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Grothendieck polynomials
and the boson-fermion correspondence

Shinsuke Iwao

Abstract In this paper we study algebraic and combinatorial properties of symmetric
Grothendieck polynomials and their dual polynomials by means of the boson-fermion corre-
spondence. We show that these symmetric functions can be expressed as a vacuum expectation
value of some operator that is written in terms of free-fermions. By using the free-fermionic
expressions, we obtain alternative proofs of determinantal formulas and Pieri type formulas.

1. Introduction
Grothendieck polynomials [13, 14] are K-theoretic versions of Schubert polynomials
that represent a Schubert variety in the K-theory of the flag variety. If it represents
a Schubert class indexed by a Grassmannian permutation [2] (see also [5, § 10.6]),
a Grothendieck polynomial is a symmetric polynomial in finitely many variables.
Such symmetric Grothendieck polynomials are seen as K-theoretic analogs of Schur
polynomials [16].

Let λ = (λ1 > · · · > λ` > 0) be a partition of a natural number, and β be a
parameter. A (β-) Grothendieck polynomial(1) Gλ(x1, . . . , xn) (` 6 n) is a symmetric
polynomial in x1, . . . , xn that is expressed as follows [7, 11, 22]:

(1) Gλ(x1, . . . , xn) =
det
(
x
λj+n−j
i (1 + βxi)j−1

)
16i,j6n∏

16i<j6n(xi − xj)
.

There also exists the Jacobi–Trudi type identity [11, 15]:

(2) Gλ(x1, . . . , xn) = det
( ∞∑
m=0

(
i− 1
m

)
βmhλi−i+j+m(x1, . . . , xn)

)
16i,j6n

,

where hi(x1, . . . , xn) is the i-th complete symmetric polynomial.
Recently, many authors have been studying connections between these “K-

theoretic polynomials” and the theory of classical/quantum integrable systems.
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(1)The polynomial Gλ(x1, . . . , xn) is usually called the β-Grothendieck polynomial, which is a
deformation of the ordinary Grothendieck polynomial introduced by Fomin–Kirillov [4]. The β-
Grothendieck polynomial reduces to the Schur polynomial sλ(x1, . . . , xn) when β = 0, and to the
ordinary Grothendieck polynomial when β = −1. We will drop the term “β-” throughout the paper
to simplify the notation.
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In [18, 19], Motegi–Sakai showed that Grothendieck polynomials (and their gener-
alizations) are derived from calculations of a wave function of quantum integrable
systems such as TASEP and melting crystals. Nagai and the author of this paper [8]
have reported that some class of dual stable Grothendieck polynomials are natu-
rally obtained from tau functions of the relativistic Toda equation with unipotent
eigenvalues.

The purpose of this paper is to present a new characterization of Gλ(x1, . . . , xn) by
means of the boson-fermion correspondence (see, for example, [9, 10]), which is a pow-
erful algebraic tool in various fields such as symmetric polynomial theory, mathemati-
cal physics, integrable systems, etc. We show that the stable symmetric Grothendieck
polynomial Gλ(x1, x2, . . . ), that is, an infinite series of symmetric functions with
Gλ(x1, . . . , xn, 0, 0, . . . ) = Gλ(x1, . . . , xn), can be expressed as a vacuum expecta-
tion value of some operator given in terms of free-fermions (Theorem 3.7). By using
this expression, we derive a similar characterization of the dual stable Grothendieck
polynomial (Section 4).

As an application of our presentation, we give new proofs of the following results,
which have been given by previous researches:

(1) “Another” determinantal formula for Grothendieck polynomials (Proposi-
tion 3.9). This is a special case of the results by Hudson–Ikeda–Matsumura–
Naruse [6].

(2) A determinantal formula for dual stable Grothendieck polynomials (Proposi-
tion 4.4), which was originally given by [12, 21].

(3) Gλ(x) expansion of symmetric polynomials of the form sλ(x)Gµ(x) (Propo-
sition 5.7).

(4) Pieri type formulas for dual stable Grothendieck polynomials (Section 6).
Items (3–4) are special cases of the results given by Yeliussizov [22].

1.1. Organization of the paper. In Section 2, we first give a brief review of the
theory of free fermions (§ 2.1–§ 2.3). Then we introduce two new operators eΘ and eθ
and some simple lemmas in § 2.4. In Section 3, we present a free-fermionic presenta-
tion of stable Grothendieck polynomials. For this, it is useful to consider a symmetric
function Grλ(x) (§ 3.1), which is “sufficiently near” to the Grothendieck polynomial
Gλ(x1, . . . , xr) (see Proposition 3.1). We discuss the “stable limit” of the sequence
G1
λ(x), G2

λ(x), . . . . Since the sequence itself is not stable, the limit “ lim
r→∞

Grλ(x)” fails
to be contained in Λ, the ring of symmetric functions. However, the limit will be
defined properly in some completed space Λ̂ ⊃ Λ (see § 3.2). We show that the limit
lim
r→∞

Grλ(x) is expressed as a vacuum expectation value of a certain operator writ-
ten in free-fermions, and is equal to the stable Grothendieck polynomial. “Another”
determinantal formula for the stable Grothendieck polynomials is shown in § 3.5. In
Section 4, we obtain a similar free-fermionic presentation of dual stable Grothendieck
polynomials. Their determinantal formula is also given (§ 4.3).

In Sections 5 and 6, we discuss Pieri type formulas for K-theoretic polyno-
mials. By using our free-fermionic presentations, we define an action of non-
commutative Schur polynomials [3] on the dense linear subspace of Λ̂ spanned by
{Gλ(x) |λ : partition}. We also define their action on the subspace spanned by the
family {gλ(x) |λ : partition}, where gλ(x) is the dual stable Grothendieck polynomial.
As a result, we derive the Gλ(x) expansion of symmetric polynomials of the form
sλ(x)Gµ(x) (Proposition 5.7) and Pieri type formulas for dual stable Grothendieck
polynomials (Section 6).

Algebraic Combinatorics, Vol. 3 #5 (2020) 1024



Grothendieck polynomials and the boson-fermion correspondence

2. Free fermions
2.1. Preliminaries. Let k be a field of characteristic 0. (We will put k = C(β) in
the sequel.) We consider a k-algebra A generated by free fermions ψn, ψ∗n (n ∈ Z)
with the following anti-commutative relations:
(3) [ψm, ψn]+ = [ψ∗m, ψ∗n]+ = 0, [ψm, ψ∗n]+ = δm,n,

where [A,B]+ = AB +BA.
Let |0〉, 〈0| be vacuum vectors that satisfy

ψm|0〉 = ψ∗n|0〉 = 0, 〈0|ψn = 〈0|ψ∗m = 0, m < 0, n > 0.
The Fock space (over k) is the k-space F that is generated by vectors of the form
(4)
ψn1ψn2 · · ·ψnr

ψ∗m1
ψ∗m2
· · ·ψ∗ms

|0〉, (r, s > 0, n1 > · · · > nr > 0 > ms > · · · > m1).
We also consider the k-space F∗ that is generated by vectors
(5)
〈0|ψms · · ·ψm2ψm1ψ

∗
nr
· · ·ψ∗n2

ψ∗n1
, (r, s > 0, n1 > · · · > nr > 0 > ms > · · · > m1).

The vectors of the form (4) are linearly independent over k. This fact can be checked
by identifying F with an infinite wedge presentation of a Clifford algebra [10, § 4 and
§ 5.2]. See Remark 2.1 below. Similarly, the vectors of the form (5) are proved to be
linearly independent.

Using the anti-commutative relations (3) repeatedly, we find |v〉 ∈ F ⇒ ψn|v〉 ∈ F
and ψ∗n|v〉 ∈ F . Hence F is a left A-module. We can also check that F∗ is a right
A-module.

Remark 2.1. Let V =
⊕

i∈Z k · vi be a k-space with a fixed basis {vi | i ∈ Z} and∧∞
V be the infinite wedge space. For m ∈ Z, consider the subspace F (m) ⊂

∧∞
V

generated by all vectors of the form
(6) vi1 ∧ vi2 ∧ · · · (i1 > i2 > · · · , ik = −k +m for k � 1).
Set F :=

⊕
m∈Z F

(m). We can define the actions of ψj , ψ∗j on F [10, § 5.2] by

(7)
ψj(vi1 ∧ vi2 ∧ · · · ) = vj ∧ vi1 ∧ vi2 ∧ · · · ,
ψ∗j (vi1 ∧ vi2 ∧ · · · ) = f(vi1)vi2 ∧ vi3 ∧ vi4 ∧ · · · − f(vi2)vi1 ∧ vi3 ∧ vi4 ∧ · · ·

+ f(vi3)vi1 ∧ vi2 ∧ vi4 ∧ · · · − · · · ,
where f : V → k is the k-linear map that sends vj 7→ 1 and vt 7→ 0 (t 6= j). We
can check that they satisfy the relation (3). By sending the vacuum vector |0〉 to the
element v−1∧v−2∧v−3∧· · · ∈ F , we obtain a left A-module homomorphism F → F ,
which is in fact an isomorphism. Rigorous statements and proofs of these facts can be
found in the textbooks [10, § 5] and [17, § 4]. The review article [1, § 2] by Alexandrov
and Zabrobin is helpful to understand the free-fermion formalism.

For an integer m, we define the shifted vacuum vectors |m〉 ∈ F and 〈m| ∈ F∗ by

|m〉 =
{
ψm−1ψm−2 · · ·ψ0|0〉, m > 0,
ψ∗m · · ·ψ∗−2ψ

∗
−1|0〉, m < 0,

and

〈m| =
{
〈0|ψ∗0ψ∗1 . . . ψ∗m−1, m > 0,
〈0|ψ−1ψ−2 . . . ψm, m < 0.

We define an anti-algebra involution on A by
∗ : A → A; ψn ↔ ψ∗n,

Algebraic Combinatorics, Vol. 3 #5 (2020) 1025
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that is, a k-linear isomorphism with (ab)∗ = b∗a∗ and (a∗)∗ = a. Further, we have an
isomorphism of k-spaces

ω : F → F∗, X|0〉 7→ 〈0|X∗.

The vacuum expectation value is the unique k-bilinear map

F∗ ⊗k F → k, 〈w| ⊗ |v〉 7→ 〈w|v〉

that is determined by 〈0|0〉 = 1, (〈w|ψn)|v〉 = 〈w|(ψn|v〉), and (〈w|ψ∗n)|v〉 =
〈w|(ψ∗n|v〉). For any expression X, we write 〈w|X|v〉 := (〈w|X)|v〉 = 〈w|(|X|v〉). The
expectation value 〈0|X|0〉 is often abbreviated as 〈X〉.

Remark 2.2. The existence of the vacuum expectation value can be checked by using
the infinite wedge presentation as follows. Let (·, ·) be the non-degenerate symmetric
k-bilinear form on F where the set of vectors (6) are orthonormal. From (7), we have
(ψi|v〉, |w〉) = (|v〉, ψ∗i |w〉), which means ψi and ψ∗i are adjoint to each other. The
vacuum expectation value is defined by 〈w|v〉 := (ω(|w〉), |v〉).

2.2. Wick’s theorem. In many cases, vacuum expectation values can be calculated
by using the following Wick’s theorem.

Theorem 2.3 (Wick’s theorem (see [1, § 2], [17, Exercise 4.2])). Let {m1, . . . ,mr}
and {n1, . . . , nr} be sets of integers. Then we have

〈ψm1 · · ·ψmr
ψ∗nr
· · ·ψ∗n1

〉 = det(〈ψmi
ψ∗nj
〉)16i,j6r.

For sets of integers m = {m1, . . . ,mr}, n = {n1, . . . , ns} with m1 > · · · > mr,
n1 > · · · > ns, we write

δm,n =
{

1, r = s and mi = ni for all i,
0, otherwise.

Corollary 2.4. Let m = {m1, . . . ,mr}, n = {n1, . . . , ns} be sets of integers with
m1 > · · · > mr > −r and n1 > · · · > ns > −s. Then,

〈−r|ψ∗mr
· · ·ψ∗m1

ψn1 · · ·ψns | − s〉 = δm,n.

2.3. The boson-fermion correspondence. Let : • : be the normal ordering
(see [1, § 2], [17, § 5.2]) of free-fermions defined as follows: all annihilation opera-
tors (ψm (m < 0) and ψ∗n (n > 0)) are moved to the right, and an appropriate sign
factor (±1) is multiplied. For example, we have : ψ1ψ

∗
1 := ψ1ψ

∗
1 and : ψ∗1ψ1 := −ψ1ψ

∗
1 .

For m ∈ Z, we define an operator am as am =
∑
k∈Z : ψkψ∗k+m : on F . The

operator am satisfies the following commutative relations

(8) [am, an] = mδm+n,0, [am, ψn] = ψn−m, [am, ψ∗n] = −ψ∗n+m,

where [A,B] = AB−BA. For proofs of these facts, see [17, § 5.3]. We also note that,
if |v〉 ↔ 〈w| under the involution ω, we have an|v〉 ↔ 〈w|a−n.

Let x1, x2, . . . be formal independent variables. We set

H(x) =
∑
n>0

pn(x)
n

an, pn(x) = xn1 + xn2 + · · · , (the n-th power sum),

which satisfies the commutative relation

(9) eH(x)ψn =
( ∞∑
i=0

hi(x)ψn−i

)
eH(x),

where hi(x) (i ∈ Z>0) is the i-th complete symmetric function.

Algebraic Combinatorics, Vol. 3 #5 (2020) 1026



Grothendieck polynomials and the boson-fermion correspondence

Theorem 2.5 ([17, Lemma 9.5] (also see [10, Theorem 6.1])). Let λ = (λ1 > · · · >
λ` > 0) be a partition of length `. We set λ`+1 = λ`+2 = · · · = λr = 0 for r > `. Then
we have

sλ(x) = 〈0|eH(x)ψλ1−1ψλ2−2 · · ·ψλr−r| − r〉 = det(hλi−i+j(x))16i,j6r,

where sλ(x) is the Schur function.

2.4. Operators eΘ and eθ. Let ψ(z) and ψ∗(z) be the generating functions of ψn
and ψ∗n with a formal variable z:

ψ(z) =
∑
n∈Z

ψnz
n, ψ∗(z) =

∑
n∈Z

ψ∗nz
n.

Note that [an, ψ(z)] = znψ(z) and [an, ψ∗(z)] = −z−nψ∗(z).
We now introduce two important operators

Θ = βa−1 −
β2

2 a−2 + β3

3 a−3 − · · · and θ = βa1 −
β2

2 a2 + β3

3 a3 − · · · .

Since
eXY e−X = Y + adX ·Y + (adX)2

2 · Y + · · · ,

(adX ·Y = [X,Y ]), we have the following equations

(10) eΘψ(z)e−Θ = (1 + βz−1)ψ(z), eθψ(z)e−θ = (1 + βz)ψ(z).
We give a list of lemmas that are useful in the following sections.

Lemma 2.6. eΘψne
−Θ = ψn + βψn+1, eθψne−θ = ψn + βψn−1.

Lemma 2.7. eH(x)eΘ =
∏∞
i=1(1 + βxi)−1 · eΘeH(x).

Lemma 2.8. eH(x)ψ(z) =
(∑∞

i=0 hi(x)zi
)
ψ(z)eH(x).

Lemmas 2.6–2.8 can be shown from (9–10) by straightforward calculations.

Lemma 2.9. For m ∈ Z and s > 1, we have
ψm−1e

Θψm−2e
Θ · · ·ψm−seΘ = ψm−1ψm−2 · · ·ψm−sesΘ.

Proof. We prove the lemma by induction on s > 1. If s = 1, the equation is trivial.
For s > 1, we have by induction hypothesis

ψm−1e
Θψm−2e

Θ · · ·ψm−seΘψm−s−1e
Θ

= ψm−1e
Θ(ψm−2ψm−3 . . . ψm−s−1e

sΘ)

= ψm−1(ψm−2 + βψm−1)(ψm−3 + βψm−2) . . . (ψm−s−1 + βψm−s)e(s+1)Θ.

Since ψ2
m−1 = ψ2

m−2 = · · · = ψ2
m−s = 0, the last expression can be rewritten as

ψm−1ψm−2ψm−3 . . . ψm−s−1e
(s+1)Θ. �

Lemma 2.10. For m ∈ Z and s > 1, we have
ψm−1e

Θψm−2e
Θ · · ·ψm−seΘψm−se

Θ = (−β)sψmeΘψm−1e
Θ · · ·ψm−s+1e

Θψm−se
Θ.

Proof. We prove the lemma by induction on s. When s = 1, it follows that
ψm−1e

Θψm−1e
Θ = eΘ(ψm−1 − βψm + β2ψm+1 − · · · )ψm−1e

Θ

= eΘ(−βψm + β2ψm+1 − · · · )ψm−1e
Θ

= (−β)ψmeΘψm−1e
Θ
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from ψ2
m−1 = 0. For general s, we have

ψm−1e
Θ · · ·ψm−s−1e

Θψm−se
Θψm−se

Θ

= (−β)ψm−1e
Θ · · ·ψm−s−1e

Θψm−s−1e
Θψm−se

Θ

= (−β)sψmeΘ · · ·ψm−s−2e
Θψm−s−1e

Θψm−se
Θ

by induction hypothesis. �

Corollary 2.11. Set X(n) := ψn1−1e
Θψn2−2e

Θ · · ·ψnr−re
Θ for n = (n1, . . . , nr).

Assume n1 − 1 > n2 − 2 > · · · > nr − r. Then the following equation holds:
X(n) = (−β)|n|−|n| ·X(n),

where nj = max[nj , nj+1, . . . , nr], |n| =
∑r
j=1 nj, and |n| =

∑r
j=1 nj.

Similarly, we have:

Lemma 2.12. For m ∈ Z, it follows that
ψme

−θψm = (−β)ψme−θψm−1.

Proof. Since ψ2
m = 0, we have ψme−θψm = ψm(ψm − βψm−1 + β2ψm+2 − · · · )e−θ =

ψm(−βψm−1 + β2ψm+2 − · · · )e−θ = (−β)ψme−θψm−1. �

Corollary 2.13. Set x(n) := ψn1−1e
−θψn2−2e

−θ · · ·ψnr−re
−θ for n = (n1, . . . , nr).

Assume n1 − 1 > n2 − 2 > · · · > nr − r. Then the following equation holds:
x(n) = (−β)|n|−|n| · x(n),

where nj = min[n1, . . . , nj ].

3. Stable Grothendieck polynomial Gλ(x)
3.1. Definition of Grλ(x). Let λ = (λ1 > · · · > λ` > 0) be a partition. For r > `,
we put λ`+1 = λ`+2 = · · · = λr = 0. Let Grλ(x) denote the symmetric function that is
defined by

Grλ(x) := 〈0|eH(x)ψλ1−1e
Θψλ2−2e

Θ · · ·ψλr−re
Θ · e−rΘ| − r〉.

This expression is rewritten as
Grλ(x) = 〈0|eH(x)ψλ1−1e

Θψλ2−2e
Θ · · ·ψλ`−`e

Θ · ψ−`−1 · · ·ψ−r · e−`Θ| − r〉
by using Lemma 2.9.

Proposition 3.1. If `(λ) 6 n 6 r, we have
Gλ(x1, . . . , xn) = Grλ(x1, . . . , xn, 0, 0, . . . ).

Proof. Let us consider the generating function
(11) Ψ(z1, . . . , zr) := 〈0|eH(x)ψ(z1)eΘψ(z2)eΘ · · ·ψ(zr)eΘ · e−rΘ| − r〉
of Grλ(x). Set Ai = e(i−1)Θψ(zi)e−(i−1)Θ = (1 +βz−1

i )i−1ψ(zi). From Wick’s theorem
(Theorem 2.3), it follows that

Ψ(z1, . . . , zr) = 〈0|eH(x)A1A2 . . . Ar| − r〉 = det(〈0|eH(x)Aie
−H(x)ψ∗−j |0〉)16i,j6r.

By substituting eH(x)Aie
−H(x) = (1 +βz−1

i )i−1(
∑∞
m=0 hm(x)zmi )ψ(zi), which follows

from Lemma 2.8, we have
Ψ(z1, . . . , zr) = det

(
(1 + βz−1

i )i−1(
∑∞
m=0 hm(x)zmi )〈0|ψ(zi)ψ∗−j |0〉

)
16i,j6r

= det
(

(1 + βz−1
i )i−1(

∑∞
m=0 hm(x)zmi )z−ji

)
16i,j6r

.
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Comparing the coefficients of zλ1−1
1 zλ2−2

2 · · · zλr−r
r on the both sides, we obtain

Grλ(x) = det
( ∞∑
m=0

(
i− 1
m

)
βmhλi−i+j+m(x)

)
16i,j6r

.

From (2), we have the desired result. �

3.2. The completed ring Λ̂. Put k = C(β). Let Λ be the k-algebra of symmetric
functions [16, § I.2] in x1, x2, . . . . In this section we give a brief review on the completed
ring Λ̂ ⊃ Λ.

Let Mn (n > 1) be the k-subspace of Λ that is expressed as

Mn :=
{

N∑
i=1

cλisλi(x) ; N > 0, λ1, . . . , λN are partitions, cλi ∈ k, `(λi) > n,
}
,

where `(λ) is the length of a partition λ. Since Mn ⊃Mn+1, an inverse system
Λ/M1 ← Λ/M2 ← Λ/M3 ← · · ·

of k-spaces exists. Let Λ̂ := lim
←−

(Λ/Mn) be the inverse limit. Note that there exists a

natural inclusion Λ ↪→ Λ̂.
It is convenient to introduce a k-linear topology on Λ where the family {Mn}n=1,2,...

forms an open neighborhood base at 0. In terms of this topology, the inclusion Λ ↪→ Λ̂
can be viewed as a completion of the topological space Λ. Note that

f(x) ∈Mn+1 ⇐⇒ f(x1, . . . , xn, 0, 0, . . . ) = 0.

Moreover, Λ̂ is indeed a topological k-algebra, over which the multiplication is also
continuous.

Lemma 3.2. If n1, . . . , nr > −r, then 〈0|eH(x)ψn1 . . . ψnr
| − r〉 ∈Mr.

Proof. It follows from Theorem 2.5. �

It is known that there exists a unique element Gλ(x) ∈ Λ̂, which is called the stable
Grothendieck polynomial [4], that satisfies the equation

Gλ(x1, . . . , xn) = Gλ(x1, . . . , xn, 0, 0, . . . )
for any n. From Proposition 3.1, we have
(12) Gλ(x)−Grλ(x) ∈Mn+1 for any `(λ) 6 n 6 r,
which implies the fact that ‘Gλ(x) and Grλ(x) are sufficiently near.’ From (12), by
putting n = r, we have Gλ(x)−Grλ(x) ∈ Mr+1. As a subset of the topological space
Λ̂, the sequence G1

λ(x), G2
λ(x), · · · ∈ Λ̂ converges to Gλ(x). We simply write this fact

as
(13) Gλ(x) = lim

r→∞
Grλ(x).

3.3. Remarks on elements of Λ̂. We will often interested in symmetric functions
of the form
(14) 〈0|eH(x)ψm1 . . . ψmr

esΘ| − r〉
where r, s > 0 and m1, . . . ,mr > −r. In general, such symmetric function cannot be
contained in Λ. If fact, if r = 0 and s = 1, we have

〈0|eH(x)eΘ|0〉 =
∞∏
i=1

(1 + βxi) · 〈0|eΘeH(x)|0〉 =
∞∏
i=1

(1 + βxi) ∈ Λ̂ r Λ.
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We can check that, if we substitute xn+1 = xn+2 = · · · = 0, this function reduces to
a symmetric polynomial in n variables. The following lemma states that the same is
true for any symmetric function of the form (14).

Lemma 3.3. Let H(x1, . . . , xn) := H(x)|xn+1=xn+2=···=0. Then

(15) f(x1, . . . , xn) := 〈0|eH(x1,...,xn)ψm1 . . . ψmr
esΘ| − r〉

is a symmetric polynomial in x1, . . . , xn.

Proof. Let X−r :=
(
s
1
)
βψ−r +

(
s
2
)
β2ψ−r+1 + · · · +

(
s
s

)
βsψ−r−1+s. Since esΘψ−r−1 =

(ψ−r−1 +X−r)esΘ, we have

〈0|eH(x1,...,xn)ψm1 . . . ψmr
esΘ| − r〉

(16)

= 〈0|eH(x1,...,xn)ψm1 . . . ψmr | − r〉

+ 〈0|eH(x1,...,xn)ψm1 . . . ψmr
X−r| − r − 1〉

+ 〈0|eH(x1,...,xn)ψm1 . . . ψmr
(ψ−r−1 +X−r)X−r−1| − r − 2〉

+ 〈0|eH(x1,...,xn)ψm1 . . . ψmr
(ψ−r−1 +X−r)(ψ−r−2 +X−r−1)X−r−2| − r − 3〉

+ · · · .
Because
〈0|eH(x1,...,xn)ψm1 . . . ψmr

(ψ−r−1 +X−r) · · · (ψ−r−t +X−r−t+1)X−r−t| − r − t− 1〉
is 0 if r+t > n (see Lemma 3.2), the right hand side on (16) is in fact a polynomial. �

From Lemma 3.3, f(x1, . . . , xn) in (15) determines a unique element of Λ/Mn+1.
Because f(x1, . . . , xn) = f(x1, . . . , xn, 0) for any n, there uniquely exists an element
f(x) = f(x1, x2, . . . ) ∈ Λ̂ which satisfies f(x1, . . . , xn) = f(x1, . . . , xn, 0, 0, . . . ). In
other words, we have

f(x) = 〈0|eH(x)ψm1 . . . ψmre
sΘ| − r〉.

The expression (16) implies that:

Proposition 3.4. 〈0|eH(x)ψm1 . . . ψmr
(esΘ − 1)| − r〉 ∈Mr+1.

The following lemma will be useful in the next section.

Lemma 3.5. Let m1, . . . ,m` be a sequence of integers. Then

〈0|eH(x)ψm1 . . . ψm`
ψ−`−1e

Θψ−`−2e
Θ · · ·ψ−reΘ| − r〉

= 〈0|eH(x)ψm1 . . . ψm`
ψ−`−1ψ−`−2 · · ·ψ−re(r−`)Θ| − r〉

= 〈0|eH(x)ψm1 . . . ψm`
ψ−`−1ψ−`−2 · · ·ψ−r| − r〉

= 〈0|eH(x)ψm1 . . . ψm`
| − `〉.

Proof. The first equality follows from Lemma 2.9. Let
Y−r :=

(
r−`

1
)
βψ−r +

(
r−`

2
)
β2ψ−r+1 + · · ·+

(
r−`
r−`
)
βr−`ψ−`−1.

Because ψ−`−1ψ−`−2 · · ·ψ−r−tY−r−t = 0 for any t > 0, the equation (16) is now
simplified as

〈0|eH(x1,...,xn)ψm1 . . . ψm`
ψ−`−1ψ−`−2 · · ·ψ−re(r−`)Θ| − r〉

= 〈0|eH(x1,...,xn)ψm1 . . . ψm`
ψ−`−1ψ−`−2 · · ·ψ−r| − r〉,

which implies the second equality. The third equality is obvious. �
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Remark 3.6. If s′ < 0, the expression 〈0|eH(x)ψm1 . . . ψmr
es

′Θ| − r〉 does not deter-
mine an element of Λ̂. In fact, if r = 0 and s′ = −1, the expression is rewritten as
〈0|eH(x)e−Θ|0〉 =

∏∞
i=1(1 + βxi)−1, which is not contained in Λ̂.

3.4. Free-fermionic expression of Gλ(x). Let us consider the symmetric func-
tion

Gλ(x) := 〈0|eH(x)ψλ1−1e
Θψλ2−2e

Θ · · ·ψλ`−`e
Θ| − `〉.

Note that the symmetric functions Grλ(x) and Gλ(x) are quite similar but different.
Assume r > `. From Lemma 3.5, their difference is expressed as
Gλ(x)−Grλ(x) = 〈0|eH(x)ψλ1−1e

Θ · · ·ψλ`−`e
Θψ−`−1 · · ·ψ−re−`Θ(e`Θ − 1)| − r〉.

From this equation and Proposition 3.4, we have
(17) Gλ(x)−Grλ(x) ∈Mr+1,

which implies that the sequence {Grλ(x)}r=1,2,... converges to Gλ(x) in Λ̂. It follows
from (13) that

Gλ(x) = lim
r→∞

Grλ(x) = Gλ(x).

In other words, we have:

Theorem 3.7.
Gλ(x) = 〈0|eH(x)ψλ1−1e

Θψλ2−2e
Θ · · ·ψλ`−`e

Θ| − `〉.

3.5. “Another” determinant formula for Gλ(x). We often write Gn(x) =
G(n)(x), where (n) is a partition of length 1.

Proposition 3.8.We have∑
n∈Z

Gn(x)zn = 1
1 + βz−1

∞∏
i=1

1 + βxi
1− xiz

,

where Gn(x) = 〈0|eH(x)ψn−1e
Θ| − 1〉 and (1 + βz−1)−1 =

∑∞
n=0(−β)nz−n.

Proof.∑
n∈Z

Gn(x)zn = 〈0|eH(x)ψ(z)zeΘ| − 1〉 = (1 + βz−1)−1〈0|eH(x)eΘψ(z)z| − 1〉

= (1 + βz−1)−1∏∞
i=1(1 + βxi)〈0|eH(x)ψ(z)z| − 1〉

= (1 + βz−1)−1∏∞
i=1(1 + βxi) · (

∑∞
i=0 hi(x)zi)

= 1
1 + βz−1

∞∏
i=1

1 + βxi
1− xiz

. �

Let G(z) :=
∑
n∈ZGn(x)zn. From the proof of Proposition 3.8, we derive the

commutative relation
(18) eH(x)e−Θψ(z)eΘe−H(x) =

∏∞
i=1(1 + βxi)−1 · G(z)ψ(z).

We consider the formal function
(19) Ψ(z1, . . . , zr) := 〈0|eH(x)ψ(z1)eΘ · · ·ψ(zr)eΘ| − r〉,
which is a generating function of Gλ(x).

Proposition 3.9 ([6], see also [20]).We have

Gλ(x) = det
( ∞∑
m=0

(
i− r
m

)
βmGλi−i+j+m(x)

)
16i,j6r

.
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Proof. Let Bi := e−(r−i+1)Θψ(zi)e(r−i+1)Θ. Applying Wick’s theorem (Theorem 2.3)
to the generating function (19) gives

Ψ(z1, . . . , zr) = 〈0|eH(x)erΘB1B2 . . . Br| − r〉
=
∏∞
l=1(1 + βxi)r〈0|eH(x)B1B2 . . . Br| − r〉

=
∏∞
l=1(1 + βxi)r · det(〈0|eH(x)Bie

−H(x)ψ∗−j |0〉)16i,j6r.

Since
eH(x)Bie

−H(x) = (1 + βz−1
i )−(r−i)eH(x)e−Θψ(zi)eΘe−H(x)

=
(∏∞

l=1(1 + βxl)−1) · (1 + βz−1
i )−(r−i)G(zi)ψ(zi)

(see (18)), we have

Ψ(z1, . . . , zr) = det
(

(1 + βz−1
i )−(r−i)G(zi)〈0|ψ(zi)ψ∗−j |0〉

)
16i,j6r

= det
(

(1 + βz−1
i )−(r−i)G(zi)z−ji

)
16i,j6r

.

Comparing the coefficients of zλ1−1
1 · · · zλr−r

r on the both sides, we obtain the desired
equation. �

4. Dual stable Grothendieck polynomial gλ(x)
4.1. Definition. For a partition λ = (λ1 > λ2 > · · · > λ` > 0) and λ`+1 = · · · =
λr = 0, we set

gλ(x) := 〈0|eH(x)ψλ1−1e
−θψλ2−2e

−θ · · ·ψλr−re
−θ| − r〉.

Note the the definition of gλ(x) does not depend on the choice of r > ` because of
the equation | − r〉 = ψ−r−1| − r − 1〉 = ψ−r−1e

−θ| − r − 1〉.

4.2. Proof of the duality. The Hall inner product 〈·, ·〉 : Λ× Λ→ k is the non-
degenerate k-bilinear form that satisfies 〈sλ(x), sµ(x)〉 = δλ,µ. The bilinear form can
be uniquely extended to the bilinear form Λ̂× Λ→ k continuously.

Let X = ψn1 · · ·ψnr and Y = ψm1 · · ·ψms . If two symmetric functions f(x) and
g(x) are expressed as f(x) = 〈0|eH(x)X| − r〉 and g(x) = 〈0|eH(x)Y | − s〉, their Hall
inner product can be calculated by using the formula

〈f(x), g(x)〉 = 〈−r|X∗Y | − s〉,
which is obtained from Corollary 2.4.

Proposition 4.1.We have
〈Gλ(x), gµ(x)〉 = δλ,µ.

This means that gλ(x) is nothing but the dual stable Grothendieck polynomial.

To prove Proposition 4.1, it suffices to show
(20) 〈−r|eθψ∗λr−r · · · e

θψ∗λ2−2e
θψ∗λ1−1ψµ1−1e

−θψµ2−2e
−θ · · ·ψµs−se

−θ| − s〉 = δλ,µ.

For this, we need the following two lemmas.

Lemma 4.2. If N > n1, . . . , ns, then ψ∗Nψn1e
−θψn2e

−θ · · ·ψns
e−θ| − s〉 = 0.

Proof. As e−θψneθ = ψn − βψn−1 + β2ψn−2 − · · · , the vector ψn1e
−θ · · ·ψnse

−θ| − s〉
must be a linear combination of vectors of the form

ψn′
1
· · ·ψn′

s
| − s〉, N > n′1, . . . , n

′
s.

Since [ψ∗m, ψn]+ = 0 for m 6= n, we obtain the desired result. �
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Lemma 4.3. If M > m1 > · · · > mr > −s, then 〈−s|eθψ∗mr
. . . eθψ∗m1

ψM = 0.

Proof. We prove by induction on r > 0. If r = 0 andM > −s, the equation 〈−s|ψM =
0 is obvious. Next assume r > 1. Since eθψ∗m1

ψM = −(ψM + βψM−1)eθψ∗m1
, we have

〈−s|eθψ∗mr
· · · eθψ∗m2

eθψ∗m1
ψM = −〈−s|eθψ∗mr

· · · eθψ∗m2
(ψM + βψM−1)eθψ∗m1

.

Because M − 1 > m2, this equals to 0 by induction hypothesis. �

Proof of Proposition 4.1. Let

C := 〈−r|eθψ∗λr−r · · · e
θψ∗λ2−2e

θψ∗λ1−1ψµ1−1e
−θψµ2−2e

−θ · · ·ψµs−se
−θ| − s〉.

If λ1 > µ1, then C = 0 from Lemma 4.2. If λ1 < µ1, then C = 0 from Lemma 4.3.
Assume λ1 = µ1. Since ψ∗λ1−1ψµ1−1 = 1− ψµ1−1ψ

∗
λ1−1, C is rewritten as

C = 〈−r|eθψ∗λr−r · · · e
θψ∗λ2−2ψµ2−2e

−θ · · ·ψµs−se
−θ| − s〉

by using Lemma 4.2 again. Repeating this procedure, we conclude that C = δλ,µ. �

4.3. Determinant formula for gλ(x).

Proposition 4.4 ([12, 21]).We have

gλ(x) = det
( ∞∑
m=0

(
1− i
m

)
βmhλi−i+j−m(x)

)
16i,j6r

.

Proof. Let

Φ(z1, . . . , zr) = 〈0|eH(x)ψ(z1)e−θψ(z2)e−θ · · ·ψ(zr)e−θ| − r〉.

We put Di := e−(i−1)θψ(zi)e(i−1)θ = (1 + βzi)−(i−1)ψ(zi). Since eθ| − r〉 = | − r〉, we
have

Φ(z1, . . . , zr) = 〈0|eH(x)D1D2 . . . Dr| − r〉

= det(〈0|eH(x)Die
−H(x)ψ∗−j |0〉)16i,j6r

= det
(

(1 + βzi)−(i−1)(
∑∞
m=0 hm(x)zmi )〈0|ψ(zi)ψ∗−j |0〉

)
16i,j6r

= det
(

(1 + βzi)−(i−1)(
∑∞
m=0 hm(x)zmi )z−ji

)
16i,j6r

.

Comparing the coefficients of zλ1−1
1 · · · zλr−r

r on the both sides gives the desired ex-
pression. �

5. Application 1: Gλ(x)-expansion of symmetric functions
In the following two sections, we present a new method of deriving Pieri type formu-
las for K-theoretic polynomials. We will define an action of non-commutative Schur
polynomials [3] on Grothendieck polynomials and dual stable Grothendieck polyno-
mials by using their free-fermionic presentations. This enables us to express symmet-
ric functions of the form sλ(x)Gµ(x) (resp. sλ(x)gµ(x)) as a linear combination of
Grothendieck polynomials (resp. dual stable Grothendieck polynomials).
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5.1. β-twisted Schur operators. Let
X :=

⊕
λ

Q[β] · λ

be the Q[β]-module freely generated by all partitions λ. We define a linear operator
ui : X → X, (i > 0), which we will call a β-twisted Schur operator. For any sequence
n = (n1, . . . , n`), we let n = (n1, . . . , n`) denote the smallest partition that satisfies
ni 6 ni for all i. We have ni = max[ni, ni+1, . . . , n`].

We write ei = (0, . . . ,
i
∨
1, . . . , 0).

Definition 5.1. Let ui : X→ X be the linear operator that acts on a partition λ as

ui · λ = (−β)|λ+ei|−|λ+ei| · λ+ ei.

Example 5.2.

u1 · = , u2 · = −β · , u3 · = .

Example 5.3. Since (λ+ ei) + ej = λ+ ei + ej for i < j, the action of operators of
the form ui1 · · ·uir (i1 > · · · > ir) is expressed as

(21) ui1 · · ·uir · λ = (−β)|λ+ei1 +···+eir |−|λ+ei1 +···+eir | · λ+ ei1 + · · ·+ eir .

Lemma 5.4. The β-twisted Schur operators satisfy the following commutative rela-
tions.

(22)
uiukuj = ukuiuj , i 6 j < k,

ujuiuk = ujukui, i < j 6 k.

Proof. They are directly checked by seeing their actions on the basis. �

Equation (22) in Lemma 5.4 are often called the Knuth relation. It was proved
by Fomin and Greene [3] that the theory of non-commutative Schur functions is
applicable to any set of operators that satisfies the Knuth relation.

5.2. Non-commutative Schur functions. Let T be a semi-standard tableau, or a
tableau [5]. The column word wT of T is the sequence of numbers obtained by reading
the entries of T from bottom to top in each column, starting in the left column and

moving to the right. For example, wT = 3215344 for T =
1 3 4 4
2 5
3

. We define the

monomial uT as
uT := uwT (1)uwT (2) · · ·uwT (N).

Definition 5.5 (Non-commutative Schur function). For a partition λ, we define
sλ(u1, . . . , un) by

sλ(u1, . . . , un) :=
∑

T is of shape λ,
each entry of T is 6n.

uT .

If λ = (1i) = (
i︷ ︸︸ ︷

1, . . . , 1), the operator ei(u1, . . . , un) := s(1i)(u1, . . . , un) is called the
i-th non-commutative elementary symmetric polynomial. If λ = (i), hi(u1, . . . , un) :=
s(i)(u1, . . . , un) is called the i-th non-commutative complete symmetric polynomial.

The following proposition is given by Fomin–Greene [3].
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Proposition 5.6 (Fundamental properties of non-commutative Schur functions). Let
u1, . . . , un be a set of non-commutative operators with the Knuth relation (22). Let
Λn(u) denote the ring of non-commutative Schur functions in u1, . . . , un. Then Λn(u)
is commutative; that is, we have

sλ(u1, . . . , un)sµ(u1, . . . , un) = sµ(u1, . . . , un)sλ(u1, . . . , un)(23)
for any λ, µ. Moreover, the (commutative) ring Λn(u) is generated by all non-
commutative elementary polynomials ei(u1, . . . , un) for i = 0, 1, . . . , n. As a poly-
nomial of ei(u1, . . . , un)’s, the non-commutative Schur polynomial sλ(u1, . . . , un) is
expressed as

sλ(u1, . . . , un) = det(eλi−i+j(u1, . . . , un))16i,j6r, `(λ) 6 n 6 r,
which is exactly same as the Jacobi–Trudi formula for ordinal Schur polynomials.

5.3. un-action on Grothendieck polynomials. Let π : X → Λ̂ is the Q[β]-
linear map that sends a partition λ to Gλ(x). The following proposition provides an
algorithm to express a product sλ(x)Gµ(x) as a linear combination of Grothendieck
polynomials.

Proposition 5.7. For `(λ), `(µ) 6 r, the equation
sλ(x)Gµ(x) ≡ π(sλ(u1, . . . , ur) · µ) mod Mr+1

holds. In other words, we have
sλ(x1, . . . , xn)Gµ(x1, . . . , xn) = π(sλ(u1, . . . , ur) · µ)|xn+1=xn+2=···=0

for `(λ), `(µ) 6 n 6 r.

Proof. From Proposition 5.6, it suffices to prove
ei(x)Gµ(x) ≡ π(ei(u1, . . . , ur) · µ) mod Mr+1

for i = 0, 1, . . . , r. Write f(x) = 〈0|eH(x)ψn1−1e
Θ · · ·ψnr−re

Θ| − r〉 for a sequence
of integers n1, . . . , nr. Since eH(x)a−ie

−H(x) = a−i + pi(x), [a−i, ψm] = ψm+i, and
[a−i, eΘ] = 0, we have

pi(x)f(x) = 〈0|eH(x)a−iψn1−1e
Θ · · ·ψnr−re

Θ| − r〉

=
r∑
j=1
〈0|eH(x)ψn1−1e

Θ · · ·ψnj−j+ie
Θ · · ·ψnr−re

Θ| − r〉

+ 〈0|eH(x)ψn1−1e
Θ · · ·ψnr−re

Θa−i| − r〉.
This equation implies

(24) pi(x)f(x) ≡
r∑
j=1
〈0|eH(x)ψn1−1e

Θ · · ·ψnj−j+ie
Θ · · ·ψnr−re

Θ| − r〉 mod Mr+1

because 〈0|eH(x)ψn1−1e
Θ · · ·ψnr−re

Θa−i| − r〉 is contained in Mr+1 by Lemma 3.2.
Let Ei(p1, . . . , pi) be the polynomial in p1, . . . , pi that satisfies

ei(x) = Ei(p1(x), . . . , pi(x)).
From (24), we show that the product ei(x)f(x) satisfies

ei(x)f(x) = 〈0|eH(x)Ei(a−1, . . . , a−i)ψn1−1e
Θ · · ·ψnr−re

Θ| − r〉

≡
∑

16m1<···<mi6r

〈0|eH(x)ψn1−1e
Θ · · ·ψnm1−m1+1e

Θ · · ·ψnmi
−mi+1e

Θ

· · ·ψnr−re
Θ| − r〉 mod Mr+1.
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For any sequence n = (n1, . . . , nr), write

Y (n) = 〈0|eH(x)ψn1−1e
Θ · · ·ψnr−re

Θ| − r〉.

(Note that π(λ) = Y (λ) if λ is a partition.) Substituting f(x) = Gµ(x) to the above
equation gives

ei(x)Gµ(x) ≡
∑

16m1<···<mi6r

Y (µ+ em1 + · · ·+ emi) mod Mr+1.

From Corollary 2.11 and (21), this implies

ei(x)Gµ(x) ≡
∑

16m1<···<mi6r

(−β)|µ+em1 +···+emi |−|µ+em1 +···+emi |Y (µ+ em1 + · · ·+ emi)

=
∑

16m1<···<mi6r

π (umi . . . um1 · µ)

= π(ei(u1, . . . , ur) · µ) mod Mr+1. �

From Proposition 5.7, we find a systematic way to express symmetric polynomials
of the form sλ(x1, . . . , xn)Gµ(x1, . . . , xn) as a linear combination of Gλ(x1, . . . , xn)’s.
See the examples below.

Example 5.8. Since

h2(u1, u2) = s (u1, u2) = u1u1 + u1u2 + u2u2,

we have

h2(x1, x2) ·G∅(x1, x2) = G (x1, x2)− βG (x1, x2) + β2G (x1, x2),

h2(x1, x2) ·G (x1, x2) = G (x1, x2) +G (x1, x2)− βG (x1, x2),

h2(x1, x2) ·G (x1, x2) = G (x1, x2) +G (x1, x2) +G (x1, x2), etc.

Example 5.9. Let λ = . All Young tableaux of the shape λ with entries at most

3 are given as follows:

1 1
2

1 2
2

1 3
2

1 1
3

1 2
3

1 3
3

2 2
3

2 3
3 .

We therefore have

s (u1, u2, u3)

= u2u1u1 + u2u1u2 + u2u1u3 + u3u1u1 + u3u1u2 + u3u1u3 + u3u2u2 + u3u2u3.

By using this, we obtain (sλ = sλ(x1, x2, x3), Gλ = Gλ(x1, x2, x3))

s = G − βG − 2βG + 2β2G − 2β3G ,

s G = G +G +G − 2βG − βG + 2β2G , etc.
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6. Application 2: Pieri type formula for gλ

Let di : X→ X be the Q[β]-linear operator defined by

di · λ =
{
λ ∪ {a box in i-th row}, if possible,
(−β) · λ, otherwise.

By seeing their actions on the basis, we can check that the operators d1, d2, . . . satisfy
the Knuth relation:

Lemma 6.1.We have the following commutative relations.

(25)
didkdj = dkdidj , i 6 j < k,

djdidk = djdkdi, i < j 6 k.

Example 6.2.

d1 · = , d3 · = , d2 · = d4 · = d5 · = · · · = −β · .

For any Young tableau T , we write
dT = dwT (1)dwT (2) · · · dwT (N).

We also define the non-commutative Schur functions sλ(d1, . . . , dn) in the similar
manner to sλ(u1, . . . , un) (Definition 5.5).

Let ρ : X→ Λ be the Q[β]-linear map defined by
ρ : λ 7→ gλ(x).

The following proposition is an analogy of Proposition 5.7.

Proposition 6.3. For `(λ) 6 s, `(µ) 6 r, we have

s
(r+s−1)
λ (x;−β)gµ(x) = ρ(sλ(d1, . . . , dr+s) · µ),

where s(r+s−1)
λ (x;−β) = sλ(

r+s−1︷ ︸︸ ︷
−β, . . . ,−β, x1, x2, . . . ).

Proof. From Proposition 5.6, it suffices to prove

(26) e
(r+s−1)
i (x;−β)gµ(x) = ρ(ei(d1, . . . , dr+s) · µ)

for 0 6 i 6 s. Let g(x) = 〈0|eH(x)ψn1−1e
−θ · · ·ψnr−re

−θψ−r−1e
−θ · · ·ψ−r−s| − r − s〉

for any sequence of integers n1, . . . , nr. Since [a−i, e−θ] = −(−β)ie−θ, we have
pi(x)g(x)

= 〈0|eH(x)a−iψn1−1e
−θ · · ·ψnr−re

−θ · · ·ψ−r−s| − r − s〉

=
r+s∑
j=1

{
〈0|eH(x)ψn1−1e

−θ · · ·ψnj−j+ie
−θ · · ·ψ−r−s| − r − s〉

}
− (r + s− 1)(−β)ig(x) + 〈0|eH(x)ψn1−1e

−θ · · ·ψnr−re
−θ · · ·ψ−r−sa−i| − r − s〉.

Note that the last term of this expression must vanish if i 6 s. Moreover, because

p
(r+s−1)
i (x;−β) = pi(

r+s−1︷ ︸︸ ︷
−β, . . . ,−β, x) =

r+s−1︷ ︸︸ ︷
(−β)i + · · ·+ (−β)i +xi1 + xi2 + · · · ,

the equation can be simplified as

p
(r+s−1)
i (x;−β)g(x) =

r+s∑
j=1
〈0|eH(x)ψn1−1e

−θ · · ·ψnj−j+ie
−θ · · ·ψ−r−s| − r − s〉.
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From this, we find that the product e(r+s−1)
i (x;−β)g(x) satisfies the following equa-

tion:

e
(r+s−1)
i (x;−β)g(x)

=
∑

16m1<···<mi6r+s
〈0|eH(x)ψn1−1e

−θ · · ·ψnm1−m1+1e
−θ · · ·ψnmi

−mi+1e
−θ · · ·ψ−r−s|−r−s〉.

Substituting g(x) = gµ(x) to this equation gives (26). �

Example 6.4. Let s = 1 and r = 0. In this case s(0)
(n)(x;−β) = hn(x). Since hn(d1)·∅ =

dn1 ·∅ = (n), we have hn(x) = g(n)(x).

Example 6.5. Let s = n and r = 0. In this case s(n−1)
(1n) (x;−β) = e

(n−1)
n (x;−β) =∑n

j=0(−β)j
(
n−1
j

)
en−j(x). Since en(d1, . . . , dn) · ∅ = dn · · · d2d1 · ∅ = (1n), we have∑n

j=0(−β)j
(
n−1
j

)
en−j(x) = g(1n)(x).

6.1. Pieri type formula for ei(x)gλ(x). Proposition 6.3 is unfortunately a bit
complicated as it contains a function of the form s

(r+s−1)
λ (x;−β). However, when the

partition λ is relatively simple (for example, if λ = (1i) or λ = (i)), we can handle
the situation. In the following, we consider the expansions of symmetric functions of
the form ei(x)gλ(x) and hi(x)gλ(x).

To calculate the product ei(x)gλ(x), it is convenient to introduce the formal power
series E(t) =

∑∞
i=0 ei(x)ti =

∏∞
j=1(1 + xjt). From the expression e

(p)
i (x;−β) =

ei(
p︷ ︸︸ ︷

−β, . . . ,−β, x1, x2, . . . ), we find
∞∑
i=0

e
(p)
i (x;−β)ti = (1− βt)pE(t).

Therefore, from Proposition 6.3, we have

(27) E(t)gλ(x) ≡ ρ
(

(1− βt) ·
(

1 + dr+st

1− βt · · ·
1 + d2t

1− βt ·
1 + d1t

1− βt

)
· λ
)

mod ts+1

for `(λ) 6 r. Taking the limit as r, s→∞ gives the formal expression

(28) E(t)gλ(x) = ρ

(
(1− βt) ·

(
· · · · 1 + d2t

1− βt ·
1 + d1t

1− βt

)
· λ
)
.

For example, since

(1− βt) ·
(
· · · 1 + d3t

1− βt ·
1 + d2t

1− βt ·
1 + d1t

1− βt

)
·∅ = ∅ + t

1− βt + t2

(1− βt)2 + · · · ,

(1− βt) ·
(
· · · 1 + d3t

1− βt ·
1 + d2t

1− βt ·
1 + d1t

1− βt

)
·

=

 1
1− βt + t

(1− βt)2 + t2

(1− βt)3 + · · ·


+

 t

1− βt + t2

(1− βt)2 + t3

(1− βt)3 + · · ·

 ,
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we have
E(t) = g∅ + g t+ (βg + g )t2 + (β2g + 2βg + g )t3 + · · · ,

E(t)g = g + (βg + g + g )t

+ (β2g + 2βg + βg + g + g )t2 + · · · .

6.2. Pieri type formula for hi(x)gλ(x). Let H(t) :=
∑∞
i=0 hi(x)ti =

∏∞
j=1

1
1−xit

be the generating function of hi(x). Since h(p)
i (x;−β) = hi(

p︷ ︸︸ ︷
−β, . . . ,−β, x1, x2, . . . ),

we have
∞∑
i=0

h
(p)
i (x;−β)ti = (1 + βt)−pH(t).

Therefore, from Proposition 6.3, we have

(29) H(t)gλ(x) = ρ

(
1

1 + βt

1 + βt

1− d1t

1 + βt

1− d2t
· · · · λ

)
,

where 1
1−dit

= 1 + dit+ d2
i t

2 + · · · . We note that the expression (29) does not cause
a confusion because 1+βt

1−dit
· λ = λ for i > `(λ) + 1. For example, we have

1
1− d1t

· = + t+ t2 + · · · ,

1 + βt

1− d2t
· = +

(
β +

)
t+
(
β +

)
t2, etc.

Therefore we obtain
H(t) = g∅ + g t+ g t2 + g t3 + · · · ,

H(t)g = g + (βg + g + g )t+ (βg + g + g )t2 + · · · ,

H(t)g = g + (βg + g + g )t

+ (βg + βg + g + g + g )t2 + · · · .
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