
ANNALES DE L’INSTITUT FOURIER

ERIC T. SAWYER
Unique continuation for Schrödinger operators
in dimension three or less
Annales de l’institut Fourier, tome 34, no 3 (1984), p. 189-200
<http://www.numdam.org/item?id=AIF_1984__34_3_189_0>

© Annales de l’institut Fourier, 1984, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_1984__34_3_189_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. Inst. Fourier, Grenoble
33, 3 (1984), 189-200

UNIQUE CONTINUATION
FOR SCHRODINGER OPERATORS IN

DIMENSION THREE OR LESS
by Eric T. SAWYER ( 1 )

1. Introduction.

Suppose S2 is an open connected subset of R" and v(x)
a nonnegative function on ft . Let X denote a space of locally
integrable functions on ^2 and let L denote a partial differential
operator. Following [ 1 ] we say that the differential inequality

\Lu(x)\ <v(x) \u(x)\ a.e. x in ft (1 .1 )
has the unique continuation property, or u.c.p., relative to X
if whenever u in X satisfies (1.1) (in the sense of distributions)
and vanishes in (i.e. is zero a.e. in) a nonempty open subset
of S2, then u vanishes in Sl. The basic problem is to
characterize in a useful way the operators L and the functions
v for which (1.1) has the u.c.p. relative to a given space of functions
X. In this paper we will be concerned with the case where L is
the Laplacian A on R" and X is the space H^(Sl) consisting
of those functions u which, together with their distributional
Laplacian AM , are locally integrable on the open set i2 C R" .
This case arises in connection with unique continuation for
Schr6dinger operators, H = — A -h v , which in turn has applic-
ation to the question of the non-existence of positive eigenvalues for
H = - A + t ; . We refer to [I], [2], [4], [10] and [13] and the
references given there for details on this application.

In his article on Schrodinger semigroups ([13]), B. Simon
essentially proposes (p. 519 of [13]) the problem of proving
that if v satisfies the condition

(K^) Urn sup ^(XBOc.r)^^) == ° for all compact K C ft ,
y ~~^ 0 x £ K

(1) Research supported in part by NSERC grant A5149.
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then the inequality
|A^(;c)| <v(x)\u(x)\ a.e.x in 12 (1.2)

has the u.c.p. relative to H^(S2), ft open connected. Here

W(>0 = ̂  *A^) =/0^--0/00^

where <^(x) = €„ Ijcl2"" (= clog\x\ if n = 2)

is the fundamental solution of the Laplacian in R" . We refer the
reader to [13] for a discussion of many illuminating characteriz-
ations of condition (K^00). Results of W. Amrein, A. Berthier and
V. Georgescu ([!]) and J. Saut and B. Scheurer ([11]) state that
t;ELf^(ft) is sufficient for (1.2) to have the u.c.p. relative to
H^(ft) provided

n 2p
p > — , p > n — 2, n> 2 and q = max 1, ——-2 p T 2

([!]) and relative to H^ft) if p > -n- ([11]). See also [2], [3],

[4], [5], [6], [10], [12] and [13] and references given there. More
recently, C. Kenig and D. Jerison have obtained unique continuation

for (1.2) relative to H^ , q = ——— when vCL^ , n>3
(private communication).

The main result of this paper is that condition (K^) is
sufficient for (1.2) to have the u.c.p. relative to ^^(ft) at
least when n < 3 , thereby establishing Simon's conjecture ([13],
p. 519) for n<3. We remark that L^ C K^00 for p>n-,n>2

([13] ; see (A21)) while L^2 and K^00 are incomparable for
n > 3. For p > 1, define

H?^") = ^ E LL ("); ̂  e Hoc (")}
and let H^ (ft) denote those u in H^ with compact support
in ft . Finally, for w(x) > 0 and p > 1, let

IIMHp =supl(/|^/Tvi/) l /p; ^1/T < 1 , supp/C unitballL

THEOREM . — Suppose ft is a connected open subset of
R" , n = 2 or 3, and that v is a nonnegative function on ft.
Let p > 1. Then inequality ( 1 . 2 ) has the u.c.p. relative to
H^(") tf

lim I I I X B O c . D ^ l l l p =° ^ora// x ^ "• (L3)
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Remarks. — (I) Since the u.c.p. is a local property, one need
only require the vanishing of the limit in (1.3) outside a closed
set E of measure zero such that i2 — E is connected.

(II) When p = l , (1.3) is equivalent to (K^). Indeed,
| | |w|ili = sup l ^ w ( y ) and the maximum principle for

\y\< l
harmonic functions shows that

IIVXBOc.r) ^lloo = SUp VXBOC r) v) W
yGB(x,r) v

< sup I,(XBO, 2r) v) ( y ) —^ 0 as r -^ 0 by (K^).
y(=B(x,r)

A simple covering argument yields the converse.
(Ill) Characterizations of I I I ||| for p > 1 can be obtained

using the methods of [7], or [8] and [9]. Note however that if
v E L ^ ( R 3 ) , then Holder's inequality and the Sobolev theorem

([14] ; p. 119) show that (1.3) holds for l < p < 3- .

(IV) In the simple case n == 1, (1.2) has the u.c.p. relative
to Hi2^1 (i2) if and only if

lim f^ \x —a\v(x)dx =0 for all a Ef t . (1.4)
r -*• 0 ^a-r

The proof is left to the reader. Note that (1.4) is weaker than
(Ki00).

2. Proof of the Theorem.

The theorem is proved using the approach of T. Carleman
([3] — see also [10]; p. 243) and the following estimate on
Tay lor polynomial approximations to | . ~y\~01 .

LEMMA. -Let ^00= bcl"01, x G R " , a > 0 and
^(^)==- log \x\. Then for 0 < a < l , N > 0 , and x , y ^ W 1

\^-y)- 1 ^^-^Kc,^)-1^-.)
s=o ' y l (2.1)

where if a = 0, we restrict x and y to have modulus less

than —. The constant Cy is independent of N, n, x and y .
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Remark. — (V) The Lemma fails for a > 1 . In fact, for
fixed N and y , the left side of (2.1) behaves like C\x\^ for
large |jc| while the right side is 0(1 xl1^1"0') as \x\ —^ °°.

The Lemma will be proved in §3. Suppose now that
^eC^R"-{0}). Then u(x) =/0«0c - y ) ^u(y)dy and if

we subtract the N^ degree Taylor polynomial of u at the origin
(which is = 0) and then interchange differentiation and integration, we
obtain

^00== ff^^)- I (——^ ^(-^)1 ^u(y)dy02)J L e==o x" J

for all x in R" . A standard limiting argument involving a
C^ approximate identity now shows that if ^GH^* 1 (R" — {0}),
then (2.2) holds for a.e. x in R" .

We now prove the theorem. Suppose u and v satisfy
(1.2) where u^Hf^ (i2) and v satisfies (1.3). We may assume
v > 1 since v + 1 also satisfies (1.2) and (1.3). Suppose further

that 0 € ft and u vanishes in a neighbourhood of 0. Let 0 < r < —
1 8

be such that I I I X B ( o , r ) v p I l l p < '^TT ^ere a = = n — 2 and C^
2L^

is the constant appearing in (2.1). Choose i?GC^ such that

r] = 1 on B(0,r) and suppr? is contained in B ( o , — ^ . An easy

computation shows that -qu EH^ (R" — {0}). Using (2.2) and
the Lemma, we thus obtain for all N > 1,

C (v(x)\x\-^ \u(x)\y dx
^IxKr .

<CS [ v(xy [I, (\y\-^ lA(r^) (y)\) (x)Y dx
J \x\<r

<CS lllXB(o.r)^ 1 1 1 ? {\y\~^ \^u)(y)Pdy

<— [ [ v ( y ) \ y 1-N \u(y)\ydy
2 v \y\<r

+ — f ^^Np \^u)(yW dy (2.3)
2 J \y\>r
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since |A(T^)| = \Au\ < v\u\ in B(0,r) by (1.2). The integrals
in (2.3) are finite since A(r^) is in \f and vanishes near the
origin. Subtracting the first term on the right side of (2.3) from both
sides and then letting N —> oo shows that v\u\, and hence u ,
vanishes in B(0,r) . A standard connectedness argument now shows
that u vanishes in S2 and this, given the lemma, completes the
proof of the theorem.

3. Proof of Lemma.

We prove only the case 0 < a < 1 , the case a = 0 being
similar but easier. Since ^ is radial and homogeneous, we may
assume, after a dilation and a rotation, that y = (1, 0 , . . . . 0) and
x = (x^ , x^ , 0 , . . . . 0). Thus we may as well suppose n = 2
and passing to polar co-ordinates z = (x^ , x ^ ) = te10 , what we
must prove is

111-^1-a.p^^i^r^1 |1 -^1-° (3.1)

for all t > 0 , |0 | < TT and N = 0, 1 , 2 , . . .
where ¥ ^ ( t , 0 ) denotes the Taylor polynomial of degree N
at the origin for the real-analytic function z = te19 —^ 11 —z\~01.
In order to effectively compute P^ ( t , 6), we write

| l_^]-a =(i_^)-a/2 (i^^-^)-a/2

and use the binomial expansion

(l-z)-^ 1 (-i)^72)^ ^ t^1^, I z K l
fc=0 ' fc=0 "

where the symbol [7 ] denotes the product II ( 1 -h 7- ) forfc ,= i V 7 /

fc > 1 and [7 ] = 1. Thus with 7 = ^ - 1 we have for t < 1,
o 2

ii-^r^s ria^v^ ru^-10)6)
Vj^o ^ ^c^o e /

= i ^m(0)^ (3.2)
w== 0
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where ^(0) = ^ € } [ ' } ̂ -^ (= P"/2 (cos 0) in terms
fc+C==w ^ »

of ultraspherical polynomials). Thus with z = r^

PN(^)= S [^ria^o^)8
f c + C < N ^ C N

= S ^H7]^-^ S ^w^.
*:+f i<N ^ C w = 0

i (3J)

We first dispose of the simple cases t < — and t > 2.
00 «

Since (1 —^- a = ^ [ "" ] ̂  for | r | < l we conclude, on
k=0 k

comparison with the case 6 = 0 of (3.2), that

^mWI^^0)^"1]. ^>0, |0 |<7T. (3.4)
m

Now for 0 < a < l , we have [oi~l ] <C(k ^ I ) 0 ' - 1 <C (see
k

(3.6) below) and thus for t > 2 we have by (3.4) that
N

IPN^.^K £ 1^(0)1^ <c^ ^sscr1^1 ll-r^l-"
w = 0

since /- a < 2 11 — ̂ '^ |~ a when r > 2. This proves (3.1)

for t > 2. On the other hand, for t < — we have by (3.2)
and (3.4) 2

00

l l l -r^l^-PNa.^K ^ 1^(0)1^ ̂ r^ |l-^^ I-0

w = N + l

since \\—teiQ\>— when r < — and this yields (3.1) for
1 2 2 ^

t < — . We now consider the cases 1 < t < 2 and — < t < 1
^ ' 2<

separately.

rA(? ca^ 1 < t < 2

Let A [ 7 ] = [ 7 ] - [ 7 ] and D^(z) = ^ z^ = 1—^ .
fc fc f c + l y = o 1 —z

We continue to write z = ^l^ . Summing by parts twice in the
formula (3.3) for P^ ( t , 6) we obtain
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N ^ N - f c ^
PN<^)= S t l^ S [ ]?'

fc==0 ^ fi=o fi

N -y ( N -fc- 1 -y ^ \= S [ ]^ I A^ID^Z)^ ] D N _ ^ ( Z )
f c = o ^ ^ e=o e N - f c IN ' )
N - l ^ N-fi-1 -y N

= ^ A[']D,(z) ^ ['Iz^ 1: ['][ 7 Iz^D^^z)
f i=0 fi i:==0 k k=0 k N-fc

N - 2 -y N - C - 2 ^= v ^]D,(Z) y A^ID^Z)
^^ C ^i^ Ac2=0 t=0

-^^^^Wz)^..,;.^)

+ i ['K' IZ^DN.^Z)
fc=0 * N - f c

=1+11+111. (3.5)

Let d = 11 —z |~ * and note that d>— since 1 < / < 2. We
ause the following estimates; recall that 7 = — — 1 satisfies

-1<7<--^.

[ ' ] < C(k+ l ) ' y ,A[ ' y ]<C( fc+ DT- ' . -K^^O.^^O (3.6)fc ~
|D^(z) |<Cf f c + l m i n { A : + l ,d} , /> 1, k>0 (3.7)

S O+l) '^-1 m i n { f c + l , d } < C - r f T + i , -1<7<0, d>-1-
t=o 3

N (3.8)
S ( fc+ I)7 (N-J fc+ lpmin{N-A; + l , d } <C^d 2 ^ r + 2

- l < 7 < - ^ , d > - ^ . (3.9)
For k > 1, 7 > - 1,

k i
.v * / 'y\ k 2 . T ^ T

( ]= n ( 1 +-•-)< n e/ = e /=1 ' <^A:T
* / = i v / ' / = i

which yields the first estimate in (3.6) and the second follows
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[7]=-^-,^using ^^"T^T17!- smce I S ^ 1 < ( A ; + 1 ) ^
/ = = ok k-\- \ k

1 -Z^4-1
and —TZ— ^r^rf we have (3.7). Estimate (3.8) followsi z
easily upon considering the sums ^ and ^ separately.

k<d k^d
Finally the left side of (3.9) is dominated by

N N
S (^+ I)7 (N-A:+ l)^ <(N + l)^1 V (A;+ 1)^ ^CN27^

fc=0 ^=0

which yields (3.9) if N < 2 d . If N > 2 r f , then the left side of
(3.9) is dominated by

s (^(ly^ z (^(N-,4-1)^
. ^ N-d V 2 ' N-d v 2 /

^<-y- —^-<jt<N-d

+ £ (N-d)^(N-A:-h l)^^
N-d<fc<N

^^[N27^ d + N 2 7 ^ d + N ^ ^ T ^ K C ^ r f 2 ^ ^
since both 7 and 2 ^ + 1 are nonpositive.

We now return to (3.5) and show that the modulus of each of the
terms I, II and III is dominated by

c^r^1 d2^2 ̂ r^ |l -^l-"
as required in (3.1). We have

UK I; lA^D^IIAriD^z)!
f c + f i < N - 2 ^ C

<C^ H ( ^ + l ) ^ - l m i n { A : + l , d } (£+l )^- 1 m i n { £ + 1 ,d}
^<N-2 by (3.6), (3.7)

< C ^ N ( S (^+l ) 7 - 1 minU+l ,d}) 2

fc=0 '

and (3.8) now yields the desired result for term I. From (3.6) and
(3.7) we have

HIKCr1^1 N^1 (e+1)^-1 (N-£ )^min{£+ 1 ,d} min{N -£, d}
f i=o

< C ^ N + I ^ ( £ + l ) ^ ( N - e p m i n { N - J Z , d } ^C^^^ d2^2

fi=0
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by (3.9). Finally I III I < C^ r^ d2^2 follows immediately upon
combining (3.6), (3.7) and (3.9) and this completes the proof of
(3.1) for 1 < r < 2 .

The case — < t < 1

We continue to write z = te16 and d = |1 — z | ~ 1 . In place
of (3.7) we have the estimate

|D^(z)| < C m i n { A : 4 - 1, rf} f e > 0 , | z | < l . (3.10)

Let TN^Z)- £ F^^z^ S A[ 7 ]D.(z) for
f c = N + l k y = o N + 1 + , /

|z| < 1. By (3.6), (3.10) and (3.8),

IT^^KCIzl^^ Z (N+1+7) 7 ' 1 ( 7 + 1 ) (3-1 1)
f<d

+ ^ ( N + 1 + / P - 1 d)^^^^ ^+1 ̂ r^1 ll-^l-^2.
,>d

From (3.2) and (3.3) we see that for t < 1,

\l-teie\-a-P^(t,e)= ^ l7!^ [^^ (3•12)

f c + O N + l fc fi

=TN^(Z)TO(Z)+TQ(Z)TN^ (z)-TN^(z)TN^(z)+RN(r,0)

N N

where R^(t,0)= ^ I J^ H I J ^ - In view of (3.11)f c = = i fc e = N + i - f c £

and (3.12), the estimate (3.1) for — < / < 1 will follow once we
have shown

^(^KC^1 ll-^l-0, \. <t< l , |0 |<7r.(3.13)

To this end let A^ri-l 7 ]= -A[ 7 ] for fe > 1. Two
fc fc f c ~ i f c - i

summations by part yield

^(t,Q)=t G]^^ { i 2;r]DN.,(})
f c = l fc C=N+2-fc fi v z /

+1 ' ]D.-.(1)}
N+l-Jt X Z /
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-^^tATlD^^^^^Z^D,.^^

^'^i^^IJ^-d)^-^)
+^ 1 ['IzM 7 ]D,-i(1)

f c = l fc N + l - f c *• * \2 /

= 1 + II + III.

Note tha t^= | l——|- l >- i f • l -< |z |< l .S inceA[ T ]=-A( 'y ] ,z 3 2 fc t-1
we thus obtain from (3.6) and (3.7) that

[^l^C^-l < 7 < 0 , k> 1.
fc

I A ^ ] ! <CA:7-1 , - 1 < 7 < 0 , J k > 1. (3.15)
fc

ID^-^KCr^-1 min{A:+ l , rrf}, ~ < r < 1, f c > 0 .

We shall also need the following consequence of (3.9).
N N
S r-1 min { N - £ 4 - 1 , td} L k^-1 min { N - A : + l , t d }

f i = 3 f c = N + 3 - C

N
< S £7-1 min { N - f i + l , r d } C ( N + 3 - £ ) 7 £ < C (rd)2^2

fi=3

by (3.9) for - 1 < 7 < ~ - , td > -. (3.16)

From (3.15) and (3.16) we immediately deduce
UKC^^1 ll-r^l^

for — < t < 1 and the corresponding estimates for II and III

follow from (3.15) and (3.9) along lines similar to those used for their
counterparts in (3.5). Thus (3.13) holds and this completes the
proof of the Lemma.
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