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BROWNIAN MOTION AND RANDOM WALKS
ON MANIFOLDS

by Nicolas Th. VAROPOULOS

0. Introduction.

In this paper I shall examine, from a general point of view, some of the
questions that were raised in [1]. Let M be a complete, connected, non-
compact Riemannian manifold, and let F = [m^ e M, i = 1, 2, . . .} be a
discrete grid of M i.e. a subset such that rf(Wf,my) > I/A (i^j) and
d(m,r) < A (m e M) for the Riemannian distance d and some A > 0.
The distance d induces then a distance on the countable space F, and we
shall say that a random walk on F is an admissible walk if its leaps are
neither too long nor too short for that distance (cf. §4 for the exact
definition).

The main aim of this paper is to compare the canonical Brownian
motion on M (cf. [2], [3]) with the admissible random walks on F. We
prove, for instance, that Brownian motion on M is recurrent if and only if
the above random walks are recurrent. As a corollary we recover two of the
main results of [1] (cf. [15] for a special case):

THEOREM. — Let M be a compact Riemannian manifold and let M -> M
be a regular connected covering of M mth G as a deck transformation
group [i.e. G = 7ti(M)/N N <1 7ii(M)]. Then Brownian motion is transient
on 1V[ if and only if G is a transient group.

The other result deals with a regular covering of the fe-punctured
sphere, i.e. E -> S\{zi .z^ , . . .,Zjj = S^ where S is the Riemannian sphere
z ^ , Z i , . . . , Zfc e S and Z is some regular covering with G as a deck
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transformation group. We shall construct then a random walk on D x G
(where D is the disjoint union of k copies of the non-negative integers
with their k 0-points identified) and we shall show that the Riemann
surface £ is hyperbolic if and only if that walk is transient. The case
G = H^Sfe) = 7ii(Sfc)/[7i^7cJ is the Lyons-McKean case [4] (for k = 3)
and then the walk is transient.

One way of seeing the above general considerations, is to say that one
« discretises the potential theory of M » to the potential theory of a
random walk on T . Another application of the above is an estimate on
the Heat diffusion kernel pt(x,y) defined by

Pi(x,y) dV(y) = PJz(r) 6 dV(y)]; x, y 6 M, t > 0

where {z(t)eM;t>0} is the Brownian motion of M. (I assume that
there is no explosion cf. [2], [3].) Indeed we have:

THEOREM. — Let M be a complete, connected, non-compact manifold
and let us assume that K(V), the sectional curvature of M, is uniformly
bounded on M and that f^(M) (x e M), the injectivity radius of M, is
bounded from belo\v (cf. [5]). There exist then Op, C^ . . . constants
depending only on M and e > 0 such that

sup \p,(x,y)\ ^C^t-112^; t > 1
x,yeM

sup \p,(x,y)\ ^ C?r1/2 (log r)^8; t > l
x,y e M

etc.

The correct bound is no doubt &"172, but I cannot prove that.

Analogously, for [i e P(G) any symmetric probability measure, on a
discrete, finitely generated, infinite group, G, we have estimates:

sup 1 (̂̂ )1 ^C^n-1^6 (n^l)
geG

sup|H*"te)| ^ C^yr^logn)1^ (n^l) etc.
geG

(I assume here that supp ^ generates G.)
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1. Metrics and graphs on discrete spaces.

We shall use throughout N = {!/ . . .} as a model of a discrete space.
Let d be a distance on N so that (N,d) is a metric space, we shall say
that d is discrete if

(1.1) sup Card (B,(Q) < -h oo (a > 0)
i

where

B.(0={/eN|dOj)^a}.

We shall say that d is connected if there exists some a > 0 such that for
every choice of i,j e N we can find i = to, h, ' ' ' , h = J such that:

(1.2) d(ip,i^,) ^ a, p = 0, 1, . . . , k - 1; k ^ ad(ij).

We shall say that F is a graph on N if Sy = S c= N x N the set of
edges is a symmetric subset that contains the diagonal. It is clear then that
a connected (in the ordinary sense of the word) graph on N defines a
connected metric on N by:

(1.3) dr(ij) = mf{n\i,j Can be connected by n edges} for i ̂ j .

Conversely an arbitrary metric d on N defines the graph

(1.4) ^= {(fJ )eNxN|d( f j )^a}

where a > 0 is some fixed a >0.

If the a in (1.4) verifies (1.2) then the above graph is connected. If the
metric d is discrete then the graph defined by (1.3) satisfies

(1.5) sup Card Er(0 < + oo
i

where Er(0 denotes the star of i in r i.e. the elements of N that can be
connected to i by one edge of r. Conversely a connected graph that
verifies (1.5) gives rise in (1.3) to a discrete metric.

The above correspondance between metrics and graphs on N is
essentially biunique and will be used systematically.
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We have:

PROPOSITION. — Let r be a connected graph on N that verifies (1.5).
For all i e N there exists then a sequence of distinct points i = i'o»h» • • •
such that d(ip,ip+q) = q for p, q = 0, 1, ... .

The proof is an easy application of a diagonal process, [i.e. Tychonov's
Theorem on products of compact spaces!]

To illustrate the above ideas let G be a discrete group generated by the
finite set g ^ , g ^ , . . . , gs ^ G. Let us denote by :

\g\ = mf{n\g=g^ . . . g^, 1 ̂ f^s, 8k= ± 1, fe= 1,.. .,n}.

Different sets of generators give different | | but we have:

A-^r^r^Ai^r
for some A > 0. Two connected discrete metrics can then be defined on
G by d^(g,h) = l^"1/^ and dy(g,h) == l^/i"1!. In general the above two
metrics are not equivalent and the antiisomorphism x->x~1 on G is an
isometry between d^ and d y . d^ (resp. dy) is left (resp. right) invariant.

The above metrics arise naturally in the theory of the Riemannian
covering spaces. Let M be a compact Riemannian manifold and let
id -^ M be a regular connected covering (this means that the deck

p
transformation group is transitive on each fiber p'^Xo) (XQ € M) and that
id is obtained from the universal covering space by identifying the points
in a normal subgroup N < n^(M)). l0l is then endowed with a natural
Riemannian structure.

Let us fix a base point x e id let XQ = p(x) and let us define the deck
transformation group G = ?ti/N with respect to that point x.

We can then identify p'^-Xo) w1^1 the group G since

P~l^)={gX\g€G}

and the metric on ]% induces thus a distance d * on G which is left
invariant (and depends, but only in a very inessential way, on the choice of
the base point xeKt). The above distance is equivalent to d^ on G
(observe, that n^ and therefore G is finitely generated) cf. [14]. Indeed the
above two distances on G are both left invariant and the assertion is a
consequence of the following
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LEMMA (Milnor [6]). - Let Kt, M and XQ = p(x) be as above and let
Y i , . . . , y, e 7Ci(M;Xo) be a (prefered) set of generators of the fundamental
group. There exists then A > 0 such that

^~l\g\^d(x,gx)^A\g\, geG

where d denotes the Riemannian distance on Kl.

Proof ( I give it for completeness). - Let us use f i , ..., y, e G = Tii/N
(the canonical images of y, in G) as generators of G, and let g € G.
L^ g = Y^ • • • Y^ we can join then x with gx by a curve of length
^ n. max [length in M of a loop representing y,]. This proves that

f(x,gx)^A\g\.

Let us now fix D c: Kl some relatively compact fundamental domain
such that XQ € 6 c: D c t5. [e.g. we can construct D by the exponential
map at XQ so that t> can be identified to M\Cut locus of XQ\ . Let D^
be the e-NAd of D [i.e. points at a distance ^ e] and let D^ be the 3e-
t^hd of D (for some e > 0).

{s^i I g ^ G} is then an open covering of ]Q[ and the family {^631 g e G}
is locally finite [for e sufficiently small]. Indeed the ^63 contain disjoined
open balls [if e is sufficiently small].

Let us fix g e G and let us join x with gx by a [lengh parameter]
minimizing geodesic f in 1%:

f = { ^ ( t ) / 0 ^ t ^ d = d ( x , g x ) } .

Let Xj = ^((,) with tj = = ; — ( / = 0,1,.. .,L) where L ^ e~1 d and let
LJ

Xjehfi^ (^.eG|7=0,l,.. .,L) with ho = identity of G and h^ = g . It
follows that g = /o/i . . . /L-I where ^ = V^k+i (k = 0,1,.. .,L-1)
and /k£>3 n l!>3 ^ 0 (fe=0,l,.. .,L-1). But this last relation and the
local finiteness of the covering {^631 g 6 G} force all the /^ 's to be in
some fixed finite set F c= G. If we use { f i , . . .,tJ u F as a set of
generators in G we conclude therefore that \g\ ^ L that can be chosen to
be less than [e~1 d] + 1. This proves that \g\ ^ Ad(x,gx).
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2. — S-operators: Asymptotic estimates.

Let H be a real Hilbert space and let T i ,T2 ,T3 be three
contractions on H (i.e. ||T\.||^1, i= 1,2,3) that satisfy

TI =01-2 +(l-a)T3

for some 0 < a < 1 and such that T^ is symmetric (i.e.
<T2X,^> = <x,T^>, x,y e H). We then have :

E ^<TV,/> ^ i f ^<TV,/>; / 6 H, 0 ^ ?i < 1
n=0 a n=0

(cf. [7], [1]).

From this it follows that for all [i probability measure on [0, 1) and

(2.1) ^ = F^^) (^0)
Jo

we have:

(2.2) f WifJ> ^ 1 E ^<T^,/>.
n=0 a n=0

If we suppose that:

(2.3) <r;/,/>, <T^/,/»0 (n^O)

then we can suppose that |A is a measure on [0, 1] in particular it can be
chosen to be S^ and we have:

(2.4) f <T^,/>^^f <TV;/>.
n=0 a n=0

If (2.3) holds and [i is such that:

WJJ> is decreasing in n; f ^ <TS/,/> < + oo
n=0

then it follows that:

(2.5) ^J;/)^-1).
V^Sn/
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Let now (X;dx) be a measure space and let {K(x,y);xj^0} be a
positive kernel on X we shall say that K is an S-operator or an S-kernel
if

fK(;c,^)Ac= f
v J

K(x,yo) dx = K(xo ,y) dy = 1; XQ , yo e X.
j

We shall say that K is symmetric if K(x,^) = K(y,x) (Vx^eX), We
have then the following order relation on S-kernels :

KI » K.2 o 3a > 0 s.t. Ki(x,^) ^ yK^x,y); x , y e X .

We have:

PROPOSITION. — Let KI , K2 be two S-operators on (X,dx) s.t. K^ is
symmetric and K^ » K^ . Then there exists some A > 0 s.t.

(2.6) f ^<K?/,/> ^ A f ^<K^,/>
n=0 n=0

for every ^ as in (2.1) and /GL^X;^).

Proq/: — Indeed if a > 0 is small enough we have

KI = aK^ + (l-a)K3

with K3 an S-operator. It remains to observe that S-operators are
contractions on the Hilbert space L^X;^) and to apply (2.2).

If /e L^X^x) is non-negative then the analogue of (2.4) holds and
similarily for (2.5).

Observe finally that for an appropriate choice of ^ we can have :

^ - n~^

for any P ^ 0, or we can have:

^ - ̂  (log^

for any P > 0 and A e R ; and so on.
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Let {Q be as in (2.1) let 0 ^ / e L^X^dx) and let K^ » K^ be two
S-operators such that K^ is symmetric and such that:

Z ^<K;/,/> < + oo; ^<K^,/> decreasing in n.
n=0

It follows then from (2.5) that

(2.7) <K;/,/>=0(^).

3. Discretising S-operators.

Let (X,dx) be a measure space and let X = (J Xj be a disjoined
j= i

partition into Borel subsets of positive finite measure. The above partition
induces two positive norm decreasing mappings :

T: L^X^dx) -> ^(dK)\ T*: ^(d'k) -^ L^X^dx)

for 1 ^ p, q ^ + oo where d\ is the measure on N given by
.̂ = ^({/}) = dx measure of Xj.

We define the two mappings by:

(T/) (/) = ̂  f / dx', j = 1, ..., / 6 V(X,dx)
^j Jx,

(T*/)(x)=/0) VxeX,; j= l,...,/e^(d?i).

The two mappings are adjoint of each other and satisfy T o T* = Identity.

Using the above two mappings we can establish a correspondance
between the S-operators on (X,dx) and the S-operators on (N;d^).
Indeed if K is a (symmetric) S-operator on (X,dx) then TKT* is a
(symmetric) S-operator on (N;rfX) and conversely if L is a (symmetric)
S-operator on (N;d^) then ^T*LT is a (symmetric) S-operator on
(X,dx). The above facts can be verified directly or one can observe that
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S-operators are characterized by the properties that together with their
adjoints they are positive, norm decreasing on all the L^ spaces
(\^p^ +00) and that they preserve the identity (or that they preserve
total mass of positive functions of L1).

In the applications that we have in mind (X',dx) will be a complete,
connected, non-compact Riemannian manifold assigned with its canonical
volume which we shall denote by (M;rfV). We shall consider then
decompositions of M into disjoint relatively compact subsets

00

M = \J Mj, we shall fix points nij € Mj (j= 1,. . .) and we shall suppose
j= i

throughout that for some A > 0 the following condition is verified :

(3.1) A-ld(x,y)^d(m^m,)^A(d(x,y)-^l); VxeM, , yeM,,
ij = 1, .... i + ]

(d denotes of course the Riemannian distance on M).

Let us then denote by pt(x,y) the Heat diffusion kernel on M which in
terms of the canonical Brownian motion {z(t)',Q<t<e} on M (cf. [3], [4])
can be defined by:

Pi(^y) dV(y) = P,[z(Q e d\(y); t<e\.

For convenience I shall assume that ^ = + 0 0 i.e. I shall assume that
diffusion is conservative on M :

(3.2) (pi(x,y)dV(y)= 1; ( > 0, x e M .

This holds under very general conditions on M (cf. [8], [3]) and certainly
under condition (3.6) below.

I shall make a number of further assumptions on p,. To avoid
repetition in expressing the conditions below I shall resort throughout to
standard practice and denote the dependance of a constant that appears in
the text by brackets (e.g. C = C(^i ̂ ,...) means that the constant C
depends only on the parameters ^i, ^» • • • ) •

Let us then fix M and let us assume that (3.2) holds. The positive
constants below A, C^, K ^ , . . . all depend on M and whatever
parameter appears in their bracket.



252 NICOLAS TH. VAROPOULOS

Here are the conditions that we shall need on p ^ :

(3.3) pt(x,y) ̂  A(do ,^i ,^2); x.yeM, d(x,y) ^ do, r e [^ ,^2]
_^ d2^)

(3.4) p,(x,}0 ^ Ci (ti .̂  1 t ; x, ̂  e M, r e [ri ,^2]
_K <J2(X)}0

(3.5) p,(x,}0 ^ C^t^t^e 2 t ; x, y e M, t e [t, ̂ ]

where 0 < ^ < ^.

The condition (3.4) is stronger than (3.3). Condition (3.4) is a
consequence of the following geometric condition

(3.6) Ric^(X,X) ^ - K|X|2; X e T\(M), x e M

where K is some fixed constant. This fact is contained in [9] and is implicit
in [10]. The advantage of (3.3) over (3.4) is that it is much « cheaper » to
prove and it suffices for most of our purposes (all in fact). (3.3) is automatic
if we assume for instance that a discrete group G acts uniformly on M
(i.e. M/G is compact).

The condition (3.5) is a consequence of the following hypothesis on M :

(3.7) sup |K,(V)| < + oo; inf f,(M) > 0,
x e M x e M

K^(V) denotes the sectional curvature at x (VeT^(M)) and f^(M)
denotes the injectivity radius at x e M . The fact that (3.7) implies (3.5) is
proved in [II], [16] (cf. also [17]).

I shall now apply the discretising procedure described above to the
symmetric S-operators pt(x,y) (t>0) on (M;dV) relative to the
decomposition (3.1).

I shall denote by :

(3.8) k,=TpJ*; K,=T*TpJ*T, (t>0)

which are clearly symmetric S-operators on (N;rfX) and (M;rfV)
provided that (3.2) is verified.

The point now is that under conditions (3.1), (3.2) and (3.4) we have :

^(^(m^mp

(3.9) k,(ij) > C\(t, ̂ e ' l ; ij = 1, 2, .... t e [t, ̂ ]
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and under conditions (3.1), (3.2) and (3.5) we have

(̂m.̂ ,)

(3.10) k,(ij) ^ C^t, ̂ )e 2 ( ; ij == 1, 2, . . . , t € [t, ,^]

(with 0 < t^ < t^). We conclude :

PROPOSITION. — Let M be a complete, connected, non-compact
00

Riemannian manifold that satisfies (3.7) and let M = \^j My be a
j= i

decomposition that satisfies (3.1).
For every time interval [t^ ,t^] (0<t^<t^) there exists then to > 0 and

constants A > 0 such that:

p,(x,y) 5? AK^OC,}O; K((;C,}O ^ Ap^(x^)
t e [ri ,^2], x, y e M

wher^ K( = TkyT* 15 rh^ kernel defined in (3.8). Furthermore k^ satisfies
(3.9) anrf (3.10).

The full strenght of (3.4) was used in the proof of the above
proposition.

The weaker condition would yield, however, estimates that are almost
as good and at any rate sufficient to push the rest of the theory through.
The interested reader will convince himself of this fact without any
difficulty, I am sure. Observe also that the above proposition will only be
used for arbitrarily small values of t ^ , ^. The estimate (3.5) is somewhat
easier to obtain then.

4. Discrete random walks.

A time homogeneous random walk {x(n); n= 1,2,.. .} with values in
the discrete countable space N = { 1 , 2 , . . . } will be identified in what
follows with its Markovian transition matrix P = {P(fJ); f j= 1,2, . . .}
where

P(fJ) = Prob[x(n+l)=7|x(n)=f].
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Let P be as above and let:

Q = e~1 Exp (P) = ^ - i [ l + p + — p 2 + .. .1

R, = al + (l-a)P, 0 ^ a ^ 1

which are also Markovian matrices.

Direct computation shows then that:

(4.1) E Q ^ Z V ^ C-^^C n^\
n=0 n=0

(4.2) f R; = 1 - f P", 0 ^ a < 1
n=Q I — a n=Q

where C > 0 is numerical (P", Q" etc. is the ordinary matrix
multiplication). Indeed we have:

oo p i r00

^= E C^-K- e-^dt= 1 .
n=o ?! PUo

[To convince yourself that the % is uniform with respect to p observe
that the function ^~V has only one maximum at t = p and that that

maximum is of the order — •
v/pJ

A Markovian matrix P induces the usual F : ^°° -> <f°° mapping by :

(P)— Z PO'J)/,, f = l , 2 , . . . .
j= i

Let then X be a positive measure on N such that ^({/}) = ^ > 0
(/=1,2,.. .), we then say that X is a symmetrising measure for the
random walk P if the matrix {^P(i'J)|fJ=l,...} is symmetric i.e. if for
the scalar product < > on ^ 2 ( d ' k ) we have <F/,^> = </,F^> for f,g
compactly supported elements of <f °°. Walks that admit a symmetrising
measure will be called symmetrisable.

We then have
(PA = E K(fJ)^,

.7=1
where

{KOj^POj)^-1!^^!^...}
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is a symmetric S-operator on (N;rf^). Conversely of course if

{K0- j ) | f j= l , . . .}

is a symmetric S-operator on (N;d^) for some \ such that

^({/})>0 O'^l)

then FQ'J) = £(fJ)I({/}) is a symmetrisable random walk.

For two random walks we shall say that P » Q if for some a > 0 we
have P(fJ) ^ aQ(fJ) OJ=1,2,. . .) . If P and Q can both be
symmetrised by the same measure ^ on N then P » Q if and only if the
corresponding S-operators Kp and KQ satisfy Kp » KQ .

PROPOSITION 4.1. — Let d be a connected metric on N and let P, Q be
two random walks on N that satisfy :

(o POJ) < cdovr^ (f^y),
(ii) mf{Q(ij)\d(ij)^a, i^j} = X > 0,

where a > 0 satisfies (1.1), C 15 ^ positive constant and b > a.

Then we have e~leQ » P.

Proof. — Let i + j and let i = f o , i\ , . . . , i^- i , ̂  = j, n -h 1 distinct
points such that d(i\,i\-n) ^ a, n ^ fl^O'J) it follows from (ii) that
Q"(iJ) ^ ^" so that:

< fl^fj)
.-^Qr,,^ > ̂ - lx/l > n/-̂ -e-^ij) ̂  e - - ̂  a - d^ij)-^

n! V^0/

for some a > 0.

On the other hand it is also clear that e~leQ(l,i) ^ e~1. From this and
(i) our proposition follows.

DEFINITION. — Let d be a connected metric on N we then say that a
random walk on N is admissible with respect to d if it satisfies conditions (i)
and (ii) of the Proposition 4.1.

Observe that no admissible random walks can exist unless the metric is
discrete. Conversely if the metric is discrete plenty of admissible random
walks can be constructed.
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To see that, let more generally F be a graph on N that is not
necessarily connected but such that (1.5) is satisfied. If we set then

P(fJ) == La,8,,+I^(iJ))

where \s is the characteristic function of € c: N x N we see that for an
appropriate choice of ^ ^ — 1 and of L > 0 we have a Markovian
matrix that is subordinated to F in the sense that P(iJ) = 0 if (ij) ^ ^ y .
The above matrix is clearly symmetric and if F is a connected graph the
random walk induced by P is admissible with respect to metric dy
induced by F (as explained in § 1).

From Proposition 4.1 we deduce the following key:

COROLLARY. — Let d be a connected discrete metric on N and let
PI , ?2 be two admissible random walks (with respect to d) that admit a
common symmetrising measure. Then there exists a constant C > 0 such
that

C-1 f P^O-,0 ^ S PW) ^ C f P^U), f e N .
n=0 n=0 n=0

Proof. — Indeed let M^^Jj^i) be the symmetrising measure of these
two walks and let KaQ'J) = P,(fJ)^~1 (a=l,2) be the corresponding
symmetric S-kernels. The same measure K also symmetrises the two walks
Q^ = ^-^(0=1,2) and if we denote by L,(fJ) = Q,(fJ)^-1, the
corresponding S-kernel, we clearly have

Ql » ?2; Q2 » PI

by Proposition 4.1 and also

Li » K^; L^ » KI .

By the proposition of § 2 it follows therefore that

f L?(U)^C f K^U), ^ e N
n=0 n=0

for some C > 0 where the n^ power of K.2 and L^ are now the n^
power of the corresponding operators in ^ 2 ( d ' k ) and we have

KKU)=P"2(U)^-1

L"i(U) =QUW'
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The conclusion is that:

Z QW) ^ c Z ^(M)
n=0 n=0

which together with (4.1) gives one of the two inequalities of the corollary.
The other inequality follows by symmetry.

The upshot of the corollary is of course that the transience of
symmetrisable admissible walks on (N,d) is an invariant of the metric d
and of the symmetrising measure. More often than not of course the
symmetrising measure will simply be the « standard » measure that gives
mass 1 to each point (^=1,7=1,. . .) .

Interesting examples of random walks that satisfy the above conditions
are supplied by finitely generated groups. Let G be such a group and let us
assign it with its left (resp. right) metric associated to some fixed set of
generators {^,; i= 1,.. .s] as in § 1.

Let H e P(G) be a probability measure and let us set:

(4.3) P(g,/i) = ^{g^h}) (resp. : ̂ ({gh -1}).

This gives us a random walk on G. This walk is admissible with respect to
the above left (resp. : right) metric of G if (and only if):

(i) H({^)^C|^|-^; geG
(ii) H({^})>0, i= 1 , . . . , 5 , £ = ± 1

for some b > 1

We obtain thus left (resp.: right) invariant random walks on G. The
mapping x -^ x~1 identifies the left invariant walks to the right invariant
walks with the same p, e P(G).

The walk defined by (4.3) is symmetric (with respect to the Haar
measure of G) Af and only if p, is a symmetric measure i.e. if

(iii) P(^})=H({^-1}); g ^ G .

As a consequence of the corollary we see that for a given discrete
finitely generated group all the admissible symmetric walks (right or left)
are transient or recurrent at the same time.

We shall say that G is a transient group if these walks are transient
and we say that G is recurrent in the opposite case.
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PROPOSITION 4.2. - Let G be an infinite group generated by
{gi; i'= 1,.. .,s} and let n e P(G) be a symmetric probability measure such
that [i({gi}) > 0 ( f = l , . . .,5). For all 0 < s < 0 .1 there exist then
constants C\ = Ci(e), C^ = C^e) etc. such that:

sup l^fe)! < min^in-^^C^-^logn^^etc...}.
geG

Observe first of all that we can replace [i by p2 [for convenience I
shall replace in my notations convolution by ordinary multiplication] and
that we can therefore assume that our measure charges e the identity of
G and that M^ = ^({e}) which is then decreasing in n.

Let then F = [g^ e G; n e Z} be a sequence of distinct points such that
go = e and d^(g^gk+p) = 1̂ 1 (k,peZ). This can be constructed by first
constructing finite sequences FN = {g^eG; -N^n^N} that have the
required property and then using a diagonal process [i.e. Tychonov's
theorem].

Let then K be the random walk defined on G by:

K r v ^ - J1725 x = gk9 y "^-n5 k e z
"-^y) — ^ i .r. ,,-,[ i ; if x = y ^ r

K = 0 in all the other cases.

Clearly K is symmetric with respect to the Haar measure of G and if
we denote by M(x,y) = ̂ {x-^y}) we have M » K. Our proposition
then follows from (2.7).

Using the final remark of § 1 and the above method we can prove the
more general.

PROPOSITION 4.3. — Let P be a (riot necessarily symmetric) random walk
on N and let us assume that P satisfies the condition (ii) of Proposition 4.1
(for some connected metric d). Then for every f e N and e > 0 we have :

<«) z,^— j,;,.w<-
etc.
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To make the above proof work we have to assume that infP(f,i) > 0

and this, in general, is of course not true. It is here that (4.2) comes to our
rescue. Indeed let us replace P by R, = al -h (1 —a)P for some small a
(0<a< 1), our method then applies and (4.4) holds with P replaced by
R,. But it is clear that:

M5) y pn^<_c_Y R^
n^i^24"6 "(l-oO^n1^6

where C only depends on e and the result follows. The details will be left
to the reader. ((4.5) holds for the same reason that (4.2) holds.)

5. Riemannian manifolds.

Let M be a complete, connected, non-compact Riemannian manifold
and let r = {w, ;i e N} c M be a discrete subset of M that verifies

d(Wf,yn,.) > I/A (i^j) and d(m,Y) < A (m e M)

for some A > 0. We shall say that F is a grid in M. One way to
construct a grid is to construct a subset [m*; i e N} that is maximal under
the condition d(m* ,w^) ^ A > 0. Given a grid it is easy then to

00

decompose M = (J Mj into disjoint Borel subsets that satisfy (3.1) and
j = i

satisfy also the more restrictive condition

(5.1) B^(m,) c= M, c: B^(m,); i = 1, 2, . . .

with (Xi = -.7.—. and a^ = 10 A say. We can for instance define:
1U /\

M, = {m € M/d(m, m^ ^ d(m,m^ V/'^f}

and make the appropriate modification to make them disjoint.

An interesting way of constructing a grid exists when ]Ct -^ M is a
p

regular covering over a compact Riemannian manifold M (as in § 1) with
G as deck transformation group. Let D be a relatively compact
fundamental domain such that 5 = D and let us fix x e £), we clearly
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obtain a grid by setting F = [ g x / g e G} [where we use x € Kl as a fcas^
point for the action of G, i.e. we identify G with the quotient
n,(M,p(x))/n^x)].

We also obtain the decomposition ]Ct = [j gD that clearly satisfies
geG

(3.1) and (5.1). The above grid can, and will, in what follows be identified
with G itself.

Let us go back now to a general connected complete non-compact
manifold M and let F = {w, ; feN} c M be a grid in M and
M = u Mi a decomposition into Borel subsets that satisfies (3.1) and
(5.1). Let us further assume that M satisfies (3.7), and let k^ and K, be as
in (3.8) for the above decomposition.

With the usual notation .̂ = Vol (M,) (/= 1,2,...) let then :

P<0'J) = fe(O'J)^

which gives then for every fixed t > 0 a random walk on F which is
clearly admissible with respect to the metric d* induced on F by M.

Indeed the conditions (5.1) and (3.7) imply that

0 < inf Kj < sup 'kj < + oo ,

and that d* is a connected discrete metric [to see that d* is connected
join two points with a minimal geodesic and to see that it is discrete use the
previous uniform bound on the volumes]. The fact that P, is an admissible
walk follows then from (3.9) and (3.10).

Furthermore {kj} gives a symmetrising measure for all these walks.
We have then:

THEOREM. — Let M be a complete, connected, non-compact Riemannian
manifold such that its sectional curvature is uniformly bounded (both from
above and below) and its injectivity radius is bounded from belo\v.

Let F c M = u Mj be a grid and a decomposition that satisfy (3.1) and
(5.1). Then Bro\vnian motion is transient on M if and only if the admissible
(with respect to the induced metric ) random walks on T that are symmetric
with respect to {X,=Vol (M^);7==l , . . .} are transient (cf. Appendix).



BROWNIAN MOTION AND RANDOM WALKS ON MANIFOLDS 261

Indeed the above walks are transient if and only if
00 00

^ P;'0',0 < -+- oo Q>0) i.e. if and only if ^ k^i) < + oo which by
n=0 n=0

oo

the Proposition in §3 happens if and only if ^ <Pn(/»/> < + 0 0 ,
n=0

0 ^ / e L^M; dV). To conclude that this is equivalent to the existence of
Green's function on M some uniformity of the above convergence is
needed for t e [t^ ,^], 0 < t^ < ^. To avoid repetition I shall refer the
reader to [I], § 5 and 6.

If we apply the above theorem to Kl where id -+ M is a normal
p

covering of a compact manifold and if we use the grid and the
decomposition explained at the beginning of this section we obtain the
result stated at the introduction about the transience of Brownian motion
on Kl.

Let now M be as in the previous theorem we can then find a special
grid r c M = u Mj that satisfies (3.1), (5.1) and which in addition
satisfies the following condition :

(5.2) d(m^m^+2) ^ K; j = 1,2,...
Vol(M^)=L; 7 = 1,2,...

for some K, L > 0 (by renormalising the metric I could even assume that
L = l ) . We can also assume that m^ is a preassigned point
W2 = m e M. I shall postpone the construction of this special grid until
Appendix II.

We can then prove:

THEOREM. — Let M be a complete, connected, non-compact Riemannian
manifold such th^it its sectional curvature is bounded both from above and
below and its injectivity radius is bounded from below. Then for all
0 < e < 0.1 there exist constants C^ = Ci(e), C^ = C^e) etc. for which
the Heat kernel of M satisfies

sup |p,(m,n)| ^ Min [C.t-112^^-112^ r)^6; etc.],
m,n€M

for all t > 1.
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Proof. — Let us fix m e M some point of M and let F c= M = u Mj
be a special grid and a decomposition satisfying (3.1), (5.1) and (5.2) with
w^ = ^ •

Let then P be the random walk on F defined as follows:

^(^21+1 ̂ n+i) = 1» f = 0, 1, . . .
P(W2,W2)= 1/2; P(m2,W4) = 1/2

P(w2k,W2(k+i)) = 1/2; k = 2,3 . . .

and P(w,,w,) = 0 in all the other choices of m, and w^.

By our hypothesis on u M, the measure {^=Vol (M^);j= 1,2,...} is
a symmetrising measure for the above walk and the symmetric S-operator
K(iJ) = P(m,,w,)X/1 satisfies k, » K for all (t>0) [cf. (3.8)]. Now it is
an easy matter to prove that ^"(m^rn^ = 0(n~112) (uniformly on j).
Indeed on the even integers P reduces essentially to a reflecting standard
coin tossing game on the non-negative integers. From this and § 2 it follows
that

f W2,2) < + oo (r>0)
n=0

for

^=n- 1 / 2 - 6 , ^n-^logn-1-6

etc.

But from the proposition of § 3 it then follows that if 0 < / e C^M)
has its support in M2 then:

(5.3) f ^n<PnJJ> < + oo (r>0)
n=0

and the above sum stays bounded for t e [t^ ,t^\ for fixed 0 < t^ < t^.
From this we can deduce that:

00

(5.4) ^ ^p^(m,m) < + oo
n=0

and that the sum stays bounded for (e [^ ^tj\. Indeed (5.4) is an
immediate consequence of (5.3) and of the fact |̂ (x, y)\ stays bounded as
r ^ [h ̂ 2] uniformly in x, y e M (cf. [11]).
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To finish the proof up we just have to observe that:

p^m,m)= f p?(m,x)dV(x)=|h,(m,.)IIJ
JM

which therefore by the semi-group property of p, is a decreasing function
of r .

(5.4), (2.7) and the above give us that:

p((m,m) = 0(—) as t -> oo (n ==[?])
Wn/

and of course the 0 is uniform with respect to m since all the above
constructions (cf. Appendix II) are. The Theorem follows.

6. The Riemann surface.

Let S be the Riemannian sphere with its standard conformal structure
(Sc=R3) and let £ = S \{z i , . . .,z^} the Riemann surface that we obtain
by deleting m of its points. We shall consider So -> S a Galois [regular,
in the terminology of [12] Ch. 9] covering with G = 7ii(£)/N as a deck
transformation group (N<7ii(E)). Let us fix a base point Z o e Z for the
fundamental group and let y ^ , . . . , y^ be the generators of 7ii(£;Zo) that
we obtain by the loops that (based at Zo) go round the points z ^ , . . . , z^
once, anticlockwise.

I shall denote by gi = f f , i = 1, . . . , k the images of the y^ 's on
G = Tti/N which are then a set of generators for G.

Let D be «the infinite star with k spikes ». More exactly D is the
disjoint union of k copies of the non-negative integers

N u 0 = {0,1,2,...}

with their 0 points all identified. I shall denote the points of D by x{,
j = 1, . . . , k; f = 0, 1, . . . and the above identification means that
^0 = X0 = ' ' ' = X0 •
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On the discrete space D x G = 0 I shall now define the random
walk :

(6.1) P [ ( x ^ g ) , ( x { , h ) ] ^ 1 ' , 7 = l , . . . , f e ;
ft jK

g,heG, g - l h = g l j , £ = ± 1,9
where

^•= Cardie =9, ±1}

(6.2) P[(x{,g), (x^, ,/i)] = 1 ; j = 1, ..., k;
ln}

g,heG, g - ' h ^ g ^ e = ± 1,9, i= 1,2, . . . .

We also set P(9,9') = 0 for all other choices of 9, 9' e ©.
It is clear then that the subset

{(9,9') e 0 x ©|P(9,9')^9}

is symmetric about the diagonal. It follows that we can find a symmetrising
measure 'k for P on ©. Indeed it is enough to set

(6.3) ^[{(4^)}]= a, 5i[{(x^)}]=P

for j = 1, 2, .... k , i = 1, 2, . . . and g 6 G and a choice of a, P > 9
that satisfies

H.
To see this observe that P((x^,g), (x^/i)) is zero unless j = k and then

we can verify that ^({9}), P(9,9') is symmetric in 9,9'.

We have then :

THEOREM. — The Riemann surface Zo ls hyperbolic (i.e. the Bro\vnian
motion is transient on £c) if and only if the above random walk is transient.

One half of the above theorem was proved in [1]. I shall show that in
fact the above theorem follows from the main Theorem of § 5. I shall be
brief and I shall use all the notations and ideas of [1] § 7, 8 (where k was
taken to be k = 3).

In [1] § 8 I assigned £ with a conformal metric that makes £ a
complete manifold and that is flat outside some compact subset. That
metric lifts to EG-
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I then proceed to construct a decomposition of EG ^d a grid O* in
SG such that ©* can be identified with ©. Furthermore in the
discretising procedure of § 3 the volumes of the subsets of the
decomposition are compatible with (6.3), (6.4).

It is an easy matter to verify that some power P" of our random walk is
admissible with respect to the induced distance d on ©. The Theorem
follows.

In general it is not clear how one decides whether the above random
walk on © is transient or not. Here are some particular cases (*):

(i) G is a transient group. Then the above random walk is transient;
this was proved in [I], § 7.

(ii) G ^ Z (or a finite extension of Z). It is easy to show that the
above walk is then recurrent. (Implicit in [I], § 7.)

(iii) G ^ Z2 (or a finite extension of Z2). Then the above random
walk is transient. This is implicit in [I], § 7.

The special case k = 3, G = H^S) = n^l[n^ ,^2] is the case that was
treated by Lyons and McKean [4].

The above three cases might well be exhaustive for G and then the
problem of deciding whether £o ls hyperbolic would be completely solved.
But this is an open question (cf. [13]).

(iv) If the canonical generators g i , i = 1, . . . , k of G satisfy g? = e
(= the neutral element of G) for some N ^ 1 then our random walk on
© is transient if and only if G is a transient group.

Indeed at the end of § 7 [1] I have constructed \i a symmetric
probability measure on G that charges the generators g^ ( f = l , . . . , f e ) and
is such that our walk on © is transient if and only if p, is a transient

/ (X) \

measure on G (i.e. ^ ^{e) < + oo ) • [i is not in general finitely
\ n = o /

00

supported and so we can very well have ^ [i"(e) < + 0 0 for a recurrent
n = o

group G (but not the other way round).

The point now is that under the condition g^ = e 0'=!,.. .,fe) H is
finitely supported and this proves our assertion.

(*) The problem was completely solved in [18].
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7. The non regular coverings.

Let G be a finitely generated group and let H c= G a (not necessarily
normal) subgroup. We shall denote by

G | H = {Hg;^eG}

the left coset space of [G:H].

The metric di on G (cf. § 1) induces then a quotient metric d on
G | H which is clearly also connected and discrete. Let now
P(g,h) = ^({g'^h})^^ e G) be a random walk on G induced by some
probability measure peP(G). It is clear then that

(7.1) ^°)=ZP(^); g e g ^ e G \ H
h 6/1°

is the transition matrix of a random walk on G|H [the above definition

clearly does not depend on the particular choice of g e g ] .

The point is that if 4 is chosen to satisfy :
(i) H = A (i.e. H(^})=H({^-1})),
(ii) G^(suppn) = G,
(iii) [i({g]) ^ C\g\~^ for some C > 0 and b > 1 ,

then the walk (7.1) is an admissible (vv.r.r. J) and symmetric (i.e.
P(g^) = f^g), Vg, /i°eG|H) walk on G|H. The transience or
recurrence of the above walk does not therefore depend on the particular
choice of p, [that satisfy (i), (ii), (iii)].

We say that G|H is recurrent if and only if the above walks are
recurrent. An intuitive way of saying that G | H is recurrent is to say that
the random particle that performs a (left) invariant walk on G returns
infinitely often to the subgroup H.

Let now 1% -> M be a general (i.e. not necessarily regular) covering of
a compact Riemannian manifold (1VI is connected).

What we have is H c= n^ (M) = G a subgroup of the fundamental
group of M and 1VI is just M/H where ^i is the universal (simply
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connected) cover of M. We have also covering mappings

M -^ M A M.

THEOREM. — Let Kl -^ M be as above then Bro\vnian motion is
recurrent on I?I if and only if the coset space G | H 15 recurrent.

The proof is immediate. Indeed fix some m e Ivl and let

r = { g m | g e G = 7 i , ( M ) }

be the canonical grid obtained on M.

The set p(f) = F <= Ivl is then a grid on M and can be identified
with G|H. Further more that identification brings the metric on F
induced by the Riemannian structure to a metric on G|H that is
equivalent (in the obvious sense of § 1) to d .

The machinery of § 5 therefore applies and we have our Theorem.

We also have cf. [1] as a corollary that coset spaces are transient only if

JoySo^00

[y(n) = Card {y e G|H | °d(x,y) ̂  n}].

Appendix I.

In view of a recent theorem of T. Lyons (the Annals of Prob., 1983,
vol 11, n° 2, pp. 393-402) it follows that the exact value of ^ = vol (M^) in
the main theorem of § 5 is irrelevant and we can simply talk of
« symmetrisable admissible random walks ».

Indeed Lyons' theorem says that if PiO'J), PzOJ) are two random
walks on N the first symmetrisable by {^-1)} the second by {^2)} then
the transience of one implies the transience of the other provided that

c-^^i^c
c ^W^PzW)^

for some C > 0.
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Appendix II (construction of the special grid of § 5).

Let M satisfy the conditions of Theorem. Let us start with

F = {m,eM,,7=1,2 , . . .}

and M = u M^., mjeMj a grid in M that satisfies the conditions (3.1)
and (5.1). Let m be a fixed point of M and let y = {y(0; t^-0} be a ray
in M going off to infinity and starting at w, this means that y is a
geodesic such that y(0) = m and such that for any two 0 < t^ < t^ we
have rf(y(ti), y^)) = length of \y(t), t^<t<t^} = ̂  - t ^ .

The existence of such a ray in any non-compact, complete manifold is
easy to establish.

Let then t > 0 such that the tubular Nfcd y^ = {m e M | rf(m,y) <e} is
really nice i.e. looks like a cylinder; this can clearly be achieved as soon as
£ is sufficiently small.

The next thing to do is to slice that semi-infinite cylinder into disjoint
portions pj ( /=!, . . . ) along its length, of equal volume. A typical portion
could be of the form

yi = {m e M | ^(m.y7) < e}
where

y^ {y(0|r,^r^i}.

A correction has to be made at the two ends if we want these portions to be
disjoint. Clearly this can be done by using the normal bundle of y.

Let L be the common volume of these portions. By choosing first
e > 0 and then L sufficiently small we can also make sure that
diam (pj) ^8 for a preassigned 8.

We shall consider then the new decomposition

M = (U l̂ .) u (U p)j
\ j / \ j /

where Ivl̂ . = My\yg.

For e sufficiently small we see that this new decomposition satisfies all
the required conditions; it simply remains to renumber it!

Akno\vledgment: I am very grateful to Dr K. Carne who has read the
manuscript and has suggested a number of improvements.
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