 1) if 1 6 u 6 i − (d − 1). We have
T′(u+ d)− T(u) > T3(u+ d)− T4(u+ d− 1) = 0 if 1 6 u 6 i− d. �

4.5. Explicit description of crystal structure on Y∞2 (λ).

Proposition 4.17. Let λ =
∑
i∈I mi$i, mi ∈ Z>0, i ∈ I, and set N =

∑
i∈I mi. Let

T = (T1T2 · · ·TN , (c1, c2, . . . , cN )) ∈ CST(λ) × ZN and j ∈ Iaf . Then wt(T) ∈ Paf ,
εj(T), ϕj(T) ∈ Z, and ejT, fjT ∈ CST(λ) × ZN t {0} are computed by the following
procedure:

(i) wt(T) =
∑N
ν=1 wt(Tν)−

∑N
ν=1 cνδ.
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(ii) Let T ∈ CST($i). If j ∈ I, then define ε(j)(T) ∈ {⊕,	, •} by

ε(j)(T) =


⊕ if j ∈ T and j + 1 /∈ T,
	 if j /∈ T and j + 1 ∈ T,
• otherwise.

(75)

Likewise, define ε(0)(T) ∈ {⊕,	, •} by

ε(0)(T) =


⊕ if n ∈ T and 1 /∈ T,
	 if n /∈ T and 1 ∈ T,
• otherwise.

(76)

(iii) In
(
ε(j)(T1), . . . , ε(j)(TN )

)
, continue replacing a pair

(
ε(j)(Tν), ε(j)(Tν′)

)
=

(⊕,	) with (•, •) if ν < ν′ and ε(j)(Tµ) = • for all ν < µ < ν′ until no such
pair exists. Let ε(j)(T) ∈ {⊕,	, •}N be the resulting tuple such that no ⊕
placed to the left of 	.

(iv) εj(T) (resp. ϕj(T)) equals the number of 	 (resp. ⊕) in ε(j)(T).
(v) If 	 is not in ε(j)(T), then ejT = 0. If there exists 	 in ε(j)(T), and the

right-most 	 is at the ν-th place, then

ejT = (T1 · · ·Tν−1 (ejTν) Tν+1 · · ·TN , (c1, . . . , cν−1, cν − δj,0, cν+1, . . . , cN )) .(77)

(vi) If ⊕ is not in ε(j)(T), then fjT = 0. If there exists ⊕ in ε(j)(T), and the
left-most ⊕ is at the ν-th place, then

fjT = (T1 · · ·Tν−1 (fjTν) Tν+1 · · ·TN , (c1, . . . , cν−1, cν + δj,0, cν+1, . . . , cN )) .(78)

Proof. Let T ∈ CST($i). We check at once that the following holds:
(1) ε(j)(T) = ⊕ if and only if εj(T) = 0, ϕj(T) = 1, and 〈hj ,wt(T)〉 = 1.
(2) ε(j)(T) = 	 if and only if εj(T) = 1, ϕj(T) = 0, and 〈hj ,wt(T)〉 = −1.
(3) ε(j)(T) = • if and only if εj(T) = ϕj(T) = 〈hj ,wt(T)〉 = 0.

Then the assertion follows by the same method as in [15, § 2.1]. �
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