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Semi-infinite Young tableaux and standard

monomial theory for semi-infinite

Lakshmibai—Seshadri paths

Motohiro Ishii

ABSTRACT We introduce semi-infinite Young tableaux, and show that these tableaux give a com-
binatorial model for the crystal basis of a level-zero extremal weight module over the quantized
universal enveloping algebra of untwisted affine type A. The definition and characterization of
these tableaux are based on standard monomial theory for semi-infinite Lakshmibai—Seshadri
paths and a tableau criterion for the semi-infinite Bruhat order on affine Weyl groups of type
A, which are also proved in this paper.

1. INTRODUCTION

The aim of this paper is to introduce semi-infinite Young tableaux (see Defini-
tion 4.2 (2)). These tableaux give a new combinatorial model for the crystal basis of a
level-zero extremal weight module (see § 2.3) over the quantized universal enveloping
algebra of untwisted affine type A. In order to accomplish our purpose, we investigate
(i) a characterization of the image of the strict embedding q)]ﬂl;:o (see § 3.1) of
crystals in terms of the semi-infinite Bruhat order (see Theorem 3.4), and
(ii) a tableau criterion for the semi-infinite Bruhat order on affine Weyl groups of
type A in Grassmannian cases (see Theorem 4.7).
Note that the image of @I;?;:O is an isomorphic image of the crystal basis of the
extremal weight module of extremal weight A (of level-zero) into the tensor product
of crystal bases of extremal weight modules associated with level-zero fundamental
weights.

Various generalizations and variations of (semi-standard) Young tableaux are con-
cerned in many areas such as algebraic combinatorics, representation theory, alge-
braic geometry, and so forth. In particular, Littelmann ([21, 22]) introduced the
Lakshmibai—Seshadri paths for all symmetrizable Kac-Moody root data, which can
be thought of as a type-free generalization of Young tableaux. Soon after, Joseph ([7])
and Kashiwara ([13]) independently proved that, for a dominant integral weight A of
a symmetrizable Kac—Moody Lie algebra g, the set of Lakshmibai—Seshadri paths of
shape A equipped with Littelmann’s root operators is isomorphic, as a g-crystal, to the
crystal basis of the integrable (irreducible) highest weight module of highest weight A
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over the quantized universal enveloping algebra associated with g. In view of Kashi-
wara’s crystal (basis) theory, further generalizations and variants of Littelmann’s path
model are investigated; e.g. generalized Lakshmibai—Seshadri paths for Borcherds—
Kac—Moody root data ([5, 8]), quantum Lakshmibai-Seshadri paths and semi-infinite
Lakshmibai-Seshadri paths for untwisted affine root data ([6, 20]). Among these gen-
eral theories, it should be emphasized that the original Young tableaux have especially
nice combinatorial structures (see for instance [4, 17]) due to the fact that every fun-
damental representation of finite type A is minuscule; namely, the Weyl group acts
transitively on the crystal basis of any fundamental representation in the case of finite
type A. Similarly, in the case of untwisted affine type A, every extremal weight module
associated with a level-zero fundamental weight is minuscule (see Proposition 4.3 (2));
in this case, the affine Weyl group acts transitively on the crystal basis. Therefore, it
is natural to try to find a tableau model for crystal bases of level-zero extremal weight
modules in the case of untwisted affine type A.

Let us give an explanation of our strategy to introduce semi-infinite Young
tableaux.

For this purpose, we first briefly sketch a standard monomial theoretic character-
ization of (ordinary) Young tableaux in terms of crystal basis theory as follows: let
U,(s1,(C)) be the quantized universal enveloping algebra of type A,,_1 (see [9, § 4.8
TABLE Fin]). Let w;, 1 <i<n— 1 be the i-th fundamental weight; we identify a
dominant integral weight A = ZZ 1 M@y, my € Zxo, 1 <i < n—1, with the Young
diagram such that the number of the columns of length i is m; for 1 < i < n—1
(see Remark 4.1). For a dominant integral weight A, let L(\) be the irreducible finite-
dimensional highest weight U,(sl,(C))-module of highest weight A, and let B(\) be
the crystal basis of L(\). It follows that B(w;) is parametrized by the set CST(w;) of
column-strict tableaux of shape w; with entries in {1,2,...,n} (see for instance [15,
Proposition 3.3.1 (i)]). We have an injective homomorphism

n—1
(1) L(A) — @ L(w;)®™

i=1
of U, (sl,,(C))-modules sending a highest weight vector to the tensor product of highest
weight vectors. Further, this homomorphism induces a strict embedding

(2) B()—>®B ®mluHCST )™= CST(N)
of Uy(sl,(C))-crystals, where CST(A) denotes the set of column-strict tableaux of
shape A\ with entries in {1,2,...,n}. Since the symmetric group of degree n acts tran—
sitively on CST(w;), each element in CST(A) is labeled by a tuple of N := ZZ 1 My
cosets in the symmetric group; the symmetric group of degree n will be viewed as
the Weyl group of type A,_;. Let T € CST(\), and assume that T corresponds to
the tuple (wq,ws,...,wy) of N cosets in the symmetric group. Then T is in the
image of the strict embedding (2) if and only if there exist coset representatives
w, € w,, 1 <v < N, such that wy = wg > --- = wy in the Bruhat order > on the
symmetric group (see [23, Theorem 10.1]). In consequence, a column-strict tableau
satisfying this condition is just a Young tableau, and vise versa ([3, Theorem 2.6.3
(Tableau Criterion)]; see also [15, Theorem 3.4.2 (i)]). This gives an isomorphism of
Uy (81, (C))-crystals between B(A) and the set of Young tableaux of shape A. For an
explicit description of the U (s, (C))-crystal structure on the set of Young tableaux,
see [15, Theorem 3.4.2 (ii)].

In the case of untwisted affine type A, our basic idea is to use the semi-infinite
Bruhat order on the affine Weyl group in place of the Bruhat order on the symmetric
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group. Let U be the quantized universal enveloping algebra of (arbitrary) untwisted
affine type, and let I,y = {0} U I be the index set for the simple roots. By abuse of
notation, we use the same symbol w;, i € I, for the i-th level-zero fundamental weight
of U. For A = ), myw;, with m; € Zxo, i € I, let V()) be the extremal weight
U-module of extremal weight A, and let B(\) be the crystal basis of V(A) (see for
instance [14, § 3.1]). Similarly to (1), we have a canonical homomorphism
(3) Oy : V() — @ V(w;)®™
i€l
of U-modules sending an extremal weight vector to the tensor product of extremal
weight vectors. The main difficulty in carrying out the argument similar to the above is
that the associated map ®|,—o at ¢ = 0 of @, does not necessarily induce a morphism
B(A) = Q,c; B(w;)®™i of U-crystals. In fact, each ®5,—0(b), b € B(}), is a linear
combination of crystal basis elements whose terms are in one-to-one correspondence
with the terms of a product of some Schur polynomials (see [2, § 4.2]). To overcome
this difficulty, by taking the “leading term” @&Ezo(b) of ®)|4—0(b) (see Remark 3.2),
we introduce a strict embedding
(4) OXlg—o : BO) — @ B(ai)®™
i€l

of U-crystals, which will be viewed as a counterpart of (2) in this paper (see (38)
and Lemma 3.1). In the case that U is of untwisted affine type A, it follows that
B(w;) is parametrized by CST(w;) x Z, and the affine Weyl group acts transitively
on CST(w;) x Z (see Proposition 4.3). Consequently, &), B(w;)®™ is parametrized
by CST(A) x ZN, where N :=>",.; m;, and each element in CST(X) x ZV is labeled
by a tuple of N cosets in the affine Weyl group. Let T € CST(\) x Z”, and assume
that T corresponds to the tuple (Z1,Za,...,Zxn) of cosets in the affine Weyl group.
Then T is in the image of the strict embedding (4) if and only if there exist coset
representatives x, € T,, 1 < v < N, such that 1 > x5 > --- > xn in the semi-
infinite Bruhat order > on the affine Weyl group (see Theorem 3.4). Such decreasing
sequences are explicitly described in terms of tableaux (see Definition 4.2 (1) and
Theorem 4.7). We are thus led to the definition of semi-infinite Young tableaux (see
Definition 4.2 (2)).

Let us give an example of a semi-infinite Young tableau (by using the notation in
§ 4.1). Let n = 7 and

LTI
(5) A=t + 3wy + 2004 = L]

We claim that

(5]2[3]1
(6) T=( B4I5

, (=3;5,4,—1;8,7) | € CST()) x Z°

[S[c[=]~

1
3
1

[6]

is a semi-infinite Young tableau of shape \. Indeed, T is a semi-infinite Young tableau
if (and only if) its rectangle components

2[3[1 3[4
(7) @ -3), EEE 6a-v).  (BE @1
[617]
are semi-infinite Young tableaux. Also, a tableau
(8) (TlTQ T, (Cl, Coynny C"L)) S CST(mwl) x 7™
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of rectangle shape is a semi-infinite Young tableau if (and only if)

(i) cL=c2 >+ = cm, and

(ii) (Tu(u—|— e —Coy1) 2 Ty ifl<u<i—c, + c,,_H) for every 1 < v < m,
where T,(s) denotes the s-th entry (from top) of the v-th column T,.

This paper is organized as follows. In § 2, we set up notation and terminology on
untwisted affine root data and crystals. Also, we have compiled some basic facts on
extremal weight modules over quantized universal enveloping algebras of untwisted
affine types, the semi-infinite Bruhat order on affine Weyl groups, and semi-infinite

Lakshmibai—Seshadri paths. In § 3, we introduce a strict embedding @I;?;ZO of crystals.

Then we state and prove a characterization of the image of (I)Iﬁ\l;:o’ which can be
thought of as standard monomial theory for semi-infinite Lakshmibai-Seshadri paths
(see Theorem 3.4). In § 4, we will restrict our attention to the case of untwisted affine
type A. We introduce semi-infinite Young tableaux. We prove that the set Y% (\) of
semi-infinite Young tableaux of shape A equals the image of @I;EFO (see Theorem 4.5),
by showing a tableau criterion for the semi-infinite Bruhat order (see Theorem 4.7).
Consequently, this proves that Y% ()) is isomorphic, as a U-crystal, to the crystal
basis B(\) (see Corollary 4.6). We give an explicit description of the crystal structure
on Y% () (see Proposition 4.17).

2. PRELIMINARIES

2.1. UNTWISTED AFFINE ROOT DATA. Let g,s be an untwisted affine Lie algebra over
C with a Cartan subalgebra ha¢. Let {c }ier,, C bl = Home(bat, C) and {h; }ier,, C
has be the sets of simple roots and simple coroots, respectively. Here I,s denotes the
vertex set of the (affine) Dynkin diagram of gur. Let (-,-) : bar X b — C be the
canonical pairing. We take and fix an integral weight lattice P,y C b}, satisfying the
conditions that «; € Pa¢ and h; € Homy(Pas,Z) for all i € L, and for each i € It
there exists A; € Pu¢ such that (h;, A;) = §;; for all j € Is. Let § = Zielaf a0 €
b and ¢ = Zie I a;/ h; € ba¢ be the null root and the canonical central element,
respectively. We take and fix 0 € I¢ such that ag = aj = 1. Set I = Is \ {0}; note
that the subset I of I,; corresponds to the vertex set of the Dynkin diagram of a
complex finite-dimensional simple Lie subalgebra g of g,¢. For each i € I,¢, define
w; = Ay — (¢, A;) Ao and call it the i-th level-zero fundamental weight; note that
wo =0, (¢, w;) =0 for all i € Is, and (h;, w;) = d;; for all 4,5 € I.

Let Wy = (r; | © € I¢) be the (affine) Weyl group of ga¢, where r; denotes the
simple reflection with respect to ;. The subgroup W = (r; | i € I) C Wy is the
(finite) Weyl group of g. Let £ : Wyt — Z>( be the length function. Let e € Wyt be
the unit element. Let (-, -) be a Wys-invariant non-degenerate symmetric bilinear form

20
on h*; such that (4, A) = (¢, ) for all A € b%;. Set o) = (a'a;.) € b for i € Is. The
action of Wye on b¥; is given by r;(A) = X — (o), N)a; = A — (hy, N for i € Iy and
A€ bl Set

(9) Q=P Za, QY =P Za, Pt =Y"Zsw;.

iel iel iel

We know from [9, § 6.5] that Q¥ C Q. For £ € @V, we denote by t¢ € Wy the
translation by £ (see [9, §6.5]). We know from [9, Proposition 6.5] that {t¢ | { € QV}

forms an abelian normal subgroup of Wy, for which tete = teie, &,¢ € QV, and
Wae =W x {te | £ € QV}. For w € W and £ € QV, we have

(10) wted = wA — (§,N)0 if A € b satisfies (¢, \) = 0.
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Let A be the root system of g. Set At = ANY . ; Z>oa;. For a subset J C I, set

iel
(1) Q=@ Zay, Qj=@@Za), A;j=A4NQ,; AF=A"NQ,.

jeJ jEJ
Denote by A, the set of real roots of g.¢, and by A; the set of positive real roots of
gar; we know from [9, Proposition 6.3] that

(12) Axg={a+ns|laceAneZ}, AL=ATU{a+nd|aecA neZs}.

v_ 28
For 8 € Ay, let 8 )
B;if B=a+né, o € Aand n € Z, then rg = rotpav.

Let d be the smallest positive integer such that (a;, a;)/2 € (1/d)Z for all i € Ins.
Let ¢ be an indeterminate, and set ¢, = ¢*/%. Let U be the quantized universal
enveloping algebra over Q(gs) associated with g.¢. Let U’ be the Q(gs)-subalgebra of
U corresponding to the derived subalgebra [gag, gaf] of gar (see for instance [2, § 2.2]).

€ b, and let rg € Wyt be the reflection with respect to

2.2. CRYSTALS. In this subsection, we set up notation and terminology on crystals.
For a fuller treatment, we refer the reader to [1, 11, 12, 14].

A set B together with the maps wt : B — Pu¢ (resp. wt : B — Pag/(Pag N Cd)),
ei,fi : B = BU{0}, i € Ly, and e;,¢; : B — Z U {—o0} is called a U-crystal
(resp. U’-crystal) if the following conditions are satisfied:

(C1) @i(b) = €4(b) + (h;, wt(b)) for all ¢ € I,
(03) Wt(fzb) = Wt(b) — o if flb € B,
(C4) e;(e;b) = ;(b) — 1 and @;(e;b) = @;(b) + 1 if e;b € B,
(05) é‘i(f,'b) = 6Z(b) + 1 and gOz(fzb) = (pl(b) —1if f;b € B,
(C6) f;b="0"if and only if b = e;b’ for b,b’ € B and i € I,
(C7) if @;(b) = —o0, then e;b = f;b=0.
The maps e;, f; : B — BU {0}, i € L, are called the Kashiwara operators. For a
subset B’ of a crystal B, we say that B’ is stable under the Kashiwara operators if
e;B8, fiB' C B'U{0} for all i € L.

Let By and By be U-crystals or U’-crystals. A morphism ¥ : B; — By is, by
definition, a map By U {0} — By U {0} such that

(M1) w(0) =0,

(M2) if b € By and ¥(b) € Ba, then wt(¥ (b)) = wt(b), &;(¥ (b)) = &;(b), and

©i(T (b)) = @;(b) for all i € Ly,

(M3) if b, = Bl, ‘I’(b), \I’(b/) € By and fzb = b/, then fl\I/(b) = \I/(b/) for all 7 € I.
A morphism V¥ : By — By is called strict if U(f;0) = f;¥(b) and U(e;b) = e;¥(b) for
all b € By and i € I;s. A morphism ¥ : B; — Bs is called a strict embedding if it is a
strict morphism and the associated map By U{0} — B2 {0} is injective. A morphism
U : By — By is called an isomorphism if the associated map By U {0} — Bo U {0} is
bijective.

The tensor product By ® By of crystals By and Bs is defined to be the set By x By

whose crystal structure is defined as follows:
(Tl) Wt(bl X bg) = Wt(bl) + W't(b2)7
(T2) ei(b1 ® ba) = max{e;(b1),&i(b2) — (hi, wt(b1))},
(T3) @i(b1 ® b2) = max{pi(b2), pi(b1) + (hi, wt(b2))},
) if 0; > e
(T4) ex(by @ by) = (eib1) ® by {f ©i(b1) = €i(b2),
b1 @ (eibz) if @;i(b1) < €i(b2),

Algebraic Combinatorics, Vol. 3 #5 (2020) 1145
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(fib1) ® by if i(by) > €4(b2),
b1 @ (fiba) if @i(b1) < €i(b2).

Here, we write by ®bs for (b1, be) € By x B, and we understand that b ®0 = 0®by = 0.

Let B be a regular U-crystal (resp. regular U’-crystal) in the sense of [14, § 2.2].
By [11, § 7], we have a Wys-action S : Wys — Bij(B), © — S,, on (the underlying set)
B given by

(T5) fi(b1 ® by) = {

(13) S,.b= {f<h SO (b, wt

ey POy f (y,wt
for each b € B and i € I¢. Note that wt(S,b) = zwt(b) holds for all x € Wyt and
b € B. An element b € B of weight A € Pu¢ (resp. A € P/ (Par N C0)) is called an
extremal element if we can find elements b, € B, © € Wy, such that

(El) be = b7

E2) if (h;, ) > 0, then e;b, = 0 and f""" Vb, = b, ,

( ; s

E3) if (h;, z\) <0, then fib, = 0 and ¢; ""*Vb, = b, ,.

(E3) ; :
Then b, = S;b holds for all x € Wy;.

2.3. EXTREMAL WEIGHT MODULES AND THEIR CRYSTAL BASES. In this subsection,
following [2, 11, 14], we review some of the standard facts on extremal weight modules
and their crystal bases.

For A € PT, let V()) be the extremal weight U-module generated by an extremal
weight vector uy of extremal weight A, and let (L(\),B(A)) be the crystal basis of
V(A) ([11, Proposition 8.2.2]; see also [14, § 3.2]). Note that B(\) is a regular U-
crystal in the sense of [14, § 2.2] (see § 2.2). Let By(A) be the connected component
of the crystal graph of B(A) containing uy mod gsL()\).

Let z;, i € I, be the U'-linear automorphism of V(w;) of weight § introduced
in [14, § 5.2]; z; sends a (unique) global basis element of weight w; to a (unique)
global basis element of weight w; + §. Then z; induces a Q-linear automorphism
of L(w;)/qsL(w;) and an automorphism of B(w;) as a U’-crystal; by abuse of no-
tation, we use the same letter z; for the automorphism of B(zw;). The U’-module
W(w;) = V(w;)/(2; — 1)V (w;) is called a level-zero fundamental representation. We
know from [14, Theorem 5.17] that W (w;) is a finite-dimensional irreducible U’-
module and has a (simple) crystal basis.

For A = ) ., miym; € P*, with m; € Zxo, i € I, let f/()\) = Qicr V (o) ®mi
and Gy = @, ud™ € V(\). For each i € I and 1 < v < my, let 2, be the U’-
linear automorphism of V() obtained by the action of z; on the v-th factor V(w;)
of V(w;)®™ in V(). The U-submodule

(14) V) =U [z, 2, |i €1, 1<v <myliia CV(N)

has a crystal basis (£(\), B(\) = ®,¢; B(w;)®™) such that £(\) C &,  L(ww;)®™
([14, Theorem 8.5]). Let Bo()\) be the connected component of the crystal graph of
B(\) containing @y mod gs£(\). Since V(\) contains an extremal weight vector iy
of weight A, we have a U-linear homomorphism ®, : V() — V(A) sending uy to .
We know from [2, § 4.2] that the map ®, is injective, commutes with the Kashiwara
operators e;, fi, i € Iaf, and induces an injective Q-linear map ®y|q—o : £(\)/qsL(A) —
L£(N\)/qs£(N); note that Oy jg=0(B(N)) ¢ B()), in general (see Theorem 2.1 (2)).

Algebraic Combinatorics, Vol. 3 #5 (2020) 1146
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For A =3, ., miw; € Pt, with m; € Zx, i € I, set
(15)
Par()) = {p = ()
i€l

we understand that a partition of length less than 1 is an empty partition &. For a par-
. l ;
tition p = (p1 = p2 = --- = p > 0),set [p| = >, _, pv. For p = (p(l))iel € Par()), set

p(i) is a partition of length less than m; for each i € T } ;

(16) wt(p) == ‘p“) d.

i€l

Let p = (p(i))iel € Par()). Let S, be the (PBW-type) basis element of weight
wt(p) of the negative imaginary part of U constructed in [2, the element S_, in § 3.1;
see also Remark 4.1]. Define

(17) sp(z_l) :Hsp(i>(zi_711,zi_’21,...,zgyzi),
iel

where the right-hand side is a product of Schur polynomials in the variables 2, Vl,
1€l,1<v<m,;.

THEOREM 2.1 ([2, § 4.2]; see also [14, § 13]). Let A € PT.

(1) We have
B(\) = {9192 Sy ux mod gsL£(A)
1s) ‘ g €{ei fili € Lut}, 1<k <, 1€Zs, pE€ Par()\)} ~ {0}.
(2) We have
(19) Dyjg=0 (9192~ @Sy un  mod ¢,L(N)) = 9192+~ gisp(2~")un  mod 4L\

= s5p(2 1 )g192 - gty mod g L(N)

for g1ga--- g1S, ux mod qsL(\) € B(A). In particular,
(20)  @ygmo(BOV) = {sp(=" )b mod g,L(\) | p € Par(h), be Bo(N)},

and the map ®y4—¢ induces an isomorphism of U-crystals from By(\) to
Bo(N).

(3) Let By(A) be the connected component of B(A) containing S, uy mod gsL(A).
Then we have B(A) = |l,cpar(n) Bp(A). Moreover, for each p € Par(}),
there exists an isomorphism of U’-crystals from Bo(X) to Bp(N\) sending ux
mod ¢s£(A) to S, ux mod gsL(N).

2.4. SEMI-INFINITE BRUHAT ORDER ON AFFINE WEYL GROUPS. In this subsection,
we recall some basic facts on the semi-infinite Bruhat order on affine Weyl groups
(see [6, 18, 25] for more details).

We take and fix J C I. Let W; = (r; | j € J), and let W7 be the set of minimal
coset representatives for W/W (see [3, Corollary 2.4.5 (i)]). For w € W, we denote

Algebraic Combinatorics, Vol. 3 #5 (2020) 1147
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by |w] € W the minimal coset representative for the coset wW; € W/W . Define
(21) (Ajat ={a+nd|a€ Aj,ne€Z} C Ay,

(22) ANLE=ANsNAL=AT U{a+nd|ae A neZol,

(23) (W)t =Wy x {te [ €€ Qy} = (rs | B € (As) ),

(24) (W )at = {z € Wae | 28 € Af; for all B € (A)) 5}

note that (Wg)ar = {e} and (W), = Wys.
LEMMA 2.2 ([25]; see also [18, Lemma 10.5]). For each x € Wy, there exist a unique
w1 € (W7)at and a unique xo € (Wy)as such that x = z1x5. In particular, (W )at is
a complete system of coset representatives for Wae/(Wy)at.
Define a map IT17 : Wys — (W) by IV (2) = 21 if 2 = 2120 with 23 € (W7 )yt
and xo € (Wy)at.
LEMMA 2.3 ([25]; see also [18, Proposition 10.8]).
(1) I (w) = |w] for w e W.
(2) T (zte) = 17 ()17 (L) for © € Wae and € € QV.
For simplicity of notation, we let Tz = T,/ stand for I/ (t¢) € (W”).s for € € QY.
The next lemma follows immediately from (23) and Lemmas 2.2-2.3.
LEMMA 2.4.
(1) (War ={uTe |we W7, £€Q¥}.
(2) Let&,CeQV. IfE=C monV thenTJ Té].
Set py = (1/2) ZaeAj a; we abbreviate py to p if J = I. For & = wte € Wy with
w e W and £ € QV, define
(25) 0% () = L(w) +2(¢, p).
Define the (parabolic) semi-infinite Bruhat graph SiB” to be the Afi-colored di-
rected graph with vertex set (W?7),¢ and edges of the form z N rgw for v € (W)t
and 3 € Af;, where rgz € (W) and €7 (rgz) = €% (z) + 1.

The semi-infinite Bruhat order is a partial order < on (W7),; defined as follows:
for x,y € (W7),¢, we write z < y if there exists a directed path from z to y in SiB”.

PROPOSITION 2.5 ([6, Proposition A.1.2]). Let w € W7, £ € QY and B € A,. Write
B = wy+ x6 withy € A and x € Zzo. Then rgwTy € (W”)ar and there exists an
edge wlt BN rgwle in SiB” if and only if v € AT < A'}' and one of the following
conditions holds:
(B) x = 0 and {(wry) = {(w) + 1; in this case, we have rgwTy = wr, Tz and
wr, € W7,
(Q) x =1 and ((|wry]) = l(w)+1—=2(y", p—py); in this case, we have rgwTe =
lwry | Teqqyv.
REMARK 2.6.
(1) If wrt N 17 (rpwTe) in SiB7, then rpwTe = 7 (rpwTe) € (W )ar (see [6,
Appendix A)).
(2) The condition (B) (resp. (Q)) for w € W7 and v € A* . AT in Proposi-
tion 2.5 corresponds to the existence of the Bruhat edge (resp. quantum edge)
w — |wr, ] in the (parabolic) quantum Bruhat graph for W (sce [19, § 4]).
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2.5. SEMI-INFINITE LAKSHMIBAI-SESHADRI PATHS. In this subsection, we give a brief
exposition of the U-crystal of semi-infinite Lakshmibai-Seshadri paths; see [6] for more
details.

Let A € P and set Jy = {j € I | (h;,\) = 0}. For a rational number 0 < a < 1,
define SiB(); a) to be the subgraph of SiB’* with the same vertex set but having only
the edges of the form

(26) PN y with a(BY,z)) €Z

note that SiB(\; 1) = SiB”*. A semi-infinite Lakshmibai-Seshadri path of shape X is,
by definition, a pair (x; a) of a decreasing sequence x : x1 > xg = - -+ = x; of elements
in (W7/*),; and an increasing sequence @ : 0 = ap < a; < --- < a; = 1 of rational
numbers such that there exists a directed path from z, 41 to x, in SiB()\; a, ) for each
w=1,2,...,1 — 1. Let BT (\) denote the set of semi-infinite Lakshmibai-Seshadri
paths of shape A.
Following [6, § 3.1], we equip the set B ()\) with a U-crystal structure. For =

(x1,...,m;a0,a1,...,a;) € BZ ()\), define the map 7 : [0,1] — R ®z Pat by

u—1
(27) 7(t Z — ap—1)TpA + (t — ay—1)z A fort € [ay—1,a,), 1 <u<l

=
Define wt : B% (\) — Pu¢ by wt(n) = 77(1) € Pag. Set
(28) Rl (t) = (hi,n(t)) for t € [0,1], m; = min{h](t) | t € [0,1]}.

We define e;1, i € Ly, as follows: if m] = 0, then we set e;n = 0. If m] < —1, then
we set

) {tl = min{t € [0,1] | A(t) = m]},

=

to = max{t € [0,¢1] | h](t) =m] + 1}.
Let 1 < p < ¢ <! be such that a,_1 <ty < ap and t; = a,. Then we define
€N = (1, s Tp, Tilpy s Tilqy Tgtls-- - Ll
(30)
A0y -y Qp—1,10,Apy ey Og =t1,...,47);

if ty = ap—1, then we drop ), and a,—_1, and if ;24 = 2441, then we drop z44, and
Qg = tl.

Next, we define fin, i € In, as follows: if m] = h](1), then we set fin = 0. If
h}(1) —m] > 1, then we set

31) to = max{t € [0,1] | h](t) = m]},
t1 = min{t € [to, 1] | b} (t) = m] + 1}.
Let 1<p <1 —1 be such that tg = a, and aqy < t1 < ag41. Then we define
(32) fzn = (xlv ey Ty TiTp41y - oo s TiLg41, Lg41y - - -, Ly
ag, ..., 0p :th"'aaq7t17aq+17'"aal);

if t1 = ag41, then we drop z441 and ag41, and if z, = r;zp41, then we drop z, and
ap = to.
For n € B% (\) and i € I, define

n

ei(n) = -m;,
(%) {mm — KI() = m.

Now we assume that A\ = Eiel m;w;, with m; € Zxo, 1 € I. Set J§ = I \
Jy = {i € I | m; > 0}. Following [6, Equation (7.2.2)], we define an element
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np € BE(A) of weight A\ + wt(p) for each p = (p(i))iel € Par()\), with p® =
(pgl) > p() > - pSn)i—l) (see (15)). Let s be the least common multiple of {m; |

i€ J5}. Let ci(f) € 7Z denote the coefficient of o in £ € QV. For &,¢ € QV, write

E=CifE—Ced o Zxo0y, and write § = (if € = ¢ and § # (. Let (1,...,¢ € QY
be such that

u—1
(i) (&) = 1fz€Jcandg<t<S—u_,and
(ii) cJ(Q)—Ofor all j € Jy and1<t Z
note that ¢ > -+ = (s and (s = 0. Assume that
(34) 41:"'2451>Cs1+1:"':C52> """ ><sk_1+1:"':<ska
where 1 < 51 < -+ < 8p_1 < 8 = s. Set
S1 Sk—1
(35) npz(TQI,...,TC%?I,@;0,?..., - ,1).

THEOREM 2.7 ([6, Theorems 3.1.5 and 3.2.1]). Let A € P™.
(1) The set BF ()\) equipped with the maps wt, e;, fi, i € L, and €;, ¢4, i € Ly,
defined above, is a U-crystal.
(2) There erists a unique isomorphism of U-crystals from B(\) to B ()\) sending
S,ux mod g L(A) ton, for every p € Par(A).

For A1,...,Ax € PT,let BZ (A1) *---*B% (Ayx) be the set of symbols n; - - - x 1,
with 17, € B3 (\,), 1 < v < N. We define a U-crystal structure on B= () * - - - *
B3 (Ay) in a way similar to the above. For n = ny *---xny € BT (A1) *---*BF (\y),
define 7 : [0,1] — R ®z Pa¢ by

p—1 P
(36)  q(t Z”v )+ (Nt =+ 1) for —— <t < 7 1< u <N,
where each 7, : [0,1] = R®z Pag, 1 < v < N, is defined by (27). Define wt(n) = 7(1)
By the same way as in (28), we define i} (¢) and m; for n = 0y *- - -xny by using (36).

We define e;n (resp. fin) € BF (A1) * -~ x BT (\x) U {0} as follows: if m] = 0

(resp. m; = h](1)), then we set e;n = O (resp. fin = 0). Assume that m] < —1

(resp. h](1)—m] > 1), and let 0 < tp < t; < 1 be as in (29) (resp. (31)). We see that
—1

there exists 1 < v < N such that VT <tp <t < % Then we set e;n =11 * - - - *

Ny—1 %€My kM1 % %N (TeSp. fin =% kNy_1 % fin, *ny,11 % -xny). We define
the functions €;, p; as in (33). The proof of the next proposition is straightforward.

PROPOSITION 2.8. Let A\i,...,Axy € Pt. The map BT (\) ® --- @ BT (\y) —
IB%%(/\l) % ~*IB%%()\N), MR- QNN > N kNN, 18 an tsomorphism of U-crystals.

3. STANDARD MONOMIAL THEORY FOR SEMI-INFINITE
LAKSHMIBAI-SESHADRI PATHS
3.1. STRICT EMBEDDING <I>L|T Let A\ = Y, c;miw; € P, with m; € Zxo, i € 1.
Recall the automorphisms z; ., i € I, 1 < v < m;, of the U’-crystal B(\) (see § 2.3).
For p = (p")ie1 € Par(), with p@ = (o > p§” > --- > pl¥) | > 0), i € I, define
the automorphism 2~ of the U’-crystal 5(\) b

L, oD G
(37) z = H Zz 1 ZZ,2 t Zz ,m;—1
i€l

Algebraic Combinatorics, Vol. 3 #5 (2020) 1150



Semi-infinite Young tableaux

Define the map @I;EI:O : B(\) = B()\) by

v

(38) g192 - @S, ux mod gsL(A) — gi1g2--- g1z~ Pux  mod gsL(N),

where g, € {e;, fi | i € T}, 1 < k < 1,1 € Zxp, and p € Par(\) (cf. (19)). Set
B,(\) = 277 ([;’0()\)> C B()\); note that B,(\) is a connected component of B(\),
and is isomorphic to By(A) as a U’-crystal.

LEMMA 3.1. The map @I;?;:O is well-defined, and is a strict embedding of U-crystals.

Proof. Tt suffices to show that the map q%\ﬁ;:o induces an isomorphism of U-crystals
from B,(\) to B,()) for every p € Par(\). We know that the maps B,(\) — Bo()\)
in Theorem 2.1 (3), ®q—0 : Bo(A) — Bo()) in Theorem 2.1 (2), and 27° : By(\) —
Bo(A) are isomorphisms of U’-crystals. We check at once that the composition of
these maps is describe by (38), which proves that @Y _; is well-defined and induces
an isomorphism of U’-crystals from B,(\) to B,()\). Since wt(S,un) = A+ wt(p) =
wt(z7Py), @I;EFO is a morphism of U-crystals. O

REMARK 3.2. If we think of the Schur polynomials as the generating functions of the
weights of Young tableaux (see [4, Page 3]), then the term z7° in s,(27!) (see (17))

corresponds to the tuple of the Littlewood-Richardson tableaux of shapes p(*), i € T
(see [4, § 5.2]), and the coefficient of 277 in s,(z7 1) is 1.

3.2. CHARACTERIZATION OF THE IMAGE OF ‘I)ﬁ:o. In this subsection, we give a
characterization of the image of the map (I)I)\J‘quo in terms of semi-infinite Bruhat

order via semi-infinite Lakshmibai—Seshadri paths.
Recall the notation Jy = {i € I | (h;,\) =0}, A € PT.

DEFINITION 3.3. Let A\, € Pt and n®) = (x§”>,...,x§j>; a”) eBT(\,), 1<v<
N. We say that there exists a defining chain for ®]yV:1 n™ e ®N (BE(N,) if there
exists :zg”) EWa, 1 <s<l,, 1 <v <N, such that

(DC1) I/ (@g”)) = xgy) foralll1 <s<l,,1<v <N,

(DC2) 331(,')) > i‘((;') foralll<p<qg<l,,1<v<N, and

(DC3) 5:1(5) - i'gyﬂ) foralll<v <N,

where = denotes the semi-infinite Bruhat order on W defined by using SiB? (see
§ 2.4). The tuple (fﬁ”))lgsglu,lgy@v above is called a defining chain for ®IJJV:1 n®).

Let A = Y ,.;myw; € PT. Recall the notation J§ = I ~ Jy. Set BT (\) =
Q;cse B (w;)®™i. We know from Theorem 2.7 that there exists an isomorphism
A

(39) Uy B(\) =BT ()

of U-crystals defined as the tensor product of the isomorphisms B(w;) — B% (w;)
sending ue, to (e;0,1), ¢ € I. Write
40)  WA(b) = @ W (b) € BT (N), where UV (b) € BF (w,)®™, i € J§.

i€Jg

o0
2

N\ = {77 eBT(\) ‘ there exists a defining chain for 77} .

Algebraic Combinatorics, Vol. 3 #5 (2020) 1151



MOTOHIRO ISHIT

THEOREM 3.4. Let A € P*. Forb ¢ l;’()\), the following conditions are equivalent:
(1) be DKL, (B(Y).

(2) WA(b) € 55 (N).

(3) ¥ (b) € §% (m;

ST (\) =

i) for every i € J5.
ics ST (myzo;) (cf. [2, Remark 4.17]; see also [14, Con-

® q

In particular,

jecture 13.1 (iii)]), ST () is stable under the Kashiwara operators, and the map
Uy o q)/\lq o BA) — ST (\) is an isomorphism of U-crystals.
REMARK 3.5.

(1) Our argument in the proof of Theorem 3.4 in § 3.3 does not imply [14, Con-
jecture 13.1 (iii)] since [2, Remark 4.17] is used in the proof of Theorem 2.7
([6, Theorems 3.1.5 and 3.2.1]).

(2) Similar result to Theorem 3.4 is obtained in [16, Theorem 3.1], where they
proved that, for any A\, u € P, the subset S= (A + 1) of elements in B% (\) ®
B (1) having a defining chain is stable under the Kashiwara operators, and
is isomorphic to B (A + p) as a U-crystal. But the proof is slightly different
from ours. The main task in the proof of [16, Theorem 3.1] is to construct
an isomorphism of U-crystals between S% (A + u) and B% (A + u). This is
achieved by giving an explicit parametrization of the connected components
of S% (A + ). In contrast of this, our argument starts from a specific choice
of a map (see (38)), and aims to give an explicit description of the image of
this map; in fact, there are infinitely many strict embeddings of U-crystals
from B()\) to B()\), in general.

3.3. ProOOF OF THEOREM 3.4. This subsection is devoted to the proof of Theo-
rem 3.4.

We see from [14, Theorem 5.17] that, for each i € I, there exists a strict surjective
morphism of U’-crystals from B(w;) to the crystal basis of a finite-dimensional U’-
module W (w;) (see § 2.3). Hence, the next lemma follows from [1, Lemmas 1.5-1.6].
LEMMA 3.6. Let i1,...,iy € 1.

(1) Any connected component of ®]DV:1 B(w;,) contains an extremal element.

@) Ifb = @, v € QY B(w,,) is an estremal element, then S,b =
QN 5,60 for all x € Wiy

(3) ®f,V:1 b € ®iV:1 B(w;,) is an extremal element if and only if there exist
weW and &y, ...,Ex € QY such that b*) = Sy, ue, for 1 <v<N.

By Theorem 2.7, the W¢-action on B()) (see (13)) induces a W,s-action on B ().

The next lemma follows from Theorem 2.7 (2) and Lemmas 2.3-2.4 and 3.6.
LEMMA 3.7. Let i1,...,iy € I.

(1) Any connected component of ®iV:1 B (w;,) contains an extremal element.

(2) If n = ®IJL1 ¥ € ®]VV:11B%(W¢V) is an extremal element, then Syn =
®iV:1 S.n®) for all x € Wy.

(3) ®f,V:1 n¥ ¢ ®f,v:1 B (w;,) is an extremal element if and only if there exist
we W and o, € Z, 1 < v < N, such that n¥) = S, (T;\(l{yi”};O, 1) €
B (w;,) for1 <v < N.

We also denote by z; the automorphism, as a U’-crystal, of B (o) corresponding
to the automorphism z; of B(w;). Recall that c;(£) denotes the coefficient of ) in

£eqQv.
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LEMMA 3.8. Let A =3, myw; € PT.
(1) For each i € I, we have 2F(e;0,1) = (Ti;ijv};o, 1) in B (w;) for all k € Z.

In particular, for every p = (p\V);ie; € Par(X), with p¥) = (pgi) > e 2
pﬁ,?ﬁl >0), i€, we have

(42) v (zPay) = (T;(;gi;o, 1> ® - ® (TI(;{i}av;O, 1) ® (e;0,1)

1% my—1%

in B (co;)®™ for each i € I.
(2) Any connected component of B ()\) contains an extremal element of the form

(43) QR ® (T’\{” 0, 1) ,

(i) v
ieJgv=1 Pv oy

where pl(,i) €Z,1<v<my, i€ Js, and p%{ =0 for all i € J5.
Proof. (1): Since zF(e;0,1) is an extremal element of weight w; + k&, there exists
x € (WIS ¢ such that 2 (e;0,1) = S,(e;0,1) = (x;0, 1) by [14, Proposition 5.4 (i)].
If we write x = ng\{i}, w e W, & € QVY, then wt(z;0,1) = ww; — (§,w;)d =
ww; — ¢;(§)d, which implies that w = e and ¢;(§) = —k. By Lemma 2.4 (2), we have
TEI\{i} =7} which proves that zf(e; 0,1) = (TI\{i}' 0, 1).

—kay —kay
(2): By Lemma 3.7, any connected component C' of B¥ (\) contains an extremal

element of the form n = ®1€J§ X (TI\{i}'O, 1), with a,(,i) €Z 1< v<m,

i )
o',(, >a;/

i

1 € J5. Set p(f) = ol —07(72 and £ = — Zi€J§ od «). By Lemmas 2.4 (2) and 3.7 (2),

44 C> S, n = q s, TI\{i}'Oa]- _ q TI?{Z},O,]. ’
13 3 p()a\/

(i) v
ieJ§ v=1 v ieJg v=1 vy
which is the desired conclusion. O

For J C I,set J°=1~J.Let [-];: Q" = QY ® QY. — QY be the projection.

Recall that we write & = ¢ for §,( € Q¥ if £ —( € >,  Zxooy .

LEMMA 3.9.

(1) For&,6 € QY, Té]l = Té in (WY)at if and only if [€1]7c = [E2] 7 in QV.

(2) Forx,y € War and £ € QV, x =y in Was if and only if xte = yte in War. In
particular, we have wte = te in Wye for all w € W.

(3) For anyy € Wyt and £ € QV, there exists 9 € QV such that ¥ = £ in QY and
ty =y in Wyr.

(4) Let J,K C I be such that J*NK°® = &. Then, for any x,y € Wy, there exist
Y1 € QY and 92 € QY such that I/ (xty,) = I/ (z), IT¥ (yty,) = X (y) and
Itgl t yt§2 m Waf.

(5) Let J C I and x,y € Wag. If x =y in W, then II7 (x) = 17 (y) in (W7 )as.

Proof. (1): This is a special case of [6, Lemma 6.2.1].
(2): The assertion follows immediately from the formula ¢ (xt¢) = £% (z)+2(&, p).
(3): Let y = vte,ve Wand ¢ € QV, and let v =1y, riy -+ 74,, i1,%2,...,4 € Ly, be
a reduced expression. If we set wy = ry, 74, -+ -1, and v = wioy, for k=1,2,...,1,
then

k

§ O+vi— 5
(45) Yy = wyte l ’wl_ltc_;,_aivl Lt N e

tcray ta¥ +otay 0 SiBZ,
11 2 K3
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which proves that ¥ = { + o) + o) +--- 4+ o) € QY satisfies ty: = y. We see that
¥ = cpmax{c;(§),ci(V)}ay satisties ¥ = &, ¥ = 9, and hence ty > tg by (1).
(4): Assume that = wte with w € W and £ € QV. By (3), there exists ¥ € QV
such that ¥ = ¢ and ty > y. If we set 91 = [¢ — £]; and 93 = [ — J]k, then
7 (xty,) = M7 (x) and X (yty,) = X (y). Moreover, we have & + 91 = 0 + s,
because ¢ = &, &+ 1 = [{]se + [V]ke + [J]snk since J = K°U (J N K), and
W+ 2 = [€]je + [V ke + [€]lunk since K = J¢U (J N K). Then (1)—(2) shows that

(46) wty, = Whero, = ey, = toyo, = toty, = Ylo,.

(5): By induction on ¢% (z) — £% (y), the assertion follows from [6, Lemma 6.1.1
for K = &]. O

Proof of Theorem 3.4. We first prove that (2) and (3) are equivalent. Clearly, (2) im-
plies (3). We prove that (3) implies (2). The proof is by induction on #J5. If #J5 =1,
then (2) and (3) are equivalent. Assume that #J§ > 1, b € B()\) satisfies (3), and
U,(b) = \I/g\l) (b)®®je};\{i} \IJ(A])(b). By (3), there exists a defining chain (z1,...,zxN)
for \I/gf)(b). By induction hypothesis, there exists a defining chain (y1,...,ya) for
®jeJ§\{z‘} \IIS\J)(b). Applying Lemma 3.9 (4) to z = zn, y = y1, J = I ~ {i}, and
K = J) U {i} to obtain ¢, € Q}/\{i} and ¥, € nyu{i} such that xnty, > yity,.
By Lemma 3.9 (2), we conclude that (z1ty,, ..., Nty Y1t9,,- - -, Yarte,) is a defining
chain for Uy (b).
We next prove that (1) and (2) are equivalent. The proof is completed by showing
that
(i) ST () is stable under the Kashiwara operators, and
(ii) each connected component of S% (\) contains Wy(zPiiy) for some p €
Par(),
because Wy o (I’Ii]l;:o : B(A) — BT ()\) is a strict embedding of U-crystals, and
Uy (27Pay) € ST () for every p € Par()\); indeed, by Lemmas 3.8 (1) and 3.9 (1),
we have a defining chain tp(i)av,...,tp(i) gvo €| for \IJE\i)(z*Pﬂ)\) for every p =
1 i i

m;—1%
(p)ier € Par(\), with p() = (pgi) > > pgl)rl > 0), i € I, and hence there exists
a defining chain for Wy (z~Pay) by the implication (3) = (2).

We prove (i) only for the action of e;, j € I, the proof for f; is similar. Let
n= ®i€J§ n e g%()\), with ) g%(miwi), i € J5. By tensor product rule and
the implication (3) = (2), we only need to show that, for each ¢ € J§, if ejn(i) # 0,
then e;n® € §F (myw;). Write n) = @, nS, with S € B (w;), 1 <v < my,
and let (x([g”])lgsglwlgygmi be a defining chain for n(?; by Lemma 3.9 (5), we may
assume that x[sy] e (WI\{i})af, 1 <s<1,,1<v < m; By tensor product rule,
ejn(i) :ngi)®---®ejn,(,i)®~-~®77,(,?i for some 1 < v <m;. Let 1 <p<q<l, beas
in (30) for nl(,i). It follows from Proposition 2.8 and [6, Lemma 4.1.6] that the tuple

(47) (m[ll], . ,acy:;l],x[ly], e ,xL”],rixL”], . ,rix([l”], xgu_g_l, e ,ml[z],x[luﬂ}, cey xl[j:]>

is a defining chain for ejn(i), and hence ejn(i) € S%(miwi).
Finally, we prove (ii). Let C be an arbitrary connected component of S¥ (N\); we see
from (i) that C is a connected component of B% (\). By Lemma 3.8 (2), C contains

an element of the form n = ®i€J§ X (TI(?){%;O, 1), with pﬁ,’l{ =0, ¢ € J§. Since
v Oy
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there exists a defining chain for 7, we see from Lemma 3.9 (1) that p() = (pgi) >

pg) =z p%i_l) is a partition of length less than m; for each i € I; here, we set
p) = @ if i € Jy. Hence p = (pV);er € Par()\). We have Wy (27Pay) =1 € C by
Lemma 3.8 (1), which proves (ii). O

4. SEMI-INFINITE YOUNG TABLEAUX

Throughout this section, we will make the following assumptions: g.s is of type Asllzl
(see [9, § 4.8 TABLE Affl]), and I = {1,2,...,n — 1} satisfies

9 ifi=j,
(48) (viyaj) =¢—1 ifi—j=+1 mod n,
0 otherwise

for all i,j € I,y = {0} U I. In this case, o = a4, i € L, and hence Q¥ = Q. We
sometimes think of W as the permutation group of {1, 2, ..., n}, namely the symmetric
group of degree n, where r;, i € I, acts as the transposition (i ¢ + 1). Observe that
this action extends to the Wys-action, where rg acts as the transposition (n 1); note
that each t¢, £ € @, acts as the identity.

4.1. SEMI-INFINITE YOUNG TABLEAUX AND ISOMORPHISM THEOREM. We identify
each element A = > jer Miw@; € P* with the Young diagram such that the number of
the columns of length i is m; for each i € I. A column-strict tableau of shape A € PT
with entries in {1,2,...,n} is, by definition, an assignment of a number in {1,2,...,n}
to each box of the Young diagram A such that the entries are strictly increasing from
top to bottom in each column. Let CST(A) be the set of column-strict tableaux of
shape A with entries in {1,2,...,n}. For a tuple (T, Ta,..., Tas) of column-strict
tableaux of one-column shapes, let Hf/\/lﬂ T,=T1T3---T)s denote the column-strict
tableau whose v-th column is T,,. For T € CST(w;), let T(s) € {1,2,...,n},1 < s < 4,
denote the s-th entry (from top) of T.

REMARK 4.1. In this paper, we consider a Young diagram as a collection of boxes,
arranged in right-justified rows, with a weakly decreasing number of boxes in each row
from top to bottom. For example, the Young diagram A = 5wy +3ws +4ws 42w, +wg
is as follows:

LITTT[T]]
LI

(49)

DEFINITION 4.2.
(1) Define the partial order < on CST(w;) x Z as follows: for (T,c),(T',c) €
CST(w;) X Z, set (T,c) = (T',¢) if

(50) (e<d) and (T(u) <T(u+d —c)ifl<u<i—c +ec).
(2) Let X\=3,c,miw; € PY,m; € Ly, i €1, and N =3, m;. Let

i=1v=1

n—1 m;
(51) T= <H e, (Cii))lgugmi,1<i<n1> € CST(A) x ZV,

where T£i) € CST(w;) and cl(,i) eZforl <v<mg,iel WecldlTa
semi-infinite Young tableau of shape \ if

(52) (Tgi),cgi)) - (Téi),cgi)) = (T(i) c(i)) in CST(w;) X Z for every i € I.

my ) My
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Let Y3 (X\) be the set of semi-infinite Young tableauz of shape \; note that

In § 4.3, we define a U-crystal structure on Y% (co;), and prove the next proposi-
tion.
PROPOSITION 4.3. Let i € I.

(1) There exists a unique isomorphism Y; : B(w;) — Y% (w;) of U-crystals.

(2) We have B(w;) = {u, = Spum, | © € (WIUH), and the map
(W — B(w;), © — wug, is bijective. In particular, V(w;) is a
minuscule representation of U.

REMARK 4.4. It follows from Theorem 2.7 (2) and Proposition 4.3 that B (ww;) =
{(2;0,1) | 2 € (W )4}, and the map B(w;) — BF (), uy + (2;0,1), © €
(WINih) ¢ equals the isomorphism in Theorem 2.7 (2).

Let A = > ,c,mim; € Pt and N = > icr™mi- We have a bijection from
QI YT (@)@ to CST(A) x ZN defined by

n—1 m; X X n=l m: . .
53 (TE/Z)7CS/Z)) — T’(/z)7 CS) <v<m;,1<i<n— 5
(53) g 4 };[1 VH:1 (@ )1<v<mi 1<i<n—1

where (T,(,i),c,(f)) € Y3 (w;), 1 < v < my i €I Define a U-crystal structure on
CST(A) x ZYN to be such that the map (53) is an isomorphism of U-crystals. From
now on we assume that B(\) = @7~ B(w;)®™ = B(w1)®™ @--- @ B(w,_1 )" 1.

THEOREM 4.5. Let A = Y., myw; € P and N =, m;. Then, Y= (\) equals the
image of the composition of the maps

(54)
Moo o @i .

BO) 212 B\ = @ Bl(wi)®™ ==L @ Y F () @™ —— CST(N) x 2.
§ 3.1 i=1 ongo(sit)ion i=1 (53)

Since the map (54) is a strict embedding of U-crystals, we have the following.

COROLLARY 4.6. Let A\ = >, ;myw; € PT and N = Y, ;m;. Then, Y% ()) is
stable under the Kashiwara operators on ®?:_11 Y% (w;)®™ = CST(N) x ZVN, and is
isomorphic, as a U-crystal, to the crystal basis B(\).

Theorem 4.5 follows from Theorem 3.4, Definition 4.2, Remark 4.4, and the fol-
lowing tableau criterion for the semi-infinite Bruhat order.

THEOREM 4.7. Let i € I and z,y € (W) 0. Write Ty(ug) = (T, ¢) and Yi(uy) =
(T, ). The following conditions are equivalent:
(1) = <y in (W) 4.
(2) e<d and T(u) < T'(u+d —¢)ifl<u<i—cd+e
Theorem 4.7 will be proved in § 4.4.

4.2. EXPLICIT DESCRIPTION OF (W), In this subsection, following [19, § 3], we
give an explicit description of (W7),¢ for later use.

We take and fix J = Ufn:l I,, C I, where I, I, ..., I} are the sets of vertices of
the connected components of the Dynkin diagram of A j; note that A; = |_|l:n=1 Ar,

and each Ay ;1 < m <k, is of finite type A. Set (I,)ar = {0}U 1L, C L, 1 <m < k.
For1<s<t<n—1,seta;; = Zt a;; note that a, = o, 5. It follows that

i=$

(55) A={tas; |1<s<t<n—1}
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Set

(56) QI ={ccQ| (& a)e{-1,0} forall a € A}'}

LEMMA 4.8 ([19, Equation (3.6)]). For each £ € Q there exist a unique ¢;(§) € Q
and a unique (j1,72,---,Jk) € anzl(.[m)af such that

k

(57) E+ds6)+ Y w, € B Zw ®Cs.

m=1 ielINJ

In particular, £ + ¢7(€) € Q7 for any € € Q, and hence Q7 is a complete system of
coset representatives for Q/Q ;.

For a subset K C I, let w{f be the longest element of Wy . For j,, € (Ip,)at, set

(58) v]I: = wémwé’"\{j’"} e Wr, C Wy
note that U(I)"‘ =e. For £ € @, define

J I I
(59) ze =zg = v v €Wy,

where (j1,72,.--,Jk) € H,’kn:]_(lm)af, satisfying (57) for &, is determined uniquely by
Lemma, 4.8; note that z¢; = z¢ if £ = ¢ mod Q.

LEMMA 4.9 ([19, Lemma 3.7]). We have Te = 117 (t¢) = zeteqg,(e) for every & € Q.
Therefore, by Lemma 2.3, 117 (wt¢) = |w]z¢tet g, e) for everyw € W and € € Q, and
we have a bijection W' x Q7 — (W7)u¢, (w,€) = wT. In particular,

(60) (W )ap = {wTe = wzete |w e W, €€ Q).
4.3. CRYSTAL STRUCTURE ON Y% (oz;). In this subsection, we define a U-crystal

structure on Y% (c;), and give a proof of Proposition 4.3.
We know from [3, Lemma 2.4.7] that

(61)
WIS = {w e W [ w(1) <w(2) < <w(i), and w(i+ 1) <w(i+2) < <w(n)}.

For w € W™ set

(62) Ty =F—— € CST(w)).

By (61), we have CST(w;) = {Ty | w € W/ {1} and the map W — CST(wy),
w + Ty, is bijective. Let ¢;(€) be the coefficient of a; (= o)) in € € Q. It follows from
Lemma 4.8 that Q"1 = {ca; + b1 qiy(ca;) | ¢ € Z}, and the maps Z — Qi
c = cay + ¢r iy (ca;), and QMUY = 7, € s ¢i(€), are inverses of each other. We
have thus proved that the map

(63) Vit WD) = YF (@), wle = Vi(wTe) = (Tuw, ei(€)).

is bijective, where w € W™} and ¢ € Q">{?} (see Lemma 4.9).
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Following [26, § 3.7] (see also [10, § 4.1]), we equip the set CST(w;) with a U’-
crystal structure as follows: let T € CST(w;). For k € {1,2,...,n}, write k € T if
T(s) =k for some 1 < s < 1.

(i) Define wt(T,,) = ww; (mod C§) for w € WI{i},
(i) For j € I, if T(s) = j+ 1 and j ¢ T, then we define ;T € CST(w;) to be
such that (e;T)(s) =j and (e;T)(u) = T(u) for 1 < u <, u # s.
(iii) If 1 € T and n ¢ T, then we define 9T € CST(w;) to be such that (egT) (i) =
nand (egT)(u) =T(u+1) for 1 <u<i—1.
(iv) Otherwise, we set e;T = 0 for j € Ins.
(v) For j € I,if T(s) = j and j+ 1 ¢ T, then we define f;T € CST(w;) to be
such that (f;T)(s) =j+1and (f;T)(u) = T(u) for 1 <u < i, u#s.
(vi) If1 ¢ Tand n € T, then we define foT € CST(w;) to be such that (fT)(1) =
1land (foT)(u)=T(u—1) for 2 < u < i
(vii) Otherwise, we set f;T =0 for j € L.
(viii) Define

1 ife;T#0, 1 if f;T #0,
60 sMm=d 07 b= 207
if ;T =0, 0 if f;T=0.

REMARK 4.10. The U’-crystal CST(w;) defined above is isomorphic to the crystal ba-
sis of the U’-module W (w;) (see § 2.3). Indeed, we see from [14, Theorem 5.17 (ix)]
(see also [24, Remark 3.3]) that W (w;) is isomorphic to a Kirillov-Reshetikhin mod-
ule, whose crystal basis is a perfect crystal of level 1 in the sense of [10, Defini-
tion 1.1.1]. Tt follows that the U’-crystal CST(c;) and the crystal basis of W (w;)
satisfy the conditions in [10, Proposition 1.2.1 for [ = 1], and hence they must be
isomorphic to each other.

oo

The set Y= (w;) = CST(w;) x Z can be identified with the affinization of the
U’-crystal CST(w;) in the sense of [14, § 4.2]. We have thus obtained a U-crystal
structure on Y% (cw;) as follows: for w € W™ ce Z, T € CST(w;), and j € L,

Wt(Ty, €) = wew; — cd,
(65) ej(T,e) = (e T,c—0d50), fi(T,c) = (f;T,c+d50),
Ej (Tvc) =¢&j (T)v ©j (Tﬂ C) = @j (T)a

we understand that (0,¢) = 0. By (10), (63), and (65), we have wt(Y;(x)) = zw; for
all z € (W),

Proof of Proposition 4.3. (1): Since Y% (o) is isomorphic to the affinization of the
crystal basis of W (w;) (see Remark 4.10), we see from [14, Proposition 5.4 (ii) and
Theorem 5.17 (vii)] that B(ww;) is isomorphic, as a U-crystal, to Y (cw;). Note that
(Te,0) € Y (w;) (and hence u,, € B(w;)) is a unique element of weight w;; indeed,
by (65), wt(Tw, ¢) = @; holds if and only if w = e and ¢ = 0. This and the connected-
ness of B(w;) (see [14, Proposition 5.4 (ii)]) prove the uniqueness of the isomorphism
between B(w;) and Y% (;).

(2): By (1) and (64)—(65), we see that €;(b),;(b) € {0,1} for all j € I, and
b € B(w;). Hence e;b = S, b (vesp. f;b = S,,b) if ejb # 0 (resp. f;b # 0) for j € Iyt
and b € B(w;). Since B(w;) is connected ([14, Proposition 5.4 (ii)]), this proves that
the action of Wy is transitive. We have {z € War | Setim, = uw,} = (Wi (i})at
(see (23)) by [6, Proposition 5.1.1], and hence B(w;) = {Sptuw, | z € (WI™11) 4} by
Lemma 2.2. U
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4.4. TABLEAU CRITERION FOR SEMI-INFINITE BRUHAT ORDER. This subsection is
devoted to the proof of Theorem 4.7.
We take and fix 7 € I. It is easily seen from (55) that

(66) A+\A1+\{i}:{as,t|1<8<i<t<n—1}.
We have
(67) T;(uy) = YVi(zx) for all z € (WI\{Z'})af

(see Proposition 4.3 (1) and (63)) because both elements are of weight xww;, and there
is only one element of weight roo; in Y% (o).

PROPOSITION 4.11. Let w € WIN# ¢ € QN B =wy+x6 € AL, v = ay, €
AT < A}'\{i}, 1<s<i<t<n—1, and x € Zxo. Write Y;(wT¢) = (T,c) and

V; (M3 (rgwTy)) = (T',¢). Then rgwTe € (WIN),¢ and there exists an edge
wTe L, rgwly in sip/~ i if and only if one of the following conditions holds:

B) d=¢, T(s)=T(s)+ 1, and T'(u) = T(u) for 1 <u<1i, u+#s.
Q) =c+1, T1)=1, T(u) =T(u—1) for2<u<i, and T(i) =n.

REMARK 4.12. Under the assumptions of Proposition 4.11, the following holds:
(1) (B) is equivalent to w(s) € I and (T',¢) = fu(5)(T,c) in Y (;); note that
T=Ty,and T" = Ty, in this case.
(2) (Q) is equivalent to (T’,¢') = fo(T,c) in Y (w;); note that T = T,, and
T" = T|wr, in this case.

Proposition 4.11 is established by combining Proposition 2.5 and Lemmas 4.13-4.15
below.

LEMMA 4.13. Under the assumptions of Proposition 4.11, we have the following:

(1) x =0 is equivalent to ¢’ = c.
(2) x =1 is equivalent to ¢ = c+ 1.

Proof. It suffices to prove that ¢ = ¢ + x. We have rgwly = ry tywyWzele =

¢1y2— 14> and hence U (rpuTy) = lwry T, -1, by Lemma 2.3. This gives
3 ¢

c = ci(f—i-nglv) = ci(f)—&-xci(zgl’y) = c—i—xci(zglv). Since zgl € Wiy, it follows

that zglv e AT~ Af\{i}. Therefore ci(zgly) =1 by (66). O

wryzet

LEMMA 4.14 ([3, Proposition 2.4.8)). Let w € W™ and v = a,,; € AT < A}r\{i},
1<s<i<t<n—1. The following conditions are equivalent:

(1) l(wry) = L(w) + 1.

(2) wry, € WIN wr (s) = w(s) + 1, and wr,(u) = w(u) for 1 <u <i, u#s.

LEMMA 4.15. Let w € WIS and v € AT Af\{i}. The following conditions are
equivalent:

(1) L(lwry]) = (w) +1 =2(7,p — priy)-
(2) |wr,y] (1) =1, lwry|(u) =w(u—1) for 2 <u <4, and w(i) =n.

For the proof of Lemma 4.15, we need the following lemma. Let (iy ia --- 4;) €
W denote the cyclic permutation iy + i3 +— -+ = 4; — i1, where [ € Z>o and
i1,02,...,1; € {1,2,...,n} are all distinct.
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LEMMA 4.16.
( ) QI\{i} ﬂ(A"‘ \A}_\{z )_ {Oéz}
(2) 2(v,p = pregy) = n for y € AT N AL .

)
(3) L(w) = (w ()—DHZu s(w(u) —w(u—1) = 1)(i —u+ 1) for we W1,
@D =a2 . dn—1-i+1).

Proof. (1): It is clear that a; € QN (A N AT G }) Let v = a5 € AT \AI\{ b

1<s<i<t<n—11fs <i(resp.i < t), then a, € AI\{i} (resp. ay € AI\{Z})
and (7,as) = 1 (resp. (v, ;) = 1). This proves that v ¢ Q"% unless s = t = 1.

(2): The assertion follows from 2(&§,p — pr qi3) = 0 for £ € Qr iy, ¥ = o
mod QI\{i} for v € AT~ A}_\{Z}a and Q(Oéiap - pI\{z}) = 2(041,/7) - Q(Qi’pl\{i}) =
2+ #(IN{i}) =n.

(3): This is an immediate consequence of (61) and the fact that the length of a
permutation equals the number of its inversions (see [3, Proposition 1.5.2]).

(4): Let I; ={1,...,i—1} and I = {i+1,...,n— 1} be connected components of
I~ {i}. We see that (i —1,i+1) € (I1)ar X (I2)ar satisfies the condition in Lemma 4.8
for a;, because o € Q11 by (1), (v, 1) = —1if 1 < 4, and (a4, aip1) = —1 if
i < n — 1. Therefore

L~{i—1 Io~{i+1
(68) I\{ b= Uz 11’{11 = wél 01\{1 }wé2w02\{z+ .

Now the assertion is shown by the fact that the longest element of the symmetric
group of degree N is the permutation j +— N —j+ 1, j € {1,2,...,N}. O

Proof of Lemma 4.15. We see from [18, Proof of Theorem 10.16] that (1) is equiva-
lent to

(3) L(wry) = L(w) + 1 —2(7, p) and wrot, € (WIS
It follows immediately from Lemmas 4.9 and 4.16 (1) that (3) is equivalent to

(4) v = ay, l(w) = L(wr;) + 1 and wr; Lwnjzél\{l}.

Let us prove that (1) (and (4)) imply (2). By (4) and Lemma 4.16 (4), we have
(69) \wr] = wry (2 =w@ i+ D)@ - 2@ +1 - n—1n).

Hence |wr; (1) = w(i + 1).

We first assume that ¢ = 1. Then |wrq | (1) = w(2). The condition £(w) = £(wry)+1
n (4) shows, by [3, Proposition 1.5.3], that w(1) > w(2). Since w € W1} it follows
from (61) that w(2) = 1 and, in consequence, |wry |(1) = 1. Since |wr;| € WIS}
this implies that |wr;] = e and hence w = (n n —1 --- 2 1) by (69). This gives
w(l) =n.

We next assume that 1 <4 < n — 1. By (69), |wr;](u) = w(u —1) for 2 < u < i.
As |wr;] € WM we have 1 < |wr; (1) < |wr;](2) = w(1). Since w € W™ we
see from (61) that w(i+ 1) =1, and so |wr;](1) = 1. It follows from Lemma 4.16 (3)
that

(70) 0(|wrs]) = (w(1) —2)(i — 1) +Z wlu—1)—1) (i —u),

(71) O(w) = (w 712+Z wu—1)—1)(G—u+1),

which gives {(|wr;]) — l(w) = 1 — w( ). By (1), (4) and Lemma 4.16 (2), we have
£(lwri]) = (w) =1 —=2(as, p — prqi}) = 1 —n, and consequently w(i) = n.
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Finally, we prove that (2) implies (1). In a way similar to the above, we have
{(|wry]) —l(w) =1 —w(i) =1 —n. Lemma 4.16 (2) now shows that (1) holds. O

Proof of Theorem 4.7. If x <y, then ¢ < ¢ by Proposition 4.11. Therefore, we may
assume that d := ¢’ — ¢ > 0. The proof is by induction on d.

If d = 0, then it is obvious from Proposition 4.11 that z =< y is equivalent to
T(u) < T'(u) forall 1 <u <.

Let d > 0. We first assume that T(u) < T'(u+ d) if 1 < u < i — d, and show that
x < y. Let z1, x5 € (W) ¢ be such that Vi(z1) = (T, ), Vi(xa) = (To,d — 1) €
Y% (w;), where

(1) T1(1) =1 and
T (u) if T'(u) <n—i+u,
(72) Ti(u) =
T -1 ifTu)=n—i+u
for 2 <u <1,
(2) To(u) =Ti(u+1) for 1 <u<i—1,and To(i) = n.
By Proposition 4.11, we have x5 < 1 < y. If we prove that

(73) T(u) <Te(u+d-1)ifl <u<i—(d—1),
then x < x2 by induction hypothesis, and hence z < y. Note that

(74) To(u+d—1)

T (u+d) ifl<u+d-—1<i—1land T"(u+d)<n—i+u+d,
=¢T(u+d)—1 fl<u+d-1<i—Tland T'(u+d)=n—i+u+d,
n fut+d—1=1.

We prove (73) as follows.
() Il<u+d=-1<i—1land T'(u+d) <n—i+u+d, then T(u) < T'(u+d) =
Tz(’u, —|— d — 1)
(2) 1< u+d—1<i—1land T'(u+d) = n—i+u+d, then To(u+d—1)—T(u) =
Tu+d)—1-Tw)z2n—itu+d)—1-(n—it+u)=d—120.
(3) Ifu+d—1=4, then T(u) <n="Ta(u+d—1).
We next assume that z <y, and show that T(u) < T'(u+4d) if 1 <u<i—d We
see from Proposition 4.11 that there exist x3, x4 € (WI\{i})af such that
(1) z 22y <23 2y,
(2) Yi(zs) = (Ts,¢'), Vilwa) = (Ta, ¢ = 1) € YF (w3),
(3) Ts(u) < T'(u) for 1 < u <1,
(4) Ts(1) =1, Ta(u+1) =Ty(u) for 1 <u<i—1,and T4(i) = n.
By induction hypothesis, T(u) < Tq4(u+d—1) if 1 < u < i — (d —1). We have
T(u+d)—Tw) 2 Ts(u+d) —Tglu+d—1)=0if1 <u<i—d. O

4.5. EXPLICIT DESCRIPTION OF CRYSTAL STRUCTURE ON Y% ().

PROPOSITION 4.17. Let X = .., m;w;, m; € Zxo, i € I, and set N =, m;. Let
T = (TiT2---Tn,(c1,¢0,...,¢n)) € CST(N) x ZN and j € L. Then wt(T) € P,
£;(T),¢;(T) € Z, and ¢,T, ;T € CST(A) x ZN L1 {0} are computed by the following
procedure:

(1) wt(T) = 3,0, wi(T,) = X0, 6.
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(ii) Let T € CST(wy). If j € I, then define €9)(T) € {®,0, ¢} by

@ fjeTandj+1¢T,
(75) DM =L ifj¢Tandj+1€T,
e  otherwise.

Likewise, define €9)(T) € {®,0, ¢} by

@ ifneTandl ¢T,
(76) M ={6 ifné¢TandleT,

e  otherwise.

(iti) In (eY)(Ty),...,e9)(Ty)), continue replacing a pair (e9)(T,),eW)(T,)) =
(,0) with (e,0) if v < V' and eV (T,) = e for all v < p < V' until no such
pair exists. Let €9)(T) € {@®, S, e} be the resulting tuple such that no @
placed to the left of ©.

(iv) €;(T) (resp. p;(T)) equals the number of © (resp. @) in €9)(T).

(v) If © is not in €9)(T), then e;T = 0. If there exists © in ¢9)(T), and the
right-most © is at the v-th place, then

(77) €jT = (Tl . 'Ty_l (BjT,,) Tl,+1 . 'TN7 (Cl, ey Cpy—1,Cy — 5j70,cl,+1, e ,CN>) .

(vi) If @ is not in €9)(T), then f;T = 0. If there exists @ in ¢9)(T), and the
left-most @ is at the v-th place, then

(78) f]T = (Tl . 'TV—l (fJT,,) TV+1 . 'TN7 (Cl, ey Cpy—_1,Cy + 5'7070,,_,_1, - ,CN)) .

Proof. Let T € CST(w;). We check at once that the following holds:
(1) €9)(T) = @ if and only if £;(T) = 0, ¢,;(T) = 1, and (h;, wt(T)) = 1.
(2) €9)(T) = © if and only if £;(T) = 1, ¢,;(T) =0, and (h;, wt(T)) = —1.
(3) €9)(T) = e if and only if £;(T) = ;(T) = (hj, wt(T)) = 0.
Then the assertion follows by the same method as in [15, § 2.1]. O
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