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COMPLETELY CONTINUOUS MULTIPLIERS
FROM L,(G) INTO LJG)

by G. CROMBEZ and W. GOVAERTS (*)

1. Introduction.

When (S,S,n) is a positive measure space and T a weakly compact
linear map from Li(S,E,n) into a Banach space B, then T transforms
weakly convergent sequences in Li(S,£,n) in norm convergent sequences
in B, i.e., T is completely continuous [9, 1.6.1]; indeed, Li(S,£,n) has
the Dunford-Pettis property [5, 9.4]. In particular, for a locally compact
Hausdorff group G with left Haar measure, all weakly compact
convolution operators T^ from Li(G) into L^(G), induced by
functions g in L^(G), are completely continuous. However, those g in
L^(G) which induce weakly compact T^ are precisely the weakly almost
periodic functions [10], and they form a proper subspace of L^(G); hence
the question arises whether or not all g in L^(G) give rise to a
completely continuous T^.

Whenever G is a discrete group, every T^ is completely continous,
since then in Li(G) norm convergence and weak convergence of sequences
coincide [4, IV.8.13]. For nondiscrete G this last property is not true : for
instance, the sequence of functions t -^ e^ (n e N) on the circle group T
is not norm convergent in L^(T), but converges weakly to zero by the
Riemann-Lebesgue lemma. This suggests that complete continuity of a
convolution operator Tg is not trivial if G is not discrete.

In section 2 we give an example of a (continuous) function g on the
additive group ^ of real numbers such that T^ is not completely

(*) Research associate of the Belgian National Fund for Scientific Research
N.F.W.O.
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continuous. In section 3 we introduce the notion of a uniformly measurable
function in L^(G); we show that such a function induces a completely
continuous T^; conversely, for metrizable nondiscrete G there are no
other functions g which induce completely continuous T^. In section 4
the set of uniformly measurable functions is investigated. All g in L^(G)
give rise to completely continuous T^ if G is either discrete (already
known) or compact. From theorem VI.8.14 in [4] it may be derived that T
is completely continuous if the function y -^ _^g from G to
(^(G),!! |U is measurable; in section 5 we show that such g are in
fact uniformly measurable, but that the converse does not hold. Finally, in
section 6 we use our results on completely continuous T^ to obtain more
information on convolution operators.

Definitions and notations.

We always denote by G a locally compact Hausdorff group with
identity e. With respect to left Haar measure m on G, Li(G) and
L^(G) are the usual corresponding Banach spaces. A function g in
^(G) gives rise to a convolution operator Tg from Li(G) into L^(G)

by means of T,(/) =/^ g , where (/* g)(x) = | f(xy)g(y-1) d y . T,
JG

is called completely continuous if T^ maps any weakly (i.e.,
^^(G^L^G))) convergent sequence onto a norm convergent
sequence. For a function g on G, we use g for the function defined by
i00 = g(x~1)', for a e G, left translation is defined by (^)(x) = g(ax).
The characteristic function of a set A in G is denoted by ^. C^(G) is
the set of continuous-complex-valued functions on G with compact
support, and C^(G) denotes the non-negative functions in C,(G). The
linear space of all right uniformly continuous, bounded, complex-valued
functions on G is denoted by C^(G). All other non-explained notation
about groups is taken from [7].

2. Exampk of a not completely continuous
convolution operator.

Take the additive group 3t of real numbers. For n = 1, 2, . . . , put

f^)^^^ f o r 0 ^ x < 2 7 c
J A ) 0, forx6^\[0,27i].
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Each /„ belongs to Li(^), and ||/J|i = 2n. However, the sequence
{/n}n°=i converges weakly to zero in L^). For, giveh h in L^(^),
denote by k the restriction of h to the interval [0, 2n}. men k may be
considered as a bounded function on the circle group ^ T, while the
function x -»• e1^ is a character on T. Hence

f fn(x)h(x)dx = f2" e^x) dx = k(- n),
J^t Jo

and this tends to zero as n tends to infinity. Let g be the function defined
on ^ by means of g(t -h 2nm) = e1^ for 0 < t ^ 27t, ^ e Z. The
function g is bounded and continuous, and so belongs to LJp(^). We
prove that the convolution operator T^ from Li(^) to L^(^?) is not
completely continuous by showing that, for each positive integer n, there
exists x^ in ^ such that ](/„ ^ g)(x^)\ = 2n. Put x,. = 27i(n 4 1). For
0 < t ^ 2n, ^ - r = (27t-r) + 27in, and 0 < In - t ^ In a!is soon as
t ^ 2n; hence ^(x^ — r) = e1^2"'^ almost everywhere on thq interval
[0,2n].

So we obtain

(fn * ^)0cn) = [2n e^e^-^dt = 2Ke2nin,
Jo

from which the result follows.

3. Uniformly measurable functions
in L^(G) and completely continuous convolution operators.

DEFINITION. — For a measurable set A in G and a finite measurable
partition ^ = {AJ?= i of A, \ve call a function h on A an s^-step
function if h is constant on each set A,.. The set of all ^/-step functions is
denoted by Step s / .

THEOREM 3.1. — For a function g in L^(G), the following are
equivalent:

(i) Ve > 0, V8 > 0, V measurable A in G with m(A) < oo, there
exists a measurable partition s / = {Aj?=i of A such that, to each x in G
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there corresponds a subset A^ of A mth w(A^) < 8 and to each
f e { l , . . . , n } there corresponds a complex number c^ ; such that
^(a^x) - c^,| < £ /or all aeA,\A^.

(ii) tA(? saw^ as (i), but only for those x in a dense subset of G.
(iii) the same as (ii), but only for all compact subsets A of G.
(iv) Ve > 0, VA compact in G, there exists a measurable partition

^ = {A,}?= i of A and a dense subset D of G such that, to each x in D
there corresponds a function h^ in Step ^ such that

\ \g(a-lx)-h^a)\da<f..
JA

(v) the same as (iv), but now for all x in G.
(vi) the same as (v), but for all measurable A in G with w(A) < oo .

Proof. - (i) o (ii) and (ii) => (iii) are trivial.

(iii) => (iv): Let e > 0 and A compact in G be given. Put
5 = ^. „ ? and consider in (iii) the partition ^ = {AJ?^ of A

corresponding to ^—— and §. For x in D and a in A,, put

^x(^) = c^i; then ^ clearly belongs to Step ̂  . Since we may assume
that \c^,\ ^ 2||^||^, we obtain the result by writting

A = U(AAA,)uA,.
f=i

(iv) => (v): Let y be an arbitrary point in G and A compact. It is
sufficient to prove that there exists a neighborhood V of y such that

^ ( a ' ^ z ) - g(a~ly)\ da is arbitrarily small for all z in V; for, such
JA
neighborhood contains a point x for which the inequality to be proved is
already true, and putting then hy(a) = h^a) we obtain the result by the
triangle inequality.

Choose an open neighborhood U of A with compact closure 0.
There exists a symmetric neighborhood W^ of e such that
AWi u W^A c= U; thenj^A (= y-^ and z-^A c y-^ for all z in
W^. Choose a function / in C,(G) such that 0 ̂ /^ 1, and/= 1 on
y^O; put h=fg, where g(t) = g(r1); then /leLi(G). Given
£ > 0, there exists a symmetric neighborhood N¥3 of e such that
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l l^-i / i- _ i A | [ i < e if zeyW^. If W = W i n W 2 , and z e ^ W n W ^ ,
then we obtain

f l^-^-^-Wa^ f IC-ii)(^)-(,-ii)(^)l^
JA JA

^ IL-iA - ,-i/i||i < e .

(v) => (vi): Given a measurable A in G with w(A) < oo, there
exists a compact K c: A such that w(A\K) is arbitrarily small. For this
K the condition to be proved is already true. So it suffices to join A\K to
the partition of A, and to put h^a) = 0 for all a in A\K.

(vi) => (i). If (i) is not true, then there exist 80 > 0, §o > 0, and a
measurable subset A of G with w(A) < oo, such that for any
measurable partition ^ = {AJ?= i of A a point x in G may be found
such that for no constants c^; we have that \g(a~lx) — c^J < 80 for all
a in A(\A^ as soon as m(A^) < 5o. Let then ^ = {AJ?=i be an
arbitrary measurable partition of A, h an arbitrary function in Step ^ ,
and A^ a measurable subset of A with w(A^) < §o. For the mentioned
point x we then have

f hKfl-^) - h(a)\ da > S f \g(a- ̂ ) - h(a)\ da
JA *=i JAAA,,

^ 6o(w(A) - §o),

which is clearly a contradiction with the assumption of (vi).
D

DEFINITION. — A function geL^(G) is uniformly measurable if it
satisfies one of the equivalent conditions of theorem 3.1.

THEOREM 3.2. — If g in Loo(G) is uniformly measurable, then T^ is
completely continuous.

\
Proof. — Let {/,}J°=i be a weak zero-sequence in L^(G); then

\\fj\\^ < M, V/. Given e > 0 there exists a compact set A in G such

that f \f,(y)\ dy < -8— for all ; [5,4.21.2]. With that e there
JG\A ll^lloo

I c
corresponds 8 > 0 such that 1/jOOI dy < —— for all 7, whenever

JT ll^lloo
m(T)<8.
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0

Given a point x of G, use . and 5 in (ifi) of theorem 3.1 to obtainM
a partition ^ = {A,}?=i of the compact set A; then w(A^) < 8 and

.p
\g(a~^^) - c^,\ < _ for all fleA,\A^. Since

C//*^)(x)= fj(y)g(y~lx)dy^ j //OOgCr'x)^,
•^A JG\A

| f _ |
and fj(y)g(y lx) dy\ ̂  e for all j, we only have to investigate the-^

JG\A |

integral on A. This integral may first be written as ^ + with
I p , l=l ^i^x ^\

fj(y)g(y~lx)dy\ < e for all j. Finally,
>/A, |

UG\A |

] /• i "^i^x ^x

w(A^) < 8, so that //•(^(^-lx) dy\ < e for all j. Finally,
UA^ |

(0 Z f ^)^-^)^=t f f,(d)c^da
1 = 1 î̂ X l=l JA,\A^

+ Z I . /K^(^"lx)-c,.,)A^.1 = 1 JA,\A,,
We may assume that K,|^2||^||^. Since {/,}^ is weakly convergent
to zero in Li(G), we have

f Wda<^^JA..\A, 2n||̂ ||̂

for sufficiently large values of ;. This leads to

Z f Wc^,da\<e
1=1 ^A,\A^

for sufficiently large values of ;. The second member on the right hand
e n rside of (1) is bounded by _ ^ \f^a)\ da, and so is smaller than
Mi=U^^

£

^ll/,lli < e for all j. Hence \(f, * ̂ )(x)| < 4e for sufficiently large

values of j, independant of x; so {/, ^ g}^^ is norm-convergent to
zero in L^(G).

D
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Theorem 3.2 gives us a sufficient condition for a function ^ in L^(G)
to induce a completely continuous T^. To show that for metrizable
groups G this condition is also necessary, we first state two lemmas.

LEMMA 3.3. — Let G be nondiscrete, A a relatively compact subset of
G, g a real-valued function in L^(G). Then there exist a real number d
and a partition A = B u C of A such that g ^ d on B, g < d on C,

and m(B) = m(C) = .w(A).

Proof. — We may assume that w(A) ^ 0. Since m(A) < oo, g takes
almost everywhere on A values between — \\g\\^ and -I- \\g\\oo- Consider

Ui = {ce[-||^|L-l,||^|L+l]: m({xEA:g(x)>c})^m(A)\

V, = {c e[- IÎ IL -1, ll^lloo + 1 1 : m(xeA:g(x)<c})^m(A)V

Neither Ui nor V^ is empty, each element of U^ is not greater than
each element of Ui, and each element of the interval
[ — H a l l o o — 1 » Halloo+1] belongs either to U^ or to V^- So there exists a
cut d in the interval such that

w ( { x e A : g(x)>d]) ^ ,w(A), m({x€A:g(x)<d}) ^ ,m(A).

Putting

S = { x e A : g ( x ) > d } , T = { x € A : g ( x ) < d } , D = { x e A : ̂ (x)=d},

we have that A = S u T u D, w(S) < . m(A), w(D) ^ . m(A).

So the lemma will be proved if we show that, for any real t with
0 < t < 1, there exists a partition D = E u F such that

w(E) = rw(D), w(F) = (l-Ow(D).

Given e > 0, there exists a neighborhood V of e such that m(V) < e.

Since D is relatively compact, there exists a finite cover (J x/V of D
i=i
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where the x, belong to the closure D of D. From this cover we obtain a

partition (J D( of D, and w(D^) < e for all i. Let then B ^ ,
1=1

respectively B2 be the union of those D, such that

(m(D) - £ < w(Bi) < tm(D), (l-t)m(D) - e < m(B^) ^ (l-t)m(D).

Then D = B^ u B2 u 33, and m(B3) < 2e. If w(B3) is not zero, we
repeat the foregoing procedure to obtain B3 = B\ u B'^ u B'3, with
w(B3) < 2c2. After a denumerable number of steps we put
B = S u BI u BI u . . . , C = A\B; this leads to the wanted partition
A = B u C . D

LEMMA 3.4. — Let G be non-discrete, A a relatively compact subset of
G. Let ^ = {AJ?=i be a partition of A, Co > 0, geL^(G) real-

valued such that \g(a)—h(a)\ da > EQ for each h e Step sf . Then each
JA

A, has a partition A, = B, u C, such that m(Bf) = w(Cf) = ^ w(A;) and

such that

§(a) (XjB^0) - Xuc.C^) da^ KQ.
JA f ( , '

f

Proof. — Applying lemma 3.3, choose for each i a number c; and a
partition A, = B, u C, such that g ^ c, on B,, g ^ c, on Q, and
w(B,) = m(Cf). Defining / on A by putting f(y) = c, for all y in A,
we obtain

f ^)(XUB,^)-XUC,(^))^= Z f ^(^(XB.^-XC,^))^
J A f (• i = 1 J A,

= i f (^(^-^(XB.^-XC,^))^» = i J A ,
= z ^(^-^i^1=1JA,
= f |^(a)-/(a)|da^eo. D

JA



COMPLETELY CONTINUOUS MULTIPLIERS 145

THEOREM 3.5. — If G is metrizable and nondiscrete, and g e L^(G) is
not uniformly measurable, then T^ is not completely continuous.

Proof. — First, assume that g is real-valued. By assumption there is an
EO > 0 and a compact subset A of G such that corresponding to any
measurable partition ^ = {AJ?= i of A a point x in G may be found
such that

f ^(a-^-h^da^^
JA

whenever h e Step ^ .

We shall construct a sequence {W,,}^ i of partitions of A, a sequence
{xj^=i of points in G, and a sequence {(pj^=i of real-valued functions
on G, with the following properties:

(i) ̂  contains no sets of diameter > 2"".
(ii) ^/n+i ls a refinement of c0/^.
(iii) (p^+i takes a constant value on each member of ^,,+1 and

| ^n +1 (y) dy = 0 whenever B € ̂ .
JB

(iv) {(pn}n°=i is weakly convergent in L^(G) to zero.
(v) |((pn*^)(x^)| > £o for all n , and so (p^*^ is not norm

convergent in L^(G) to zero; this will prove that T^ is not completely
continuous.

Choose a partition j^i of A such that (i) is true, choose a real-valued
function <pi inStepj3/i that belongs to L^(G) and a point x^ in G
such that (v) holds. Assume that for some n we have already constructed
{^•}J=i, {x,}5=i, {<Pj}?=i such that the conditions (i), (ii), (iii) and (v)
are true respectively for all n, until n — 1, until n — 1, until n.
Choose a new partition ^/n of A that refines ̂  and contains no sets of
diameter > 2~ n - l . By assumption, corresponding to s^'^ we may find a

point ^-n in G such that ^(a'^n+i) — M0)! da ^ EQ whenever /i
JA

belongs to Step ^. If s/n = {Bj^i , apply lemma 3.4 to obtain a
partition B( = C» u D, for each i such that

m(C,)=m(D,)=jm(B,),
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and

g(a~lx^^(^(a) - ̂ {d))da ̂  £o.
JA , l ,

Now define the partition ^+i wanted for the induction as

<^={C,,..,C,.D,,..,D,},

m

and define ^>n+i on G such that (pn+i(y) = 1 tor y e [j Q,
i = i

m
(p^^^(z) = — 1 for z e \J D,, and (p»+i(0 = 0 for reG\A. Then the

conditions (i), (ii) and (iii) are clearly true for ^/n+i ^d <Pn+1 • Also (v) is
true for n -+- 1, since

(<Pn+l *^)(^n+l) = (Pn+l^O^'^n+l) da ^ EO ,

by definition of ^-n and (p^+i .

Finally, to prove (iv) we have to show that for any k in L^(G) the
f f 1°°sequence ^ | (pn^fe^)^^ converges to zero.
UG Jn=l

Since any fe in L^(G) may be approximated by a sequence of simple
functions, and by the outer regularity of the Haar measure, it is sufficient to

f f }^
prove that the sequence ^ <Pn(>OXuOO dy\ converges to zero for any

UA )n=l

open set U.

Let d be the metric on G, N a positive integer, and put

FN=LeG:d(x,A\U)<U

Since A\U is compact, given 8 > 0 we may choose a natural number N
sufficiently large such that W(FN\(A\U)) < 8. For n > N, all sets of the

partition s/^ have a diameter smaller than — • Denote by D the union

of all sets in the partition s/n that contain a point of A\FN ; we have
A\FN c: D c: A n U, and w((AnU)\D) < 8.
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Moreover, by property (iii) the integral H>p(y) dy is zero whenever
JD

p > n. The result then follows since |cpp(y)| ^ 1 for all p .

If g is complex-valued and not uniformly measurable, then the real
part or the imaginary part of g is not uniformly measurable, and by the
foregoing procedure we again arrive at the result since the constructed
sequence {(pn}^°=i consists of real-valued functions. D

4. Examples and properties
of uniformly measurable functions.

THEOREM 4.1. — If geC^(G), then g is uniformly measurable.

Proof. — Given e > 0, there exists a symmetric open neighborhood
V = V ~ 1 of e such that \g(y)-g(sy)\ < e, V x e G , V s e V . Given a
compact set A in G, there exists a partition s^ == {AJ?= i of A such
that A, c: x,V for suitable points X i ( f = l , . . .,n) in A. For x in G,
choose A ^ = 0 , and c^i = g^"^); then we clearly have that
\g(a~lx)—Cy^ < e for all aeA, . D

From theorem 3.2 and the foregoing result we conclude that all T^ are
completely continuous if G is discrete (this follows directly from
[4.IV.8.13]).

THEOREM 4.2. — Ifge Loo(G) has compact support, then g is uniformly
measurable.

Proof. — Let S be the compact support of g , and A a given compact
set. If x ^ AS then g(a~lx) = 0 for all a in A. Hence we only have to
investigate condition (iii) of theorem 3.1 for those x in a compact subset
L = AS of G.

Since g may be uniformly approximated by simple functions, for given
x in L and e > 0 there exist numbers c^ and a partition
j^ = {A^}?=i of A such that \g(a~lx)—c^^\ < e for all a in A^.

Given 8 > 0 there exists a compact subset B^ of A? such that

m(A?\B?)<^.
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For each i choose an open neighborhood U; of B? such that
<-

yn(Uf\Bf) < —9 and a neighborhood V; of e such that

B?V, u V,B? c U,. For each v in V, the set (Bf\uBf) u (uB?\Bf) has a
<.

measure smaller than —• Doing the same for each i, we obtain a2n
h

neigborhood V = Q Y( of e such that, for all y in Vx, the same
1=1

partition A? and the same constants c^ may be used to obtain
\g(a~ly) — c^,| < e for all a in A,\Ay, where w(A^) < 8; indeed,

Ay=(\J (A?\B?)) u I U ((B^B?)u(t;BAB?))),
\»=i / \»=i /

for some v in V. Repeating this procedure for each x in L, we find m
m

points Xj of L and m neighborhoods Vj of e such that L = (J VjX^.
./=i

A common refinement of the j^ then gives a suitable partition of A.
j D

From this theorem and theorem 3.2 we, deduce that all T^ are
completely continuous if G is compact.

THEOREM 4.3. — The set of all uniformly measurable functions in L^(G)
is a norm-closed linear subspace of L^(G).

Proof. — It is almost trivial that the set of uniformly measurable
functions is closed under addition and scalar multiplication. If [gj}J= i is a
sequence of uniformly measurable functions which is norm convergent in
L^(G) to a function g , then given e > 0 choose a natural number N

c

such that \g(y)—g^(y)\ < ̂  for all y in G except on a locally null set.

Given e > 0, 8 > 0, A compact, the triangle inequality shows that the
partition of A for g^ and the numbers c^ for gy corresponding to a
given point x in G may also be used for g .

D

If geL^(G) and there exist a compact set K and a uniformly
measurable function h such that g = h on G\K, then g is uniformly
measurable. Indeed, g = h + (g—h). In the same way a function in
Loo(G) which vanishes at infinity is uniformly measurable.

If G is unimodular some additional results hold.
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THEOREM 4.4. — Let G be unimodular, geL^(G). Assume that for
each £' > 0 there exists a uniformly measurable g^' and a measurable set T
mth m(T) < e' such that g = g^ on G\T. Then g is uniformly
measurable.

^
Proof. — Given 8 > 0, choose g^' with e' = , • Given e > 0 and A

compact, choose a partition s/ = {AJ?=i of A for g^ such that
<.

\g^(a~lx)—c^^\ < e Va e A,\A^, where w ( A ^ ) < _ - Now
c

g(a ~ ̂ x) = g^ (a ~1^) except for a e xT ~ x . Since w(xT ~ x ) < . » it

suffices to replace A^ by B^ = A^ u (xT^nA).
D

COROLLARY 4.5. — If G is unimodular, and geL^(G) n Loo(G), then
G is uniformly measurable.

Proof. — This follows from theorems 4.3, 4.4 and 4.2 if we remark that
g may be uniformly approximated by simple functions, each simple
function being expressed by means of characteristic functions of
measurable sets with finite measure, and then use the inner regularity of the
Haar measure for those measurable sets.

D

5. Connection with measurable vector-valued functions.

It is not true that for given g in L^(G) the function y -^ _ig from G
to (Loo(G),|| |U is always measurable in the sense of [5, 8.14.1]; e.g. the
function g used in the example in section 2 does not have this property.
We first show that, whenever y -^ _ig is measurable, then g is uniformly
measurable.

THEOREM 5.1. — Let g be a function in Loo(G) such that
F : G -> (L^(G), || |U, P(y) = _^g is measurable. Then g is uniformly
measurable.
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Proof. — We show that condition (iv) of theorem 3.1 is true. Given A
compact, there exists a sequence of simple vector-valued functions which is
almost uniformly convergent on A to F. So, given e > 0, there exists a
partition sf = {AJ?=i of A, functions {/ij?=i in Loo(G), and subsets
B, of A, such that

"(A"^^' •"• "•-^-t."-< ̂
for all fl€A,\Bi; we may suppose that H/ i f l loo < Zl l^ l loo for each i.
Given an open set U in G with m(U) < oo, we define the complex-
valued function h on A x U by putting h(a,x) = hi(x) if aeA;. For

n

fixed a in \J (A^B.), there exists a null set C^ in U such that
1=1

l^a-^-^a.xH < ——^ for x e U\C,,

and so

f n ( [ l^-^-^x)! dx) da < ———m(U)m(A) = ̂ m(U).
JA \UB. \ JU 2W(A) 2

1=1

Since we can repeat the above for any measurable subset V of U
instead of U itself we obtain, by an application of Fubini's theorem,

f n |g(a-lx)-/l(a,x)|da<£

J A \ U B, z

« = 1

for almost all x e U (and hence on a dense subset of U). For such x we
also have that

f l^a-^)-/^)! d a = f +[\ < e + ^ = e .
JA JA\U B, J U B, z z

i=l i=l

Finally, putting hj,(a) = h(a,x) for all such x, h^ belongs to Step si\
and condition (iv) of theorem 3.1 is fulfilled.
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The converse of theorem 5.1 is not true. Indeed, consider the additive
group ^ of real numbers and, for x e ^ , put g(x) = 1 if x > 0 and
g(x) = 0 if x < 0. Since we can always change the values of g on a
compact interval to make the function a uniformly continuous one (e.g., by
going linearly from the value 0 to 1 on the interval [—1,4-1]), it follows
from theorem 4.1 and the remark following theorem 4.3 that g is
uniformly measurable. However, the function F : 9t -> (Loo(^),|| [[^),
F(y) = _ig is not measurable; indeed, if y ^ z then || _ ig— _i^||oo = 1,
and this implies that the set { _^g : y e A} is not contained in a separable
linear subspace of L^(^) if A is an uncountable subset of ^ with
w(A) < oo; this contradicts a well-known property of measurable vector-
valued functions (e.g. [5, th. 8.15.2]; [3,IIth.2]).

6. Remarks.

6.1. A bounded linear operator T from a Banach space X to a
Banach space Y is called strictly singular [almost weakly compact] if,
whenever T has a bounded inverse on a closed subspace M of X, then
M is finite-dimensional [reflexive] (see [8], [6]). Denoting by STR and
AWC the sets of strictly singular and almost weakly compact operators
respectively, we have STR c: AWC. It was shown in [2] that, for the
additive group Z of integer numbers with the discrete topology, the sets of
multipliers from Li(Z) to L^(Z) belonging to STR and AWC are
equal. By our previous results, this property about multipliers is also valid
for any discrete and any compact group G, due to the following.

LEMMA 6.1. — A bounded linear operator T from X to Y which is
completely continuous and almost weakly compact, is strictly singular.

Proof. — Let T have a bounded inverse on a closed subspace M of
X. If T belongs to AWC, then M is reflexive, and so the unit ball
b(M) of M is weakly sequentially compact. Every sequence {Xn}^=i in
b(M) has a subsequence {Xn.}^=i that weakly converges to a point x. If
T is also completely continuous, then {Tx^ }jE°= i is norm convergent in Y
to Tx; making use now of the existence of a bounded inverse of T, we
derive that {x „ }k°=i is norm convergent in X to x, which means that
b(M) is compact; hence M is finite-dimensional.
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6.2. The introductory example in Section 2 does not stand alone.
Indeed, for every non-compact, non-discrete metrizable group G there
exist non-completely continous multipliers T^eLoo(G)). To construct
such g consider any compact A c G with m(A) > 0. As in Theorem 3.5
we define a sequence of real-valued measurable functions {(p^}n°= i on G
with |(pJ = 1 on A, |<pJ = 0 on G\A such that (?„ weakly converges
to zero in Li(G). Choose a sequence {xj^=i in G such that
A~lXnr\ A~lXnt = 0 if n ^ m. Define geL^(G) by putting

g^y'^n) = ^>n(y) for ^ e A and ^(z) = ° if ^UA ^n- Then

ll<Pn * 8\L > l((Pn * g)(^)\ = ^n(y)8(y~l^)dy\ = m(A)UG I
for all n. It would be easy, too, to make g a continuous function.

6.3. Let k be a function in Li(G), H^ the convolution operator from
L^(G) to L^(G), induced by k. For noncompact G, the only weakly
compact Hfc is the zero-operator [1]. However, all H^ are completely
continuous, as the following theorem shows (for compact Abelian G, see
[3, p. 90]).

THEOREM 6.2. — Let k € Li(G). If {fn}^=i weakly converges to zero in
L^(G), then {/„ ^ k}^=i norm converges to zero in Li(G).

Proof. — Since C^(G) is dense in Li(G), we may suppose that
keC^(G); let K be the support of k. Given e > 0, there exists a

compact set K^ in G such that \fnW\dx <——9 VneZ"^ Let
JG\KI ^ l lMl i

K2 be a compact set in G such that K^ => K^K. We have

(1) 11/n * fe l l l = f l(/n * k)(x)\ dx + [ |(/, * fe)M ̂ .
JG\K2 JK2

Since k e L^(G), we know from theorems 4.2. and 3.2. that /„ ^ k is
|| || oo-convergent to zero; hence

f \(fn^k)(x)\dx<^ V n > N , .
JK z


