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An involution on RC-graphs and a
conjecture on dual Schubert polynomials by

Postnikov and Stanley

Yibo Gao

Abstract In this paper, we provide explicit formula for the dual Schubert polynomials of
a special class of permutations using certain involution principals on RC-graphs, resolving a
conjecture by Postnikov and Stanley.

1. Introduction and Preliminaries
Alexander Postnikov and Richard Stanley [8] defined dual Schubert Polynomials Dw

where the label w belongs to some Weyl group. In type A, the polynomials Dw

are dual to the Schubert polynomials Sw with respect to some natural pairing on
polynomials. Thus, certain change of basis matrix for the coinvariant algebra, which
is the cohomology ring of the complex flag manifold, can now be formulated via dual
Schubert polynomials, providing more ways for the study of Schubert calculus. The
readers are referred to [8] for more details on dual Schubert polynomials.

In this paper, we resolve Conjecture 16.1 of [8], which asks for a form for the dual
Schubert polynomial Dw where w is special. We prove this conjecture by involution
principal on RC-graphs for a fixed permutation, via ladder moves or chute moves
utilized by Bergeron and Billey [1]. In Section 1, we introduce related background
knowledge on dual Schubert polynomials and Schubert polynomials and in Section 2,
we formulate our main theorem and provide a proof.

1.1. Dual Schubert Polynomials. First, we recall some facts about symmetric
groups and fix some notations. Let Sn denote the symmetric group on n elements.
For w ∈ Sn, let `(w) be its Coxeter length, i.e. the number of inversions of w. And
let si be the simple transposition (i, i+ 1) and let tij be the transposition (i, j). The
(right) weak (Bruhat) order on Sn is defined by the covering relations wlwwsi for all
`(w) = `(wsi)− 1 while the (strong) Bruhat order is defined by the covering relations
wls wtij for all `(w) = `(wtij)− 1. We use superscripts w and s for weak and strong
order respectively.

We are now going to define dual Schubert polynomials. To do this, in the strong
Bruhat order, let us assign the weight m(w,wsij) = xi − xj to each edge of its Hasse
diagram. For a saturated chain C = (u0 l u1 l u2 l · · · l u`) in the strong Bruhat
order, define its weight as mC(x) = m(u0, u1)m(u1, u2) · · ·m(u`−1, u`).
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Definition 1.1 ([8]). Define the following polynomials

Du,w(x) := 1(
`(w)− `(u)

)
!
∑
C

mC(x),

where the sum is over all saturated chains from u to w in the strong Bruhat order.
Let Dw(x) := Did,w be the dual Schubert polynomial labeled by w ∈ Sn.

The polynomials Du,w are defined naturally in a more general context for arbitrary
Weyl groups by Postnikov and Stanley [8]. And they have the following geometric
interpretation. For w ∈ W , where W is any Weyl group, and λ a dominant weight,
the λ-degree degλ(Xw) of the Schubert variety Xw equals `(w)! ·Dw(λ). In this paper,
we will only be concerned with the type A case W = Sn.

Combinatorially, the dual Schubert polynomial at the longest permutation w0 ∈ Sn
has a beautiful expression. The following theorem is first due to Stembridge [9], in
arbitrary Weyl groups.

Theorem 1.2. For the longest permutation w0 ∈ Sn,

Dw0(x) =
∏

16i<j6n

xi − xj
j − i

.

Theorem 1.2 is further studied by Postnikov and Stanley [8] and a generalization
of this enumeration result on weighted chains in Bruhat order using a larger family of
weights is provided by Gaetz and Gao [5, 6]. The main result of this paper can also
be thought of as a generalization to Theorem 1.2.

1.2. Schubert Polynomials. Next, we move on to Schubert polynomials, for which
the theory has been very well-developed. In this section, we will only introduce stan-
dard results that are useful to us and refer readers to [4] and [7] for a more compre-
hensive exposure.

The Schubert polynomials {Sw, w ∈ Sn}, form a linear basis of the coinvariant
algebra R = C[x1, . . . , xn]/I, where the ideal I is generated by symmetric polyno-
mials in x1, . . . , xn with vanishing constant terms. The coinvariant algebra R is the
cohomology ring of the flag manifold H∗(Fln) and the Schubert polynomials corre-
spond to Schubert classes. The Schubert polynomials can be defined in the following
recursive way:

• Sw0 = xn−1
1 xn−2

2 · · ·xn−1,
• Sw = ∂iSwsi

when w lw wsi,
where ∂i denotes the ith Newton divided difference operator:

∂if = f(x1, x2, . . . , xn)− f(x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xn)
xi − xi+1

.

One important property of Schubert polynomials is that they have non-negative
integer coefficients written in monomial basis. These coefficients are counted by RC-
graphs, which were originally introduced by Fomin and Kirillov [3] and then by Berg-
eron and Billey [1] for an easier to work with definition.

Definition 1.3 (RC-Graphs). An (reduced) RC-graph D is a finite subset of
{1, 2, . . . , } × {1, 2, . . . , } such that

∏
(i,j)∈D si+j−1 = w is a reduced decomposition,

where in the product, we first range over i in increasing order, then range over j
in decreasing order. In this case, we say that D is an RC-graph for permutation w
and of type α = (α1, α2, . . .) where αi is the number of elements in D whose first
coordinate equals i.

Algebraic Combinatorics, Vol. 3 #3 (2020) 594



On a Conjecture by Postnikov and Stanley

We can picture RC-graphs graphically in a 2D-grid such that elements in D are
drawn as crossings and elements in Z2

>0rD are drawn as non-crossings. After connect-
ing them by strands, we can read off its permutation directly and reducibility corre-
sponds to whether no pairs of strands intersect more than once. We can also represent
crossings as + and non-crossings as · or just nothing. See Figure 1 for an example.

1
2
3
4
5

w3 w5 w2 w1 w4

1
2
3
4
5

1 2 3 4 5
+ + + ·

+ + ·
· +
·

Figure 1. An example of an RC-graph for permutation w = 35214
and of type (3, 2, 1, 0, 0, . . .)

For a piece of notation, for an RC-graph D, write w(D) for its permutation and
α(D) for its type. Let RC(w) be the set of all RC-graphs for permutation w. And
for α = (α1, α2, . . .) ∈ Z∞>0 with finitely many nonzero positive integer entries, let
xα := xα1

1 xα2
2 · · · . The following theorem is usually formulated in terms of reduced

words.

Theorem 1.4 ([2, 4]). Sw =
∑
D∈RC(w) x

α(D).

Note that Theorem 1.4 proves a stability property of the Schubert polynomials.
Namely, for w ∈ Sn, let w′ be its image under the most natural inclusion map Sn ↪→
Sn+1 by permuting the first n elements. Then Sw = Sw′ . As a result, from now
on, instead of concerning ourselves with Sn where n varies, we will be considering
S∞, which is the injective limit of symmetric groups S1 ↪→ S2 ↪→ S3 ↪→ · · · , whose
elements are permutations of Z>0 with finitely many non-fixed points. Then Sw is
well-defined for w ∈ S∞.

Local moves on RC-graphs for a fixed permutation are described in [1]. A chute
move Cij , can be applied to D ∈ RC(w), when the following conditions are satisfied:

• (i, j) ∈ D, (i+ 1, j) /∈ D;
• (i, j −m), (i+ 1, j −m) /∈ D for some 0 < m < j;
• (i, j − k), (i+ 1, j − k) ∈ D for each 0 < k < m.

The resulting RC-graph is Cij(D) = D r {(i, j)} ∪ {(i + 1, j −m)}. An example is
shown in Figure 2. It is easy to see that if D ∈ RC(w) and the above conditions
are satisfied, then Cij(D) ∈ RC(w). Bergeron and Billey [1] also showed that chute
moves (and their inverses) connect RC(w). Because of this graphically representation,
we will sometimes call an element in D a “box”.

j-m j

i

i+1

· + + + +

· + + + ·

→ i

i+1

· + + + ·

+ + + + ·

j-m j

Figure 2. A chute move
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1.3. D-pairing. Define the D-pairing on (each graded component of) the space of
polynomials in infinitely many variables Q[x1, x2, . . .] by

(f, g)D := CT(f(∂/∂x) · g(x))

where CT stands for constant term. We see that the monomial basis of Q[x1, x2, . . .]
form an orthogonal basis with respect to the D-pairing such that (xα, xα)D =
α1!α2! · · · and thus the D-pairing is symmetric and non-degenerate.

As the name suggests, dual Schubert polynomials are dual to the Schubert poly-
nomials with respect to the D-pairing.

Theorem 1.5 (Corollary 12.3 of [8]). The sets of polynomials {Sw}w∈S∞ and
{Dw}w∈S∞ form a dual basis w.r.t. the D-pairing. In other words, both {Sw}w∈S∞
and {Dw}w∈S∞ are basis of Q[x1, x2, . . .] and (Sw,Du) = δw,u where δ is the
Kronecker delta.

Theorem 1.5 easily implies the following lemma, which is our main tool.

Lemma 1.6. If f ∈ Q[x1, x2, . . .] satisfies (f,Su)D = δw,u for all u ∈ S∞, then
f = Dw.

2. Main Theorem and Proof
In this section, we resolve Conjecture 16.1 of [8]. We will be mainly following notations
of [8], but we remark that there are some errors in the original formulation. Recall
that the (Lehmer) code of a permutation is defined to be

code(w)i := #{j > i : w(j) < w(i)}.

Permutations can be reconstructed from their codes.

Definition 2.1. We say that a permutation w is special, if its code has the form

code(w) = (n, ∗, n− 1, ∗, . . . , ∗, 2, ∗, 1, 0, 0, . . .)

where ∗ is either a single 0 or empty.

For a special permutation w, write code(w) = (c1, c2, . . . , 0, 0, . . .). Let c1 = n and
let a1 < a2 < · · · < ak be the indices such that cai = 0 and cai−1 > 0. We can then
view w as a permutation in Sn+k ↪→ S∞.

Define

gδ(y1, . . . , ym) =
∑
u∈Sm

(−1)`(w0)−`(u)y
u(1)
1 · · · yu(m)

m = y1 · · · ym
∏

16i<j6m
(yi − yj).

An n-element subset J = {j1, . . . , jn} of {1, 2, . . . , n + k} is said to be valid (with
respect to w) if

#(J ∩ {ai−1 + 1, ai−1 + 2, . . . , ai − 1, ai}) = ai − ai−1 − 1

for all 1 6 i 6 k. If J is a valid set, let εJ = (−1)dJ where

dJ = (j1 + · · ·+ jn)−
(
n+ k + 1

2

)
+ (a1 + · · ·+ ak)

which gives sign 1 to the valid subset L with the smallest element sum.

Theorem 2.2 (Conjecture 16.1 of [8]). Let w be special as above. Then

Dw = 1
1!2! · · ·n!

∑
J={j1,...,jn} valid

εJgδ(xj1 , xj2 , . . . , xjn
).

Algebraic Combinatorics, Vol. 3 #3 (2020) 596



On a Conjecture by Postnikov and Stanley

Before proving Theorem 2.2, let us utilize chute moves defined in Section 1 and
define a slightly more complicated move on RC-graphs. We say that a flip move Fi,j
can be applied to D ∈ RC(w) if (i, j) /∈ D. As in a chute move, we will only change
row i and row i + 1. The procedure of such a move is explained as follows. Let us
first “ignore” columns p such that (i, p), (i + 1, p) ∈ D, meaning that these entries
(i, p), (i + 1, p) will still stay in Fi,j(D) after the flip. Notice that in a chute move,
such columns are always fixed. Consider all boxes (q1, p) ∈ D such that (q2, p) /∈ D
where {q1, q2} = {i, i + 1}. We call these boxes single and connect them by the
following rules:

• connect (q, p) and (q, p′) if for all k ∈ {p+ 1, . . . , p′− 1}, (i, k), (i+ 1, k) ∈ D;
• connect (i+1, p) and (i, p′) if for all but one k ∈ {p+1, . . . , p′−1}, (i, k), (i+

1, k) ∈ D with the exception that for one k′ ∈ {p+ 1, . . . , p′ − 1}, (i, k′), (i+
1, k′) /∈ D.

These rules divide all such boxes into chains. Each chain consists of boxes
(i + 1, q1), . . . , (i + 1, qa), (i, qa+2), . . . , (i, qa+b+1) with j 6 q1 < · · · < qa+b where
the index qa+1 is such that (i, qa+1), (i + 1, qa+1) /∈ D, and a, b > 0. For the
flip move Fi,j , we change (remove then add) these boxes to (i + 1, q1), . . . , (i +
1, qb), (i, qb+2), . . . , (i, qa+b+1). For such a chain, this flip is in fact b− a chute moves
from left to right applied to the middle b− a elements of D if a 6 b, or a− b inverse
chute moves if a > b. An example is shown in Figure 3.
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+
+

+
+
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+
·
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+
+

+
·

+
+
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·
·

+
·
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+

+
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·
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+
+
·
+
·
·

+
+

+
·
·
·

+
+
·
·
·
·

+
·
· · ·

l flip move l

Figure 3. An example of a flip move, where different chains of single
boxes are labeled by different shapes.

A few simple facts ensure that our flip move is well-defined. First, there is never
a configuration in the form of (i + 1, p), (i, p′) ∈ D, (i, p), (i + 1, p′) /∈ D, and for all
p < k < p′, (i, k), (i + 1, k) ∈ D, since otherwise, the RC-graph is not reduced. This
fact guarantees that we can indeed partition all single boxes into chains as described
above, and that each chain lie “strictly” to the left or right of each other. Second,
the condition (i, j) /∈ D is essential since otherwise, if the leftmost chain contains
(i, j), during our flip move which may contain a chute move at (i, j), we would need
to require certain boxes whose column indices are less than j to be not in D. Such
condition is inconvenient since j might even be 1.

An important property of the flip move defined above, suggested by its name, is
that Fi,j(Fi,j(D)) = D when (i, j) /∈ D.

We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. Let

f := 1
1!2! · · ·n!

∑
J={j1,...,jn} valid

εJgδ(xj1 , xj2 , . . . , xjn
)

be the desired expression. By Lemma 1.6, it suffices to show that (f,Su)D = δwu, for
all u ∈ S∞.

Algebraic Combinatorics, Vol. 3 #3 (2020) 597



Y. Gao

Fix u ∈ S∞. To use the D-pairing, we expand both f and Su as sums of mono-
mials. By Theorem 1.4, Su =

∑
α cu,αx

α, where cu,α is the number of RC-graphs for
permutation u and of type α. To compute (f,Su)D, we only need to pay attention
to the number of RC-graphs of special types α, which means that xα appear in the
expansion of f . More explicitly, by definition of gδ, we know that for α being a special
type, the nonzero entries of α1, α2, . . . are precisely 1, 2, . . . , n and in order for xα
to appear in some gδ(xj1 , . . . , xjn

) with J = {j1, . . . , jn} valid, the number of zeros
among αai−1+1, . . . , αai is exactly 1 for i = 1, . . . , k, and αj = 0 for j > n+ k. From
now on, for a special type α, we view it as an array of n + k numbers, instead of an
infinite array. Let RCs(u) be the set of all RC-graphs for permutation u and of special
types. Moreover, for each D ∈ RCs(u), we can associate a sign wt(α) to D based on
its type α according to f . It is possible to write down explicitly the sign, but for our
purpose, the following rules are more useful:

(1) If α = code(w), wt(α) = 1;
(2) If α′ is obtained from α by switching two nonzero entries, then wt(α′) =
−wt(α);

(3) If α′ is obtained from α by switching a zero with its adjacent nonzero entry
such that α′ remains special, then wt(α′) = −wt(α).

Let’s justify the rules here. For (1), when α = code(w), the corresponding valid set
J satisfies that J ⊃ {ai−1 + 1, . . . , ai − 1} so (j1 + · · · + jn) + (a1 + · · · + ak) =
1 + 2 + · · · + (n + k) and as a result, dJ = 0, εJ = 1. And as the nonzero entries
of α are increasing, the sign of α is the same as εJ . Rule (2) follows from the fact
that a transposition changes the sign of a permutation. For (3), let J and J ′ be
the corresponding valid sets for α and α′ respectively. As J and J ′ differ by an
adjacent pair of numbers, dJ and d′J differ by 1 so their signs are different. But the
permutations (in the expansion of gδ) associated with α and α′ are the same so in
the end, wt(α′) = −wt(α).

Since for a special type α, (xα, xα)D = 1!2! · · ·n!, we can interpret (f,Su)D as a
weighted sum of RC-graphs in RCs(u), where the weights are ±1 explained above.

For example, if w = 41532 is special, then code(w) = (3, 0, 2, 1, 0). There are a
total number of 36 special types: 2 possibilities for the position of the first zero that
appears as either α1 or α2, 3 possibilities for the position of the second zero, and 6
possibilities for the permutation of 3, 2, 1. As for the weights, we have wt(3, 0, 2, 1, 0) =
1, wt(0, 3, 2, 1, 0) = −1, wt(0, 1, 2, 3, 0) = 1, wt(0, 1, 2, 0, 3) = −1, etc.

Our strategy is using flip moves to pair up RC-graphs of special types with different
signs. We will do this in steps. Let I = {1, 2, . . . , n+k}r{a1, a2, . . . , ak} be the index
set of positions where code(w) is nonzero. We say that D ∈ RCs(u) is 1-flippable, if
there exists i ∈ I such that (i, 1) /∈ D. For each 1-flippable RC-graph D ∈ RCs(u), we
can pair it up with Fi0,1(D) where i0 is the smallest index in I such that (i0, 1) /∈ D.
Notice that in this case, D′ = Fi0,1(D) is also 1-flippable because of the existence
of i0 and that i0 is the smallest index in I such that (i0, 1) /∈ D′ as well. Moreover,
α(D′) can be obtained from α(D) by switching the ith0 entry and (i0 + 1)th entry.
Thus, D′ ∈ RCs(u) and D′ and D have opposite signs. As a result, F∗,1 is a sign-
reversing involution on the set of all 1-flippable RC-graphs in RCs(u). By taking out
all such graphs, we are left with RC-graphs that are not 1-flippable. Denote such set
as RCs′(u).

Notice that for D ∈ RCs′(u) and α = α(D), since (i0, 1) ∈ D for all i0 ∈ I, we
know that αai

= 0 for i = 1, . . . , k. Our next step will be a generalization to the above
procedure.

We say that D ∈ RCs′(u) is j-flippable, for some j > 1, if there exists i ∈ I
satisfying the following condition:
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(1) If at−1 + 1 6 i < at − 1 for some t = 1, . . . , k (by convention a0 = 0), we
require j > t and {(i, 1), (i, 2), . . . , (i, j − t+ 1)} ∩D has the same cardinality
as {(i+ 1, 1), (i+ 1, 2), . . . , (i+ 1, j − t)} ∩D;

(2) If i = at−1 for some t, we require j > t and {(i, 1), (i, 2), . . . , (i, j−t+1)}∩D
has the same cardinality as {(i+ 2, 1), (i+ 2, 2), . . . , (i+ 2, j − t− 1)} ∩D.

We say that D ∈ RCs′(u) is j-flippable at row i ∈ I if such condition is satisfied, and
that D is j-flippable at minimum row i if D is j-flippable and that i is the smallest
index such that D is j-flippable at i. We have abused the notion of 1-flippable but as
our original definition of 1-flippable implies the new-defined version, we see that each
D ∈ RCs′(u) is not 1-flippable so there won’t be a problem.

Fixing i0 ∈ I and j, we are now going to use flip moves to construct a sign-reversing
involution on all RC-graphs in RCs′(u) that are not j′-flippable for every j′ < j and
are j-flippable at minimum row i0. Let such set of RC-graphs be RCi0,js′ . There are
two cases.

Case (1). at−1+1 6 i0 < at−1 for some t = 1, . . . , k. When j′ = t, {(i0, 1), . . . , (i0, j′−
t+1)}∩D = {(i0, 1)} which has cardinality 1 and {(i0+1, 1), . . . , (i0+1, j′−t)}∩D = ∅
which has cardinality 0. If j′ increases by 1, the cardinality of {(i0, 1), . . . , (i0, j′− t+
1)} ∩D increases by 1 or 0 and so does the cardinality of {(i0 + 1, 1), . . . , (i0 + 1, j′−
t)} ∩ D. Since D is not j′-flippable for all j′ < j, the cardinality of the first set is
always greater than the cardinality of the second set. As D is j-flippable at row i0,
we deduce that (i0, j − t + 1) /∈ D. This allows us to apply Fi0,j−t+1 to D. We are
going to verify in a moment that Fi0,j−t+1(D) ∈ RCi0,js′ .

Case (2). i0 = at − 1 for some t = 1, . . . , k. With the same argument, (i0, j − t +
1) /∈ D. We are now going to apply a modified flip move F ′i0,j−t+1 to D. As row
i0 + 1 = at of D is completely empty, and recall that (i, j) ∈ D represents the simple
transposition si+j−1 in the corresponding reduced decomposition, we can move every
box with row index at least i0 + 2 in the direction of (−1, 1), without changing the
corresponding permutation u (and its reduced decomposition). Call this RC-graph
D̄. Apply Fi0,j−t+1 to D̄ to obtain D̄′. Then move every box with row index at least
i0 + 1 in the direction of (1,−1) to finally arrive at D′. Write F ′i0,j−t+1(D) = D′. An
example is shown in Figure 4.

1
2
3
4
5
6

+ + + + +
+ · · + +
· · · · ·
+ + + +
+ · · +
+

+ + + + +
+ · · + +
· + + + +
· + · · +
· +

+ + + + + ·
+ · · + + +
· + · + +
· + · · +
· +

+ + + + + ·
+ · · + + +
· · · · ·
+ · + +
+ · · +
+

Figure 4. An example of the sign reversing involution F ′i0,j−t+1
where code(w) = (5, 4, 0, 3, 2, 1, 0), i0 = 2, j = 3. From left to right:
D, which is not 1-flippable or 2-flippable, but is 3-flippable at min-
imum row 2; D̄, which is obtained from D by moving row 4,5,6 via
(−1, 1); D̄′ = F2,3(D̄); D′, which is obtained from D̄′ by moving row
4,5,6 via (1,−1).

We are now going to show that such construction indeed provides a sign-reversing
involution. Consider Case (1) first. Recall D ∈ RCi0,js′ and D′ = Fi0,j−t+1(D), which
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only changes row i0 and i0 + 1 after column j − t. Therefore, for each j′ < j, for
at−1 + 1 6 i < at − 1, {(i, 1), . . . , (i, j′ − t+ 1)} ∩D = {(i, 1), . . . , (i, j′ − t+ 1)} ∩D′,
{(i+1, 1), . . . , (i+1, j′−t)}∩D = {(i+1, 1), . . . , (i+1, j′−t)}∩D′, and for i = at−1,
{(i, 1), . . . , (i, j′− t+ 1)}∩D = {(i, 1), . . . , (i, j′− t+ 1)}∩D′, {(i+ 2), . . . , (i+ 2, j′−
t− 1)}∩D = {(i+ 2), . . . , (i+ 2, j′− t− 1)}∩D′. So D′ is not j′-flippable. Moreover,
the existence of i0 says that D′ is j-flippable at row i0. With the same reason that
a flip move only changes row i0 and i0 + 1 after column j − t, we know that D′
is j-flippable at minimum row i0. So D′ ∈ RCi0,js′ . As for its type, by definition
of a flip move, we know that {(i0, j − t + 2), (i0, j − t + 3), . . .} ∩ D has the same
cardinality as {(i0 +1, j− t+1), (i0 +1, j− t+2), . . .}∩D′ and since the cardinality of
{(i0, 1), . . . , (i0, j−t+1)}∩D equals the cardinality of {(i0+1, 1), . . . , (i0+1, j−t)}∩D′,
α(D)i0 = α(D′)i0+1. Similarly, α(D)i0+1 = α(D′) so α(D′) is obtained from α(D)
by switching the ith0 entry with (i0 + 1)th entry. They have different signs. In fact,
Case (2) can be unified to Case (1) by moving elements in row i ∈ I of D by (−t, t)
where at−1 < i < at, as in the definition of the modified flip move F ′i0,j−t+1, since
row at’s are all empty. Then the same arguments work.

Finally, we are left with special RC-graphs that are not j-flippable for all j. We
claim that there is exactly one such RC-graph D0 and that it is for the permutation
w and of type α = code(w). This RC-graph is known as the bottom RC-graph for w
(see [1]). First, for two consecutive rows i, i+ 1 ∈ I, {(i, 1), . . . , (i, j − t+ 1)} ∩D has
different cardinality than {(i+ 1, 1), . . . , (i+ 1, j − t)} ∩D. But when j increases by
1, both sets increase by 0 or 1 and since (i, 1) ∈ D, we must have that the cardinality
of the first set stays always above the cardinality of the second. When j is sufficiently
large, we deduce αi > αi+1. Similarly, αi > αi+2 for i = at − 1. Thus, the nonzero
entries of α are decreasing, and thus α = code(w). Next, we use backwards induction
to show that (i, 1), (i, 2), . . . , (i, αi) ∈ D, i ∈ I. As we already know (i, 1) ∈ D for all
i ∈ I, the base case i = ak − 1 is established. For a general i, if at−1 + 1 6 i < at − 1,
then i+1 ∈ I and (i+1, 1), . . . , (i+1, αi+1) ∈ D. The non-flippable property directly
implies that (i, 1), . . . , (i, αi+1 + 1) ∈ D so we are done as αi+1 + 1 = αi. If i = at− 1
for some t, then i+1 /∈ I, i+2 ∈ I, αi = αi+2 +1. The non-flippable property implies
that the cardinality of {(i, 1), . . . , (i, αi + 1)} ∩D is αi so we just need to figure out
which box among (i, 1), . . . , (i, αi + 1) is not in D. If (i, k) /∈ D for some k 6 αi, then
the two strands emanating up and right from (i + 2, k − 1) meet again at (i, αi + 1)
(Figure 5), meaning D is not reduced. Thus, (i, 1), . . . , (i, αi) ∈ D and our induction
step goes through. This RC-graph D is indeed the bottom RC-graph for w, which is
reduced and corresponds to w (see [1]). �

i

i+1

i+2

j αi+1

+ + + · + +

· · · · ·

+ + + +

Figure 5. A configuration that is not reduced

Let’s now look at a slight generalization to Theorem 2.2. Suppose that we have
positive integers 0 < a1 < b1 < a2 < b2 < · · · < ak < bk and let n =

∑k
i=1(bi−ai). We

say that an n-element subset J is valid with respect to a, b if #(J∩{ai, ai+1, . . . , bi}) =
bi − ai for every i. Notice that the setting of Theorem 2.2 is a special case where
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ai − bi−1 = 1 for i = 1, . . . , k and b0 = 0 by convention. If J = {j1, . . . , jn} is valid,
let εJ = (−1)dJ where

dJ = (j1 + · · ·+ jn)−
(

k∑
i=1

(ai + · · ·+ (bi − 1))
)
.

Theorem 2.3. Use notations as above,
1

1!2! · · ·n!εJgδ(xj1 , . . . , xjn
) =

∑
w∈Sbk

mwDw,

where mw’s are non-negative integers.

Proof. The proof strategy is exactly the same as the proof for Theorem 2.2. So we
will skip repeated details and provide a sketch here. Let f be the LHS of the theorem
statement and (f,Sw)D can be viewed as a weighted sum of RC-graphs of special
types for permutation w. Likewise, we can define the notion of j-flippable RC-graphs
and apply (modified) flip moves. The only difference is that instead of moving latter
rows (−1, 1) to bypass one empty row, we will need to move (at+1 − bt) ∗ (−1, 1) this
time. But the principal of ignoring empty rows remains the same.

In the end, we are left with non-flippable RC-graphs. All of them are of the same
type α, which takes on values n, n − 1, . . . , 2, 1 at indices a1, . . . , b1 − 1, a2, . . . , b2 −
1, . . . , ak, . . . , bk−1 and 0 elsewhere. The weight of α is 1. Let D be such an RC-graph
and let I =

⋃k
t=1{at, . . . , bt − 1}. We have (bk − 1, 1) ∈ D. Then, we use backwards

induction on i to show that (i, j) /∈ D if i + j > bk. The base case i = bk − 1 is
established. Moreover, this claim is trivial if i /∈ I. For a general i, let i′ be the smallest
element greater than i in I. By the non-flippable property of D, {(i, 1), . . . , (i, bk −
i)} ∩ D has greater cardinality than {(i′, 1), . . . , (i′, bk − i′)} ∩ D, which is αi′ by
induction hypothesis. As αi = αi′ + 1, we know that {(i, 1), . . . , (i, bk − i)} ∩D must
have cardinality αi so there cannot be more boxes in ith row after bk−i. The induction
step goes through. Thus, the decomposition of the permutation of D uses only si for
i < bk, meaning that the permutation lies in Sbk

as desired. �
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