ROBERT KAUFMAN

On the weak L^1 space and singular measures

<http://www.numdam.org/item?id=AIF_1982__32_1_119_0>
ON THE WEAK L\(^1\) SPACE AND SINGULAR MEASURES

by Robert KAUFMAN

Introduction.

The class \(R\) of finite, complex measures \(\mu\) on \((-\infty, \infty)\) such that \(\hat{\mu}(\infty) = 0\), has been intensively investigated (since 1916). For this class \(o(1)\) is trivial and for absolutely continuous measures, we have the Riemann-Lebesgue Lemma. We investigate the corresponding \(o(1)\) condition for the partial-sum operators

\[
S_T(x, \mu) = \int D_T(x-t) \mu(dt),
\]

\[
D_T(t) = (\pi t)^{-1} \sin T t, \quad T > 0.
\]

The \(o(1)\) condition for \(S_T\) depends on the weak \(L^1\) norm, defined by

\[
\|u\|_1^* = \sup Y m\{|u| > Y\};
\]

\[
\|S_T(\mu)\|_1^* \leq C \|\mu\|, \quad 0 < T < +\infty.
\]

The weak estimate is an easy consequence of Kolmogorov’s estimate for the Hilbert transform [2, Chapter II]. Elementary approximations show that when \(\mu = f(x) \, dx\), then \(\lim \|S_T(\mu) - f\|_1^* = 0\). When \(\mu\) is singular and \(\lim \|S_T(\mu) - g\|_1^* = 0\) for a certain measurable \(g\), two conclusions can be obtained without great difficulty (see below):

a) \(\|S_k(\mu) - S_{k+1}(\mu)\|_1^* \longrightarrow 0\) whence \(\hat{\mu}(\infty) = 0\);

b) \(S_T(\mu) \longrightarrow 0\) in measure as \(T \longrightarrow +\infty\)

whence \(g = 0\) a.e. This leads us to define:

(*) Presented at the Italian-American Conference on harmonic analysis, Minnesota, 1981.
W_0 is the class of measures μ for which $\|S_T(\mu)\|_1^* \to 0$ as $T \to +\infty$.

We present an elementary structural property of W_0, and then show by example that

(A) There exist M_0-sets F carrying no measure $\mu \neq 0$ in W_0.

The sets F are defined by a purely metrical property, and they need not be especially small. Their construction is based on an idea from the theory of divergent Fourier series [31, Chapter VIII].

(B) The set F_{θ} of all sums $\sum_0^{\infty} \pm \theta^m (0 < \theta < 1/2)$ carries a measure $\lambda \neq 0$ in W_0, provided F_{θ} is an M_0-set.

To elucidate example (B) and the next one we recall that F_{θ} fails to be an M_0-set (or even an M-set) unless $\mu_\theta \in \mathbb{R}$, where μ_θ is the Bernoulli convolution carried by F_{θ} and that $\mu_\theta \in \mathbb{R}$ except for certain algebraic numbers θ [311, p. 147-156]. Therefore the next example is somewhat unexpected.

(C) When $0 < \theta < 1/2$, then $\mu_\theta \notin W_0$, in fact

$$\|S_T(\mu_\theta)\|_1^* \geq c(\theta) > 0$$

for large $T > 0$. We observe in passing that μ is not known to be singular for $1/2 < \theta < 1$ except when $\mu_\theta \notin \mathbb{R}$, e.g., for $\theta^{-1} = (1 + \sqrt{5})/2$.

From the weak estimate for S_T it is clear that W_0 is norm-closed in the space of all measures. We shall prove that when $\mu \in W_0$ and $\psi \in C^1 \cap L^\infty$, then $\psi \mu \in W_0$; consequently the same is true if only $\psi \in L^1(\mu)$. We need two lemmas; the first was already used implicitly.

Lemma 1. Let μ be a measure such that $S_k(\mu) - S_{k+1}(\mu) \to 0$ in measure (over finite intervals). Then $\hat{\mu}(\infty) = 0$, i.e., $\mu \in \mathbb{R}$.

Proof. $|D_k(t) - D_{k+1}(t)| \ll \min(1, |t|^{-1}) \equiv K(t)$, say, and $K \in L^2(-\infty, \infty)$. Thus the functions $|S_k(\mu) - S_{k+1}(\mu)|$ have a common majorant $\int K(x - t) |\mu||dt|$ in L^2. The hypothesis on
ON THE WEAK L^1 SPACE AND SINGULAR MEASURES 121

$S_k - S_{k+1}$ then yields $\|S_k - S_{k+1}\|_2 \rightarrow 0$. This means that

$$\int_k^{k+1} (|\hat{\mu}(t)|^2 + |\hat{\mu}(-t)|^2) \, dt \rightarrow 0$$

so $\hat{\mu}(\infty) = 0$, because $\hat{\mu}$ is uniformly continuous.

Lemma 2. Let $\mu \in \mathbb{R}$ and $\psi \in C^1 \cap L^\infty$. Then as $T \rightarrow +\infty$

$$\|S_T(x, \psi \cdot \mu) - \psi(x) S_T(x, \mu)\|_1^* \rightarrow 0.$$

Proof. Since μ can be approximated in norm by measures $\mu_n \in \mathbb{R}$, each of compact support, we can suppose that μ itself has compact support, say $|t| \leq a$. Now $S_T(\psi \cdot \mu) - \psi S_T(\mu)$ converges to 0 uniformly on $[-a - 1, a + 1]$, being equal to

$$\pi^{-1} \int \sin T(t - x) \cdot \varphi(x, t) \mu(\,dt),$$

with $\varphi(x, t) = (t - x)^{-1} [\psi(t) - \psi(x)]$; $\varphi(x, t)$ is jointly continuous. This is sufficient to obtain the uniform convergence claimed.

For $|x| > a + 1$ we write

$$x S_T(x, \mu) = \pi^{-1} \int \sin T(t - x) \cdot \sigma(x, t) \mu(\,dt),$$

with $\sigma(x, t) = x (t - x)^{-1}$; now $|\sigma| \leq a + 1$ and

$$\left| \frac{\partial}{\partial t} \sigma(x, t) \right| \leq a + 1,$$

for $|t| \leq a$. Therefore $x S_T(\mu, x) \rightarrow 0$ as $T \rightarrow +0$, uniformly for $|x| \geq a + 1$. The same applies to $x S_T(x, \psi \cdot \mu)$, because $\psi \cdot \mu \in \mathbb{R}$, and these inequalities show that $\psi S_T(\mu) - S_T(\psi \cdot \mu) \rightarrow 0$.

2. Examples.

I. Let F be a compact set in $(-\infty, \infty)$, $0 < \alpha < 1$, (e_j) a sequence decreasing to 0; for each j, let $F = \bigcup F_k^j$, where

$$\text{diam}(F_k^j) \leq e_j, \quad d(F_k^j, F_k^\alpha) \geq e_j^\alpha, \quad k \neq \emptyset.$$

Then F carries no probability measure μ in W_0 (and hence no signed measure $\mu \neq 0$ in W_0).

We define the following property of a number β in $[0, 1)$, relative to μ and the sequence of partitions $F = \bigcup F_k^j$:

$$\text{(**)}$$

The total μ-measure of the sets F_k^j, such that $\mu(F_k^j) > e_j^\beta$, tends to 0, as $j \rightarrow +\infty$.

Plainly \(\beta = 0 \) has property (**), because \(\mu \), being an element of \(\mathbb{R} \), can have no discontinuities. We shall prove that if \(\beta \) has property (**), and \(0 \leq \beta < \alpha \), then \(\gamma = \beta + (1 - \alpha)/2 \) has property (**). This leads to a contradiction as soon as \(\gamma > \alpha \), since the number of sets \(F_k^l \neq \emptyset \) is \(O(e_j^{-\alpha}) \).

Assuming that \(\beta \) has property (**), we form \(\lambda = \lambda_j \), by omitting from \(F_k \) the intervals \(F_k^l \) of \(\mu \)-measure \(> e_j^\beta \). By Kolmogorov's estimate, \(\| S_T(\lambda_j) \|_1^* \to 0 \), as \(j \to +\infty \) and \(T \to +\infty \), independently. Let now \(\int^* \) denote an integral over the domain \(|x - t| > e_j^\alpha/2 \). Then

\[
\int^* |x - t|^{-1} \lambda_j(dt) = 0(e_j^{-\alpha}), \quad \text{if } \beta = 0,
\]

\[
\int^* |x - t|^{-1} \lambda_j(dt) = 0(e_j^{-\beta - \alpha})(\log e_j), \quad 0 < \beta < \alpha.
\]

The first of these is obvious; the second is obtained by packing the subsets \(F_k^l \) as close to \(x \) as is consistent with the condition \(d(F_k^l, F_q^l) \geq e_j^\alpha \).

For each \(k \) such that \(\lambda_j(F_k^l) > e_j^\gamma \), we let \(\xi_k \) belong to \(F_k^l \) and consider the set defined by

\[
(S_k^l) : \frac{1}{2} \lambda(F_k^l) e_j^\sigma < |x - \xi_k| < \lambda(F_k^l) e_j^\sigma,
\]

\[
|\sin e_j^{-\tau}(x - \xi_k)| > \frac{1}{2}
\]

where \(\sigma = -\beta + 3\alpha/4 + 1/4 \), \(\tau = (1 + \gamma + \sigma)/2 \).

The number \(\lambda(F_k^l) e_j^\sigma \) lies between \(e_j^{\beta + \sigma} \) and \(e_j^{\gamma + \sigma} \); we note that \(\beta + \sigma > \alpha \), and \(\gamma + \sigma = 3/4 + \alpha/4 < 1 \). Moreover \(e_j^{-\tau} e_j = o(1) \), while \(e_j^{-\tau} \lambda(F_k^l) e_j^\sigma \to +\infty \).

For each \(k \) in question, the Lebesgue measure of \(S_k^l \) is asymptotically \(c\lambda(F_k^l) e_j^\sigma \), and the different sets are disjoint, because \(\lambda(F_k^l) e_j^\sigma = o(e_j^\sigma) \). We shall prove that \(|S_T(\lambda_j)| > c' e_j^{-\sigma} \) for a certain \(c' > 0 \), with \(T = e_j^{-\tau} \to +\infty \). This will prove that the total \(\mu \)-measure of the subsets \(F_k^l \), such that \(e_j^\gamma < e_j < e_j^\beta \), is \(o(1) \).

When \(x \in S_k^l \),

\[
|S_T(x) - \int_{F_k^l} D_T(x - t) \lambda(dt)| < \int^* |x - t|^{-1} \lambda(dt),
\]

and the error term on the right is \(o(e_j^{-\sigma}) \), because \(\sigma > \alpha - \beta \).
When \(t \in F_k \), \(t - \xi_k = o(x - \xi_k) \) because \(\gamma + \sigma < 1 \), and

\[
\sin T(t - x) = \sin T(\xi_k - x) + o(1)
\]

because \(\tau < 1 \). This easily leads to the lower bound on \(|S_T(x)| \).

Our construction is adapted from Kolmogorov's divergent Fourier series [31, Chapter VIII].

To complete our example, we must present a set \(F \) that is also an \(M_0 \)-set. This is known for various \(M_\beta \)-sets, but seems to occur explicitly in [1]: there exists a closed set \(E \subseteq [0,1] \) and a sequence of integers \(N_k \to +\infty \) such that

1. \(|N_k x| < N_k^{-1} \) (modulo 1) for \(x \in E \), \(k \geq 1 \),
2. The mapping \(y = e^x \) transforms \(E \) onto an \(M_0 \)-set.

Then \(y(E) \) is covered by intervals of length \(\leq 2eN_k^{-2} \), whose distances are at least \((N_k^{-1} - 2N_k^{-2}) \).

In the remaining examples it is occasionally convenient to write \(S_T(y) \) in place of \(S_T(y, \mu) \), when \(\mu = \mu_\theta \).

II. We present example (C) first, because (B) is based on an improvement in one of the inequalities used in (C). For each \(n = 0, 1, 2, 3, \ldots, F_\theta \) is a union of \(2^{n+1} \) sets \(E_k \) of diameter \(2\theta^{n+1}(1 - \theta)^{-1} \), and mutual distances at least

\[
2\theta^{n+1}(1 - 2\theta)(1 - \theta)^{-1} \equiv c_1 \theta^{n+1}; \mu(E_k) = 2^{-n-1}.
\]

The lower bound on the mutual distances gives a Hölder condition on \(\mu : \mu(B) \leq c_2 (\text{diam } B)^\alpha \), where \(\alpha = -\log 2/\log \theta < 1 \). If \(\xi_k \) is the center of \(E_k \), we have an identity

\[
\int_{E_k} f(t) \mu(dt) = 2^{-n-1} \int f(\xi_k + \theta^{n+1} t) \mu(dt).
\]

For each set \(E_k \), we define the set \(E_k^- \) by the inequality

\[
d(x, E_k) < c_1 \theta^{n+1}/3,
\]

so the sets \(E_k^- \) have distances at least \(2c_1 \theta^{n+1}/3 \). If \(x \in E_k^- \), then

\[
|S_T(x, \mu) - \int_{E_k} D_T(x - t) \mu(dt)| < \int_{R - E_k} |x - t|^{-1} \mu(dt),
\]

and in the last integral, \(|x - t| \geq 2c_1 \theta^{n+1}/3 \). Hence, by the Hölder condition, the integral is \(\leq c_3 (\theta^n)^{\alpha-1} = c_3 2^{-n}\theta^{-n} \). The principal term can be evaluated by the identity above, and simplified to the form

\[
2^{-n}\theta^{-n-1} S_{T_\theta^{n+1}}(\theta^{-n-1} x - \theta^{-n-1} \xi_k).
\]
We observe that
\[\lim \int S_T(x, \mu) f(x) dx = \int f(x) \mu(dx), \]
for suitable test functions \(f \); for example, this is true if \(f \) and \(\int f(x) \mu(dx) \) are integrable. Since \(\mu \) is singular, we can find a test function \(f \), such that \(\|f\|_1 < 1 \) and \(\int f(x) \mu(dx) > 2c_3 + 2c_1^{-1} \). Hence \(\max |D_T(\mu)| > 2c_3 + 2c_1^{-1} \) for large \(T \), say for \(T > T_0 \).

Let \(T > \theta^{-1} T_0 \), and let \(n \geq 0 \) be chosen so that \(T^* = \theta^{n+1} T \) satisfies the inequalities \(T_0 \leq T^* \leq \theta^{-1} T_0 \). Suppose that
\[|D_T(\theta^{-n-1} x - \theta^{-n-1} \xi_k)| > c_3 + c_1^{-1}. \]
Then \(d(\theta^{-n-1} x - \theta^{-n-1} \xi_k, F_\theta) < c_1/3 \), since \(\pi > 3 \), or \(d(x, \xi_k + \theta^{n+1} F_\theta) < c_1 \theta^{n+1}/3 \), so \(x \in E_k^- \). Hence
\[|D_T(x, \mu)| > c_3 \cdot 2^{-n} \theta^{-n+1} - c_3 2^{-n} \theta^{-n} = c_4 2^{-n} \theta^{-n}. \]
But it is easy to see that the set of \(x \)'s in question has measure at least \(c_s 2^n \theta^n \), because \(T_0 \leq T^* \leq \theta^{-1} T_0 \), and the functions \(D_T \) have derivatives bounded by \(\theta^{-2} T_0^2 \). Hence \(\|D_T(\mu)\|_1 \geq c_4 c_5 \).

III. The example (B) requires a complicated construction, but relies in essence on small improvements on estimates already used. To estimate \(S_T(\mu, x) \) we divide the range of integration into the subsets \(\{|x - t| < T^{-1}\} \) and \(\{|x - t| > T^{-1}\} \). The second yields an integral \(O(T^{1-\alpha}) \), by the Hölder condition, and the first yields \(T \cdot O(T^{-\alpha}) = O(T^{1-\alpha}) \) for the same reason (and the inequality \(|D_T| < T \)).

We give another estimate on \(S_T(x, \mu) \) for large \(T \), supposing that \(\mu \in R \).

Lemma 3. — To each \(\epsilon > 0 \) there is a \(T_0 \) such that
\[|S_T(x, \mu)| < \epsilon d(x, F_\theta)^{-1} \]
whenever \(T \geq T_0 \) and \(d \equiv d(x, F_\theta) \geq \epsilon \).

Proof. — Let \(\delta = d(x, F) \) and observe that
\[\delta S_T(x, \mu) = \pi^{-1} \int \sin T(x - t) \cdot \delta \cdot (x - t)^{-1} \mu(dt). \]
The function \(g(t) = \delta \cdot (x - t)^{-1} \) is bounded by 1 on \(F \), and
ON THE WEAK L^1 SPACE AND SINGULAR MEASURES

\[|g(t_1) - g(t_2)| \leq \delta^{-1} |t_1 - t_2| \] for numbers t_1, t_2 in F_θ. Hence the conclusion follows from our assumption that $\mu \in \mathbb{R}$ and the Tietze extension theorem.

The inequality of the Lemma can be written in a more useful way. When $t \in F_\theta$, then $|x - t| \leq d + 2 \leq d(1 + 2e^{-1})$. Hence $d(x, F_\theta)^{-1} \leq (1 + 2e^{-1}) \int |x - t|^{-1} \mu(dt)$. Suppose now that $x \notin E_k^\infty$ so that $d(\theta^{-n-1}x - \theta^{-n-1}\xi_k, F_0) \geq c_1 \theta^{n+1}/3$. Using the identity for integrals over E_k, we find the following estimate:

If $x \notin E_k^\infty$ and $T\theta^{n+1} > T_{oo}$, then

\[\left| \int_{E_k} D_T(x - t) \mu(dt) \right| < \epsilon \int_{E_k} |x - t|^{-1} \mu(dt). \]

Consequently, when $x \in E_k^\infty$ and $T\theta^{n+1}$ is sufficiently large (depending on $\epsilon > 0$)

\[|S(x, \mu) - 2^{-n-1}\theta^{-n-1}S_{T\theta^{n+1}}(\theta^{-n-1}x - \theta^{-n-1}\xi_\ell)| < \epsilon \theta^{n(n-1)}. \]

Lemma 4. To each $\epsilon > 0$ there is a $\delta > 0$ so that, when $\theta^{-1} < Y < \delta T^{1-\alpha}$ then $Ym\{|S(x, \mu) > Y\} < \epsilon$.

Proof. We choose $n \geq 0$ so that $1 < \theta^{n+1}Y^{1/1-\alpha} < \theta^{-1}$; this leads to the inequalities $\theta^{n(n-1)} > Y$, and $T\theta^{n+1} > \delta^{-1}$. For fixed ℓ, we must estimate the Lebesgue measure of the set defined by

\[|S_{T\theta^{n+1}}(\mu, \theta^{-n-1}x - \theta^{-n-1}\xi_\ell)| > \frac{1}{2} \cdot 2^{n+1} \theta^{n+1} Y. \]

The right hand side exceeds $\frac{1}{2} \theta^{-1}$; when $T\theta^{n+1}$ is large, the measure of the set is at most $\epsilon \theta^{n+1}$; the total for all ℓ is at most $\epsilon 2^{n+1} \theta^{n+1} < eY^{-1}$. Hence $Ym\{|S_T(x, \mu) > Y\} < \epsilon$.

In view of the inequality $|S_T(\mu, x)| = O(T^{-1-\alpha})$, the conclusion of the last lemma holds when $Y > \delta^{-1}T^{1-\alpha}$, $T > 1$, for a certain $\delta > 0$.

In preparation for the next lemma, we recall the identity

\[(n = 1, 2, 3, \ldots) \]

\[\int f(t) \mu(dt) = 2^{-n} \sum_{k=1}^{2^n} \int f(\xi_k + \theta^n t) \mu(dt). \]

We define

\[\int f(t) \sigma_n(dt) = 2^{-n} \sum_{k} \int f(\xi_k + \theta^{n+k} t) \mu(dt). \]
\[\sigma_n = g_n \cdot \mu, \text{ where } g_n \geq 0, \text{ and } g_n \text{ is continuous on } F_\theta \text{ and takes the values 0 and } 2^k (1 \leq k \leq 2^n). \text{ Using the formula for } \sigma_n \text{ we get an identity} \]

\[S_T(x, \sigma_n) = 2^{-n} \theta^{-n} \sum_k \theta^{-k} S_{T^n 2^k}(\theta^{-n-k} x - \theta^{-n-k} \xi_k). \]

Lemma 5. - To each \(\varepsilon > 0 \), there is an \(N > 1 \) such that \(\limsup \sup_{T \to +\infty} ||S_T(\sigma_n)||^*_1 < \varepsilon \), if \(n \geq N \).

Proof. - In calculating \(\limsup \sup_{T \to +\infty} ||S_T(\sigma_n)||^*_1 \) we can omit \(x \)'s outside \((-3,3)\), because \(\sigma_n \in R \). In an obvious notation we write \(\sigma_n = \sum_k \sigma_{n,k} \), and observe that, for \(T > T_n, \varepsilon \)

\[||S_T(\sigma_n)|| < \max_k ||S_T(\sigma_{n,k})|| + \varepsilon/12. \]

When \(Y > \varepsilon/6 \) (the others are trivial, since we suppose that \(|x| < 6 \)),

\[m\{|S_T(\sigma_n)| > 2Y\} \leq \sum_k m\{|S_T(\sigma_{n,k})| > Y\} < \sum_k \theta^n m\{|S_{T^n 2^k}(x, \mu)| > 2^n \theta^{n+k} Y\}. \]

Each summand is \(O(2^{-n} Y^{-1}) \) by Kolmogorov's inequality; if \(T \theta^{n+k} > 1 \), then the \(k \)-th term exceeds \(\varepsilon 2^{-n} Y \) only if

\[\delta (T \theta^{n+k})^{1-\alpha} < Y < \delta^{-1} (T \theta^{n+k})^{1-\alpha}, \]

by Lemma 4 and the remark after it, and this inequality occurs for at most \(2(1-\alpha)^{-1} \cdot \log \delta/\log \theta \) indices \(k = 1, \ldots, 2^n \). (We assume that \(Y > \theta^{-1} \), since \(S_T(\sigma_n) \to 0 \) almost everywhere as \(T \to +\infty \).) This proves our lemma.

A further property of \(\sigma_n \), obtained simply by increasing \(n \), is the inequality \(|\sigma_n(I) - \mu(I)| < \varepsilon \) for all intervals \(I \).

The next lemma establishes a property of the functional \(|| ||^*_1 \) to simplify the remaining calculations.

Lemma 6. - Let \(a_i = ||f_i||^*_1 \) \(1 \leq i \leq N \). Then

\[||\Sigma f_i||^*_1 \leq (\Sigma a_i^{1/2})^2. \]

Proof. - Let \(0 \leq t_i \leq 1 \), and \(\Sigma t_i = 1 \). Then

\[m\{|\Sigma f_i| \geq Y\} \leq \Sigma m\{|f_i| \geq t_i Y\} \leq \Sigma t_i^{-1} Y^{-1} a_i. \]
The minimum of the sum is $Y^{-1}(\Sigma a_i^{1/2})^2$. With a little more effort, we can obtain the bound $c(1-p)^{-1}(\Sigma a_i^p)^{1/p}$, $0 < p < 1$.

We are now in a position to construct the measure λ. We shall find probability measures $\lambda_k = f_k \mu$, with $f_k \geq 0$, $\int f_k d\mu = 1$, such that $\|S_T(\lambda_k)\|_1^* < k^{-1}$ for $T > T_k > T_{k-1} \ldots$ and $|\hat{\lambda}_k(u)| < k^{-2}$ for $u > T_k$. Lemma 5 provides λ_1; let us suppose that λ_k and T_k are known. We find σ_k so that $|\sigma_k(I) - \lambda_k(I)| < k^{-1}(1 + T_k)^{-2}$ and $\|S_T(\sigma_k)\|_1^* < k^{-4}/25$, and $|\hat{\sigma}_k(u)| < k^{-1}$, for $u > T_{k+1}^0 > T_k$. (The construction of $f_{k+1} \mu$ from $f_k \mu$ follows Lemma 5). We now set $\lambda_{k+1} = (1 - k^{-1/2}) \lambda_k + k^{-1/2} \sigma_k$; by Lemma 6, we have for $T > T_{k+1}^0$

$$\|S_T(\lambda_{k+1})\|_1^* \leq (1 - k^{-1/2})^{1/2} k^{-1/2} + k^{-2}/5.$$

When $k = 1$, the last bound is $1/5$, while $(k + 1)^{-1} = 1/2$. For $k \geq 2$, we need the inequality

$$(1 - k^{-1/2})^{1/2} k^{-1/2} + k^{-2}/5 < (k + 1)^{-1/2},$$

which can be verified with the aid of calculus. Clearly, we have $|\hat{\lambda}_{k+1}(u)| < (k + 1)^{-2}$ for $T > T_{k+1}^0$; we take $T_{k+1} = T_{k+1}^0 + T_{k+1}^0$.

By the construction, and integration by parts,

$$|\hat{\lambda}_k(u) - \hat{\lambda}_{k+1}(u)| \leq k^{-3/2}(1 + T_k)^{-2} |u|;$$

consequently $|\hat{\lambda}_k(u) - \hat{\lambda}_{k+1}(u)| \leq k^{-3/2}$ unless $|u| > 1 + T_k$.

However, if $|u| > T_{k+1}^0 > T_k$, then $|\hat{\lambda}_k(u) - \hat{\lambda}_{k+1}(u)| < 2k^{-2}$. Since $|\hat{\lambda}_k - \hat{\lambda}_{k+1}| \leq 2k^{-1/2}$, we have a limit $\varphi(u)$, with

$$|\varphi - \hat{\lambda}_k| = O(k^{-1/2}).$$

Hence $\varphi = \hat{\lambda}$, with λ carried by F_θ and $\lambda \in \mathbb{R}$.

In verifying that $\lim \|S_T(\lambda)\|_1^* = 0$ we can calculate the weak norms over $(-3,3)$. Suppose that $T_{k-1} \leq T \leq T_k$; then

$$|S_T(\lambda_k) - S_T(\lambda)| = O(k^{-1/2}).$$

Since $T > T_{k-1}$, $\|S_T(\lambda_{k-1})\|_1^* < (k - 1)^{-1}$; and finally

$$\|S_T(\lambda_k) - S_T(\lambda_{k-1})\|_1^* = O(k^{-1/2}).$$

Hence $\|S_T(\lambda)\|_1^* = O(k^{-1/2})$ over $(-3,3)$.

BIBLIOGRAPHY

Manuscrit reçu le 23 février 1981.

Robert KAUFMAN,
University of Illinois at
Urbana-Champaign
Department of Mathematics
Urbana, Ill. 61801 (U.S.A.).