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The structure of normal lattice
supercharacter theories

Farid Aliniaeifard & Nathaniel Thiem

Abstract The character theory of finite groups has numerous basic questions that are often al-
ready quite involved: enumeration of irreducible characters, their character formulas, point-wise
product decompositions, and restriction/induction between groups. A supercharacter theory is
a framework for simplifying the character theory of a finite group, while ideally not losing all
the important information. This paper studies one such theory that straddles the gap between
retaining valuable group information while reducing the above fundamental questions to more
combinatorial lattice constructions.

1. Introduction
Through the work of André [3] and Yan [9], supercharacter theory has allowed us to
apply the tools of character theory to groups previously deemed intractable. The more
general framework developed by Diaconis and Isaacs [6] further fleshes out a theory
that can be adapted to different characteristics one might wish to emphasize in groups
(e.g. if one wants to study real-valued characters). However, the construction and
existence of supercharacter theories remains somewhat mysterious. There are some
basic techniques that apply to all groups, and in some surprising cases (e.g. Sp6(2) [6])
these give a complete understanding. Nevertheless, in most cases we do not have a
good understanding of what supercharacter theories are possible.

In his thesis work, Aliniaeifard [1] developed an alternate approach that centers on
the set of normal subgroups. A standard result in character theory is that knowledge
of the characters identifies all normal subgroups of the group; these form a lattice un-
der inclusion. It turns out that every supercharacter theory identifies a sublattice of
normal subgroups, and this naturally partitions supercharacter theories according to
the sublattices they “see.” Aliniaeifard identified the unique coarsest supercharacter
theory corresponding to each sublattice, and identified numerous desirable character-
istics exhibited by this theory.

This point of view naturally leads to a notion of “simple” supercharacter theory,
or one which only identifies the trivial subgroup and the whole group (e.g. simple
groups only have simple supercharacter theories). Burkett [5] showed that there is a
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Jordan–Hölder type factorization for supercharacter theories into simple superchar-
acter theories, and has developed a framework for super versions of various chains of
normal subgroups.

This paper examines the notion of a normal lattice supercharacter theory a bit
more closely, tying the character theory to the underlying lattice in a more explicit
fashion. There are numerous problems in character theory that generally have difficult
solutions, such as explicit character formulas for the irreducible characters, decompo-
sitions of tensor products (e.g. Kronecker products as in [4]) and restrictions between
groups, etc. It turns out that many of these problems have elegant solutions in the
case of normal lattice supercharacter theories, and this paper would like to make the
case that while these theories are non-trivial, they retain high levels of computability.

We begin with a review of the necessary lattice notation and an introduction to
supercharacter theories. We then proceed to Corollary 3.5 which gives an explicit mul-
tiplicative character formula for the supercharacters, reminiscent of the combinatorial
character formulas found in [9] for the maximal unipotent subgroups of GLn(q). Un-
der some additional hypotheses that guarantee some level of generality, we also give
a decomposition of the point-wise product in Corollary 3.8.

In the case that the normal subgroups form a distributive lattice, we can say even
more. An advantage of the normal lattice supercharacter theories is that they are
somewhat more canonical, analogous to how every group has a partition by con-
jugacy classes. This feature allows us to better compare supercharacter theories of
groups related via inclusion. We conclude with a description of restriction between
finite groups H ⊆ G in Theorem 3.15, where we explicitly decompose the restricted
supercharacter theory in terms of the supercharacter theory of the subgroup. This
result includes some natural compatibility conditions suggested by the underlying
theory.

The original motivation for this work comes out of the supercharacter theory of
non-nesting partitions for pattern groups [3]. However, to keep this paper in a more
manageable form, we have separated the applications to these groups into a companion
paper [2], where this point of view allows us full control of a corresponding Hopf
algebra, along with the structure constants on the supercharacter basis (something
previously was deemed quite difficult in analogous situations). In this paper we instead
illustrate the theory with several families of abelian groups including cyclic groups
and vector spaces.

2. Preliminaries
This section will fix some of the standard notation on lattices in Section 2.1, and in
Section 2.2 we review both the definition of supercharacter theories and the construc-
tion of the normal lattice supercharacter theory as defined by [1].

2.1. Lattices of normal subgroups. The goal of this section is to fix notation for
lattices with a particular emphasis on lattices of normal subgroups of a finite group.

A lattice L is a poset such that for each pair (K,L) ∈ L×L there is a unique least
upper bound K ∨ L and a unique greatest lower bound K ∧ L. We say an element
L ∈ L covers K ∈ L if L is minimal with the property that K ≺L L and K 6= L.
Given L ∈ L, let
(1) C(L) = {O ∈ L | O covers L}.

Given a poset P, let
J∨(P) = {I ⊆ P | i ∈ I, j ∈ P, i ≺P j implies j ∈ I}

be the lattice of co-ideals, ordered by inclusion.
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A distributive lattice L is a lattice such that for K,L,M ∈ L,

K ∨ (L ∧M) = (K ∨ L) ∧ (K ∨M).

An element K ∈ L is meet irreducible if |C(K)| = 1. The fundamental theorem for
finite distributive lattices says that L ∼= J∨(M) where M is the subposet of meet
irreducible elements of L. This implies that given any K ∈ L there exists a unique
antichain A ofM such that

K =
∧
A∈A

A.

Define
AntCh(L) = {anti-chains in L}.

Our main example of lattices are sublattices of normal subgroups of a finite group
G. Specifically, let

ker(G) = {N / G}
be the lattice ordered by inclusion. In this case, given M,N ∈ ker(G),

M ∨N = MN and M ∧N = M ∩N.

A sublattice N of ker(G) will be a subset such that
(L1) {1}, G ∈ N ,
(L2) M,N ∈ N implies MN,M ∩N ∈ N .

We have that by (L2), every sublattice is modular, so if M ⊆ N , then

ML ∩N = M(L ∩N).

For a subset A ⊆ ker(G), let

(2) A =
∏
N∈A

N and A =
⋂
N∈A

N.

Examples 2.1.
Cyclics. Let Cn = 〈x〉 be a cyclic group. Then ker(Cn) is isomorphic to the lattice
of divisors of n. For example,

C1

C2 C3

C4 C6

C12

←→

1

2 3

4 6

12

.

In general,
Ca ∩ Cb = Cgcd(a,b) and CaCb = Clcm(a,b),

and ker(Cn) is a distributive lattice with meet irreducible elements

(3) {Cm | m < n, n/m is a prime power}.

Vector spaces. Let Fq be the finite field with q elements, and V an Fq-module.
Then V is a finite (elementary) abelian group. While the usual character theory of V
sees all the normal subgroups of V , we would prefer some sublattices that respect the
vector space structure. Thus,

subsp(V ) = {U ⊆ V | U an Fq-submodule},
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and for a fixed basis B ⊆ V ,

subspB(V ) = {Fq-span{a ∈ A} | A ⊆ B},

which is isomorphic to the lattice of subsets of B.
The lattice subsp(V ) is not distributive in general, but subspB(V ) is distributive

with meet irreducible elements

{Fq-span{a ∈ B | a 6= b} | b ∈ B}.

2.2. Supercharacter theories. Supercharacter theories give us a framework for
simplifying the character theory of a group while maintaining the representation theo-
retic underpinnings. While one can view them as central Schur rings, this section out-
lines the more representation theoretic framework introduced by Diaconis–Isaacs [6].

Given a set partition K of G, let

f(G;K) = {ψ : G→ C | {g, h} ⊆ K ∈ K implies ψ(g) = ψ(h)}

be the set of functions constant on the blocks of K.
A supercharacter theory S of a finite group G is a pair (Cl(S), Ch(S)) where Cl(S)

is a set partition of G and Ch(S) is a set partition of the irreducible characters Irr(G)
of G, such that
(SC1) {1} ∈ Cl(S),
(SC2) |Cl(S)| = |Ch(S)|,
(SC3) For each X ∈ Ch(S), ∑

ψ∈X

ψ(1)ψ ∈ f(G; Cl(S)).

We refer to the blocks of Cl(S) as the superclasses of S, and the elements of

{
∑
ψ∈X

ψ(1)ψ | X ∈ Ch(S)}

as supercharacters of S. In fact, the supercharacters of S will form an orthogonal basis
for f(G; Cl(S)); in particular, the superclasses are unions of conjugacy classes.

The trivial examples of supercharacter theories have partitions

(Cl, Ch) = ({conjugacy classes}, {{ψ} | ψ ∈ Irr(G)})
(Cl, Ch) = ({{1}, G− {1}}, {{1}, Irr(G)− {1}) ,

where 1 is the trivial character of G.
Given a group G with a supercharacter theory S, we call a normal subgroup S-

normal if it is a union of superclasses. These normal subgroups can also be defined
as intersections of kernels of the corresponding supercharacters [8], and the set

ker(S) = {N / G | N a union of superclasses}

forms a sublattice of all normal subgroups [1]. Note that the trivial supercharacter
theory of conjugacy classes gives all normal subgroups ker(G). More generally, given
an arbitrary sublattice of normal subgroups of G, one might ask which supercharacter
theories (if any) see at least those normal subgroups. The following supercharacter
theory defined in [1] gives the coarsest such supercharacter theory for each sublattice
of normal subgroups.

Theorem 2.2 ([1]). Let N ⊆ ker(G) be a sublattice.
(a) The partitions

Cl(S(N )) = {N◦ 6= ∅ | N ∈ N},
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where
N◦ = {g ∈ N | g /∈M ∈ N , if N ∈ C(M)},

and
Ch(S(N )) = {XN• 6= ∅ | N ∈ N},

where
XN• = {ψ ∈ Irr(G) | N ⊆ ker(ψ) + O ∈ C(N)}

define a supercharacter theory S(N ) with N ⊆ ker(S(N )).
(b) If S is any other supercharacter theory of G with N ⊆ ker(S), then

ker(S(N )) ⊆ ker(S).

Note that [1] also provides recursive supercharacter formulas for the supercharac-
ters

χN
•

=
∑

ψ∈XN•

ψ(1)ψ,

and proves a number of nice properties (e.g. these supercharacters are integer valued).
Just as a normal subgroup is a union of superclasses, for each normal subgroup N /G
there is a natural character
(4) χN =

∑
O⊇N

χO
•

=
∑

ψ∈Irr(G)
N⊆ker(ψ)

ψ(1)ψ

that is a “union” of supercharacters with character formula

(5) χN (g) =
{
|G/N | if g ∈ N ,
0 otherwise.

Examples 2.3.
Cyclics. Let Cn = 〈x〉 be a cyclic group. Then for d | n,

(Cd)◦ = {xjn/d | order of xjn/d is d},

XC•d = {ψ : Cn → C× homomorphism | order of ψ(x) is n/d}.
Note that in this supercharacter theory, superclasses and supercharacters are indexed
by divisors of n, so for d | n write

χd = χC
•
d .

Note that this supercharacter theory was used (though not defined in this way) to
study Ramanujan sums in [7].
Vector spaces. For the lattice subsp(V ), we have that for U ∈ subsp(V )

U◦ =


{0} if dim(U) = 0,
U − {0} if dim(U) = 1,
∅ otherwise,

and

XU• =


{1} if U = V ,
{ψ ∈ Hom(V,F+

q ) | U = ker(ψ)} if dim(U) = dim(V )− 1,
∅ otherwise.

In this case, the superclasses and supercharacters are indexed by the number of one
and zero dimensional spaces of V or

1 + qn − 1
q − 1

if dim(V ) = n.
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On the other hand, for the lattice subspB(V ), we have that for A ⊆ B

Fq-span{a ∈ A}◦ =
{∑
a∈A

caa | ca 6= 0, a ∈ A
}
,

and
XFq-span{a∈A}• = {ψ ∈ Hom(V,F+

q ) | ker(ψ) ∩ B = A}.
In this case, the superclasses and supercharacters are indexed by subsets of B, so for
A ⊆ B write

χA = χFq-span{a∈A}• .

3. Normal lattice theories
This section includes our main results. We begin in Section 3.1 by constructing the
dual lattice of ker(S) in terms G-modules. This gives a recursive construction for
the modules corresponding to the supercharacters in S. We use the module structure
to deduce several degree sum results in Section 3.2, allowing us to also obtain an
explicit character formula. In Section 3.3 we find a decomposition for the point-wise
product in some situations, and we conclude in Section 3.4 with a decomposition of
the restriction of supercharacters under some beneficial assumptions.

3.1. Supermodules. Given a normal subgroup N ⊆ G, we obtain the permutation
module

IndGN (1) ∼= CG⊗CN 1 ∼= CGeN , where eN = 1
|N |

∑
n∈N

n.

From the last isomorphism, we may view each of these modules as submodules of the
regular module CG (the permutation module coming from the normal subgroup {1}).
Note that by (5),

χN = tr(·,CGeN ).
Given a lattice of normal subgroups ker(S) we obtain a corresponding lattice of

modules
ker(S)∨ = {CGeN | N ∈ ker(S)}

ordered by containment of modules. Since M ⊆ N implies

eNeM = eN

we have CGeN ⊆ CGeM . On the other hand, if CGeN ⊆ CGeM , then eMN = eMeN =
eN , so M ⊆ N . Thus,

CGeN ∨ CGeM = CGeN∩M and CGeN ∧ CGeM = CGeNM .

Define GM• by

CGeM ∼=

( ∑
N⊃M

CGeN

)
⊕GM

•
=
( ∑
N covers M

CGeN

)
⊕GM

•
.

Then by the character decomposition formula (4) of χM ,

χM
•

= tr(·, GM
•
).

In particular, taking dimensions, we obtain

χM
•
(1) = |G/M | − dim

( ∑
N covers M

CGeN

)
.
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The next result gives a better understanding of modules that arise in this way. Given
a subgroup N ⊆ G, the notation Ĝ/N will denote a transversal for the cosets with
1 ∈ Ĝ/N . Also, recall (2) for the definition of A.

Lemma 3.1. Let ker(S) be a lattice for a supercharacter theory of G. Fix M ∈ ker(S)
and let A be an antichain in the interval [M,G] that satisfies A−O 6= A for all
O ∈ A. Let

CGeM =
∑
N∈A

CGeN ⊕ V.

Then
(a) There exists a choice of transversals N̂/M and Ĝ/A such that

V = C-span
{
g
∏
N∈A

(1− bN )eM | g ∈ Ĝ/A, bN ∈ N̂/M − {1}
}
.

(b) If A−O ∩O = M for all O ∈ A, then

dim(V ) = |G/A|
∏
N∈A

(|N/M | − 1).

Proof. For the proof, order the elements of A = {N1, N2, . . . , N`}, and for each 1 6
j 6 ` let

N6j = N1 · · ·Nj .

(a) Fix coset representatives Ĝ/M with 1 ∈ Ĝ/M , and for each 1 6 j 6 ` choose
coset representatives in such a way that

(1) N̂j/M ⊆ Ĝ/M ,
(2) 1 ∈ Ĝ/N6` ⊆ ̂G/N6`−1 ⊆ · · · ⊆ Ĝ/N61 ⊆ Ĝ/M.

Define V1 by
CGeM = CGeN1 ⊕ V1.

The natural basis of CGeM is{
gn1eM | g ∈ Ĝ/N1, n1 ∈ N̂1/M

}
.

Since
CGeN1 = C-span{ge

N̂1/M
eM | g ∈ Ĝ/N1},

we have

V1 =


∑

g∈Ĝ/N1

n1∈N̂1/M

cg,n1gn1eM |
∑

n1∈N̂1/M

cg,n1 = 0, g ∈ Ĝ/N1


= C-span

{
g(1− n1)eM | g ∈ Ĝ/N1, n1 ∈ N̂1/M − {1}

}
.

Define Wj and Vj by
Vj−1 = Wj ⊕ Vj .

where
Wj = C-span{g(1−n1)(1−n2) · · · (1−nj−1)e

N̂j/M
eM | g ∈ Ĝ/N6j , ni ∈ N̂i/M−{1}},

and
Vj = C-span{g(1− n1)(1− n2) · · · (1− nj)eM | g ∈ Ĝ/N6j , ni ∈ N̂i/M − {1}}.
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Then
CGeM = W1 ⊕W2 ⊕ · · · ⊕W` ⊕ V`.

Note that
CGeNj = W1eNj ⊕W2eNj ⊕ · · · ⊕W`eNj ⊕ V`eNj

= W1eNj ⊕W2eNj ⊕ · · · ⊕WjeNj

⊆W1 ⊕ · · · ⊕W`.

Thus, ∑̀
j=1

CGeNj ⊆W1 ⊕ · · · ⊕W`.

Conversely, for each Wj there exists eNj such that
WjeNj

= Wj .

Thus, ∑̀
j=1

CGeNj ⊇W1 ⊕ · · · ⊕W`

and
V` = V.

(b) If A−O ∩O = M for all O ∈ A, then

{g(1− n1)(1− n2) · · · (1− n`)eM | g ∈ Ĝ/A, nj ∈ N̂j/M − {1}}
is a basis, and so we get the corresponding dimension formula. �

Remarks 3.2.
(a) The key idea of this lemma is that modules allow us to express overlap between

modules in a way that characters are ill equipped to do.
(b) The main case we are interested in applying Lemma 3.1 is when A ⊆ C(M).

In this case, the condition A− {O}∩O = M for all O ∈ A is true if and only
if A− {O} 6= A for O ∈ A. If this condition holds for all O ∈ A, then we say
A is in general position over M .

In fact, if we are in a distributive lattice, then distributivity implies
A− {O} ∩O = M for all O ∈ A is always true when A ⊆ C(M).

3.2. Character formulas. This section works out some general character formulas
that are mostly direct consequences of Lemma 3.1. The first result examines a general
character degree sum that carves out a piece of a lattice of normal subgroups ker(S).

Theorem 3.3. Let ker(S) ⊆ ker(G) be a lattice of normal subgroups. Let K,L,M ∈
ker(S). Assume the set

C⊥L (K,M) = {O ∈ C(KM) | O ∩ L 6= K}
is in general position over KM . Then∑

N⊇M
N∩L=K

χN
•
(1)

=


|G/KM | if C⊥L (K,M) = ∅,
|G/C⊥L (K,M)|

∏
O∈C⊥

L
(K,M)

(|O/KM | − 1) if KM ∩ L = K, C⊥L (K,M) 6= ∅,

0 if KM ∩ L 6= K.
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Proof. Note that KM is the minimal normal subgroup N containing M that satisfies
N ∩ L ⊇ K. If KM ∩ L 6= K, then the sum is therefore empty and we get 0. If
KM ∩ L = K and C⊥L (K,M) = ∅, then by (5), we get |G/KM |.

Next, suppose KM ∩ L = K and C⊥L (K,M) 6= ∅. Suppose O ⊇ KM is minimal
such that O ∩ L 6= K. We want to show that O ∈ C⊥L (K,M). We have

L

O ∩ L

K

(O ∩ L)KM

KM

O

Since (O ∩ L)KM ⊇ KM and L ∩ ((O ∩ L)KM) = O ∩ L, the minimality of O
implies O = (O∩L)KM . However, by modularity, if there exists KM ⊂ N ⊂ O then
N ∩ L 6= K. Thus, the minimality of O implies O covers KM .

We have

V =
⊕

N⊇M
N∩L=K

GN
•

=
⊕

N⊇KM
N∩L=K

GN
•
.

We therefore apply Lemma 3.1(a) to

CGeKM =
∑

O∈C⊥
L

(K,M)

CGeO ⊕ V.

We have that C⊥L (K,M)−O∩O ∈ {O,KM} since O is a cover of KM . By general
position C⊥L (K,M)−O 6= C⊥L (K,M), so O * C⊥L (K,M)−O. Thus, we may apply
Lemma 3.1(b) to get the desired dimension formula. �

A special case of Theorem 3.3 gives us the degrees of the supercharacters of a
normal lattice supercharacter theory.

Corollary 3.4. Let ker(S) ⊆ ker(G) be a sublattice. For M ∈ ker(S) with C(M) in
general position over M ,

χM
•
(1) = |G/C(M)|

∏
N∈C(M)

(|N/M | − 1).

Proof. This is the case where L = G and K = M in Theorem 3.3. �

Since this situation satisfies the hypotheses of Lemma 3.1(b), we have an explicit
basis and can use this basis to compute the trace of the module.

Corollary 3.5. Let ker(S) ⊆ ker(G) be a sublattice. For M ∈ ker(S) with C(M) in
general position over M and g ∈ G,

χM
•
(g) =


χM

•
(1)

∏
N∈B

1
(1− |N/M |) if g ∈ B, for B = min{B ⊆ C(M) | g ∈ B},

0 if g /∈ C(M).
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Proof. Suppose g ∈ G, then

χM
•
(g) = tr(g,GM

•
)

=
∑

h∈ ̂
G/C(M)

aN∈N̂/M−{1},N∈C(M)

Coeff

gh ∏
N∈C(M)

(1− aN )eM ;h
∏

N∈C(M)

(1− aN )eM

 .

If g /∈ C(M), then ghC(M) 6= hC(M), so

Coeff

gh ∏
N∈C(M)

(1− aN )eM ;h
∏

N∈C(M)

(1− aN )eM

 = 0

for all h, aN . If g ∈M , then since M is normal,

gh
∏

N∈C(M)

(1− aN )eM = geMh
∏

N∈C(M)

(1− aN )

= eMh
∏

N∈C(M)

(1− aN )

= h
∏

N∈C(M)

(1− aN )eM .

Suppose g ∈ B with B nonempty and minimal. If N,N ′ ∈ B are not equal, then since
they are covers

[N,N ′] ⊆ N ∩N ′ = M,

so for aN ∈ N , aN ′ ∈ N ′, we have aNaN ′a−1
N ∈ aN ′M , and

aN (1− aN ′)eM = aN (1− aN ′)a−1
N aNeM = (1− aN ′)eMaN .

Write h−1gh =
∏
N∈C(M) gN with gN ∈ N and gN = 1 if N /∈ B. Then

gh
∏

N∈C(M)

(1− aN )eM = h
∏

N∈C(M)

(gN − gNaN )eM

= h
∏

N∈C(M)

((1− gNaN )− (1− gN )) eM .

Thus, we get a coefficient if for each N ∈ C(M) either gN = 1 or gN = aN . In fact, in
this case

∑
h∈ ̂
G/C(M)

aN∈N̂/M−{1},N∈C(M)

Coeff

gh ∏
N∈C(M)

(1− aN )eM ;h
∏

N∈C(M)

(1− gN )eM



=
∑

h∈ ̂
G/C(M)

gN∈N̂/M−{1},N /∈B

(−1)|B|

= χM
•(1)∏

N∈B(|N/M | − 1)(−1)|B|,

as desired. �
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Examples 3.6.
Cyclics. Consider ker(Cn) and fix b | n. Let

(6) C(Cb) = {Cpb | p ∈ Pb} where Pb = {p prime | pb | n},

and for O ⊆ Pb, let O =
∏
p∈O p. By Corollary 3.5,

χb(xn/a) =


n

b

∏
p∈O

(
−1
p

) ∏
p∈Pb−O

(
1− 1

p

)
if O ⊆ Pb minimal exists so a | bO,

0 otherwise.

Vector spaces. For subsp(V ), since if dim(U) = dim(V )− 1, C(U) = {V },

χU
•
(v) =

{
q − 1 if v ∈ U ,
−1 if v /∈ U.

For subspB(V ), given A ⊆ B, for each b ∈ B−A, b ∈W for some W ∈ C(Fq-span{a ∈
A}), so

C(Fq-span{a ∈ A}) = V.

Thus, for D ⊆ B

χA

(∑
d∈D

d

)
= (q − 1)|B−(A∪D)|(−1)|(B−A)∩D|.

In [1, Theorem 3.4], Aliniaeifard gives a lattice theoretic formula for the character
values given by

χN
•
(g) =

∑
O⊆N
g∈O

µ(N,O) |G|
|O|

.

In the examples of ker(Cn) and subspB(V ) above, the Möbius functions for the divisor
lattice and subset lattice are well-known, so we get some identities for free. For a set
of distinct primes Pb and a | Pb,∑
A⊆Pb

a|bA

(−1)|A|

A
=
∏
p∈O

(
−1
p

) ∏
p∈Pb−O

(
1− 1

p

)
, where O ⊆ Pb is minimal with a | bO.

where we cancel the n/b that appears on both sides. In the second example, for D ⊆ B∑
A⊆C⊆B
D⊆C

(−1)|C−A|q|B−C| = (q − 1)|B−(A∪D)|(−1)|(B−A)∩D|.

3.3. Tensor products. For any supercharacter theory S of G, the space f(G; Cl(S))
is closed under point-wise multiplication. However, as with irreducible characters it
is often not obvious how to decompose the point-wise product of two supercharac-
ters into supercharacters (meanwhile the superclass identifier functions are orthogonal
idempotents). However, this problem seems far more tractable for normal lattice su-
percharacter theories.

For M ∈ ker(S) let C(M) be its set of covers. The following lemma is framed in
the language of groups, but applies to arbitrary modular lattices.

Lemma 3.7. For M,N ∈ ker(S),

C(M) ∩ C(N) = C(M ∩N).
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Proof. First, suppose O ∈ C(M ∩ N). Then either O ⊆ M or OM covers M , so in
either case O ⊆ C(M). Similarly O ⊆ C(N). Thus, C(M ∩N) ⊆ C(M) ∩ C(N).

Next we want to show that A ∩ B ⊆ C(M ∩N) for all subsets A ⊆ C(M) and
B ⊆ C(N). We will use double induction on |A| and |B|. If |B| = 1, then let {O} = B
so B = O. Since O covers N we have that either (O ∩ A)N = O or (O ∩ A)N = N .

If (O ∩ A)N = O and M = M ∩N , then

(O ∩ A) ⊆ A ⊆ C(M) = C(M ∩N).

Otherwise, M ∩O covers M ∩N . In this case, N ∩A is generated by covers of M ∩N
contained in N and since O ∩ A covers N ∩ A, we have

O ∩ A = (N ∩ A)(O ∩M) ⊆ C(M ∩N).

If (O ∩ A)N = N , then A ∩ B ⊆ N and by modularity, the covers of M ∩N in N
generate A ∩ B. By symmetry, the result also holds if |A| = 1 and B is arbitrary.

Suppose |A|, |B| > 1. If there exists O ∈ B such that

B = B − {O},

then by induction A∩B = A∩B − {O} ⊆ C(M ∩N). Thus, without loss of generality
we may assume that

B 6= B − {O} and by symmetry A 6= A− {P}

for all O ∈ B, P ∈ A.
As before (A ∩ B)B − {O} ∈ {B − {O},B}. If (A ∩ B)B − {O} = B − {O}, then

we are done by induction. By symmetry, if (A ∩ B)A− {P} = A− {P}, then we are
done by induction. We therefore have

A− {P}

A − {P} ∩ B

A− {P} ∩ B − {O}

A B

A ∩ B

A ∩ B − {O}

B − {O}
.

If there exists P ∈ A and O ∈ B such that A− {P} 6= B − {O}, then since A ∩ B
covers these two groups we have

A ∩ B = A− {P} B − {O} ⊆ C(M ∩N),

by induction. Else, for all O ∈ B, Q ∈ A,

B − {O} ∩ A = A− {Q} ∩ B.

In particular,
B − {O} ∩ A ⊆ A ∩

⋂
Q∈B
B − {Q} = A ∩N.

By symmetry
B − {O} ∩ A = A− {P} ∩ B ⊆M ∩ B.

Thus,
B − {O} ∩ A ⊆M ∩ B ∩N ∩ A = M ∩N.

In this case, since A ∩ B covers B − {O} ∩ A it must also cover M ∩ N and we are
done. �
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Corollary 3.8. Suppose M,N ∈ ker(S) with C(M) and C(N) in general position
over M and N , respectively. Suppose further that for each O ∈ C(M ∩ N) either
O ⊆M or O ⊆ N . Then

χM
• � χN•

χM•(1)χN•(1) = χ(M∩N)•

χ(M∩N)•(1)
.

Proof. We first show that C(M ∩ N) is in general position over M ∩ N . Let O ∈
C(M ∩N). Without loss of generality, ON ∈ C(N). We have that

C(M ∩N)− {O}N = {PN | P ∈ C(M ∩N), P 6= O} 6= {PN | P ∈ C(M ∩N)}

= C(M ∩N)N,

since {PN | P ∈ C(M ∩N), PN ∈ C(N)} ⊆ {PN | P ∈ C(M ∩N)} must also be in
general position over N . However then,

C(M ∩N)− {O} 6= C(M ∩N).

By Corollary 3.5 and Lemma 3.7,(
χM

•
� χN

•
)

(g) = 0 if and only if χ(M∩N)•(g) = 0.

Suppose g ∈ C(M) ∩ C(N) = C(M ∩N). Then there exists subsets A ⊆ C(M),
B ⊆ C(N), and I ⊆ C(M ∩N) such that g ∈ A◦ ∩B◦ and A∩B = I. By assumption,

I = IM t IN , where IK = {O ∈ I | O ⊆ K}.

So if g ∈ I, then
g ∈M · IN =

∏
O∈IN

MO = A.

Thus, P ∈ A implies P ∩N 6= M ∩N and similarly Q ∈ B implies Q ∩M 6= M ∩N .
Suppose P, P ′ ∈ A. Then P ∩N = P ′∩N implies (P ∩P ′)∩N = (P ∩N)∩(P ′∩N) =
P ∩ N . We conclude that P = P ′, and similarly, for Q,Q′ ∈ B, Q ∩M = Q′ ∩M if
and only if Q = Q′. We therefore have bijections

IM −→ B
O 7−→ ON

Q ∩M ←− [ Q
and

IN −→ A
O 7−→ OM

P ∩N ←− [ P
.

Then Corollary 3.5 implies

χM
•
� χN

•
(g) = χM

•
(1)χN

•
(1)

∏
P∈A
Q∈B

1
(1− |P/M |)(1− |Q/N |)

= χM
•
(1)χN

•
(1)

∏
O∈IN

1
(1− |OM/M |)

∏
O∈IN

1
(1− |ON/N |)

= χM
•
(1)χN

•
(1)

∏
O∈IN

1
(1− |O/(M ∩N)|)

∏
O∈IN

1
(1− |O/(M ∩N)|)

= χM
•(1)χN•(1)

χ(M∩N)•(1)
χ(M∩N)•(g),

as desired. �
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Examples 3.9.
Cyclics. Let Cn be cyclic and suppose a, b | n. Fix Cp gcd(a,b) ∈ C(Cgcd(a,b)). Then
Cp gcd(a,b) ⊆ Ca if p | a

gcd(a,b) and Cp gcd(a,b) ⊆ Cb if p | b
gcd(a,b) . In other words, the

hypotheses of the Corollary 3.8 are satisfied if{
p prime

∣∣∣ p | n

gcd(a, b)

}
=
{
p prime

∣∣∣ p | lcm(a, b)
gcd(a, b)

}
.

Vector spaces. For subsp(V ) the hypotheses are generally not satisfied. For
subspB(V ), we have that the hypotheses are satisfied if and only if A,B ∈ B satisfy
A ∪B = B.

3.4. Restriction formula. In this section we further assume that

ker(S) = J∨(I),

where I are the intersection-irreducible subgroups of ker(S). Thus, for each normal
subgroup N ∈ ker(S), there exists a unique antichain A ∈ AntCh(I) such that in the
notation of (2),

N = A.

Since the dual of a distributive lattice is distributive, we also have that if P is the set
of product irreducible elements, then for each N ∈ ker(S) there exists B ⊆ AntCh(P)
such that

N = B.

Lemma 3.10. Let ker(S) be a lattice for a supercharacter theory of G and suppose
ker(S) is distributive. Fix B ⊆ AntCh(P).

(a) For each L ∈ ker(S) such that B ∈ C(L), there exists a unique KL ∈ B such
that KL ∩ L 6= KL.

(b) The function {
L ∈ ker(S) | B ∈ C(L)

}
−→ B

L 7−→ KL

MKB −K ←− [ K

is a bijection, where MK is the unique element such that K ∈ C(MK).

Proof. (a) Fix L such that B ∈ C(L). Then there exists K ∈ B such that K 6= K ∩L.
Then KL = B and so K ∈ C(K ∩ L). Suppose there exists L′ with B ∈ C(L′) such
that K 6= K ∩ L′. Then since K is product irreducible K ∩ L′ = K ∩ L. But then
L′ = B ∩ L′ = KL ∩ L′ = (K ∩ L′)(L ∩ L′) which forces L = L′.

(b) The uniqueness of MK implies that

L ∩K = MK and MK

∏
K 6=K′∈B

K ′ = L. �

This result allows us to prove some convenient features about distributive lattices
of normal subgroups.

Corollary 3.11. Let ker(S) be a lattice for a supercharacter theory of G and suppose
ker(S) is distributive. For any normal subgroup N ∈ ker(S),

(a) N◦ 6= ∅,
(b) XN• 6= ∅,
(c) C(N) is in general position over N .
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Proof. (a) For each L such that N ∈ C(L) we can select an element gL ∈ KL−(KL∩L)
so that

∏
N∈C(L) gL ∈ N but

∏
N∈C(L) gL /∈ L′ for any L′ such that N ∈ C(L′). Thus,∏

N∈C(L) gL ∈ N◦.
(b) Since | ker(S)| = |Cl| = |Ch|, we must have that all sets XN• are nonempty.
(c) We have that C(N)− {O} 6= C(N) for O ∈ C(N) if and only if C(N)− {O}∩O =

N . But the latter condition follows easily from distributivity. �

Since the dual of a distributive lattice is distributive, we obtain the dual to
Lemma 3.10 (which seems somewhat harder to prove directly).

Corollary 3.12. Let ker(S) = J∨(I) be a distributive lattice and A ∈ AntCh(I).
Then

(a) For each O ∈ C(A), there exists a unique element PO ∈ A such that POO ∈
C(PO).

(b) The function
C(A) −→ A
O 7−→ PO

C(P ) ∩ A− {P} ←− [ P
is a bijection.

Let H ⊆ G be a subgroup and suppose J∨(IH) ⊆ ker(H) and J∨(IG) ⊆ ker(G)
are distributive lattices. For the restriction functor

ResGH : f (G; Cl(J∨(IG))) −→ f (H; Cl(J∨(IH)))
to be well-defined, we minimally require that for each N ∈ J∨(IG), there exists a
subset A ⊆ J∨(IH) such that

N◦ ∩H =
⋃

M∈A
M◦.

For the restriction result below, we will want slightly stronger compatibility between
the lattices. In particular, we say J∨(IG) and J∨(IH) are restriction favorable if
(R1) The function

· ∩H : J∨(IG) −→ J∨(IH)
N 7→ N ∩H

is well-defined (that is, N ∩H ∈ J∨(IH)).
(R2) If M,N ∈ J∨(IG) with N ∈ C(M), then either M ∩H = N ∩H or N ∩H ∈

C(M ∩H).

Remark 3.13. At first glance it seems that (R2) should always hold due to the dia-
mond isomorphism theorem. In fact, if we use the full lattice of normal subgroups for
both groups this is the case. However, (R2) guarantees that the lattice for G is not
too coarse with respect to the lattice of H.

Examples 3.14.
Cyclics. For Cm ⊆ Cn, we have · ∩ Cm : ker(Cn) −→ ker(Cm) is well-defined, since
ker(Cm) is in fact an interval in ker(Cn). The other condition also follows easily,
using (3) and modularity of the lattice.
Vector spaces. For subspB(V ), let A ⊆ B. Then U = Fq-span{a ∈ A} has lat-
tice subspA(U) an interval in subspB(V ). So as with the cyclics case, V and U are
restriction favorable.

Let
AH = {PO∩H | O ∈ C(A), O ∩H 6= A ∩H} ⊆ IH .
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Theorem 3.15. Let H ⊆ G be a subgroup, and suppose J∨(IG) ⊆ ker(G) and
J∨(IH) ⊆ ker(H) are restriction favorable. For A ∈ AntCh(IG),

(a) The restriction of χA• factors as

ResGH(χA•)
χA
•(1) = χAH

•

χAH
•(1)

� χC(A)∩H

χC(A)∩H(1)
.

(b) The restriction of χA• decomposes as

ResGH(χA•)
χA
•(1) =

∑
AH⊇K⊇C(A)∩AH

|C(A) ∩ AH |(−1)|{Q∈C(K)|Q⊆AH}|

|C(K) ∩ AH |χK•((C(K) ∩ AH)◦)
χK
•
,

where all the terms have nonzero coefficients.

Before proving the theorem, we will first need a lemma that computes degree sums
using Theorem 3.3.

Lemma 3.16. Let H ⊆ G be a subgroup, and suppose J∨(IG) ⊆ ker(G) and J∨(IH) ⊆
ker(H) are restriction favorable. Let A ∈ AntCh(IG) and AH ⊇ K ⊇ C(A) ∩ AH .
Then

1
χC(A)∩H(1)

 ∑
N⊇C(A)∩H
N∩AH =K

χN
•
(1)

 1
χK•(1) =

|C(A) ∩ AH |(−1)|{Q∈C(K)|Q⊆AH}|

|C(K) ∩ AH |χK•((C(K) ∩ AH)◦)
.

Proof. Suppose N ∩ AH = K for all N ⊇ K(C(A) ∩ H). Then N = H implies
K = H ∩ AH = AH . In this case, by Theorem 3.3,

1
χC(A)∩H(1)

 ∑
N⊇C(A)∩H
N∩AH =AH

χN
•
(1)

 1
χAH

•(1)
= |C(A) ∩H|

|H|
|H|

|AH(C(A) ∩H)|
1

χAH
•(1)

=
|C(A) ∩ AH |
|AH |

(−1)0

χAH
•(AH◦)

=
|C(A) ∩ AH |
|C(AH) ∩ AH |

(−1)|{Q∈C(AH})|Q⊆AH}|

χAH
•((C(AH) ∩ AH)◦)

.

The other terms all satisfy N ∩ AH 6= K for some N ⊇ (C(A) ∩H).
By Theorem 3.3 and Corollary 3.4,

1
χC(A)∩H(1)

 ∑
N⊇C(A)∩H
N∩AH =K

χN
•
(1)

 1
χK•(1)

= |C(A) ∩H||H|
|H||C⊥AH

(K, C(A) ∩H)|

∏
O∈C⊥AH

(K,C(A)∩H)

(
|O|

|K(C(A) ∩H)|
− 1
)

∏
Q∈C(K)

(
|Q|
|K|
− 1
) |C(K)|

|H|
.
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However, for every O ∈ C⊥AH
(K, C(A) ∩H), O ∩ AH ∈ C(K) with

|O|
|K(C(A) ∩H)|

=
|O ∩ AH |
|K|

,

and every cover of K sitting in AH appears in this way. Thus,

1
χC(A)∩H(1)

 ∑
N⊇C(A)∩H
N∩AH =K

χN
•
(1)

 1
χK•(1)

= |C(A) ∩H|
|C⊥AH

(K, C(A) ∩H)|

∏
Q∈C(K)
Q*AH

(
|Q|
|K|
− 1
)−1 |C(K)|

|H|
.

Also,
|C⊥AH

(K, C(A) ∩H)|

|K(C(A) ∩H)|
=
|{Q ∈ C(K) | Q ⊆ AH}|

|K|
,

and by distributivity

{Q ∈ C(K) | Q ⊆ AH} ∩ {Q ∈ C(K) | Q * AH} = K,

so
|C(K)|

|C⊥AH
(K, C(A) ∩H)|

= |C(K)|
|{Q ∈ C(K) | Q ⊆ AH}|

|{Q ∈ C(K) | Q ⊆ AH}|

|C⊥AH
(K, C(A) ∩H)|

= |C(K)|
|{Q ∈ C(K) | Q ⊆ AH}|

|K|
|K(C(A) ∩H)|

=
|C(K)||C(A) ∩ AH |

|{Q ∈ C(K) | Q ⊆ AH}||(C(A) ∩H)|
.

Since

C(K) ∩ AH =

 ∏
Q∈C(K)
Q*AH

K


 ∏
Q∈C(K)
Q⊆AH

Q

 ∩ AH = {Q ∈ C(K) | Q ⊆ AH},

we have

1
χC(A)∩H(1)

 ∑
N⊇C(A)∩H
N∩AH =K

χN
•
(1)

 1
χK•(1) =

|C(K)||C(A) ∩ AH |
|H||C(K) ∩ AH |

∏
Q∈C(K)
Q*AH

(
|Q|
|K|
− 1
)−1

=
|C(A) ∩ AH |(−1)|{Q∈C(K)|Q⊆AH}|

|C(K) ∩ AH |χK•((C(K) ∩ AH)◦)
,

as desired. �

Proof of Theorem 3.15. (a) Note that by definition AH ⊇ A∩H, and since covers of
A∩H either are inAH or generate covers ofAH , we conclude that C(AH) ⊇ C(A ∩H).
Thus, both sides are 0 if and only if g /∈ C(A) ∩H.
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Let g ∈ B ∩H for B ⊆ C(A) minimal. If B ∈ B such that B ∩H = A ∩H, then
by distributivity, g ∈ B − {B} ∩ H. Thus, we may assume that g ∈ B ∩ H where
B ⊆ {O ∈ C(A) | O ∩H 6= A ∩H}. Then(

χAH
•

χAH
•(1)

� χC(A)∩H

χC(A)∩H(1)

)
(g) =

∏
O∈B

1
1− |(O ∩H)AH/AH |

=
∏
O∈B

1
1− |(O ∩H)/(A ∩H)|

=
∏
O∈B

1
1− |O/A|

= ResGH(χA•)
χA
•(1) (g).

(b) We next want to apply Corollary 3.8. Thus, we need to show that for N ⊇
C(A) ∩H and O ∈ C(N ∩ AH), we have O ⊆ N or O ⊆ AH . Since O covers N ∩ AH
we have OAH = AH or OAH covers AH . In the first case, O ⊆ AH . In the second,
OAH corresponds to a unique cover O′ of A ∩ H, with O′AH = OAH . But then
O′(N ∩ AH) = O and O ⊆ N (since O′ ⊆ C(A) ∩H ⊆ N).

Therefore we can apply Corollary 3.8 to our situation to obtain

ResGH(χA•)
χA
•(1) = χAH

•

χAH
•(1)

� χC(A)∩H

χC(A)∩H(1)

= χAH
•

χAH
•(1)χC(A)∩H(1)

�
∑

N⊇C(A)∩H

χN
•

= 1
χC(A)∩H(1)

∑
N⊇C(A)∩H

χN
•
(1) χ(N∩AH )•

χ(N∩AH )•(1)
.

Reorganizing,

ResGH(χA•)
χA
•(1) = 1

χC(A)∩H(1)

∑
AH⊇K⊇C(A)∩AH

 ∑
N⊇C(A)∩H
N∩AH =K

χN
•
(1)

 χK
•

χK•(1) .

Note that

K(C(A) ∩H) ∩ AH = (K ∩ AH)(C(A) ∩ AH) = K(C(A) ∩ AH),

which equals K if and only if C(A) ∩ AH ⊆ K. Thus, we can apply Lemma 3.16 to
deduce the result. �

Corollary 3.17. Under the hypotheses of Theorem 3.4, if AH ⊆ C(A), then

ResGH(χA•)
χA
•(1) = χAH

•

χAH
•(1)

.

Example 3.18.
Cyclics. Let Cm ⊆ Cn and suppose d | n. Let

P = {p prime | pd | n} and d∨ =
∏
p∈P

p.
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If n = pj1
1 · · · p

j`

` and d = pi11 · · · p
i`
` , then

Cd =
⋂

16k6`
ik<jk

C
p

ik−jk
k

n
, so A = {C

p
ik−jk
k

n
| 1 6 k 6 `, ik < jk},

and for ik 6= jk,

C
p

ik−jk
k

n
= PCpkd

, as in Corollary 3.12(b),

and
C(A) =

∏
p∈P

Cpd.

If m = ph1
1 · · · p

h`

` , then

ACm
= {Cgcd(pik−jk

k
n,m) | 1 6 k 6 `, hk > ik} and ACm

= Cgcd(d,m).

Thus,
C(A) ∩ ACm

=
∏
p∈P

Cgcd(d,m) = ACm
,

so
ResCn

Cm
(χd)

χd(1) = χgcd(d,m)

χgcd(d,m)(1)
.

Vector spaces. Let B be a basis of V and suppose U ⊆ V is subspace with a basis
constructed as follows. There exists a subset A ⊆ B and a set partition bl(A) of A
such that {∑

b∈B

b | B ∈ bl(A)
}

is a basis of U . Then · ∩ U : subspB(V ) −→ subspbl(A)(U) is a well-defined function,
and covers get sent to covers. However, since C(W ) = V for any subspace of W , we
have that the hypotheses of Corollary 3.17 are satisfied. Thus,

ResVU (χB−{b1,...,b`})
χB−{b1,...,b`}(1)

= χ
{
∑

b∈B
b||B∩{b1,...,b`}|6=1}

χ
{
∑

b∈B
b||B∩{b1,...,b`}|6=1}(1)

.
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