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Abstract We study the continuous-time quantum walks on graphs in the adjacency algebra
of the n-cube and its related distance regular graphs.

For k > 2, we find graphs in the adjacency algebra of (2k+2 − 8)-cube that admit instanta-
neous uniform mixing at time π/2k and graphs that have perfect state transfer at time π/2k.

We characterize the folded n-cubes, the halved n-cubes and the folded halved n-cubes whose
adjacency algebra contains a complex Hadamard matrix. We obtain the same conditions for
the characterization of these graphs admitting instantaneous uniform mixing.

1. Introduction
The continuous-time quantum walk on a graph X is given by the transition operator

e− i tA =
∑
k>0

(− i t)k

k! Ak,

where A is the adjacency matrix of X. For example, if X is the complete graph on
two vertices, K2, then

e− i tA =
(

1− t2

2! + t4

4! − · · ·
)
I − i

(
t− t3

3! + t5

5! − · · ·
)
A

=
(

cos t − i sin t
− i sin t cos t

)
.

Being the quantum analogue of the random walks on graphs, there is a lot of re-
search interest on quantum walks for the development of quantum algorithms. More-
over, quantum walks are proved to be universal for quantum computations [7]. In
this paper, we focus on the continuous-time quantum walks introduced by Farhi and
Gutmann in [10]. Please see [12] and [13] for surveys on quantum walks.

Since A is real and symmetric, the operator e− i tA is unitary. We say the continuous-
time quantum walk on X is instantaneous uniform mixing at time τ if

|(e− i τA)a,b| =
1√
|V (X)|

, for all vertices a and b.

This condition is equivalent to
√
|V (X)| e− i τA being a complex Hadamard matrix.

Thus if X admits instantaneous uniform mixing then its adjacency algebra contains a
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complex Hadamard matrix. InK2, the continuous-time quantum walk is instantaneous
uniform mixing at time π/4.

In [14], Moore and Russell discovered that the continuous-time quantum walk on
the n-cube is instantaneous uniform mixing at time π/4 which is faster than its
classical analogue. Ahmadi et al. [1] showed that the complete graph Kq admits
instantaneous uniform mixing if and only if q ∈ {2, 3, 4}. Best et al. [2] proved that
instantaneous uniform mixing occurs in graphs X and Y at time τ if and only if
instantaneous uniform mixing occurs in their Cartesian product at the same time.
They concluded that the Hamming graph H(n, q), which is the Cartesian product
of n copies of Kq, has instantaneous uniform mixing if and only if q ∈ {2, 3, 4}. In
the same paper, they also proved that a folded n-cube admits instantaneous uniform
mixing if and only if n is odd.

In this paper, we give a necessary condition for the Bose–Mesner algebra of a
symmetric association scheme to contain a complex Hadamard matrix. Applying this
condition, we generalize the result of Best et al. to show that the adjacency algebra of
H(n, q) contains the adjacency matrix of a graph that admits instantaneous uniform
mixing if and only if q ∈ {2, 3, 4}. We characterize the halved n-cubes and the folded
halved n-cubes that have instantaneous uniform mixing. We obtain the same charac-
terization for the folded n-cubes, the halved n-cubes and the folded halved n-cubes
to have a complex Hadamard matrix in their adjacency algebras.

A cubelike graph is a Cayley graph of the elementary abelian group Zd2. The graphs
appear in this paper are distance regular cubelike graphs. For k > 2, we find graphs in
the adjacency algebra of H(2k+2 − 8, 2) that admit instantaneous uniform mixing at
time π/2k. Hence, for all τ > 0, there exists graphs that admit instantaneous uniform
mixing at time less than τ .

In a graph X, perfect state transfer occurs from vertex u to vertex w at time τ if

|(e− i τA(X))u,w| = 1.

In the n-cube, perfect state transfer occurs between antipodal vertices at time π/4 [8].
Given a graph X, we use A(X) to denote its adjacency matrix, and Xr to denote

the graph on the vertex set V (X) in which two vertices are adjacent if they are at
distance r in X. We use Iv and Jv to denote the v × v identity matrix and the v × v
matrix of all ones, respectively. We drop the subscript if the order of the matrices is
clear.

2. A Necessary Condition
The graphs we study in this paper are distance regular. The adjacency algebra of a
distance regular graph is the Bose–Mesner algebra of a symmetric association scheme.
In this section, we give a necessary condition for a Bose–Mesner algebra to contain a
complex Hadamard matrix. This condition is also necessary for a Bose–Mesner algebra
to contain the adjacency matrix of a graph that admits instantaneous uniform mixing.

A symmetric association scheme of order v with d classes is a set

A = {A0, A1, . . . , Ad}

of v × v symmetric 01-matrices satisfying
(1) A0 = I.
(2)

∑d
j=0 Aj = J .

(3) AjAk = AkAj , for j, k = 0, . . . , d.
(4) AjAk ∈ spanA, for j, k = 0, . . . , d.

Algebraic Combinatorics, Vol. 3 #3 (2020) 758



Complex Hadamard matrices, instantaneous uniform mixing and cubes

For example, if X is a distance regular graph with diameter d and Xj is the j-th
distance graph of X, for j = 1, . . . , d, then the set {I, A(X1), A(X2), . . . , A(Xd)} is a
symmetric association scheme.

The Bose–Mesner algebra of an association scheme A is the span of A over C. It
is known [3] that the Bose–Mesner algebra contains another basis {E0, E1, . . . , Ed}
satisfying

(a) EjEk = δj,kEj , for j, k = 0, . . . , d, and
(b)

∑d
j=0 Ej = I.

Now there exist complex numbers pr(s)’s such that

(1) Ar =
d∑
s=0

pr(s)Es, for r = 0, . . . , d.

It follows from Condition (a) that

ArEs = pr(s)Es, for r, s = 0, . . . , d.

We call the pr(s)’s the eigenvalues of the association schemes. Since the matrices in
A are symmetric, the pr(s)’s are real.

A v × v matrix W is type II if, for a, b = 1, . . . , v,

(2)
v∑
c=1

Wac

Wbc
=
{
v if a = b,
0 otherwise.

A complex Hadamard matrix is a type II matrix whose entries have absolute value
one.

Proposition 2.1. Let A = {A0, A1, . . . , Ad} be a symmetric association scheme. Let
t0, . . . , td ∈ C\{0}. The matrix W =

∑d
j=0 tjAj is type II if and only if[

d∑
h=0

ph(s)th

] d∑
j=0

pj(s)
1
tj

 = v, for s = 0, 1, . . . , d.

Proof. The matrix W is type II if and only if[
d∑

h=0
thAh

] d∑
j=0

1
tj
Aj

 = vI.

It follows from Equation (1) and Condition (b) that[
d∑

h=0

d∑
l=0

thph(l)El

] d∑
j=0

d∑
k=0

1
tj
pj(k)Ek

 = v

d∑
r=0

Er.

By Condition (a), the left-hand side becomes
d∑
r=0

[
d∑

h=0
thph(r)

] d∑
j=0

1
tj
pj(r)

Er,
multiplying Es to both sides yields the equations of this proposition. �

Finding type II matrices in the Bose–Mesner algebra of a symmetric association
scheme amounts to solving the system of equations in Proposition 2.1, which is not
easy as d gets large. When we limit the scope of the search to complex Hadamard
matrices, we get the following necessary condition which can be checked efficiently.
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Proposition 2.2. If the Bose–Mesner algebra of A contains a complex Hadamard
matrix, then

v 6

[
d∑
r=0
|pr(s)|

]2

, for s = 0, 1, . . . , d.

Proof. Suppose W =
∑d
j=0 tjAj is a complex Hadamard matrix. By Proposition 2.1,

for s = 0, . . . , d,

v =
d∑
r=0

pr(s)2 +
∑

06h<j6d

(
th
tj

+ tj
th

)
ph(s)pj(s).

Since | thtj | = 1, we have | thtj + tj
th
| 6 2 and

v 6
d∑
r=0
|pr(s)|2 +

∑
06h<j6d

2|ph(s)pj(s)| =
[

d∑
r=0
|pr(s)|

]2

. �

Suppose A(X) belongs to the Bose–Mesner algebra of A. If instantaneous uniform
mixing occurs in X at time τ then

√
v e− i τA(X) is a complex Hadamard matrix

and the eigenvalues of A satisfy the inequalities in Proposition 2.2. For example,
the association scheme {Iq, Jq − Iq} has eigenvalues p0(1) = 1 and p1(1) = −1. By
Proposition 2.2, if the adjacency algebra of Kq contains a complex Hadamard matrix
then q 6 4. Hence instantaneous uniform mixing does not occur in Kq, for q > 5.

Proposition 2.3. Let X be a graph whose adjacency matrix belongs to the Bose–
Mesner algebra of A. Let θ0, . . . , θd be the eigenvalues of A(X) satisfying

A(X) =
d∑
s=0

θsEs.

The continuous-time quantum walk of X is instantaneous uniform mixing at time τ
if and only if there exist scalars t0, . . . , td such that

|t0| = . . . = |td| = 1
and

√
v e− i τθs =

d∑
j=0

pj(s)tj , for s = 0, . . . , d.

Proof. It follows from Condition (a) that A(X)k =
∑d
s=0 θ

k
sEs, for k > 0. Therefore,

(3)
√
v e− i τA(X) =

√
v

d∑
s=0

e− i τθs Es

belongs to spanA, and there exists t0, . . . , td such that

√
v e− i τA(X) =

d∑
j=0

tjAj .

By Equation (1), we get

√
v e− i τθs =

d∑
j=0

pj(s)tj , for s = 0, . . . , d.

Lastly,
√
v e− i τA(X) is a complex Hadamard matrix exactly when

|t0| = · · · = |td| = 1. �
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For n, q > 2, the Hamming graph H(n, q) is the Cartesian product of n copies of
Kq. Equivalently, the vertex set V of the Hamming graph H(n, q) is the set of words of
length n over an alphabet of size q, and two words are adjacent if they differ in exactly
one coordinate. The Hamming graph is a distance regular graph on qn vertices with
diameter n. For j = 1, . . . , n, Xj is the graph with vertex set V where two vertices
are adjacent when they differ in exactly j coordinates. Let A0 = I and Aj = A(Xj),
for j = 1, . . . , n. Then H(n, q) = {A0, A1, . . . , An} is a symmetric association scheme,
called the Hamming scheme. For more information on Hamming scheme, please see [3]
and [11].

It follows from Equation (4.1) of [11] that
n∑
j=0

xjAj = [Iq + x(Jq − Iq)]⊗n,

and the eigenvalues of H(n, q) satisfy

(4)
n∑
j=0

pj(s)xj = (1 + (q − 1)x)n−s (1− x)s, for s = 0, . . . , n.

Using [xk]g(x) to denote the coefficient of xk in a polynomial g(x), we have for r, s =
0, . . . , n,

(5)

pr(s) = [xr] (1 + (q − 1)x)n−s (1− x)s

= [xr] (1 + (q − 1)x)n−s ((1 + (q − 1)x)− qx)s

= [xr]
∑
h

(
s

h

)
(1 + (q − 1)x)n−h (−qx)h

=
∑
h

(−q)h(q − 1)r−h
(
n− h
r − h

)(
s

h

)
.

We now quote the following characterization from [14] and [2].

Theorem 2.4. The Hamming graph H(n, q) admits instantaneous uniform mixing if
and only if q ∈ {2, 3, 4}.

We see from Proposition 2.3 that whether a graph X admits instantaneous uniform
mixing depends on only the spectrum of X and the eigenvalues of the Bose–Mesner
algebra containing A(X). A Doob graph D(m1,m2) is a Cartesian product of m1
copies of the Shrikhande graph and m2 copies of K4. It is a distance regular graph
with the same parameters as the Hamming graph H(2m1 + m2, 4), see Section 9.2B
of [3]. Since instantaneous uniform mixing occurs in H(n, 4) for all n > 1, we see that
the Doob graph D(m1,m2) admits instantaneous uniform mixing for all m1,m2 > 1.

Corollary 2.5. The Bose–Mesner algebra of H(n, q) contains a complex Hadamard
matrix if and only if q ∈ {2, 3, 4}.

Proof. It follows from Equation (4) that

pr(n) = (−1)r
(
n

r

)
.

By Proposition 2.2, if the Bose–Mesner algebra of H(n, q) contains a complex
Hadamard matrix, then

qn 6

[
n∑
r=0
|pr(n)|

]2

= 4n.

Hence q ∈ {2, 3, 4}.
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The converse follows directly from Theorem 2.4. �

We conclude that if A(X) belongs to the Bose–Mesner algebra of H(n, q), for q > 5,
then instantaneous uniform mixing does not occur in X.

3. The Cubes
The Hamming graph H(n, 2) is also called the n-cube. It is a distance regular graph
on 2n vertices with intersection numbers

aj = 0, bj = (n− j) and cj = j, for j = 0, . . . , n.
It is both bipartite and antipodal, see Section 9.2 of [3] for details.

It follows from Equation (4) that the eigenvalues of H(n, 2) satisfy
(6) pr(n− s) = (−1)rpr(s) and pn−r(s) = (−1)spr(s),
for r, s = 0, . . . , n.

The proof of Lemma 3.3 uses the following equations, which are Propositions 2.1(3)
and 2.3 of [6].

Proposition 3.1. The eigenvalues of H(n, 2) satisfy
(a) pr(s+ 1)− pr(s) = −pr−1(s+ 1)− pr−1(s), for s = 0, . . . , n− 1, r = 1, . . . , n

and
(b) pr−1(s) − pr−1(s + 2) = 4

∑
h(−2)h

(
n−2−h
r−2−h

)(
s
h

)
, for s = 0, . . . , n − 2 and

r = 1, . . . , n.

Note that the Kronecker product of two complex Hadamard matrices is a complex
Hadamard matrix. Hence for ε ∈ {−1, 1},

[I2 + ε i(J2 − I2)]⊗n =
n∑
j=0

(ε i)jAj

is a complex Hadamard matrix in the Bose–Mesner algebra of H(n, 2).
Suppose A(X) belongs to the Bose–Mesner algebra of H(n, 2) and

A(X)Es = θsEs, for s = 0, . . . , n.
It follows from Equations (3) and (4) that

√
2n e− i τA(X) = ei β [I2 + ε i(J2 − I2)]⊗n

if and only if
√

2n e− i τθs = ei β(1 + ε i)n−s(1− ε i)s

=
√

2n ei β eε iπ(n−2s)/4, for s = 0, . . . , n.
This system of equations holds exactly when

ei β = e− i τθ0−ε iπn/4

and
e− i τ(θs−θ0) = e−ε iπs/2, for s = 0, . . . , n.

Lemma 3.2. Suppose A(X) belongs to the Bose–Mesner algebra of H(n, 2) and
A(X)Es = θsEs, for s = 0, . . . , n. If there exist k and ε ∈ {−1, 1} satisfying

θs − θ0 ≡ εs2k−1 (mod 2k+1), for s = 0, . . . , n,
then there exists β ∈ R such that

√
2n e− i π

2k
A(X) = ei β [I2 + ε i(J2 − I2)]⊗n.

That is, X admits instantaneous uniform mixing at time π/2k.
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Lemma 3.3. Let r > 1. Let α be the largest integer such that
(
n−1
r−1
)
is divisible by 2α.

Suppose (
n− 2− h
r − 2− h

)
≡ 0 (mod 2α+1−h), for h = 0, . . . , α.

Then there exists β ∈ R such that
√

2n e− i π
2α+2 Ar = ei β [I2 + ε i(J2 − I2)]⊗n,

where ε ∈ {−1, 1} satisfies(
n− 1
r − 1

)
≡ −ε2α (mod 2α+2).

In particular, Xr admits instantaneous uniform mixing at time π/2α+2.
Further, if n is even and r is odd, then there exists β′ ∈ R such that

√
2n e− i π

2α+2 An−r = ei β′ [I2 + (−1)
n+2

2 ε i(J2 − I2)]⊗n.

In particular, Xn−r admits instantaneous uniform mixing at time π/2α+2.

Proof. Since 2α+3 divides the right-hand side of Proposition 3.1 (b), we have

pr−1(s+ 2) ≡ pr−1(s)
(
mod 2α+3), for s = 0, . . . , n− 2.

Applying this congruence repeatedly gives, for s = 0, . . . , n− 1,

−pr−1(s+ 1)− pr−1(s) ≡ −pr−1(1)− pr−1(0)
(
mod 2α+3).

It follows from Equation (5) that −pr−1(1) − pr−1(0) = −2
(
n−1
r−1
)
, which is divisible

by 2α+1 but not by 2α+2. Let ε ∈ {−1, 1} satisfy(
n− 1
r − 1

)
≡ −ε2α (mod 2α+2).

Then
−pr−1(1)− pr−1(0) ≡ ε2α+1 (mod 2α+3)

and
−pr−1(s+ 1)− pr−1(s) ≡ ε2α+1 (mod 2α+3), for s = 0, . . . , n− 1.

By Proposition 3.1 (a), we have

pr(s+ 1)− pr(s) ≡ ε2α+1 (mod 2α+3)
and therefore

(7) pr(s)− pr(0) ≡ εs2α+1 (mod 2α+3), for s = 0, . . . , n.

By Lemma 3.2, √
2n e− i π

2α+2 Ar = ei β [I2 + ε i(J2 − I2)]⊗n,
for some β ∈ R, and Xr admits instantaneous uniform mixing at time π/2α+2.

Suppose n is even and r is odd. By Lemma 3.2, it suffices to show

pn−r(s)− pn−r(0) ≡ (−1)
n+2

2 εs2α+1 (mod 2α+3), for s = 0, . . . , n.

When s is even, 2α+2 divides s2α+1 and (−1)(n+2)/2εs2α+1 ≡ εs2α+1 (mod 2α+3).
Applying Equations (6) and (7), we have

pn−r(s)− pn−r(0) = pr(s)− pr(0)

≡ (−1)
n+2

2 εs2α+1 (mod 2α+3).
Algebraic Combinatorics, Vol. 3 #3 (2020) 763
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When s is odd, Equation (6) gives pn−r(s)− pn−r(0) = −pr(s)− pr(0). Applying
Equations (5) and (7), we get

(8) pr(1)− pr(0) = −2r
n

(
n

r

)
≡ ε2α+1 (mod 2α+3),

so 2α+1 is the largest power of 2 that divides 2r
n

(
n
r

)
.

If n ≡ 0 (mod 4), then 2α+3 divides 2
(
n
r

)
= 2pr(0) and

pn−r(s)− pn−r(0) = −[pr(s)− pr(0)]− 2pr(0)
≡ −[pr(s)− pr(0)]

(
mod 2α+3)

≡ (−1)
n+2

2 εs2α+1 (mod 2α+3).
Suppose n ≡ 2 (mod 4). By Equation (5),

2pr(s) =
∑
j

(−1)j2j+1
(
n− j
r − j

)(
s

j

)
.

The hypothesis of this lemma ensures that 2α+3 divides 2j+1(n−j
r−j
)(
s
j

)
for j > 2. Thus

2pr(s) ≡ 2
(
n

r

)
− 22

(
n− 1
r − 1

)
s
(
mod 2α+3).

We see from Equation (8) that 2α+1 is the highest power of 2 that divides 2r
n

(
n
r

)
.

Since r is odd and n ≡ 2 (mod 4), 2α+1 is the largest power of 2 that divides
(
n
r

)
.

Using our assumption on
(
n−1
r−1
)
,

2pr(s) ≡ 2α+2(γ1 − γ2)
(
mod 2α+3),

for some odd integers γ1 and γ2. Therefore, 2pr(s) is divisible by 2α+3 and
pn−r(s)− pn−r(0) = [pr(s)− pr(0)]− 2pr(s)

≡ (−1)
n+2

2 εs2α+1 (mod 2α+3).
By Lemma 3.2, there exists β′ ∈ R such that

√
2n e− i π

2α+2 An−r = ei β′ [I2 + (−1)
n+2

2 ε i(J2 − I2)]⊗n,
and instantaneous uniform mixing occurs in Xn−r at time 2α+2. �

To find the n’s and r’s that satisfy the condition in Lemma 3.3, we need the
following results from number theory, due to Lucas and Kummer, respectively (see
Chapter IX of [9]).
Theorem 3.4. Let p be a prime. Suppose the representation of N and M in base p
are nk . . . n1n0 and mk . . .m1m0, respectively.

Then (
N

M

)
≡
(
nk
mk

)
. . .

(
n0

m0

)
(mod p).

Theorem 3.5. Let p be a prime. The largest integer k such that pk divides
(
N
M

)
is the

number of carries in the addition of N −M and M in base p representation.
Let 2α be the highest power of 2 that divides

(
n−1
r−1
)
. That is, there are exactly α

carries in the addition of n− r and r− 1 in base 2 representation. If both n and r are
even, then no carry takes place in the right-most digit. Therefore, there are exactly α
carries in the addition of n− r and r − 2 in base 2 representation. Similarly, when n
is odd and r is even, there are exactly α− 1 carries in the addition of n− r and r− 2
in base 2 representation. In both cases, 2α+1 does not divide

(
n−2
r−2
)
, so the hypothesis

of Lemma 3.3 does not hold when r is even.
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Corollary 3.6. Suppose n is even. If r is an odd positive integer with 1 6 r 6 n,
and (

n− 1
r − 1

)
≡ 1 (mod 2),

then there exist β, β′ ∈ R such that
√

2n e− i π4Ar = ei β [I2 + ε i(J2 − I2)]⊗n

and √
2n e− i π4An−r = ei β′ [I2 + (−1)

n+2
2 ε i(J2 − I2)]⊗n,

where ε ∈ {−1, 1} satisfies
(
n−1
r−1
)
≡ −ε (mod 4).

In particular, Xr and Xn−r admit instantaneous uniform mixing at time π/4.

Proof. When r = 1, we have
(
n−2
r−2
)

= 0. For r > 3, both n−r and r−2 are odd, there
is at least one carry (in the rightmost digit) in the addition of n− r and r− 2 in base
2 representation. By Theorem 3.5, 2 divides

(
n−2
r−2
)
. The result follows from applying

Lemma 3.3 with α = 0. �

Corollary 3.7. Let n = 2m(2l + 1), for integers l > 0 and m > 1. For each odd r
satisfying 1 6 r < 2m, there exist β, β′ ∈ R such that

√
2n e− i π4Ar = ei β [I2 + ε i(J2 − I2)]⊗n

and √
2n e− i π4An−r = ei β′ [I2 + (−1)

n+2
2 ε i(J2 − I2)]⊗n,

where ε ∈ {−1, 1} satisfies
(
n−1
r−1
)
≡ −ε (mod 4).

In particular, Xr and Xn−r admit instantaneous uniform mixing at time π/4.

Proof. Let r be an odd integer between 1 and 2m. In base 2 representation, let (n−1)
and (r − 1) be vk . . . v0 and uk . . . u0, respectively. Then vj = 1 for j 6 m − 1 and
uh = 0 for h > m, so

(
vj
uj

)
= 1 for all j. By Lucas’ Theorem, we have(

n− 1
r − 1

)
≡ 1 (mod 2).

The result follows from Corollary 3.6. �

We are now ready to show the existence of graphs that admit instantaneous uniform
mixing earlier than time π/4.

Theorem 3.8. Let n = 2k+2−8, for some k > 2. For j = 1, 3, 5, 7, there exists βj ∈ R
such that
(9)

√
2n e− i π

2k
A(2k+1−j) = ei βj [I2 + εj i(J2 − I2)]⊗n,

where εj ∈ {−1, 1} satisfies(
n− 1

(2k+1 − j)− 1

)
≡ −εj2k−2 (mod 2k).

That is, X2k+1−1, X2k+1−3, X2k+1−5 and X2k+1−7 in H(2k+2 − 8, 2) admit instanta-
neous uniform mixing at time π/2k.

Proof. Let n = 2k+2 − 8 and r = n
2 − 1. Then

n− r = 2k+1 − 3 = 2k + 2k−1 + · · ·+ 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20

and
r − 1 = 2k+1 − 6 = 2k + 2k−1 + · · ·+ 1 · 23 + 0 · 22 + 1 · 21 + 0 · 20.

There are (k − 2) carries in the addition of n− r and r − 1 in base 2 representation.
By Kummer’s Theorem, the highest power of 2 that divides

(
n−1
r−1
)
is 2k−2.
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We want to show that 2k−1−h divides
(
n−2−h
r−2−h

)
, for 0 6 h 6 k − 2. When h = 0,

r − 2 = 2k+1 − 7 = 2k + 2k−1 + · · ·+ 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20,

so there are (k− 1) carries in the addition of n− r and r− 2 in base 2 representation.
By Kummer’s Theorem, 2k−1 divides

(
n−2
r−2
)
.

Similarly, there are (k − 2) carries in the addition of n − r and r − 3 in base 2
representation, so 2k−2 divides

(
n−3
r−3
)
.

As h increments by 1, the number of 1’s in the leftmost (k− 2) digits in the base 2
representation of r−2−h decreases by at most one. Hence there are at least k−1−h
carries in the addition of n − r and r − 2 − h in base 2 representation, and 2k−1−h

divides
(
n−2−h
r−2−h

)
, for h = 0, . . . , k − 2.

Applying Lemma 3.3 with r = 2k+1 − 5 and α = k − 2, Equation (9) holds for
j = 5 and j = 3, and X2k+1−5 and X2k+1−3 admit instantaneous uniform mixing at
time π/2k.

A similar analysis shows that Equation (9) holds for j = 1 and j = 7, and instan-
taneous uniform mixing occurs in X2k+1−1 and X2k+1−7 at the same time. �

4. Perfect State Transfer
Let u and w be distinct vertices in X. We say that perfect state transfer occurs from
u to w in the continuous-time quantum walk on X at time τ if

|(e− i τA(X))u,w| = 1.

We say that X is periodic at u with period τ if

|(e− i τA(X))u,u| = 1.

If A(X) belongs to the Bose–Mesner algebra of an association scheme A and X is
periodic at some vertex u, then X is periodic at every vertex because I ∈ A. In this
case, we simply say that X is periodic.

Consider Xr in the Hamming scheme H(2m, 2) when r is odd. We see from the
proof of Corollary 3.7 that

(2m−1
r−1

)
is odd. It follows from Theorem 2.3 of [5] that

perfect state transfer occurs in Xr at time π/2. Moreover, let 1 6 r′ 6 2m be an odd
integer distinct from r, then the graph Xr ∪Xr′ is periodic with period π/2.

Let X be one of the graphs considered in Corollary 3.7 or Theorem 3.8. At the
time τ of instantaneous uniform mixing in X, we have

e− i τA(X) = ei β
√

2n

(
1 ε i
ε i 1

)⊗n
, for some β ∈ R and ε ∈ {−1, 1}.

Observe that, for ε, ε′ ∈ {−1, 1},

(10)
(

1 ε i
ε i 1

)(
1 ε′i
ε′ i 1

)
=


2
(

0 ε i
ε i 0

)
if ε = ε′,

2
(

1 0
0 1

)
if ε 6= ε′.

We see that

e− i 2τA(X) = e2β i
(

0 ε i
ε i 0

)⊗n
,

and X has perfect state transfer at time 2τ .
We generalize the above observation by applying Equation (10) to the union of two

graphs in H(n, 2).
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Lemma 4.1. Let X and X ′ be graphs in H(n, 2) such that E(X) ∩ E(X ′) = ∅, and
there exist β, β′ ∈ R and ε, ε′ ∈ {−1, 1} such that

e− i τA(X) = ei β
√

2n

(
1 ε i
ε i 1

)⊗n
and e− i τA(X′) = ei β′

√
2n

(
1 ε′ i
ε′ i 1

)⊗n
.

If ε = ε′ then X∪X ′ has perfect state transfer at time τ . Otherwise, X∪X ′ is periodic
at time τ .
Proof. As A(X) and A(X ′) commute, it follows from Equation (10) that

e− i τA(X∪X′) = e− i τA(X) e− i τA(X′) =

e(β+β′) i

(
0 ε i
ε i 0

)⊗n
if ε = ε′,

e(β+β′) i I2n otherwise.
�

With the help of the following result in number theory, Theorem 1 of [4], we find
graphs in H(2m, 2) and H(2k+2 − 8, 2) that have perfect state transfer earlier than
π/2.
Theorem 4.2. Let p be prime, n and k be positive integers. If pk divides n then(

n− 1
s

)
≡ (−1)s−bs/pc

(
n/p− 1
bs/pc

) (
mod pk

)
,

for s = 0, . . . , n− 1.
Proposition 4.3. For m > 3, and for odd integers r and r′ satisfying
(11) 1 6 r < r′ < 2m−1 or 2m−1 < r < r′ < 2m,
perfect state transfer occurs in the graph Xr ∪Xr′ of H(2m, 2) at time π/4.
Proof. Let r be an odd integer between 2b and 2b+1 for some b 6 m−1. Let s0 = r−1
and si = bsi−1/2c, for i = 1, . . . , b. Let n = 2m. Applying Theorem 4.2 repeatedly
gives (

n− 1
r − 1

)
≡ (−1)s0−si

(
2m−i − 1

si

) (
mod 2m−i+1), for 1 6 i 6 b.

Since sb = 1 and m− b+ 1 > 2, applying the above equation with i = b yields(
n− 1
r − 1

)
≡ (−1)r−2(2m−b − 1) (mod 4).

If r < 2m−1, we have b 6 m− 2 and(
n− 1
r − 1

)
≡ 1 (mod 4).

If 2m−1 < r, we have b = m− 1 and(
n− 1
r − 1

)
≡ −1 (mod 4).

It follows from Corollary 3.7 that there exist β, β′ ∈ R such that

e− i π4Ar = ei β
√

2n

(
1 ε i
ε i 1

)⊗n
and e− i π4Ar′ = ei β′

√
2n

(
1 ε i
ε i 1

)⊗n
,

where

ε =
{
−1 if r and r′ are odd integers between 1 and 2m−1,
1 if r and r′ are odd integers between 2m−1 and 2m.

By Lemma 4.1, perfect state transfer occurs in Xr ∪Xr′ at time π
4 . �
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Proposition 4.4. For integer k > 2, perfect state transfer occurs in graphs

X2k+1−5 ∪X2k+1−7 and X2k+1−1 ∪X2k+1−3

of H(2k+2 − 8, 2) at time π/2k.

Proof. Let n = 2k+2 − 8 and m = n
8 . Let ε1, ε3, ε5, ε7 be the integers defined in

Theorem 3.8.
Consider 4m− 1 = 2k+1 − 5 and 4m− 3 = 2k+1 − 7. From(

8m− 1
4m− 4

)
=
[
1− 4 5m

(4m+ 3)(2m+ 1)

](
8m− 1
4m− 2

)
,

we get (
n− 1

(2k+1 − 7)− 1

)
=
[
1− 4 5m

(4m+ 3)(2m+ 1)

](
n− 1

(2k+1 − 5)− 1

)
≡
[
1− 4 5m

(4m+ 3)(2m+ 1)

]
(−ε52k−2) (mod 2k).

Since 4m+ 3 and 2m+ 1 are coprime with 2k, we have(
n− 1

(2k+1 − 7)− 1

)
≡ −ε52k−2 (mod 2k),

and ε7 = ε5. It follows from Theorem 3.8 and Lemma 4.1 that perfect state transfer
occurs in X2k+1−5 ∪X2k+1−7 at time π/2k.

For X2k+1−3 and X2k+1−1, we have 4m + 1 = 2k+1 − 3 and 4m + 3 = 2k+1 − 1.
From (

8m− 1
4m+ 2

)
=
[
1− 4 3m

(4m+ 1)(2m+ 1)

](
8m− 1

4m

)
,

we have(
n− 1

(2k+1 − 1)− 1

)
=
[
1− 4 3m

(4m+ 1)(2m+ 1)

](
n− 1

(2k+1 − 3)− 1

)
≡
[
1− 4 3m

(4m+ 1)(2m+ 1)

]
(−ε32k−2) (mod 2k).

Since 4m+ 1 and 2m+ 1 are coprime with 2k, we have(
n− 1

(2k+1 − 1)− 1

)
≡ −ε32k−2 (mod 2k),

and ε1 = ε3. It follows from Theorem 3.8 and Lemma 4.1 that perfect state transfer
occurs in X2k+1−1 ∪X2k+1−3 at time π/2k. �

5. Halved n-Cube
The n-cube X is a connected bipartite graph of diameter n. When n > 2, X2 has two
components, one of which has the set E of binary words of even weights as its vertex
set. The halved n-cube, denoted by X̂, is the subgraph of X2 induced by E . It is a
distance regular graph on 2n−1 vertices with diameter bn2 c. The intersection numbers
of X̂ are

âj = 2j(n− 2j), b̂j = (n− 2j)(n− 2j − 1)
2 and ĉj = j(2j − 1),

for j = 0, . . . , bn2 c, and the eigenvalues of X̂ are p2(0), p2(1), . . . , p2(bn/2c).
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Let Â = {I, Â1, . . . , Âbn/2c} where Âr = A(X̂r). We use p̂r(s) to denote the eigen-
values of Â and let p̂−1(s) = 0. Equation (11) on page 128 of [3] states that, for
r, s = 0, . . . , bn/2c,

p̂1(s)p̂r(s) = ĉr+1p̂r+1(s) + ârp̂r(s) + b̂r−1p̂r−1(s).

It is straightforward to verify that p̂r(s) = p2r(s) satisfies these recursions, so the
eigenvalues of Â are

(12) p̂r(s) = p2r(s), for r, s = 0, . . . , bn2 c.

For more information on the halved n-cube, please see Sections 4.2 and 9.2D of [3].
When n = 2m+ 1, Equation (4) yields

n∑
h=0

ph(s)ih = (1 + i)2m+1−s(1− i)s = 2mim−s(1 + i), for s = 0, . . . , n.

The real part of this sum is

(13)
m∑
r=0

p2r(s)(−1)r =
m∑
r=0

p̂r(s)(−1)r

=
{

2m if m− s ≡ 0 (mod 4) or m− s ≡ 3 (mod 4),
−2m otherwise.

By Proposition 2.1,
∑m
r=0(−1)rÂr is a (complex) Hadamard matrix.

Theorem 5.1. For n > 3, the adjacency algebra of the halved n-cube contains a
complex Hadamard matrix if and only if n is odd.

Proof. Suppose n = 2m. Using Proposition 2.2, it is sufficient to show that[
m∑
r=0
|p̂r(m− 1)|

]2

< 22m−1, for m > 2.

It follows from Equations (4) and (12) that for r > 0,

p̂r(m− 1) = [x2r](1 + x)m+1(1− x)m−1

= [x2r](1 + 2x+ x2)(1− x2)m−1

= (−1)r
[(
m− 1
r

)
−
(
m− 1
r − 1

)]
.

Hence

|p̂r(m− 1)| =
{(

m−1
r

)
−
(
m−1
r−1
)

if 0 6 r 6 m
2(

m−1
r−1
)
−
(
m−1
r

)
if m2 < r 6 m

and
m∑
r=0
|p̂r(m− 1)| =

bm2 c∑
r=0

[(
m− 1
r

)
−
(
m− 1
r − 1

)]
+

m∑
r=bm2 c+1

[(
m− 1
r − 1

)
−
(
m− 1
r

)]

= 2
(
m− 1
bm2 c

)
.

A simple mathematical induction on m shows that 4
(
m−1
bm2 c

)2
< 22m−1, for m > 2.

When n is odd,
∑m
r=0(−1)rÂr is a complex Hadamard matrix. �
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Theorem 5.2. For n > 3, the halved n-cube admits instantaneous uniform mixing if
and only if n is odd.

Proof. From the above theorem, the halved n-cube does not admit instantaneous
uniform mixing when n > 4 is even.

Suppose n = 2m+ 1 and e−2 i τ ∈ {−i, i}. For s = 0, . . . ,m, we have
p̂1(s) = 2(m− s)(m− s+ 1)−m

and

e− i τp̂1(s) = (e−2 i τ )(m−s)(m−s+1) ei τm

=
{

ei τm if m− s ≡ 0 (mod 4) or m− s ≡ 3 (mod 4),
− ei τm otherwise.

We see from Equation (13) that

2m e− i τp̂1(s) = ei τm
m∑
r=0

(−1)rp̂r(s), for s = 0, . . . ,m.

Since | ei τm(−1)r| = 1, it follows from Proposition 2.3 that X̂1 admits instantaneous
uniform mixing at time π

4 . �

The halved 2-cube is the complete graph on two vertices and it admits instanta-
neous uniform mixing (see [1]).

When n > 3, the halved n-cube is isomorphic to the cubelike graph of Zn−1
2 with

connection set
C = {a : weight of a is 1 or 2} .

Applying Theorem 2.3 of [5] to the halved n-cube with even n, we see that perfect
state transfer occurs from a to a ⊕ 1 at time π/2. But this graph does not have
instantaneous uniform mixing.

6. Folded n-Cube
Let Γ be a distance regular graph on v vertices with diameter d and intersection array
{b0, b1, . . . , bd−1; c1, . . . , cd}. We say Γ is antipodal if Γd is a union of complete graph
KR’s, for some fixed R. The vertex sets of the KR’s in Γd form an equitable partition
P of Γ and the quotient graph of Γ with respect to P is called the folded graph Γ̃ of
Γ. When d > 2, Γ̃ is a distance regular graph on v

R vertices with diameter bd2c, see
Proposition 4.2.2 (ii) of [3]. Moreover Γ̃ has intersection numbers ãj = aj , b̃j = bj
and c̃j = cj for j = 0, . . . bd2c − 1 and

c̃b d2 c
=
{
cb d2 c

if d is odd,
Rc d

2
if d is even.

From Proposition 4.2.3 (ii) of [3], we see that if the eigenvalues of Γ are p1(0) >
p1(1) > . . . > p1(d), then Γ̃ has eigenvalues p̃1(j) = p1(2j) for j = 0, . . . , bd2c. The
eigenvalues for Ãj ’s and Aj ’s satisfy the same recursive relation (Equation (11) on
Page 128 of [3]) for j = 0, . . . , bd2c when d is odd and for j = 0, . . . , d2 − 1 when d is
even. When d is even, p̃ d

2
(s) = 1

Rp d2
(2s). Therefore

(14) p̃r(s) =


pr(2s) if 0 6 r < bd2c,
pb d2 c

(2s) if d is odd and r = bd2c,
1
Rp d2

(2s) if d is even and r = d
2 .
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For each vertex a in the n-cube X, 1 ⊕ a is the unique vertex at distance n from
a. Therefore Xn is a union of K2’s. The folded n-cube X̃ has 2n−1 vertices, diameter
bn2 c, and eigenvalues

(15) p̃r(s) =


[xr](1 + x)n−2s(1− x)2s if 0 6 r < bn2 c,
[xbn2 c](1 + x)n−2s(1− x)2s if n is odd and r = bn2 c,
[xn2 ] 1

2 (1 + x)n−2s(1− x)2s if n is even and r = n
2 .

The folded n-cube is isomorphic to the graph obtained from an (n − 1)-cube by
adding the perfect matching in which a vertex a is adjacent to 1 ⊕ a. Best et al.
proved the following result, see Theorem 1 of [2].

Theorem 6.1. For n > 3, the folded n-cube admits instantaneous uniform mixing if
and only if n is odd.

In particular, the adjacency algebra of the folded n-cube contains a complex
Hadamard matrix when n is odd.

Theorem 6.2. For n > 3, the adjacency algebra of the folded n-cube contains a com-
plex Hadamard matrix if and only if n is odd.

Proof. Suppose n = 4m, for some m > 1. We have, for r = 0, . . . , 2m− 1,
p̃r(m) = [xr](1 + x)2m(1− x)2m

=
{

(−1) r2
(2m
r
2

)
if r is even,

0 otherwise
and

p̃2m(m) = (−1)m 1
2

(
2m
m

)
.

Now
2m∑
r=0
|p̃r(m)| =

m−1∑
r=0

(
2m
r

)
+ 1

2

(
2m
m

)

= 1
2

[ 2m∑
r=0

(
2m
r

)]
= 22m−1.

We have
[∑2m

s=0 |p̃s(m)|
]2
< 24m−1. By Proposition 2.2, the adjacency algebra of the

folded 4m-cube does not contain a complex Hadamard matrix.
Suppose n = 4m+ 2. By Equation (15),

p̃r(m) =


1 if r = 0,
(−1)b r2 c2

(2m
b r2 c
)

if 1 6 r < 2m is odd,

(−1) r2
[(2m

r
2

)
−
( 2m
r
2−1
)]

if 2 6 r 6 2m is even,
(−1)m

(2m
m

)
if r = 2m+ 1.

Now
2m+1∑
s=0
|p̃s(m)| = 1 +

m−1∑
r=0

2
(

2m
r

)
+

m∑
r=1

[(
2m
r

)
−
(

2m
r − 1

)]
+
(

2m
m

)
= 22m +

(
2m
m

)
.
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A simple mathematical induction on m shows that
[
22m +

(2m
m

)]2
< 24m+1, for all

integer m > 2. We conclude that the adjacency algebra of the folded (4m + 2)-cube
does not contain a complex Hadamard matrix, for m > 2.

The folded 6-cube has eigenvalues

p0(1) = p0(2) = 1, p1(1) = −p1(2) = 2,
p2(1) = p2(2) = −1 and p3(1) = −p3(2) = −2.

Let W =
∑3
j=0 tjÃj be a type II matrix. Adding the equations in Proposition 2.1 for

s = 1 and s = 2 gives

−
(
t0
t2

+ t2
t0

)
− 4

(
t1
t3

+ t3
t1

)
= 22.

The left-hand side is at most ten if |t0| = |t1| = |t2| = |t3| = 1. Therefore, the
adjacency algebra of the folded 6-cube does not contain a complex Hadamard matrix.

�

The folded 2-cube is the complete graph on two vertices and it admits instantaneous
uniform mixing (see [1]).

7. Folded Halved 2m-Cube
According to Page 141 of [3], the halved 2m-cube X̂ is antipodal with antipodal classes
of size two and the folded 2m-cube X̃ is bipartite for m > 2. In addition, the folded
graph of X̂ is isomorphic to the halved graph of X̃. We use X to denoted the folded
graph of X̂ which is a distance regular graph on 22m−2 vertices with diameter bm2 c.
Let Ar = A(Xr), for r = 0, . . . , bm2 c.

By Equations (12) and (14), the eigenvalues of the folded halved 2m-cube are

(16) Pr(s) =


p2r(2s) if 0 6 r < bm2 c,
p2bm2 c(2s) if m is odd and r = bm2 c,
1
2pm(2s) if m is even and r = m

2 .

Theorem 7.1. The adjacency algebra of the folded halved 2m-cube contains a complex
Hadamard matrix if and only if m is even.

Proof. Suppose m = 2u+ 1. Then

Pr(u) = [x2r](1 + 2x+ x2)(1− x2)2u

=
{

1 if r = 0
(−1)r

(2u
r

)
+ (−1)r−1( 2u

r−1
)

if 1 6 r 6 u.

Then
u∑
r=0
|Pr(u)| = 1 +

u∑
r=1

[(
2u
r

)
−
(

2u
r − 1

)]
=
(

2u
u

)
.

Hence [
u∑
r=0
|Pr(u)|

]2

<

[ 2u∑
r=0

(
2u
r

)]2

= 24u.

By Proposition 2.2, the adjacency algebra of the folded halved (4u+ 2)-cube does not
contain a complex Hadamard matrix.
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Suppose m = 2u. By Equations (16) and (6),
u∑
r=0

(−1)rPr(s) =
u−1∑
r=0

(−1)rp2r(2s) + 1
2(−1)up2u(2s)

= 1
2

u−1∑
r=0

(−1)rp2r(2s) + 1
2(−1)up2u(2s) + 1

2

u−1∑
r=0

(−1)r(−1)2sp4u−2r(2s)

= 1
2

2u∑
r=0

(−1)rp2r(2s),

which is equal to the real part of 1
2
∑4u
j=0 i

jpj(2s). By Equation (4),

(17) 1
2

4u∑
j=0

ijpj(2s) = 1
2(1 + i)4u−2s(1− i)2s = (−1)u−s22u−1.

By Proposition 2.1,
∑u
s=0(−1)sAs is a complex Hadamard matrix. �

Theorem 7.2. The folded halved 2m-cube admits instantaneous uniform mixing if and
only if m is even.

Proof. Suppose m = 2u and e−8 i τ = −1. For s = 0, . . . , u,
P1(s) = 8(u− s)2 − 2u

and
22u−1 e− i τP1(s) = 22u−1(−1)(u−s)2

e2 iuτ ,

which is equal to e2 iuτ∑u
r=0(−1)rPr(s) from Equation (17). By Proposition 2.3, the

folded halved 4u-cube admits instantaneous uniform mixing at time π/8. �
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