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Set-partition tableaux and representations
of diagram algebras

Tom Halverson & Theodore N. Jacobson

Abstract The partition algebra is an associative algebra with a basis of set-partition dia-
grams and multiplication given by diagram concatenation. It contains as subalgebras a large
class of diagram algebras including the Brauer, planar partition, rook monoid, rook-Brauer,
Temperley–Lieb, Motzkin, planar rook monoid, and symmetric group algebras. We construct
the irreducible modules of these algebras in three isomorphic ways: as the span of diagrams in
a quotient of the left regular representation; as the span of symmetric diagrams on which the
algebra acts by conjugation twisted with an irreducible symmetric group representation; and on
a basis indexed by set-partition tableaux such that diagrams in the algebra act combinatorially
on tableaux. The second representation is analogous to the Gelfand model and the third is a
generalization of Young’s natural representation of the symmetric group on standard tableaux.
The methods of this paper work uniformly for the partition algebra and its diagram subal-
gebras. As an application, we express the characters of each of these algebras as nonnegative
integer combinations of symmetric group characters whose coefficients count fixed points under
conjugation.

1. Introduction
The partition algebra Pk(n) for k ∈ Z>0 is a unital, associative algebra over C (or
any field of characteristic 0) and is semisimple for all n ∈ Cr{0, 1, . . . , 2k−2}. It has
a basis of set-partition diagrams and multiplication given by diagram concatenation.
This algebra arose in the work of P.P. Martin [25, 27] and V. Jones [22] in the study of
the Potts model, a k-site, n-state lattice model in statistical mechanics. For k, n ∈ Z>1
the partition algebra Pk(n) and the symmetric group Sn are in Schur–Weyl duality
on the k-fold tensor product V⊗kn of the n-dimensional permutation module Vn of the
symmetric group Sn, and when n > 2k, Pk(n) is isomorphic to the centralizer algebra
of Sn on V⊗kn . This allows information to flow back and forth between Pk(n) and Sn.

The partition algebra Pk(n) contains as subalgebras a large class of diagram alge-
bras including the Brauer, planar partition, rook monoid, rook-Brauer, Temperley–
Lieb, Motzkin, planar rook monoid, and symmetric group algebras. Each of these
subalgebras arises as the span of restricted types of set-partition diagrams (see Sec-
tion 2.3). If Ak is the partition algebra or one of its diagram subalgebras, then the
irreducible Ak-modules can be indexed by a subset ΛAk

n ⊆ {λ ` n} of the integer
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partitions of n. In this paper we give three explicit constructions of the irreducible
modules Aλ

k for λ ∈ ΛAk
n . The first is as the span of diagrams inside a quotient of

the left regular representation of Aλ
k . The second is a combinatorial realization of the

first. It is given by conjugation on a basis of symmetric m-diagrams (Definition 3.4)
that is twisted by a symmetric group representation. This method is analogous to
the Gelfand models for diagram algebras found in [18] and [24]. A nice feature of the
construction here is that we isolate each irreducible module, rather than constructing
a (multiplicity-free) sum of irreducible modules.

The third method of constructing Aλ
k is on a basis of set-partition tableaux. In [3, 2]

and [34], it is shown that the dimension of the irreducible partition algebra module Aλ
k

equals the number of standard set-partition tableaux of shape λ. Thus, there should
be a representation of these modules on a basis indexed by set partition tableaux,
and such a construction is the main result of this paper. In Section 4, we give a
combinatorial action of the diagrams in Ak(n) on these set partition tableaux and
prove that it is isomorphic to the irreducible module Aλ

k . This representation is a
generalization of Young’s natural representation of the symmetric group on a basis
of standard Young tableaux. In fact, if λ has k boxes below the first row, when
restricted to the symmetric group algebra CSk ⊆ Pk(n) we exactly recover Young’s
representation.

A surprising feature of the methods in this paper is that, by restriction, they work
uniformly for the partition algebra and all of the diagram subalgebras listed above.
Thus we obtain a complete set of analogs of Young’s natural representation for these
algebras. In the case of the non-planar algebras — partition, Brauer, rook monoid,
rook-Brauer — we obtain new constructions of the irreducible modules on symmetric
diagrams and on set-partition tableaux. In the case of the planar algebras — pla-
nar partition, Temperley–Lieb, Motzkin, and planar rook monoid — our methods
specialize to known constructions.

In Section 5, we use our explicit construction of the irreducible modules on sym-
metric diagrams to write the irreducible characters of each Ak into a nonnegative
integer sum of characters of the symmetric groups Sm, for 0 6 m 6 k. We prove
that if λ = [λ1, λ2, . . . , λ`] ` n with λ∗ = [λ2, λ3, . . . , λ`] ` m, then the value of the
irreducible Ak character on a diagram γκ of cycle type κ ` k (see (39)) is given by

(1) χλAk
(γκ) =

∑
µ`m

Fµ,κAk
χλ
∗

Sm(γµ),

where Fµ,κAk
∈ Z>0 and χλ∗Sm(γµ) is the symmetric group character indexed by λ∗ on

the conjugacy class of cycle type µ ` m. By counting fixed points under conjuga-
tion, we obtain a closed formula for the coefficients Fµ,κAk

. For example, we prove in
Proposition 5.16 that for the partition algebra Pk(n),

(2) Fµ,κPk(n) =
∑
ν|κ

∏
i

∑
t

{
mi(ν)
t

}(
t

mi(µ)

)
imi(ν)−t,

where ν|κ means that ν is a divisor of κ (see Definition 5.13) and mi(ν) denotes
the number of parts of ν equal to i. In this formula

{
a
b

}
is the Stirling number of

the second kind and
(
a
b

)
is the binomial coefficient. The coefficient in (2) specializes

to the diagram subalgebras giving new character formulas for the partition, Brauer,
and rook-Brauer algebras and known formulas for the rook monoid, Temperley–Lieb,
Motzkin, and planar rook monoid algebras.

For further background on partition algebras see [2, 6, 17, 22, 26, 27, 28, 29, 31, 32].
Representing the irreducible modules on a basis of set-partition tableaux is new for all
of these algebras. The construction on symmetric diagrams for the partition algebra
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is closely related to the work in [31] and [6] and for the Brauer algebra to the work
in [19]. The construction of the irreducible modules of the planar algebras on symmet-
ric diagrams is identical to the construction in the Gelfand models of [18] and [24] and
is isomorphic to known representations of the Temperley–Lieb [41], Motzkin [1], and
planar partition [10] algebras. The representations constructed in this paper are differ-
ent from the seminormal representations constructed for the partition [8], Brauer [33],
rook-Brauer [14], rook monoid [13], and Temperley–Lieb [15] algebras.

2. Partition Algebras
2.1. Set-partition diagrams. We let Π2k denote the set of set partitions of
{1, . . . , k, 1′, . . . , k′} and refer to the subsets of a set partition as blocks. For example,

(3) {1′, 2 | 2′, 3′ | 4′, 1, 3 | 5′, 7′ | 6′, 4, 7, 8 | 8′, 6 | 5}

is a set partition in Π16 with 7 blocks. The number of set partitions in Π2k with t
blocks is given by the Stirling number of the second kind

{2k
t

}
, and thus Π2k has

order equal to the Bell number B(2k) =
∑
t

{2k
t

}
.

A diagram d of a set partition π ∈ Π2k consists of two rows of k vertices labeled
1′, . . . , k′ on the bottom row and 1, . . . , k on the top row. Edges are drawn such
that the connected components of d equal π. For example, the set partition in (3) is
represented by

1′

1

2′

2

3′

3

4′

4

5′

5

6′

6

7′

7

8′

8

.

The way the edges are drawn is immaterial; what matters is that the connected
components of the diagram correspond to the blocks of the set partition. Thus, d
represents the equivalence class of all diagrams with connected components equal to
the blocks of π. We define

(4) Pk = {d | d is the diagram of a set partition in Π2k}.

Concatenation d1 ◦ d2 of two diagrams d1, d2 is accomplished by placing d1 above
d2, identifying the vertices in the bottom row of d1 with those in the top row of d2,
concatenating the edges, and deleting all connected components that lie entirely in
the middle row of the joined diagrams. For example,
(5)

d1 =

d2 =
= = d1 ◦ d2.

It is easy to confirm that concatenation depends only on the underlying set partitions
and is independent of the diagrams chosen to represent them. Concatenation makes
Pk an associative monoid with identity element 1k =

· · ·

· · · corresponding to
the set partition {1, 1′ | · · · | k, k′}.

Let P0(n) = C. For k ∈ Z>1 and n ∈ C, the partition algebra Pk(n) is the associa-
tive algebra over C with basis Pk,

(6) Pk(n) := CPk = C-span{d | d ∈ Pk},
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such that multiplication in Pk(n) is defined on basis diagrams d1, d2 ∈ Pk as

(7) d1d2 = n`(d1,d2) d1 ◦ d2,

where `(d1, d2) is the number of connected components that were deleted from the
middle row in the concatenation d1◦d2. For example, the product of the two diagrams
in (5) is d1d2 = n2d1 ◦ d2. Since the basis of Pk(n) corresponds to set partitions in
Π2k we have dim Pk(n) = |Pk| = B(2k).

The partition algebra is semisimple for all n ∈ C such that n 6∈ {0, 1, . . . , 2k − 2}
(see [32], [17, Thm. 3.27]), and the partition algebras Pk(n) are isomorphic to one
another for all choices of the parameter n such that Pk(n) is semisimple. For this
reason, we will assume that n ∈ Z such that n > 2k so that we can take advantage of
the Schur–Weyl duality between Pk(n) and Sn (see Section 2.5).

2.2. Generators and relations. For k ∈ Z>1, the partition algebra Pk(n) has a
presentation by the generators
(8)

si =
· · ·

· · ·

· · ·

· · ·

i i+1

, pi =
· · ·

· · ·

· · ·

· · ·

i

, bi =
· · ·

· · ·

· · ·

· · ·

i i+1

1 6 i 6 k − 1 1 6 i 6 k 1 6 i 6 k − 1
and the relations found in [17, Thm. 1.11]. It is useful in generating diagram subal-
gebras to define the elements ei = bipipi+1bi, li = sipi, and ri = pisi , so that

(9) ei =
· · ·

· · ·

· · ·

· · ·

i i+1

, li =
· · ·

· · ·

· · ·

· · ·

i i+1

, ri =
· · ·

· · ·

· · ·

· · ·

i i+1

1 6 i 6 k − 1 1 6 i 6 k − 1 1 6 i 6 k − 1

.

2.3. Subalgebras. For k, n ∈ Z>1 with n > 2k the following are semisimple subal-
gebras of the partition algebra Pk(n):

CSk = C-span
{
d ∈ Pk

∣∣∣∣ all blocks of d have exactly one vertex in {1, . . . k}
and exactly one vertex in {1′, . . . k′}

}
,

Rk = C-span
{
d ∈ Pk

∣∣∣∣ all blocks of d have at most one vertex in {1, . . . k}
and at most one vertex in {1′, . . . k′}

}
,

Bk(n) = C-span{ d ∈ Pk | all blocks of d have size 2},
RBk(n) = C-span{ d ∈ Pk | all blocks of d have size 1 or 2}.
Here, CSk is the group algebra of the symmetric group, Bk(n) is the Brauer algebra [5],
Rk is the rook monoid algebra [39], and RBk(n) is the rook-Brauer algebra [14], [30].

A set partition is planar if it can be represented as a diagram without edge crossings
inside of the rectangle formed by its vertices. The planar partition algebra [22] is
defined as

PPk(n) = C-span{ d ∈ Pk | d is planar },
and following are the planar subalgebras of Pk(n), which are also semisimple:

C1k = CSk ∩PPk(n), TLk(n) = Bk(n) ∩PPk(n),
PRk = Rk ∩PPk(n), Mk(n) = RBk(n) ∩PPk(n).

Here, TLk(n) is the Temperley–Lieb algebra [40], PRk is the planar rook monoid
algebra [10], and Mk(n) is the Motzkin algebra [1]. There is an algebra isomorphism
PPk(n) ∼= TL2k(n) (see [22] or [17]) and we forgo discussion of the planar parti-
tion algebra in favor of the Temperley–Lieb algebra. The parameter n does not arise
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when multiplying symmetric group diagrams (as there are never middle blocks to be
removed). The following displays examples from each of these subalgebras:

∈ S10 ∈ PP10(n)

∈ B10(n) ∈ TL10(n)

∈ RB10(n) ∈M10(n)

∈ R10 ∈ PR10

Each diagram algebra Ak is generated as a unital subalgebra Ak ⊆ Pk(n) of the
partition algebra using a subset of the generators si, bi, ei, li, ri for 1 6 i 6 k − 1 and
pi for 1 6 i 6 k as shown in the following table.

Algebra Generators
Pk(n) si, bi, pi

CSk si

Rk si, pi

Algebra Generators
Bk(n) si, ei

RBk(n) si, ei, pi
PPk(n) pi, bi

Algebra Generators
TLk(n) ei

Mk(n) ei, li, ri

PRk li, ri

Typically the rook monoid and planar rook monoid algebras do not have the parameter
n [39],[13], and are recovered by replacing the generator pi with 1

npi.

2.4. Basic construction. Let Ak ⊆ Pk(n) be the partition algebra or one of the
subalgebras described in Section 2.3 and let Ak ⊆ Pk be its diagram basis. There is
a natural embedding of Ar−1 as a subalgebra of Ar by placing an identity edge to
the right of any diagram in Ar−1 thus forming a tower of algebras: A0 ⊆ A1 ⊆ A2 ⊆
· · · ⊆ Ak−1 ⊆ Ak.

A block in a diagram d ∈ Ak is a propagating block if it contains vertices from
both the top and bottom row, and the rank (also called the propagating number) of
d, denoted rank(d), is the number of propagating blocks of d. For d1, d2 ∈ Ak we have
rank(d1 ◦ d2) 6 min(rank(d1), rank(d2)), and thus the multiplication of diagrams can
never increase the rank. It follows that

(10) Jm := C-span{d ∈ Ak | rank(d) 6 m}, 0 6 m 6 k,

is a two-sided ideal in Ak and we have the filtration

(11) J0 ⊆ J1 ⊆ J2 ⊆ · · · ⊆ Jk−1 ⊆ Jk = Ak.

In the case of the Brauer algebra Bk(n) and the Temperley–Lieb algebra TLk(n) we
have Jk−1 = Jk, Jk−3 = Jk−2, and so on, since the rank of diagrams in these algebras
have the same parity as k.

For each m > 1 we have

(12) Am
∼= Jm−1 ⊕Cm,

where Cm is the span of the diagrams of rank exactly equal to m. The isomorphism
in (12) is the Jones basic construction for Am. In our examples,

(13) Cm
∼= CSm when Ak is non-planar: Pk(n),Bk(n),RBk(n), Rk,

Cm
∼= C1m when Ak is planar: TLk(n),Mk(n), PRk.
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We let ΓAk
denote the set of possible diagram ranks in Ak, so that

(14)

ΓAk
=
{
{m | 0 6 m 6 k} , if Ak equals Pk(n),RBk(n),Rk,Mk(n), PRk,

{k − 2` | 0 6 ` 6 bk/2c} , if Ak equals Bk(n), TLk(n).

It follows from the basic construction that the irreducible modules of Jm−1 are labelled
by the same set as the irreducible modules for Am−1 (see [18, Sec. 4.2]), so if ΛAk

indexes the irreducible modules for Ak, then (12) gives

(15) ΛAk =
⊔

m∈ΓAk

ΛCm =


⊔

m∈ΓAk

{µ ` m}, if Ak is non-planar,

ΓAk
, if Ak is planar,

where the second equality comes from (13) and the fact that the irreducible modules
for the group algebra CSm of the symmetric group are indexed by the set {µ ` m}
of integer partitions of m.

2.5. Schur–Weyl duality. For k, n ∈ Z>1 the partition algebra Pk(n) and the
symmetric group Sn are in Schur–Weyl duality on the k-fold tensor product V⊗kn of
the n-dimensional permutation module Vn of the symmetric group Sn (see [22] or [17]).
In particular, there is a surjective algebra homomorphism Pk(n) → End(V⊗kn ) such
that the actions of Pk(n) and Sn on V⊗k commute. When n > 2k the representation
of Pk(n) on V⊗kn is faithful and Pk(n) ∼= EndSn(V⊗kn ), the centralizer algebra of Sn
on V⊗kn .

For n > 2k, the decomposition of V⊗kn as a bimodule for (Pk(n),CSn) is given by

(16) V⊗kn ∼=
⊕

λ∈Λk,n
Pλ
k ⊗ Sλn,

where Λk,n indexes the irreducible Sn modules that appear as constituents of V⊗kn .
Since irreducible Sn modules are indexed by partitions of n we have Λk,n ⊆ {λ ` n},
and it is easy to show by induction on k (see, for example [17, 2]), that

(17) Λk,n = {λ ` n | 0 6 |λ∗| 6 k} ,

where if λ = [λ1, λ2, . . . , λ`] is an integer partition of n then λ∗ = [λ2, . . . , λ`] is the
partition λ with its first part removed as illustrated here

(18) λ = λ∗ .

We now have two ways to index the irreducible Pk(n)-modules: from the basic
construction ΛPk(n) = {µ ` m | 0 6 |µ| 6 k} and from Schur–Weyl duality Λk,n =
{λ ` n | 0 6 |λ∗| 6 k}. When n > 2k, they are in bijection by identifying λ ∈ Λk,n
with λ∗ ∈ ΛPk(n). The set-partition tableaux that we use in Section 4 require partitions
of n, so we use Λk,n for the remainder of this paper. To this end, for each Ak we add
a first row of size n−m to the partitions in ΛAk to get the partitions in ΛAk

n so that

(19) ΛAk
n =

{
λ ` n | λ∗ ∈ ΛAk

}
.

These sets are given below for each of the diagram algebras. To unify our notation we
view C1m as the trivial subalgebra of CSm and label its irreducible representation
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with the partition [m], the index of the trivial module S[m]
m .

Ak ΛAk ΛAk
n

Pk(n),Rk,

RBk(n)
{µ ` m | 0 6 m 6 k} {λ ` n | |λ∗| = m, 0 6 m 6 k}

Bk(n) {µ ` k − 2` | 0 6 ` 6 bk/2c} {λ ` n | |λ∗| = k − 2`, 0 6 ` 6 bk/2c}
Mk(n),PRk {m | 0 6 m 6 k} {[n−m,m] | 0 6 m 6 k}
TLk(n) {k − 2` | 0 6 ` 6 bk/2c} {[n−m,m] | m = k − 2`, 0 6 ` 6 bk/2c}

3. Irreducible Modules
In this section, for each λ ∈ ΛAk

n with |λ∗| = m, we identify a copy of the irreducible
Ak module indexed by λ in the quotient Ak/Jm−1 of the left regular representation
of Ak by the ideal Jm−1 defined in (10). We then give a combinatorial realization
of this module, Aλ

k = Wm
Ak ⊗ Sλ∗m , where Wm

Ak is the span of symmetric m-diagrams
in Ak that Ak acts on by conjugation and Sλ∗m is an irreducible symmetric group
module. When a diagram d ∈ Ak conjugates a symmetric m-diagram w it permutes
the m fixed points of of w by a permutation σd,w ∈ Sm which in turn acts on Sλ∗m .
We view this as conjugation that is “twisted” by the module Sλ∗m . This construction
is similar to the Gelfand model for diagram algebras in [18] and [24].

3.1. Symmetric group modules. For each partition µ ` m, there is an irreducible
module Sµm for the symmetric group Sm. The dimension of Sµm equals the number fµ
of standard Young tableaux of shape µ, where a Young tableau of shape µ is a filling
of the boxes of the diagram of µ with the numbers 1, 2, . . . ,m and a Young tableau is
standard if the rows increase from left to right and the columns increase from top to
bottom. We let SYT (µ) denote the set of standard Young tableaux of shape µ. For
example, there are five standard Young tableaux of shape µ = [3, 2]:

SYT ([3, 2]) =
{
t1 = 1 3 5

2 4 , t2 = 1 3 4
2 5 , t3 = 1 2 5

3 4 , t4 = 1 2 4
3 5 , t5 = 1 2 3

4 5

}
.

The column-reading tableau tc (resp., row-reading tableau tr) is the standard tableau
obtained by entering the numbers 1, 2, ...,m consecutively down the columns (across
the rows) of µ. In the example above t1 = tc and t5 = tr.

For µ ` m, define the Young symmetrizer (see, for example [21, 1.5.4]),

(20) pµ =
∑

γ∈C(tc)

∑
ρ∈R(tc)

sign(γ)γρ ∈ CSm,

where C(tc) and R(tc) are the row and column group of tc, respectively, and sign(γ)
is the sign of the permutation γ. That is C(tc) ⊆ Sm is the subgroup of permutations
that preserve the rows of tc and R(tc) is the subgroup that preserves the columns.
Then (CSm)pµ is a copy of the irreducible module Sµm in the left regular representation
CSm.

For any Young tableau t of shape µ let σt ∈ Sm be the the permutation defined
by σt(tc) = t. Then a basis of Sµm is given by {nt := σtpµ | t ∈ SYT (µ)} (see, for
example, [11] for a proof of this classical result). If t ∈ SYT (µ) and π ∈ Sm, then
(21) πnt = πσtpµ = σπ(t)pµ = nπ(t).

If π(t) is a standard tableau, then nπ(t) is another basis element of Sµm; otherwise, nπ(t)
can be expanded as an integer linear combination of basis elements (i.e. indexed by
standard tableaux) using a straightening algorithm such as tableaux intersection [11]
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or Garnir relations (see, for example, [21], [36], [35]). The basis {nt = σtpµ | t ∈
SYT (µ)} is Young’s natural basis of Sµm.

3.2. Irreducible Ak modules in the regular representation. For 0 6 m 6
k, recall the definition of the ideal Jm from (10) and define the quotient map

(22) Ψk,m : Ak −→ Ak/Jm
a 7→ a+ Jm

,

which is a surjective algebra homomorphism. For 0 6 m 6 k, define
(23)

em =
{

1
nk−m

pm+1 · · · pk, if Ak equals Pk(n),RBk(n),Rk,Mk(n), or PRk,
1
n`
em+1em+3 · · · ek−1, if Ak equals Bk(n) or TLk(n) and m = k − 2`.

so that, for example,

e4 = 1
n4 ∈ P8(n) RB8(n),R8,M8(n), or PR8,

e4 = 1
n2 ∈ B8(n) or TL8(n).

For λ ∈ ΛAk
n with |λ∗| = m, define

(24) eλ = pλ∗em = empλ∗ .
If n ∈ C is chosen such that Ak is semisimple, then the following theorem tells us that
eλ is the minimal idempotent corresponding to the irreducible Ak-module indexed by
λ. The proof in [17] is for Ak = Pk(n), but it extends without alteration to the other
diagram subalgebras using (12) and (13).

Theorem 3.1. [17, Prop. 2.43] If n ∈ C such that Ak is semisimple and λ ∈ ΛAk
n

with |λ∗| = m, then
Ψk,m(Akeλ) = (Akeλ)/Jm−1

is the irreducible Ak(n) module indexed by λ.

We now construct an explicit diagram basis of (Akeλ)/Jm−1.

Definition 3.2.An m-factor is a diagram d ∈ Ak such that the following hold: (1)
rank(d) = m; (2) the first m vertices in the bottom row of d propagate; (3a) the last k−
m vertices in the bottom row of d are isolated if Ak equals Pk(n),RBk(n),Rk,Mk(n),
PRk; and (3b) the last k−m vertices in the bottom row of d are are paired with their
neighbor if Ak equals Bk(n) or TLk(n) and n−m is even. Furthermore, we say that
an m-factor is noncrossing if the propagating edges of d do not cross when d is drawn
in such a way that the propagating edges connect to the rightmost vertex of the block
in the top row.

An m-factor d has a unique decomposition d = ωσ such that ω is a noncrossing
m-factor and σ ∈ Sm, as illustrated in the following example, which holds in P10(n),

d = =
= ω

= σ

,

(25)
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and in the following example, which holds in B10(n),

d = =
= ω

= σ

.

(26)

We let Nm
Ak denote the set of all noncrossing m-factors in Ak. The following propo-

sition is proved for the partition algebra in [6, Prop. 2.1] and for the Brauer algebra
in [7, Prop. 2.1]. Here we prove it simultaneously for all of the diagram algebras of
this paper.

Proposition 3.3. If n ∈ C such that Ak is semisimple, then λ ∈ ΛAk
n with |λ∗| = m,

then the set {ωσtpλ∗+Jm−1 | ω ∈ Nm
Ak , t ∈ SYT (λ∗)} is a C-basis for the Ak-module

(Akeλ)/Jm−1.

Proof. Let d ∈ Ak and consider the element deλ + Jm−1 = dempλ∗ + Jm−1 of the
quotient space (Akeλ)/Jm−1. Either rank(dem) < m or dem = n`d′, where d′ is an
m-factor and ` ∈ Z>0. In the latter case, dem = n`ω′σ′ for ω′ ∈ Nm

Ak and σ′ ∈ Sm. It
follows that dempλ∗ is 0 mod Jm−1 or dempλ∗ = n`ω′σ′pλ∗ , and σ′pλ∗ is expressible
as a linear combination of σtpλ∗ by the fact that {σtpλ∗ | t ∈ SYT (λ∗)} is a basis of
the Sm-module Sλ∗m . �

3.3. Symmetric diagrams. In this section we reinterpret the basis of the previous
section as a basis on symmetric diagrams which is simpler and is better suited for the
combinatorial computations in the remainder of this paper.

For d ∈ Ak, let dT ∈ Ak be the diagram obtained by reflecting d over the horizontal
axis. We say that a diagram is symmetric if d = dT . For example, the following are
symmetric diagrams in P10,

d1 = , d2 = ,

d3 = .

For a symmetric diagram d = dT , let π(d) and π′(d) denote the propagating blocks in
the top and bottom rows of d, respectively. In the examples above, π(d1) = {2 | 7 | 9 |
10} and π(d2) = π(d3) = {1, 2 | 4 | 3, 5, 6 | 8, 9, 10}, and observe that in a symmetric
diagram π′(d) is always equal to π(d) with the vertices primed.

Definition 3.4.A diagram d ∈ Ak is a symmetric m-diagram if (1) d is symmetric;
(2) rank(d) = m; and (3) each of the m propagating blocks in π(d) is connected to its
mirror image in π′(d).

In the examples above, d3 is a symmetric 4-diagram, but d1 and d2 are not since
they each have a propagating block not connected to its mirror image. For any of the
diagram algebras Ak, let
(27) Wm

Ak = {d ∈ Ak | d is a symmetric m-diagram} .
There is a simple bijection between the noncrossing m-factors of the previous section
and the symmetricm-diagrams of this section. This is seen by the fact that both types
of diagrams are completely determined by the set partition on their top row and by
knowing which blocks propagate. We simply pair the diagrams with the same top row
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and propagating edges. For example, the noncrossing m-factor of (25) is paired with
a symmetric m-diagram as follows,

(28) ←→ .

noncrossing 4-factor symmetric 4-diagram

A simple counting argument can be used to determine the number of symmetric m-
diagrams |Wm

Ak |, which equals the number of noncrossing m-factors |Nm
Ak |, for each

diagram algebra Ak:

Ak |Wm
Ak | = |N

m
Ak |

Pk(n)
∑
t

{
k
t

}(
t
m

)
Bk(n)

(
k
m

)
(k −m− 1)!!

RBk(n)
∑
t

(
k
m

)(
k−m

2t
)
(2t− 1)!!

Ak |Wm
Ak | = |N

m
Ak |

TLk(n)
(

k
k−m

2

)
−
(

k
k−m

2 −1
)

Mk(n)
∑
t

(
k

m+2t
)((

m+2t
t

)
−
(
m+2t
t−1

))
Rk,PRk

(
k
m

)
The corresponding integer triangles can be found in [38] A049020, A008313, A096713,
A064189, A111062, and A007318, respectively. In the case of the planar algebras, the
symmetric m-diagrams are exactly equal to the rank-m symmetric diagrams used in
the Gelfand models in [18] and [24], and in the case of the non-planar algebras, the
symmetric m-diagrams are a subset of the rank-m symmetric diagrams. Below are
examples from these algebras.

∈ W4
P10

∈ W4
T L10

∈ W4
B10

∈ W3
M10

∈ W3
RB10

∈ W5
R10

For d,w ∈ Ak, we say that d ◦ w ◦ dT is the conjugate of w by d. For example,
below is the conjugation d ◦ w ◦ dT of diagrams d ∈ P13 and w ∈ W5

P13
,

(29)

d =

w = 1 2 3 4 5

dT =

= 1 2 3 4 5

We order the m propagating blocks of a symmetric m-diagram according to their
maximum entry. So, for example, we order the blocks in π(w) = {1, 2 | 4 | 8, 9, 10 |
12 | 7, 13} as follows: {1, 2} < {4} < {8, 9, 10} < {12} < {7, 13}. We refer to this as
max-entry order. Furthermore, by convention, we always draw the propagating edges
in a symmetric m-diagram as identity edges connecting the maximum entries in the
blocks. Upon conjugating a symmetricm-diagram w by d ∈ Pk, if rank(d◦w◦dT ) = m,
then the propagating blocks of w have been permuted, and we let σd,w ∈ Sm be the
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permutation of the fixed blocks, so that (in max-entry order),

(30) the ith propagating block in w gets sent to
the σd,w(i)th propagating block in d ◦ w ◦ dT .

We refer to σd,w as the twist of the conjugation of w by d. For example in (29) σd,w
is the three-cycle (4, 3, 2).

Remark 3.5. The following properties can be verified through simple diagram calculus
for d ∈ Pk.

(a) If w is a symmetric m-diagram, then d ◦ w ◦ dT is a symmetric m′-diagram
with m′ = rank(d ◦ w ◦ dT ) 6 rank(w) = m.

(b) If d = dT then d ◦ d ◦ dT = d.

3.4. Irreducible modules Aλ
k . For any of the diagram algebras Ak, let

(31) Wm
Ak := CWm

Ak = C-span {d ∈ Ak | d is a symmetric m-diagram} .

For λ ∈ ΛAk
n with |λ∗| = m, let Aλ

k be the vector space

(32) Aλ
k := Wm

Ak ⊗ Sλ
∗

m = C-span
{
w ⊗ nt

∣∣ w ∈ Wm
Ak , t ∈ SYT (λ∗)

}
,

where nt is a natural basis element of Sλ∗m (see Section 3.1). If w ∈ Wm
Ak and t ∈

SYT (λ∗), we define the action of d ∈ Ak on the basis element w ⊗ nt to be

(33) d · (w ⊗ nt) =
{
n`(d,w)(d ◦ w ◦ dT )⊗ σd,w · nt if rank(d ◦ w ◦ dT ) = m,
0 if rank(d ◦ w ◦ dT ) < m,

where `(d,w) is the number of connected components removed from the middle row
during the diagram concatenation d◦w and σd,w ∈ Sm is the twist of the conjugation
of w by d defined in (30); that is, σd,w is the permutation on the propagating blocks
of w induced by d.

The bijection (28) between symmetric m-diagrams and noncrossing m-factors gives
rise to the following isomorphism.

Proposition 3.6. If n ∈ C such that Ak is semisimple and λ ∈ ΛAk
n , then Aλ

k and
(Akeλ)/Jm−1 are isomorphic as Ak-modules.

Proof. Let ω ∈ Nm
Ak be a noncrossing m-factor that is in bijection with the symmet-

ric m-diagram w ∈ Wm
Ak via (28). For any t ∈ SYT (λ∗) identify the basis element

ωσtpλ + Jm−1 of (Akeλ)/Jm−1 with the basis element w⊗ nt of Aλ
k , and extend this

identification linearly to a vector space isomorphism. That it is also a module homo-
morphism comes from the fact that the action in (33) is simply a combinatorial real-
ization of diagram multiplication in the quotient space (Akeλ)/Jm−1. To see this, con-
sider the action of d ∈ Ak on each basis vector. If rank(dω) = m, then dω = n`(d,ω)ω′σ
for ω′ ∈ Nm

Ak such that ω′ is in bijection with d◦w◦dT ∈ Wm
Ak . Moreover, the permuta-

tion σ ∈ Sm which uncrosses dω is, by definition of σd,w, the same as the permutation
σd,w ∈ Sm of the fixed blocks of w. Thus, dωσtpλ + Jm−1 = n`(d,ω)ω′σσtpλ + Jm−1 if
and only if d · (w ⊗ nt) = n`(d,w)(d ◦ w ◦ dT )⊗ σd,w · nt.

Finally, if rank(dω) < m, then dωσtpλ + Jm−1 is zero in the quotient space and
d · w ⊗ nt = 0 by definition in (33). Thus, the actions of diagrams on basis elements
are identical and the bijection extends to an Ak-module isomorphism. �

The next theorem is then a consequence of Proposition 3.6 and Theorem 3.1.

Theorem 3.7. If n ∈ C such that Ak is semisimple, then {Aλ
k | λ ∈ ΛAk

n } is a
complete set of pairwise nonisomorphic irreducible Ak modules.
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Example 3.8. Let k = 13 and λ = [n−5, 3, 2]. There are five standard Young tableaux
of shape λ∗ = [3, 2] as shown in (3.1). Let d and w be the diagrams given in (29) and
consider the action of d on the basis element w⊗nt4 of Pλ

k . There is one block removed
during the diagram concatenation d ◦w, and the five fixed blocks of w are twisted by
the permutation σd,w = (4, 3, 2) in cycle notation. Hence d·(w⊗nt4) = n(w′⊗σd,w ·nt4),
where w′ = d ◦ w ◦ dT . Then σd,w · nt4 = nσd,w(t4), where

σd,w(t4) =
1 4 3
2 5 =

1 3 4
2 5 −

1 3 5
2 4 .

The second equality above comes from the Garnir relations (see [36]), and it follows
that

d · (w ⊗ nt4) = nw′ ⊗ nσd,w(t4) = nw′ ⊗ nt2 − nw′ ⊗ nt1 .

Remark 3.9.A counting argument confirms that the sum of the squares of the dimen-
sions of the simple modules equals the dimension of Ak (Wedderburn’s theorem). For
λ ∈ ΛAk

n , the dimension of Aλ
k is given by dim Aλ

k =
∣∣∣W |λ∗|Ak

∣∣∣ fλ∗ . For the non-planar
algebras, the sum of squares of these dimensions is given by∑

λ∈ΛAk
n

(∣∣∣W |λ∗|Ak

∣∣∣ fλ∗)2
=

∑
m∈ΓAk

∑
µ`m

|Wm
Ak |

2(fµ)2 =
∑

m∈ΓAk

|Wm
Ak |

2m! = dim Ak,

where we have used the corresponding symmetric group identity m! =
∑
µ`m(fµ)2.

The first equality uses the bijection between (19) and (15). The last equality is justified
as follows: |Wm

Ak | counts the number of possible top (resp., bottom) rows of diagrams
in Ak with m blocks distinguished as propagating blocks, so that |Wm

Ak |
2 counts the

number of top and bottom rows with m blocks chosen from each to be propagating
blocks. The distinguished blocks can be matched up in m! ways, and summing over
the possible ranks gives the number of basis diagrams for Ak. The planar case is
similar, except we have only the trivial partition [m] for each m ∈ ΓAk

, and there is
no m! because propagating edges cannot cross.

Remark 3.10.When |λ∗| = k, the only diagrams that do not act as zero on Aλ
k are

the permutation diagrams in Sk ⊆ Pk. Then the action (33) is exactly the action
of Sk on the irreducible module Sλ∗k , and there is an isomorphism Aλ

k
∼= Sλ∗k as Sk

modules.

4. Set-Partition Tableaux
In this section we describe the irreducible modules of the algebras Ak on a basis in-
dexed by set-partition tableaux. These tableaux first appear for the partition algebra
implicitly in [4, Sec. 5.3] and explicitly in [2, Def. 3.14]. They also appear (inde-
pendently) as multiset tableaux in [34]. In Section 4.3 we restrict the definition of
set-partition tableaux to work for each of the diagram subalgebras Ak. Throughout
the following we let Pλ

k denote the module Aλ
k when Ak is the partition algebra.

Definition 4.1. Let λ = [λ1, λ2, . . . , λ`] be an integer partition of n into ` parts,
with λ∗ = [λ2, . . . , λ`], and let π be a set partition of {1, . . . , k} into t blocks with
|λ∗| 6 t 6 n. A set-partition tableau T of shape λ and content π is a filling of the boxes
of the skew shape λ/[n− t] with the blocks of π so that each box of λ/[n− t] contains
a unique block of π. The blocks below the first row of T are called propagating blocks,
while the blocks in the first row are called non-propagating. A set-partition tableau is
standard if all of the entries of T increase across the rows from left to right and down
the columns using max-entry order on the blocks of π.
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Example 4.2. Below is a set-partition tableau T of shape λ = [8, 4, 3, 1] ` 16 and
content

π = {3 | 5 | 6 | 8 | 2, 9 | 12 | 4, 7, 10, 14 | 13, 15 | 1, 16 | 11, 17}
which has t = 10 blocks. The blocks are increasing across the rows and down the
columns, so T is standard. We have emphasized max-entry order by underlining the
maximal elements in each block of π.

12 1, 16
3 6 8 11, 17
5 4, 7, 10, 14 13, 15

2, 9

Remark 4.3. Let λ ` n and π be a set partition of {1, . . . , k}, and let T be a set-
partition tableau of shape λ and content π. When n > 2k (which we assume for
the semisimplicity of Pk(n)) there is no column of T with both propagating and
non-propagating blocks. To simplify our figures we omit unnecessary boxes from the
first row, and let a single box with “· · · ” denote the correct number of boxes. For
instance, consider the same tableau as in the example above, but where λ ∈ Λ17,n is
the partition [n− 8, 4, 3, 1] for some n > 34,

n−10 boxes︷ ︸︸ ︷
· · · 12 1, 16

3 6 8 11, 17
5 4, 7, 10, 14 13, 15

2, 9

.

For k ∈ Z>0 and λ ∈ Λk,n, define SPT (λ, k) to be the set of set-partition tableaux
of shape λ whose content is a set partition of {1, . . . , k}, and define SPT (λ, k) to be
the subset of these tableaux whose first row is increasing from left to right. Finally,
define SSPT (λ, k) to be the subset of standard set-partition tableaux. For a fixed
λ and k, SSPT (λ, k) ⊆ SPT (λ, k) ⊆ SPT (λ, k), and the sizes of these sets (when
n > 2k) are given by

|SPT (λ, k)| =
∑
t

{
k

t

}(
t

m

)
t!,(34a)

|SPT (λ, k)| =
∑
t

{
k

t

}(
t

m

)
m! = |Wm

Pk |m!,(34b)

|SSPT (λ, k)| =
∑
t

{
k

t

}(
t

m

)
fλ/[n−t] = dim Pλ

k =
∑
t

{
k

t

}(
t

m

)
fλ
∗
,(34c)

which are justified as follows: first partition the set {1, . . . , k} into at t > m blocks,
and choose m of these blocks to propagate. For (34a), we can arrange the blocks of
the tableau in t! ways, for (34b) the first row is fixed and we are free to arrange the
propagating blocks in m! ways, and for (34c) the number of standard arrangements
of the blocks is equal to fλ/[n−t]. The second equality in (34c) also holds when n <
2k [3, 2, 4].

Recall thatWm
Pk is the set of symmetricm-diagrams in Pk, and let YT (µ) be the set

of Young tableaux of shape µ. For each λ ∈ Λk,n, there is an easy-to-verify bijection,

(35) SPT (λ, k)←−−−−→W |λ
∗|

Pk × YT (λ∗),
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which is given by associating T ∈ SPT (λ, k) with the pair (w, t) ∈ W |λ
∗|

Pk × YT (λ∗)
where w is the symmetric |λ∗|-diagram whose propagating and non-propagating blocks
are those of T and where t is the standard tableau with entries {1, . . . , |λ∗|} such that
i is placed in the same position the ith propagating block of w occupies in T. See
Example 4.4.
Example 4.4. If w ⊗ vt4 is the basis element from (29), then the bijection in (35)
pairs the set-partition tableau,

· · · 3, 5, 6 11
1, 2 4 12

8, 9, 10 7, 13

n−7 blocks︷ ︸︸ ︷
}
λ∗

,

with the following pair, consisting of a symmetric m-diagram and a Young tableau, 1 2 3 4 5 ,
1 2 4
3 5

 .

4.1. Action of diagrams on set-partition tableaux. Now we define an action
of diagrams in Pk on set-partition tableaux that generalizes the permutation action
of the symmetric group on Young tableaux. For d ∈ Pk let top(d) be the partition of
{1, . . . , k} induced on the top row of d.
Definition 4.5. For a diagram d ∈ Pk and a set partition π of {1, . . . , k}, let d ◦ π
denote the diagram concatenation of d with π, where π is viewed as a one-line set-
partition diagram. Given a set-partition tableau T of shape λ ` n and content π, define
the action of d on T, denoted d(T), to be the set-partition tableau of shape λ where:

(a) the propagating blocks in d(T) are obtained by replacing each propagating block
of T with the block it is connected to in top(d ◦ π),

(b) the non-propagating blocks in d(T) are
(i) the non-propagating blocks of top(d ◦ π),
(ii) blocks of top(d ◦ π) which are connected only to non-propagating blocks

of T,
(c) the non-propagating blocks increase from left to right in the first row of d(T),
(d) if the results of the above steps do not produce a set-partition tableau, then

d(T) = 0.
The action of a diagram d on a tableau T is easily obtained by placing d above T,
drawing edges from the blocks of T to the corresponding blocks on the bottom row of
d, and performing diagram multiplication. For instance, see Examples 4.6 and 4.15.
Example 4.6. Let T be the set-partition tableau from Example 4.4. Acting with the
diagram d from (29), we find

d =

T =
· · · 3, 5, 6 11

1, 2 4 12
8, 9, 10 7, 13

1 2 3 4 5 6 7 8 9 10 11 12 13

=
· · · 4 10, 11

1, 2, 3 8, 12 9
5, 6, 7 13

= d(T).
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The following diagram acts as zero on T, since the result is not a set-partition tableau.

d=

T =
· · · 3, 5, 6 11

1, 2 4 12
8, 9, 10 7, 13

1 2 3 4 5 6 7 8 9 10 11 12 13

=
· · · 5 8, 9 10, 12, 13

1, 2, 4 3, 6
1, 2, 4 7, 11

= 0.

Remark 4.7.A diagram d acts as zero on a set-partition tableau T if
(a) two propagating blocks of T become connected when constructing d(T), or
(b) a propagating block of T does not propagate to the top of d when constructing

d(T).

4.2. Natural basis. For λ ∈ Λk,n, let {NT | T ∈ SSPT (λ, k)} be a set of vectors
indexed by the standard set-partition tableaux of shape λ. Define

(36) Pλk = C-span {NT | T ∈ SSPT (λ, k)} ,

and for d ∈ Pk and T ∈ SSPT (λ, k) define

(37) d · NT =
{
n`(d,T)Nd(T) if d(T) is a set-partition tableau,
0 if d(T) is not a set-partition tableau,

where d(T) is defined in Definition 4.5 and `(d,T) is the number of connected com-
ponents removed in the construction of d(T). If d(T) is not standard, then Nd(T) can
be expressed as an integer linear combination of basis elements using Garnir relations
(see Section 3.1).

Example 4.8. Let d and T be defined as in the first example from Example 4.6. In
the construction of d(T) there is one connected component removed, so that

d · NT = nNd(T), where d(T) =
· · · 4 10, 11

1, 2, 3 8, 12 9
5, 6, 7 13

.

The result is nonstandard, with a descent in the first row. The Garnir relation for
straightening Nd(T) is:

· · · 4 10, 11
1, 2, 3 8, 11 9
5, 6, 7 12

=
· · · 4 10, 11

1, 2, 3 9 8, 11
5, 6, 7 12

−
· · · 4 10, 11

1, 2, 3 9 12
5, 6, 7 8, 11

,

and hence
d · NT = nNT1 − nNT2 ,

where T1 and T2 are the two standard set-partition tableaux appearing above. This
can be compared to Example 3.8, which gives the analogous action on the diagram
basis.

Theorem 4.9. The action defined in (37) makes Pλk into a Pk(n)-module, and
Pλk ∼= Pλ

k .
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Proof. We show that the action defined on set-partition tableaux is simply the result
of applying the bijection (35) to the action defined in (33) when the basis for Sλ∗m is
Young’s natural basis vt = nt. Let T be a standard set-partition tableau of shape λ and
content π, and let w⊗ nt, be the basis element associated to T via the bijection (35).
Assuming rank(d ◦ w ◦ dT ) = m, we have d · (w ⊗ nt) = n`(d,w)d ◦ w ◦ dT ⊗ nσd,w(t),
where the ith propagating block of w gets sent to the σd,w(i)th propagating block of
d◦w◦dT . To obtain σd,w(t), we replace i with σd,w(i). If T′ is the set-partition tableau
associated to d◦w◦dT⊗nσd,w(t) by (35), then the propagating blocks of T′ are obtained
by replacing the ith propagating block of T with the σd,w(i)th propagating block of
d ◦ w ◦ dT for each i, and the non-propagating blocks of T′ are the non-propagating
blocks of d ◦ w ◦ dT ⊗ nσd,w(t), which are either the non-propagating blocks of d or
the blocks of d connected only to non-propagating blocks of w. Hence T′ = d(T).
One can easily confirm that the connected components removed in the construction
of d(T) are connected only to non-propagating blocks of T, otherwise the action gives
zero. Hence `(d,T) = `(d,w). Finally, by Remark 4.7 the criteria for d(T) = 0 are
equivalent to the criteria for rank(d ◦ w ◦ dT ) < m. �

Remark 4.10. The construction defined in (36) and (37) is a partition algebra ana-
logue of Young’s natural basis for the irreducible modules of the symmetric group,
and we refer to {NT | T ∈ SSPT (λ, k)} as the natural basis for Pλ

k . Analogous mod-
ules can be constructed when the basis for Sλ∗m is seminormal vt or orthogonal ut.
However, the action on these modules, though isomorphic to the one defined above,
lacks the “naturalness” evident in (37).

The generators si, pi, bi, have particularly nice actions on set-partition tableaux,
which we describe in the following theorem. The actions of the generators ei, li, and
ri of the subalgebras are omitted for brevity but can easily be obtained from si, bi,
and pi.

Theorem 4.11. Let λ ∈ Λk,n and T ∈ SSPT (λ, k), so that NT is an element of the
natural basis for Pλk . Then the action of si, pi, and bi on NT are given by:

(a) si ·NT = Nsi(T), where si(T) is the set-partition tableau in SPT (λ, k) obtained
from T by swapping i and i+ 1, and standardizing the first row.

(b) pi · NT =


nNT if {i} is a non-propagating singleton block in T,
0 if {i} is a propagating singleton block in T,
Npi(T) otherwise,

where pi(T) is the set-partition tableau in SPT (λ, k) obtained from T by re-
moving i from its block, placing the singleton block {i} into the first row, and
standardizing the first row.

(c) bi · NT =


NT if i and i+ 1 are in the same block in T,
0 if i and i+ 1 are in different propagating blocks in T,
Nbi(T) otherwise,

where bi(T) is the set-partition tableau in SPT (λ, k) obtained from T by join-
ing the block containing i with the block containing i + 1, and standardizing
the first row. The resulting block becomes propagating if one of the original
blocks was propagating, and otherwise stays non-propagating.

If si(T), pi(T), bi(T) is a nonstandard set-partition tableau then Nsi(T), Npi(T), Nbi(T)
can be expressed as an integer linear combination of basis elements using Garnir
relations (see Section 3.1).
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Proof. The action is easily obtained from (37) through diagram calculus as in Exam-
ple 4.6. �

Example 4.12.We give examples of the explicit action of pi and bi described above.

(a) Action of pi. Consider the following standard set-partition tableau T of shape
[n− 4, 3, 1],

p5


· · · 1 5, 6

4
7

2, 3, 8 9

 =
· · · 1 5 6

4
7

2, 3, 8 9 ,

p8


· · · 1 5, 6

4
7

2, 3, 8 9

 =
· · · 1 5, 6 8

4
7

2, 3 9 .

Since 1 is a non-propagating singleton, p1 ·NT = nNT. Since 4 is a propagating
singleton, p4 acts as zero on T. When p5 acts on T, it separates 5 and 6. When
p8 acts on T, it moves 8 to its own block on the first row, and the result is
nonstandard. We then have

p5 · NT = Np5(T) and p8 · NT = Np8(T).

(b) Action of bi. Consider the following set-partition tableau T of shape [n −
4, 3, 1],

b2


· · · 6, 8 1, 2, 9

3 7 10
4, 5

 =
· · · 6, 8

1, 2, 3, 9
4, 5

7 10 ,

b8


· · · 6, 8 1, 2, 9

3 7 10
4, 5

 =
· · · 1, 2, 6, 8, 9

3 7 10
4, 5

.

Since 1 and 2, and 4 and 5, are in the same block, both b1 and b4 fix T. Since
3 and 4 are in different propagating blocks, b3 acts as zero on T. When b2
acts on T, the contents of the block containing 2 are appended to the block
containing 3, and the result is nonstandard. Finally, b8 acts by joining the
blocks containing 8 and 9. Thus

b2 · NT = Nb2(T) and b8 · NT = Nb8(T).

4.3. Subalgebras. When Ak is a subalgebra of the partition algebra, applying
the bijection (35) to basis elements of Aλ

k yields restricted types of standard set-
partition tableaux of shape λ ∈ ΛAk

n . In particular, for all of the proper subalgebras
the propagating blocks are singletons. For the Brauer and Temperley–Lieb algebras
the non-propagating blocks are pairs, for the rook-Brauer and Motzkin algebras the
non-propagating blocks are pairs or singletons, and for the rook monoid and planar
rook monoid algebras the non-propagating blocks are singletons. Below are example
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set-partition tableaux for these subalgebras.

W4
B10

:
· · · 1, 3 5, 6 4, 8

2 7 10
9

W4
T L10

:
· · · 2, 3 1, 4 8, 9

5 6 7 10

W3
RB10

:
· · · 2 1, 4 5 6 8, 10

3 9
7

W3
M10

:
· · · 3, 4 5 8 9 7, 10

1 2 6

W5
R10

:
· · · 3 4 5 7 9

1 2 8
6 10

W3
PR10

:
· · · 1 2 3 5 6 9 10

4 7 8

When restricted to the subalgebra Ak, Definition 4.5 defines an action of Ak on set-
partition tableaux T ∈ SSPT (λ,Wm

Ak). This leads to the following theorem, whose
proof is identical to that of Theorem 4.9.

Theorem 4.13.When restricted to any of the subalgebras Ak, the action (37) defines
an analogue of Young’s natural representation for Ak.

Remark 4.14.When |λ∗| = k, the standard set-partition tableaux of shape λ∗ have k
propagating singletons and no non-propagating blocks, and thus are standard Young
tableaux. Furthermore, the only diagrams which are nonzero on Aλ

k are permutation
diagrams. Upon restriction to the subalgebra CSk, the module Aλ

k corresponds exactly
to Young’s natural representation.

Example 4.15.We give examples in the Brauer, Temperley–Lieb, and Rook monoid
algebras.

(a) Brauer algebra. In the example below d · NT = nNd(T), where Nd(T) can be
re-expressed in the basis of standard tableaux using Garnir relations as in
Section 3.1 (in this particular case, the Garnir relation is simple: Nd(T) = NT′ ,
where T′ has 7 and 8 switched).

d =

T =
· · · 1, 3 5, 6 4, 8

2 7 10
9

1 2 3 4 5 6 7 8 9 10

=
· · · 1, 4 5, 6 9, 10

2 8 7
3

= d(T).

(b) Temperley–Lieb algebra. In the example below d · NT = Nd(T).

d =

T =
· · · 2, 3 1, 4 8, 9

5 6 7 10

1 2 3 4 5 6 7 8 9 10

=
· · · 1, 2 6, 7 8, 9

3 4 5 10 = d(T).
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(c) Rook monoid algebra. In the example below d · NT = n3Nd(T).

d =

T =
· · · 3 4 5 7 9

1 2 8
6 10

1 2 3 4 5 6 7 8 9 10

=
· · · 1 3 5 7 8

2 4 6
9 10

= d(T).

The action of the generator ei on set-partition tableaux takes a nice form that can
be verified using Theorem 4.11 and the relation ei = bipipi+1bi,
(38)

ei · NT =



nNT if {i, i+ 1} is a non-propagating block in T,

0 if i and i+ 1 are in propagating blocks in T, or if {i} and
{i+ 1} are singleton blocks in T with one propagating,

nNei(T) if {i} and {i+ 1} are non-propagating singleton blocks in T,
Nei(T) otherwise,

where ei(T) is the set-partition tableau in SPT (λ, k) obtained from T by removing i
and i+1 from their blocks, making {i, i+1} into a non-propagating block, joining the
remaining elements from the blocks which contained i and i + 1, and standardizing
the first row. The resulting block becomes propagating if one of the original blocks
was propagating, and otherwise stays non-propagating.

Example 4.16. Below are examples of the action of ei on set-partition tableaux
of Brauer and rook-Brauer type. Consider the following set-partition tableau T in
SSPT (λ,W4

B10
), where λ = [n− 4, 3, 1],

e7

 · · · 1, 3 5, 6 4, 8
2 7 10
9

 =
· · · 1, 3 5, 6 7, 8

2 4 10
9

.

Since 9 and 10 are distinct propagating singletons, e9 acts as zero on T. Since {5, 6}
is a non-propagating block, e5 ·NT = nNT. When e7 acts on T, {7, 8} becomes a non-
propagating block and 4 becomes a propagating singleton, so that e7 · NT = Ne7(T).

Consider the following set-partition tableau in SSPT (λ,W3
RB10

), where λ = [n −
3, 2, 1],

e5

 · · · 2 1, 4 5 6 8, 10
3 9
7

 =
· · · 2 1, 4 5, 6 8, 10

3 9
7

.

Since 2 is a non-propagating singleton and 3 is a propagating singleton, e2 acts as zero
on T. The same is true for e6. When e5 acts on T, {5, 6} becomes a non-propagating
block, and e5 · NT = nNe5(T).

5. Characters
As an application of the explicit construction of the simple module Aλ

k , we provide
a closed form for the irreducible characters of the partition algebra and its diagram
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subalgebras. If d ∈ Ak, then taking the trace in the diagram basis, with the action
defined in (33), gives the following result.

Theorem 5.1. Let d ∈ Ak be a basis diagram for Ak and let λ ∈ ΛAk
n with |λ∗| = m.

The value of the irreducible character χλAk
on the diagram d ∈ Ak is given by

(38a) χλAk
(d) =

∑
w∈F mAk (d)

n`(d,w)χλ
∗

Sm(σd,w),

where n`(d,w) is the number of connected components removed in the concatenation of
d and w, σd,w is the twist of d ◦ w ◦ dT , and F m

Ak(d) is the set of diagrams in Wm
Ak

fixed under conjugation by d,
(38b) F m

Ak(d) :=
{
w ∈ Wm

Ak

∣∣ d ◦ w ◦ dT = w
}
.

Let γr be the r-cycle (r, r − 1, . . . , 1) in Sr ⊆ Pr(n), and for a partition κ =
[κ1, κ2, . . . , κ`] define
(39) γκ = γκ1 ⊗ γκ2 ⊗ · · · ⊗ γκ` ,
where here the tensor product denotes the juxtaposition of diagrams. It follows from
the basic construction (see Section 2.4 and [16, Lem. 2.8]) that the irreducible char-
acters of Ak are completely determined by their values on diagrams γκe|κ|, where

e = 1
n
e1 = 1

n
and |κ|+ 2s = k for Bk(n) and TLk(n),(40a)

e = 1
n
p1 = 1

n
and |κ|+ s = k for Pk(n) and its other subalgebras.(40b)

Thus, the diagrams γκ⊗e⊗s are conjugacy class analogs for Ak. For example, if k = 18
and κ = [6, 5, 2, 1] ` 14, then

γκ ⊗ p⊗4
1 = 1

n4

and

γκ ⊗ e⊗2
1 = 1

n2

are conjugacy class representatives in P18(n) and B18(n), respectively. If the algebra
Ak is planar, then the only partition κ used is κ = [1, . . . , 1] so that γκ is the identity
diagram. Furthermore from [16, Eq. 2.17, Eq. 2.22] and [12, Cor. 4.2.3], the irreducible
characters satisfy

(41) χλAk
(γκ ⊗ e⊗s) =

{
0 if |κ| < |λ∗|,
χλA|κ|(γκ) if |κ| > |λ∗|.

It follows from 41 that characters of Ak are determined by the characters of Ak−1 and
the values χλAk

(γκ) for κ ` k. When κ ` k, Theorem 5.1 simplifies to the following.

Corollary 5.2. For λ ∈ ΛAk
n such that |λ∗| = m and κ ` k, we have

χλAk
(γκ) =

∑
µ`m

Fµ,κAk
χλ
∗

Sm(γµ),(42a)

where Fµ,κAk
:= |F µ

Ak(κ)| is the cardinality of the following set,
(42b)
F µ
Ak(κ) :=

{
w ∈ WAkm

∣∣ γκ ◦ w ◦ γTκ = w, σγκ,w ∈ Sm has cycle type µ
}
⊆ F m

Ak(γκ).
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Proof. Clearly n`(γκ,w) = 1 for all γκ and w, and on these special elements the
sum (38a) becomes

χλAk
(γκ) =

∑
w∈F mAk (γκ)

χλ
∗

Sm(σγκ,w) =
∑
µ`m

∑
w∈F µAk (κ)

χλ
∗

Sm(γµ) =
∑
µ`m

Fµ,κAk
χλ
∗

Sm(γµ),

where in the third equality we use the fact that characters are a class function. �

5.1. Fixed points F µ
Ak(κ). We now characterize the fixed diagrams F µ

Ak(κ) defined
in (42b). Many of the statements in this section are straightforward generalizations
of the m = 0 case to m > 0, and the proofs of Lemma 5.3, Proposition 5.6, and
Lemma 5.11 are nearly identical to the proofs of Lemma 2, Proposition 4, and Lemma
6 in [9].

A symmetric m-diagram w in Wm
Ak is determined uniquely by the set partition

top(w) making up its top row, and the m blocks of top(w) distinguished as propa-
gating. The bottom row bot(w) is the mirror image of top(w), so we use top(w) to
denote the set partition of both the top and bottom rows of w.

Lemma 5.3. The k-cycle γk fixes w ∈ Wm
Ak if and only if the following conditions hold:

(a) all of the blocks of w propagate if m > 0,
(b) none of the blocks of w propagate if m = 0, and
(c) i w∼ j if and only if (i+ r) w∼ (j + r), for all r ∈ Z, where i+ r and j + r

are computed mod k.

Proof. The action of γk on w is to shift each vertex one step to the left, mod k. Thus,
if i w∼ j then (i−1) γk·w∼ (j−1), viewing the subtraction mod k. Now, if w ∈ FAkm (γk),
then w = γrk · w for any r ∈ Z. Thus i w∼ j implies (i− r) w∼ (j − r). If w ∈ FAkm (γk),
then the blocks of w either all propagate or all do not propagate, for if this were
not the case, γk would send a propagating block to a non-propagating block and visa
versa. �

Definition 5.4 ([9, Def. 3]). For each divisor d of k, define the set partition yd,k of
{1, . . . , k} by the rule

a
yd,k∼ b if and only if a ≡ b mod d.

The set partition yd,k has d connected components each of size k/d. We refer to the
connected components of yd,k as d-components.

Example 5.5.When k = 6 there are four set partitions yd,6, one for each divisor of 6.
y1,6 = y2,6 =

y3,6 = y6,6 =

Proposition 5.6.A diagram w ∈ Wm
Ak is fixed by γk if and only if top(w) = yd,k for

d | k, so that

F m
Ak(γκ) =


{
w ∈ Wm

Ak

∣∣ top(w) = yd,k, where d|k
}

if m = 0,{
w ∈ Wm

Ak

∣∣ top(w) = ym,k
}

if m > 0 and m | k,
∅ if m > 0 and m - k.

Proof. If d|k and top(w) = yd,k then w satisfies the conditions of Lemma 5.3 and
w is fixed by γk. If m = 0, none of the blocks propagate and we can construct w
from yd,k for any d|k. If m > 0, then by Lemma 5.3 w must have m blocks, all of
which propagate, and so top(w) = ym,k. Conversely, let w ∈ F m

Ak(γκ), and let d be the
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minimum horizontal distance between two vertices that are connected by an edge in
w. That is,

d =
{
k, if w has no horizontal connections,
min

{
(i− j) mod k | i w∼ j, i 6= j

}
, otherwise.

Choose i and j so that i w∼ j with (i− j) mod k = d. Then by Lemma 5.3, we have
(i+r) w∼ (j+r) for 0 6 r 6 k. Now, d must divide k, otherwise all of the vertices of w
are connected implying d = 1, which divides k. If there were a connection in top(w)
not in yd,k, then top(w) would connect two vertices which are closer together than d,
contradicting the minimality of d. Thus top(w) = yd,k. �

Lemma 5.7. If m > 0 divides k and w ∈ Wm
Ak such that top(w) = ym,k, then the

permutation induced when γk conjugates w is σγk,w = γm, where γm is the m-cycle
(m,m− 1, . . . , 1) ∈ Sm.

Proof. Ifm > 0 and w ∈ Wm
Ak , then all m connected components in w are fixed blocks.

Using max-entry order, label these fixed blocks in increasing order mod m, so that
wi < wj if i < j. The action of γk on w is to shift the fixed blocks one step to the left,
which shifts w1 to wm, wm to wm−1, and so on, down to w2 being sent to w1. �

Example 5.8. Let k = 10 andm = 5. In the example below, we conjugate a 5-diagram
w, whose propagating blocks are y5,10, by the cycle γ10. The induced permutation on
the fixed blocks of w is σγ10,w = (5, 4, 3, 2, 1) = γ5.

γ10 =

w =

γT10 =

= .

Definition 5.9 ([9, Def. 5]). For a partition κ = [κ1, . . . , κ`] of k and a set partition
π of {1, . . . , k}, we say that the κ-blocks of π are the ` sub-set partitions given by
grouping the elements of {1, . . . , k} into the subsets

{1, . . . , κ1}, {κ1 + 1, . . . , κ1 + κ2}, . . . , {κ1 + · · ·+ κ`−1 + 1, . . . , k}

where within a κ-block we inherit any connection from π, but ignore any connections
between different κ-blocks. A κ-block is said to be of type d if it has d connected
components.

Example 5.10.Here is a set partition of {1, . . . , 13}.
1 2 3 4 5 6 7 8 9 10 11 12 13

,

If κ = [5, 5, 3] ` 13, the κ-blocks of the set partition are of type 3, 2, and 2, respectively,

︸ ︷︷ ︸
κ1

︸ ︷︷ ︸
κ2

︸ ︷︷ ︸
κ3

1 2 3 4 5 6 7 8 9 10 11 12 13

.
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Lemma 5.11. Let κ = [κ1, . . . , κ`] ` k and µ = [µ1, . . . , µs] ` m 6 k. Then w ∈ Wm
Ak

is in F µ
Ak(κ) if and only if the following conditions hold:

(a) for each i, the κi-block of top(w) is of the form ydi,κi for some divisor di of
κi,

(b) if a κi-block of type di and a κj-block of type dj have connections between
them in w, then
(i) di = dj,
(ii) each di-component of the κi-block is connected to a unique di-component

of the κj-block,
(iii) there are no further connections between these two blocks,

(c) for each i, there are mi(µ) sets of connected κ-blocks of type i that propagate,
where mi(µ) is the multiplicity of i in µ.

Proof. (a) When γκ acts on w, the cycle γκi acts on the κi-block, so by Proposition 5.6
the κi-block must be of the form ydi,κi for some divisor di of κi.

(b) If a di-component in the κi-block is connected to two dj-components d1
j and d2

j

in the κj-block, then by transitivity d1
j ∼ d2

j . Thus, each di-component is connected
to a unique dj-component. When γκ acts on w it permutes the di-components in
the κi-block and the dj-components in the κj-block. If dj > di then γκ sends a dj-
component that is not connected to the κi-block to a dj-component that is connected
to the κi-block, which cannot happen. The same is true when dj < di, and thus
di = dj . There can be no further connections between blocks because that would
force two components in one to be connected to a single component in the other.

(c) Now suppose that a set of κ-blocks of type i are connected to each other and
all propagate. Then there are i propagating edges from the rightmost κ-block in the
set, and by Lemma 5.7, when γκ acts on w the i edges are permuted according to the
i-cycle γi. Hence, if for each i there are mi(µ) sets of connected κ-blocks of type i that
propagate then there are

∑m
i=1 mi(µ) = m propagating blocks, which are permuted

by σγκ,w = γi1 ⊗ γi2 ⊗ · · ·⊗ γis , where ij ∈ µ. Clearly σγκ,w has cycle type µ, and any
other choices for the number and type of propagating blocks gives a different cycle
type, so that w ∈ F ν

Ak(κ) for ν 6= µ. �

Example 5.12. Let κ = [6, 5, 3, 3, 2, 2] ` 21 and µ = [3, 3, 2] ` 8. The following
diagram is fixed under conjugation by γκ, and the permutation of the fixed blocks is
σγκ,w1 = (3, 2, 1)(6, 5, 4)(7, 8) ∈ S8.

γκ =

w1 =

γTκ =

= .
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The following diagrams are also in F µ
P21

(κ),

w2 = ,

w3 = ,

with permutations σγκ,w2 = (3, 2, 1)(6, 5, 4)(7, 8) and σγκ,w3 = (1, 2)(5, 4, 3)(8, 7, 6),
respectively, which both have cycle type [3, 3, 2]. It is easy to verify that these three
diagrams satisfy the properties of Lemma 5.11.
5.2. The partition algebra. We now count the number of symmetric m-diagrams
in Wm

Pk that satisfy the conditions of Lemma 5.11.
Definition 5.13. Let κ = [κ1, . . . , κ`] be an integer partition of k into ` parts. We say
that a divisor of κ is a composition ν = [ν1, . . . , ν`] such that νi|κi for all i = 1, . . . , `,
and we let ν|κ indicate that ν is a divisor of κ.
Example 5.14. The following diagrams depict the eight divisors of κ = [6, 5, 1] ` 12.

, , , ,

, , , .

Example 5.15. Each diagram in F µ
Pk(κ) determines a divisor of κ: by Lemma 5.11 (a)

the blocks of w are of the form ydi,κi where di|κi, and the collection ν = [d1, . . . , d`]
is a divisor of κ. For the three diagrams shown in Example 5.12, the corresponding
divisors of κ are

µ1 = , µ2 = , µ3 = .

Proposition 5.16. Let κ ` k and µ ` m. The number of diagrams in F µ
Pk(κ) is given

by

Fµ,κPk(n) =
∑
ν|κ

∏
i

∑
t

{
mi(ν)
t

}(
t

mi(µ)

)
imi(ν)−t,

where the outer sum is over divisors of κ and mi(ν) is the number of parts of size i
in ν.
Proof. Given a divisor ν|κ consider the symmetric diagram w whose κi block is of the
form yνi,κi . We count the number of ways of making w into a symmetric m-diagram
in F µ

Pk(κ). By Lemma 5.11 (c), for some i and w ∈ F µ
Pk(κ) there must be mi(µ) sets

of connected κ-blocks of type i that propagate. The number of available κ-blocks of
type i in w is given by mi(ν). If mi(ν) < mi(µ), there are not enough κ-blocks of
type i to propagate and the sum gives zero. Suppose mi(ν) > mi(µ). To construct
w we choose a set partition of these mi(ν) κ-blocks of type i into t blocks, where
mi(µ) 6 t 6 mi(ν). There are

{mi(ν)
t

}
ways to do this. Then we choose mi(µ) of these

blocks to propagate in
(

t
mi(µ)

)
ways. The remaining blocks do not propagate.
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We now count the number of ways of connecting the individual κ-blocks. There
are i ways of connecting two κ-blocks of type i. For instance, there are three ways of
connecting two κ-blocks of type 3:

, , .

A set partition of mi(ν) κ-blocks of type i into t blocks can be depicted as a one-
line set-partition diagram where each edge is labelled by the i ways to connect two
κ-blocks. For instance, if i = 3 and mi(ν) = 5, then the following represents a set
partition of 5 κ-blocks of type 3 into two blocks:

3 3
3

.

Thus, the number of ways of connecting mi(ν) κ-blocks of type i into t blocks is given
by imi(ν)−t. The inner sum is over mi(µ) 6 t 6 mi(ν), but

{mi(ν)
t

}(
t

mi(µ)
)
is identically

zero outside this interval, so we can sum over all t. The connections between (and
propagation of) blocks of each type are independent, so taking the product over all i
and summing over the divisors ν of κ completes the proof. �

Example 5.17. Let κ = [2, 1] and µ = [1]. The two divisors of κ are κ itself and the
trivial divisor ν = [1, 1]. The number of symmetric 1-diagrams in F µ

P3
(κ) is( 1∑

t=1

{
1
t

}(
t

1

)
11−t

)( 1∑
t=0

{
1
t

}(
t

0

)
21−t

)
+

2∑
t=1

{
2
t

}(
t

1

)
12−t = (1)(0+1)+(1+2) = 4.

Indeed,

F µ
P3

(κ) =
{

, , ,

}
.

The first diagram corresponds to the divisor κ while the others correspond to the
divisor ν. This coefficient appears in the factorization of the character table for P3(n)
in Example 5.23 (a).

Combining Proposition 5.16 with (41) gives our main result.

Theorem 5.18. If λ is a partition of n such that |λ∗| = m, and κ is an integer
partition such that |κ| 6 k, then

χλPk(n)(γκ ⊗ e⊗s) =
∑
µ`m

∑
ν|κ

∏
i

∑
t

{
mi(ν)
t

}(
t

mi(µ)

)
imi(ν)−t χλ

∗

Sm(γµ),

where the first sum is over partitions µ of m, the second sum is over divisors ν of κ,
and mi(ν) is the number of parts of ν equal to i.

Remarks 5.19.
(a) A recursive Murnaghan–Nakayama rule for computing χλPk(n)(γκ ⊗ e⊗s) is

given in [12]. The closed formula in Theorem 5.18 in terms of the symmetric
group character χλ∗Sm is new.

(b) When |λ∗| = k, the only divisor of κ that contributes to the sum is κ itself,
and the only partition µ ` k that contributes to the sum is µ = κ. Hence

χλPk(n)(γκ) =
∏
i

{
mi(κ)
mi(κ)

}(
mi(κ)
mi(κ)

)
χλ
∗

Sk(γκ) = χλ
∗

Sk(γκ).
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(c) When |λ∗| = 0, we have µ = ∅ and χ∅
S0

(γ∅) = 1, so the character formula
specializes to

χ
[n]
Pk(n)(γκ ⊗ e⊗s) =

∑
ν|κ

∏
i

∑
t>0

{
mi(ν)
t

}
imi(ν)−t.

This is a new formula for this character value, which is studied in [9, Thm. 9]
and used there to prove a “second orthogonality relation” for the characters
of Pk(n) and compute the joint mixed moments of the number of fixed points
of σi for σ ∈ Sn.

5.3. Subalgebras. We now count the number of symmetricm-diagrams inWm
Ak that

satisfy the conditions of Lemma 5.11, where Ak is one of the subalgebras of Pk(n). We
first consider the non-planar algebras, giving new character formulas for the Brauer
and rook-Brauer algebras, and the known character formula obtained in [39, Prop. 3.5]
for the rook monoid algebra.

Theorem 5.20. If Ak is one of the non-planar subalgebras of Pk(n) and λ ∈ ΛAk
n

with |λ∗| = m, then
χλAk

(γκ ⊗ e⊗s) =
∑
µ`m

Fµ,κAk
χλ
∗

Sm(γµ),

where κ is a partition such that |κ| + 2s = k for the Brauer algebra and |κ| + s = k
for the others. The coefficients Fµ,κAk

for the Brauer, rook-Brauer, and rook monoid
algebras, respectively, are given by,

(a) Fµ,κBk(n) =
∏
i

(
mi(κ)
mi(µ)

)∑
t

(
di(κ, µ)

2t

)
(2t− 1)!! it

(
1 + (−1)i

2

)di(κ,µ)−2t

,

(b) Fµ,κRBk(n) =
∏
i

(
mi(κ)
mi(µ)

)∑
t

(
di(κ, µ)

2t

)
(2t− 1)!! it

(
3 + (−1)i

2

)di(κ,µ)−2t

,

(c) Fµ,κRk
=
∏
i

(
mi(κ)
mi(µ)

)
,

where di(κ, µ) = mi(κ)−mi(µ) and for (a) we adopt the convention 00 = 1 as in [23].

Proof. We count the number of symmetric m-diagrams in F µ
Ak(κ) for each algebra.

For each of the proper subalgebras of Pk(n), the propagating blocks of a symmetricm-
diagram are identity edges, so the propagating κ-blocks are of the form yκi,κi . Consider
first the Brauer algebra. There are mi(κ) blocks which can become propagating blocks
of type i. If mi(κ) < mi(µ), there are not enough blocks of type i to propagate and
the coefficient is zero. If mi(κ) > mi(µ), then we choose mi(µ) of these to propagate.
There are di(κ, µ) = mi(κ)−mi(µ) blocks of type i remaining. The non-propagating
blocks in Brauer diagrams have size two, and if i is even, we can choose 2t of the
remaining blocks to pair up in (2t− 1)!! ways, where a given pair can be connected in
it ways. The remaining di(κ, µ)−2t blocks are not paired up, and are made into blocks
of type i/2 by pairing up vertices within each block. If i is odd and di(κ, µ) is even we
pair all di(κ, µ) blocks together, which can happen in (di(κ, µ) − 1)!! idi(κ,µ)/2 ways.
If both i and di(κ, µ) are odd, there are zero ways of pairing the non-propagating
vertices. Taking the product over all values of i gives the result.

For the rook-Brauer algebra it is possible to have non-propagating blocks of size
one. If i is even, each of the di(κ, µ) − 2t blocks designated as non-propagating can
either consist of singletons or pairs, so there are 2di(κ,µ)−2t configurations for the non-
propagating blocks. If i is odd, all of the non-propagating blocks must be singletons,
so there is only one choice.
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Finally, for the rook monoid algebra, all of the non-propagating blocks are single-
tons, so for each i we simply choose mi(µ) blocks of type i to propagate. �

The characters of the planar subalgebras are determined by their values on the
identity diagram 1r, for r 6 k (see (41)). It follows that the set of fixed points equals
the set of symmetric m-diagrams. This gives the known character formulas obtained
in [16, Sec. 2] for the Temperley–Lieb algebra, in [1, Sec. 4.3] for the Motzkin algebra,
and in [10, Sec. 5] for the planar rook monoid algebra.

Theorem 5.21. If Ak is one of the planar subalgebras of Pk(n) and λ ∈ ΛAk
n with

|λ∗| = m, then
χλAk

(1r ⊗ e⊗s) = Fm,rAk
,

where r + 2s = k for the Temperley–Lieb algebra and r + s = k for the others. The
coefficients Fm,rAk

for the Temperley–Lieb, Motzkin, and planar rook monoid algebras,
respectively, are given by,

(a) Fm,rTLk(n) =
(

r
r−m

2

)
−
(

r
r−m

2 − 1

)
,

(b) Fm,rMk(n) =
∑
t

(
r

m+ 2t

)((
m+ 2t
t

)
−
(
m+ 2t
t− 1

))
,

(c) Fm,rPRk
=
(
r

m

)
.

Proof. The proof is by counting symmetric m-diagrams in the planar algebras, which
is done in [18, Sec. 5.5–5.7]. �

5.4. Character tables. When viewed as a matrix, the character table of Ak, de-
noted ΞAk

, can be expressed as the product of a direct sum of character tables ΞSm
for 0 6 m 6 k and the matrix FAk

, whose µ, κ entry is Fµ,κAk
. It is clear from the defini-

tions above that, in all cases, FAk
is unitriangular (with respect to lexicographic order

on partitions) with entries in Z>0 and has determinant equal to one. As a result, the
absolute value of the determinant of the character table ΞAk

is equal to the absolute
value of the product of determinants of symmetric group character tables ΞSm . In [20]
and [37] it is shown that the absolute value of the determinant of ΞSm is equal to the
product of all parts of all partitions of m: |det ΞSm | =

∏
µ`m

∏
i i

mi(µ). This leads to
the following result.

Proposition 5.22. Let Ak be any of the diagram algebras above, and let ΞAk
denote

the character table of Ak viewed as a matrix with integer entries. Then

|det ΞAk
| =


∏
λ

∏
i

imi(λ
∗) if Ak is non-planar,

1 if Ak is planar,

where the product is over partitions λ ∈ ΛAk
n .

We conclude the section by providing examples of character tables for the non-
planar algebras.

Example 5.23. In the following examples, the rows of ΞAk
are indexed by the irre-

ducible Ak-modules, which are labelled by partitions λ ∈ ΛAk
n , and the columns are

indexed by conjugacy class analogs, which are labelled by partitions of 0, . . . , k. Both
are arranged in lexicographic order. For example, the rows of ΞP3(n) are indexed by
{[n], [n−1, 1], [n−2, 2][n−2, 1, 1], [n−3, 3], [n−3, 2, 1], [n−3, 1, 1, 1]} and the columns
are indexed by {∅, [1], [2], [1, 1], [3], [2, 1], [1, 1, 1]}.
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(a) The partition algebra, P3(n). Note that the entry F[1],[2,1]
P3(n) = 4 is computed in

Example 5.17:

1 1 2 2 2 3 5
· 1 1 3 1 4 10
· · 1 1 0 2 6
· · −1 1 0 0 6
· · · · 1 1 1
· · · · −1 0 2
· · · · 1 −1 1


︸ ︷︷ ︸

ΞP3(n)

=



1 · · · · · ·
· 1 · · · · ·
· · 1 1 · · ·
· · −1 1 · · ·
· · · · 1 1 1
· · · · −1 0 2
· · · · 1 −1 1


︸ ︷︷ ︸

ΞS0⊕ΞS1⊕ΞS2⊕ΞS3



1 1 2 2 2 3 5
· 1 1 3 1 4 10
· · 1 0 0 1 0
· · · 1 0 1 6
· · · · 1 0 0
· · · · · 1 0
· · · · · · 1


︸ ︷︷ ︸

FP3(n)

(b) The rook-Brauer algebra, RB3(n):

1 1 2 2 1 2 4
· 1 0 2 0 2 6
· · 1 1 0 1 3
· · −1 1 0 −1 3
· · · · 1 1 1
· · · · −1 0 2
· · · · 1 −1 1


︸ ︷︷ ︸

ΞRB3(n)

=



1 · · · · · ·
· 1 · · · · ·
· · 1 1 · · ·
· · −1 1 · · ·
· · · · 1 1 1
· · · · −1 0 2
· · · · 1 −1 1


︸ ︷︷ ︸

ΞS0⊕ΞS1⊕ΞS2⊕ΞS3



1 1 2 2 1 2 4
· 1 0 2 0 2 6
· · 1 0 0 1 0
· · · 1 0 0 3
· · · · 1 0 0
· · · · · 1 0
· · · · · · 1


︸ ︷︷ ︸

FRB3(n)

(c) The rook monoid algebra, R3:

1 1 1 1 1 1 1
· 1 0 2 0 1 3
· · 1 1 0 1 3
· · −1 1 0 −1 3
· · · · 1 1 1
· · · · −1 0 2
· · · · 1 −1 1


︸ ︷︷ ︸

ΞR3(n)

=



1 · · · · · ·
· 1 · · · · ·
· · 1 1 · · ·
· · −1 1 · · ·
· · · · 1 1 1
· · · · −1 0 2
· · · · 1 −1 1


︸ ︷︷ ︸

ΞS0⊕ΞS1⊕ΞS2⊕ΞS3



1 1 1 1 1 1 1
· 1 0 2 0 1 3
· · 1 0 0 1 0
· · · 1 0 0 3
· · · · 1 0 0
· · · · · 1 0
· · · · · · 1


︸ ︷︷ ︸

FR3

(d) The Brauer algebra, B4(n):

1 1 1 1 0 3 1 3
· 1 1 0 0 2 2 6
· −1 1 0 0 −2 0 6
· · · 1 1 1 1 1
· · · −1 0 −1 1 3
· · · 0 −1 2 0 2
· · · 0 0 −1 −1 3
· · · −1 1 1 −1 1


︸ ︷︷ ︸

ΞB4(n)

=



1 · · · · · ·
· 1 1 · · · ·
· −1 1 · · · ·
· · · 1 1 1 1 1
· · · −1 0 −1 1 3
· · · 0 −1 2 0 2
· · · 0 0 −1 −1 3
· · · −1 1 1 −1 1


︸ ︷︷ ︸

ΞS0⊕ΞS2⊕ΞS4



1 1 1 1 0 3 1 3
· 1 0 0 0 2 1 0
· · 1 0 0 0 1 6
· · · 1 0 0 0 0
· · · · 1 0 0 0
· · · · · 1 0 0
· · · · · · 1 0
· · · · · · · 1


︸ ︷︷ ︸

FB4(n)
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