MARIUS VAN DER PUT

The class group of a one-dimensional affinoid space

<http://www.numdam.org/item?id=AIF_1980__30_4_155_0>
THE CLASS GROUP
OF A ONE-DIMENSIONAL AFFINOID SPACE

by Marius van der Put

Introduction.

The field \(k \) is supposed to be complete with respect to a non-
archimedean valuation. Moreover we will assume that \(k \) is algebraically
closed. An affinoid space \(Y \) over \(k \) is the set of maximal ideals of an
affinoid algebra. The standard affinoid algebra is \(k\langle T_1, \ldots, T_n \rangle = \) the
set of all power series \(\sum a_{ij} T_1^{i_1} \cdots T_n^{i_n} \) converging on the closed polydisk
\[\{(t_1, \ldots, t_n) \in k^n | \forall i | t_i | \leq 1 \}. \]
An affinoid algebra is a residue class ring of some \(k\langle T_1, \ldots, T_n \rangle \). An
algebraic variety over \(k \) can be studied locally by its analytic structure over
\(k \), that is by means of affinoid spaces.

We show that a one-dimensional, normal, connected affinoid space \(Y \) is
an affinoid subset of a non-singular, complete curve \(C \) over \(k \) (Thm 1.1). If
\(Y \) has a trivial class group then \(Y \) is in fact an affinoid subset of \(\mathbb{P}^1 \)
(Thm 2.1). A curve is locally a unique factorization domain (U.F.D.
for short) if and only the curve is a Mumford curve (i.e. can be
parametrized by a Schottky group). In general the class group of \(Y \)
can be expressed in terms of the Jacobi-variety of \(C \) (prop. 3.1).

Some examples show the connection between the class group of \(Y \) and
the class group of the (stable) reduction of \(Y \). For \(k \)-analytic spaces we refer
to [2], [3]. I thank A. Escassut for bringing the problem on unique
factorization on affinoid spaces to my attention. Related questions are treated
in [1].

1. Affinoid subspaces of an algebraic curve.

A curve \(C \) (non-singular and complete) over \(k \) has a natural structure as
(rigid) analytic space over \(k \). This structure is given by a collection
of subspaces \(Y \) of \(C \), called affinoid, and a sheaf \(\mathcal{O} = \mathcal{O}_C \) with respect to the Grothendieck topology of finite coverings by affinoids. For any \(Y \), \(\mathcal{O}(Y) \) is an affinoid algebra (1-dim. and normal) over \(k \) with \(\text{Sp}(\mathcal{O}(Y)) = Y \). We want to show:

1.1. — THEOREM. — Every 1-dimensional, normal, connected affinoid space \(Y = \text{sp}(A) \) is an affinoid subspace of a non-singular complete curve.

Proof. — \(Y \) is called connected and normal if the algebra \(A \) has no idempotents \(0, 1 \) and \(A \) is integrally closed. We use the notations \(A^0 = \{ f \in A \mid ||f|| \leq 1 \} \), \(A^\infty = \{ f \in A \mid ||f|| < 1 \} \) and \(\bar{A} = A^0 / A^\infty \), where \(||f|| = \max \{ ||f(y)|| \mid y \in Y \} \) is the spectral norm on \(Y \). The algebra \(\bar{A} \) is of finite type over \(\bar{k} = \) the residue field of \(k \) and the algebraic variety \(Y_c = \text{Max}(\bar{A}) \) is called the canonical reduction of \(Y \). There is a natural surjective map \(R : Y \rightarrow \bar{Y}_c \), also called the canonical reduction. A pure covering of an analytic space \(X \), is an allowed covering \(\mathcal{U} = (U_i) \) by affinoid spaces, such that for every \(i \neq j \) with \(U_i \cap U_j \neq \emptyset \), the set \(U_i \cap U_j \) is the inverse image of a Zariski open set \(V_{ij} \) in \((U_i)_c \) under the map \(U_i \rightarrow (U_i)_c \). The reduction \(X' \) of \(X \) with respect to \(\mathcal{U} \) is obtained by glueing the affine algebraic varieties \((U_i)_c \) over the open sets \(V_{ij} \). The result is an algebraic variety over \(\bar{k} \). If \(X \) is separated then the \(U_i \cap U_j \) are also affinoid, the \(V_{ij} \) are affine and equal to \((U_i \cap U_j)_c \) and \(X' \) is separated. If \(X \) is non-singular, 1-dimensional, connected and if \(X' \) is complete then \(X \) is a non-singular complete curve over \(k \) (see [2] ch. IV 2.2).

Our proof consists of glueing affinoid spaces \(Y_1, \ldots, Y_s \) to \(Y \) such that the reduction of \(X = Y \cup Y_1 \cup \ldots \cup Y_s \) with respect to the pure covering \(\{ Y, Y_1, \ldots, Y_s \} \) is complete. Then clearly \(Y \) is an affinoid domain of the algebraic curve \(X \). The 1-dimensional space \(Y_c \) lies in a complete 1-dimensional \(Z \) such that \(F = Z - Y_c \) is a finite set of non-singular points. Suppose that we can find for every \(p \in F \) an affinoid space \(Y_p \) with canonical reduction \(R_p : Y_p \rightarrow (Y_p)_c \subseteq Z \) where \((Y_p)_c \) is a neighbourhood of \(p \) and such that

\[
Y_p \supset R_p^{-1}((Y_p)_c \cap Y_c) \cong R^{-1}((Y_p)_c \cap Y_c) \subseteq Y.
\]

Then we can glue \(Y_p \) to \(Y \). The space \(X = YU \cup Y_p \) has reduction \(Z \) which is complete. So the glueing has to be done locally on \(Y \) and \(Y_c \). The component \(C \) of \(Z \) on which \(p \) lies can be projected into \(\mathbb{P}^2(\bar{k}) \) such that
The class group of a one-dimensional affinoid space is still non-singular. A good projection onto \(\mathbb{P}^1 \) maps \(p \) onto \(o \) and \(o \) is an unramified point for the projection. Replacing \(Y \) and \(Y_c \) by neighbourhoods of \(p \) we may therefore suppose:

\[
\mathcal{O}(Y) = \mathcal{O}(Y_c) = \bar{k}[t,(t,e(t))^{-1},s]/(P),
\]

where

1) \(e(t) = (t-a_1) \ldots (t-a_s) \) with \(a_1, \ldots, a_s \) different points of \(\bar{k}^* \); they are the residues of \(a_1, \ldots, a_s \in k^0 \).

2) \(P \) is a monic irreducible polynomial of degree \(n \) with coefficients in \(k[t] \).

3) \(\frac{dP}{ds} \) is invertible as element of \(\bar{k}[t,(t,e(t))^{-1},s]/(P) \).

4) the point \(\langle p \rangle \) corresponds to \(t = 0 \). Then \(\mathcal{O}(Y)^0 \) has the form \(k^0\langle T,U,S\rangle/(TE(T)U-1,Q) \) where

\[
E(T) = (T-a_1) \ldots (T-a_s) \quad \text{and} \quad Q = P.
\]

Since \(Q \) is general with respect to the variable \(S \), we can apply Weierstrass-division and assume that \(Q \) is a monic polynomial of degree \(n \) in \(S \) with coefficients in \(k^0\langle T,U\rangle/(TE(T)U-1) \). Suppose that we can find a monic polynomial \(Q^* \) of degree \(n \) in \(S \) and coefficients in \(k^0\langle T,V\rangle/(E(T)V-1) \) such that

\[
k^0\langle T,U,S\rangle/(TE(T)U-1,Q^*) \simeq \mathcal{O}(Y)^0.
\]

Then \(Y_p = Sp(k\langle T,V,S\rangle/(E(T)V-1,Q^*)) \) has the required properties. So we have to get rid of the negative powers of \(T \) in the coefficients of \(Q = S^n + a_{n-1}S^{n-1} + \cdots + a_0 \).

1.2. - Lemma. - If \(Q^* = S^n + a_{n-1}S^{n-1} + \cdots + a_0 \) has coefficients in \(A = k^0\langle T,U\rangle/(TE(T)U-1) \) and \(Q^* = Q = P \), then

a) \(Q^* \) is irreducible

b) \(Q^* \) has a zero in \(\mathcal{O}(Y)^0 \)

c) \(k\langle T,U,S\rangle/(TE(T)U-1,Q^*) \simeq \mathcal{O}(Y) \).

Proof: - a) Let \(Q^* \) be reducible over the quotient field of \(A \). Since \(A \) is normal, \(Q^* \) is a product of monic polynomials with coefficients in \(A \). This contradicts the irreducibility of \(Q^* = P \).
b) First we show that \(\left\{ Q^*, \frac{dQ^*}{dS} \right\} \) generates the unit ideal in \(A[S] \). Let

\(m \) be a maximal ideal containing \(Q^* \) and \(\frac{dQ^*}{dS} \). If \(m \cap k^0 \neq 0 \) then \(m \)

induces a maximal ideal of \(\bar{k}[t, (te(t))^{-1}][S] = \bar{A}[S] \) containing \(P \) and \(\frac{dP}{dS} \). This contradicts our assumptions on \(P \). So \(m \) corresponds to a maximal ideal \(m_1 \), of \(k\langle T, U \rangle/(TE(T)U - 1)[S] \), containing \(Q^* \) and \(\frac{dQ^*}{dS} \).

If \(m_1 \cap k\langle T, U \rangle/(TE(T)U - 1) \neq 0 \) then \(m_1 \), is the kernel of a homomorphism in \(k \) given by \(T \mapsto \lambda_1 \in k, S \mapsto \lambda_2 \in k \) with

\[|\lambda_1| \leq 1, \quad |\lambda_1 E(\lambda_1)| = 1, \quad |\lambda_2| \leq 1 \]

since \(Q^*(\lambda_2) = 0 \). From \(\left(P, \frac{dP}{dS} \right) = \bar{k}[t, (te(t))^{-1}, S] \) it follows that

\[Z_1(S)Q^* + Z_2(S)\frac{dQ^*}{dS} = 1 + \sum_{i>0} a_i S^i \]

for certain \(Z_1, Z_2 \in A[S] \) and \(a_i \in A \) with \(||a_i|| < 1 \). The substitution \(T \mapsto \lambda_1 ; S \mapsto \lambda_2 \) makes \(0 = 1 + \sum_{i>0} a_i(\lambda_1)\lambda_2^i \), which is impossible. So \(m \) and \(m_1 \) correspond to an ideal of \(L[S] \) with \(L \) the quotient field of \(A \).

Since \(Q^* \) is irreducible, this means that \(\frac{dQ^*}{dS} = 0 \). This is obviously in contradiction with \(\left(P, \frac{dP}{dS} \right) = \bar{k}[t, (te(t))^{-1}] \).

We conclude the existence of \(Z_1, Z_2 \in A[S] \) with

\[1 = Z_1(S)Q^* + Z_2(S)\frac{dQ^*}{dS} . \]

By Newton’s method we will show that \(Q^* \) has a zero in \(\mathcal{O}(Y)^0 \). Let \(\eta \in \mathcal{O}(Y)^0 \) satisfy \(||Q^*(\eta)|| < 1 \) (e.g. \(\eta \) is the residue of \(S \) mod \(Q \) in \(\mathcal{O}(Y)^0 \)). Then \(1 - Z_1(\eta)Q^*(\eta) = Z_2(\eta)\frac{dQ^*}{dS}(\eta) \) and since
The principal ideal domain $\mathcal{O}(Y)$ of $\mathcal{O}(Y)$ show the existence of a root of Q^* in $\mathcal{O}(Y)$.

C) The quotient field of $A[S]/Q^*$ is contained in that of $A[S]/Q$, because of (b). Both fields are extensions of degree n of the quotient field of A. So they are equal. The rings $k\langle T,U,S\rangle/(TE(T)U-1,Q^*)$ and $\mathcal{O}(Y)$ are both the integral closure of $k\langle T,U\rangle/(TE(T)U-1)$ in that field. So they are equal.

End of the proof of 1.1. — We choose Q^* with coefficients in $k^0\langle T,V\rangle/(VE(T)-1)$ and $Q^* = P$.

1.3. — Corollary. — Let Y be as in (1.1); then Y is affinoid in a curve X (complete non-singular) such that $X - Y_e$ is a finite set of non-singular points.

2. Unique factorization.

We want to show the following:

2.1. — Theorem. — Let $Y = \text{Sp} \ A$ be a 1-dimensional connected affinoid space. Then A has unique factorization if and only if Y is an affinoid subspace of $\mathbb{P}^1(k)$.

Remarks. — 1) Since A has dimension 1 the condition « A has unique factorization » is equivalent to « A is a principal ideal domain ».

2) It seems that this theorem has also been proved by M. Raynaud.

A connected affinoid subspace Y of $\mathbb{P}^1(k)$ has clearly a U.F.D. as affinoid algebra. Before we start the proof of 2.1, we like to state its algebraic analogue. It is:

2.2. — Proposition. — Let A be a finitely generated algebra over an algebraically closed field k. Suppose that A is 1-dimensional and a U.F.D. Then A is isomorphic to the coordinate ring of a Zariski-open subset of $\mathbb{P}^1(k)$.

Proof. — A is the coordinate ring of a Zariski-open subset X of some non-singular complete curve C; put $X = C - \{p_1, \ldots, p_s\}$. Let D be a
A divisor of degree 0 on \(C \); since \(A \) is a U.F.D. there is a rational function \(f \) on \(C \) with \(D = (f) \) on \(X \). This means that the map \(\left\{ \sum_{i=1}^{s} n_i p_i n_i \in \mathbb{Z} \right\} \rightarrow J(C) = \text{the Jacobi-variety of } C \), is surjective. If \(C \) is not a rational curve then its Jacobi variety (or better its points in \(k \)) is not a finitely generated group. Hence \(C \simeq \mathbb{P}^1(k) \).

We prove the theorem in some steps.

2.3. - Lemma. - Suppose that \(\mathcal{O}(Y) \) is a U.F.D. and that \(Y \) is irreducible, then \(H^1(Y, \mathcal{O}^*) = 0 \).

Proof. - \(\bar{Y} \) denotes the canonical reduction of \(Y \). An element \(\xi \in H^1(\bar{Y}, \mathcal{O}^*) \) corresponds to a projective, rank 1, \(\mathcal{O}(\bar{Y}) \)-module \(N \); let \(F \) be a free \(\mathcal{O}(\bar{Y}) \)-module, \(\sigma : F \rightarrow F \) an idempotent endomorphism with \(\text{im } \sigma = N \). Then \(F, \sigma \) lift to similar things over \(\mathcal{O}(Y)^0 \) since \(\mathcal{O}(Y)^0 \) is complete and \(\mathcal{O}(\bar{Y}) = \mathcal{O}(Y)^0 \otimes \overline{k} \). So we find a projective, rank 1, \(\mathcal{O}(Y)^0 \)-module \(M \) with \(M \otimes \overline{k} = N \).

Further \(M \otimes \mathcal{O}(Y) \simeq \mathcal{O}(Y) \) since \(\mathcal{O}(Y) \) is a U.F.D. There exists a Zariski-open covering of \(\bar{Y} \) such that \(N \) is free on the sets of this covering. That implies the existence of \(f_1, \ldots, f_s \in \mathcal{O}(Y)^0 \) such that

- \(a) \) each \(||f_i|| = 1 \) and \((f_1, \ldots, f_s)\mathcal{O}(Y)^0 = \mathcal{O}(Y)^0 \).
- \(b) \) \(M \otimes \mathcal{O}(X)^0 \langle S \rangle / (S f_i - 1) \) is a free \(\mathcal{O}(X)^0 \langle S \rangle / (S f_i - 1) \)-module.

We identify \(M \) with \(M \otimes \mathcal{O}(Y)^0 \subset \mathcal{O}(Y) \) and we may suppose that \(M \subset \mathcal{O}(Y)^0 \); \(\max \{||m|| \mid m \in M\} = 1 \) and \(M \supset \lambda \mathcal{O}(Y)^0 \) for certain \(\lambda \in k^0 \), \(\lambda \neq 0 \). Then

\[
M \otimes \mathcal{O}(Y)^0 \langle S \rangle / (S f_i - 1) \subset \mathcal{O}(Y)^0 \langle S \rangle / (S f_i - 1)
\]

is generated by one element \(h \). This element has norm 1 and it has no zeros is \(\{y \in Y \mid |f_i(y)| = 1\} = Y_i \). So \(h \) is invertible in \(\mathcal{O}(Y)_i \). Its inverse \(h^{-1} \) has also norm 1 since \(Y_i \) is irreducible and the norm on \(\mathcal{O}(Y_i) \) is, as a consequence, multiplicative. Hence \(\mathcal{O}(Y_i)^0 = \mathcal{O}(Y)^0 \). It follows that some power of \(f_i \) lies in \(M \). Since \((f_1, \ldots, f_s) = \mathcal{O}(Y)^0 \) we find that \(M = \mathcal{O}(Y)^0 \). So \(N \) is free and \(\xi = 0 \).

2.4. - Lemma. - Let \(L \) be affine, 1-dimensional and irreducible over \(k \). If \(H^1(L, \mathcal{O}^*_L) = 0 \) then \(L \) is rational and non-singular.
Proof. Let \(\pi : L_1 \rightarrow L \) be the normalization of \(L \). We have an exact sequence of sheaves on \(L : 0 \rightarrow \mathcal{O}_L^* \rightarrow \pi_*\mathcal{O}_{L_1}^* \rightarrow F \rightarrow 0 \) where \(F \) is the skyscraper sheaf with stalks, \(F_p = \mathcal{O}_{L,p}^*/\mathcal{O}_{L_1,p}^* \) and \(\mathcal{O}_{L_1,p}^* \) is the integral closure of \(\mathcal{O}_{L,p}^* \).

One finds an exact sequence
\[
0 \rightarrow \mathcal{O}(L)^* \rightarrow \mathcal{O}(L_1)^* \rightarrow H^0(F) \rightarrow H^1(L,\mathcal{O}_L^*) \rightarrow H^1(L_1,\mathcal{O}_{L_1}^*) \rightarrow 0.
\]
So clearly (by 2.2) \(L_1 = \mathbb{P}^1(k) - \{p_1, \ldots, p_s\} \) and the group \(\mathcal{O}(L_1)^* \) is isomorphic to \(k^* \oplus N \) where \(N \) is a subgroup of \(Z^{s-1} \).

So we find that \(H^0(F) \) is a finitely generated \(Z \)-module.

If \(L \) has a singular point \(p \) then \(H^0(F) \) has \(\mathcal{O}_{L,p}^*/\mathcal{O}_{L_1,p}^* \) as component. The last group has \(k \) or \(k^* \) as quotient group. It is not finitely generated. So we conclude that \(L \) is non-singular, and hence a Zariski-open subset of \(\mathbb{P}^1(k) \).

2.5. Continuation of the proof of 2.1.

We have to consider the case where \(Y \), the canonical reduction of \(Y \), has more than one component. Let \(L \) be a component and \(L_1 = L - \{\text{the intersection of } L \text{ with the other components}\} ; Y_1 = \mathbb{R}^{-1}(L_1) \). Then \(Y_1 \) is affinoid, also a U.F.D. and with canonical reduction \(L_1 \). We know by 2.3 and 2.4 that \(L_1 \) is Zariski-open in \(\mathbb{P}^1(k) \) and so \(Y_1 \) must be an affinoid subset of \(\mathbb{P}^1(k) \) of the form
\[
\{z \in k \mid |z| \leq 1, \quad |z - a_i| \geq 1 \quad (i = 1, \ldots, s)\}.
\]
Let \(a_{d+1}, \ldots, a_s \) correspond to the points of intersection of \(L \) with the other components of \(Y \). Let \(Y_2 = \{z \in k \mid |z| \leq 1 \text{ and } |z - a_i| \geq 1 \text{ for } i = d + 1, \ldots, s\} \). Then we glue \(Y_2 \) to \(Y \) over the open subset \(Y_1 \). The resulting analytic space \(Y \cup Y_2 \) has as reduction with respect to the covering \(\{Y, Y_2\} \) the space \(\tilde{Y} \cup \tilde{Y}_2 \). From [2] ch. IV (2.2) it follows that \(Z = Y \cup Y_2 \) is also affinoid and its canonical reduction is obtained by contracting the complete one of \(\tilde{Y} \cup \tilde{Y}_2 \) to a point. If we can show that \(Z \) is also a U.F.D., then (2.1) follows by induction on the number of components of \(\tilde{Y} \). Since
\[
H^1(Y,\mathcal{O}_Y^*) = H^1(Y_1,\mathcal{O}_{Y_1}^*) = H^1(Y_2,\mathcal{O}_{Y_2}^*) = 0
\]
we can calculate \(H^1(Z,\mathcal{O}_Z^*) \) = the class group of \(Z \), with respect to the covering \(\{Y_2, Y\} \). That \(Z \) is a U.F.D. is equivalent with \(H^1(Z,\mathcal{O}_Z^*) = 0 \) and will follow from the following
2.6. - **Lemma.** - The map \(\mathcal{O}(Y)^* \oplus \mathcal{O}(Y_2)^* \rightarrow \mathcal{O}(Y_1)^* \), given by \((f_1, f_2) \mapsto f_1f_2^{-1} \), is surjective.

Proof. - The norm on \(\mathcal{O}(Y_1)^* \) is multiplicative. So any \(f \in \mathcal{O}(Y_1)^* \) has the form \(f = cg \) with \(c \in k^* \) and \(g \in \mathcal{O}(Y_1)^0) \). Further the analogous map \(\mathcal{O}(Y)^* \oplus \mathcal{O}(Y_2)^* \rightarrow \mathcal{O}(Y_1)^* \) is clearly surjective. So \(g = f_1f_2^{-1} \) for certain \(f_1 \in \mathcal{O}(Y)^0 \) and \(f_2 \in \mathcal{O}(Y_2)^0 \). We are reduced to consider \(f \in \mathcal{O}(Y_1)^* \) of the form \(1 + h \) with \(h \in \mathcal{O}(Y_1), \|h\| < 1 \). We want to write \(f \) as \((1 + h_1)(1 + h_2)^{-1} \) with \(h_1 \in \mathcal{O}(Y), \ h_2 \in \mathcal{O}(Y_2) \) and \(\|h_1\| < 1, \|h_2\| < 1 \). This amounts to showing that \(\beta : \mathcal{O}(Y)^0 \oplus \mathcal{O}(Y_2)^0 \rightarrow \mathcal{O}(Y_1)^0 \), given by \((h_1, h_2) \mapsto h_1 - h_2 \), is surjective. By [2], ch. IV (2.2), we know that the cokernel of \(\beta \) is a finitely generated \(k^0 \)-module \(M \). Moreover \(M \otimes \bar{k} = 0 \) since \(\mathcal{O}(Y) \oplus \mathcal{O}(Y_2) \rightarrow \mathcal{O}(Y_1) \) is surjective. So \(M = 0, \beta \) is surjective and the Lemma is proved.

2.7. - **Corollary.** - Let \(X \) be a complete non-singular curve over \(k \). Then \(X \) is a Mumford curve (i.e. can be parametrized by a Schottky group) if and only if \(X \) is locally a U.F.D.

Proof. - Locally a U.F.D. means that \(X \) has an affinoid covering \((X_i)_{i=1}^s \) such that each \(\mathcal{O}(X_i) \) is a unique factorization domain. According to (2.1) this implies \(X_i \subset P^1(k) \). According to [2], ch. IV (5.1), this is equivalent with \(X \) is a Mumford curve.

3. **Class groups.**

\(X \) will denote a normal, connected, 1-dimensional affinoid space. The class group of \(X \) (i.e. the group of isomorphy-classes of projective, rank 1, \(\mathcal{O}(X) \)-modules) is equal to the analytic cohomology group \(H^1(X, \mathcal{O}_X^*) \). This follows from the bijective correspondence between projective, rank 1, \(\mathcal{O}(X) \)-modules and invertible sheaves on \(X \).

3.1. - **Proposition.** - Let \(X \) be embedded in a complete non-singular curve \(C \). Then \(H^1(X, \mathcal{O}_X^*) \simeq J(C)/H \) where \(J(C) \) is the Jacobi-variety of \(C \) and \(H \) is the subgroup consisting of the images of the divisors of degree zero on \(C \) with support in \(C - X \). The group \(H \) is an open subgroup in the topology of \(J(C) \) induced by the topology of \(k \).

Proof. - The restriction map \(\text{Div}_0(C) \rightarrow \text{Div}(X) \) induces a surjective homomorphism \(\text{Div}_0(C)/\text{P}(C) \rightarrow \text{Div}(X)/\text{P}(X) \) where \(\text{P}(C) \) denotes the principal divisors on \(C \) and \(\text{P}(X) = \{(f) \mid f \text{ is a principal divisor on } X \} \).
meromorphic on X}. It is easily seen that $H^1(X, \mathcal{O}_X^*) = \text{Div}(X)/\text{P}(X)$. Let $D \in \text{Div}_0(C)$ have image 0 in $H^1(X, \mathcal{O}_X^*)$, then there exists a meromorphic function f on X with $(f) = D$ on X. As one can calculate (see [2], ch. III (1.18.5) and on) any divisor of a holomorphic (or meromorphic) function on C restricted to X is the divisor of a rational function on C restricted to X. So there is a rational function g on C with $(g) = D$ on X. Then $D - (g)$ is a divisor of degree 0 with support in $C - X$. This proves the first assertion. The map $C \times \ldots \times C \longrightarrow J(C)$ given by $(x_1, \ldots, x_g) \longmapsto \sum_{i=1}^g x_i - gx_0$ (where $x_0 \in C - X$ is fixed) is surjective and induces the algebraic structure and topology on $J(C)$. The map is almost bijective and open. So the image of $(C - X) \times \ldots \times (C - X)$ is open and H is open.

Remark. In general it seems to be rather difficult to calculate explicitly $H^1(X, \mathcal{O}_X^*)$. However using (3.1) one can work out the following special cases.

3.2. **Example.** Let the curve C have a reduction $R : C \longrightarrow \overline{C}$ such that \overline{C} is rational and has one ordinary double point p. Take p_1, \ldots, p_s points in $\overline{C} - \{p\}$ and put $X = R^{-1}(\overline{C} - \{p_1, \ldots, p_s\})$. Then X is affinoid and its canonical reduction is $C - \{p_1, \ldots, p_s\}$. The curve C is a Tate-curve and $\simeq k^*/\langle q \rangle$ with $0 < |q| < 1$. The points p_1, \ldots, p_s correspond to open discs of radii 1 around points $1 = a_1, a_2, \ldots, a_s \in k$ with all $|a_i| = 1$ and $|a_i - a_j| = 1$ if $i \neq j$. Using (3.1) one finds an exact sequence:

$$1 \longrightarrow k^*/\langle a_1, \ldots, a_s \rangle \longrightarrow H^1(X, \mathcal{O}_X^*) \longrightarrow |k^*/\langle q \rangle| \longrightarrow 1$$

where $\langle a_2, \ldots, a_s \rangle$ is the subgroup of k^* generated by a_2, \ldots, a_s; $|k^*|$ is the value group of k and $\langle q \rangle$ its subgroup generated by $|q|$. Note further that $k^*/\langle a_2, \ldots, a_s \rangle = H^1(X, \mathcal{O}_X^*)$.

3.3. **Example.** Let C be a Mumford curve of genus $g \geq 1$ and let $R : C \longrightarrow \overline{C}$ be its stable reduction. (The components of C are rational, the only singularities are ordinary double points.) The Jacobi-variety of C is a holomorphic torus $(k^*)^g/\Lambda$ where Λ is a lattice in $(k^*)^g$. Take ordinary points $p_1, \ldots, p_s \in \overline{C}$ and put $X = R^{-1}(\overline{C} - \{p_1, \ldots, p_s\})$. Then X is affinoid and using (3.1) one calculates an exact sequence:

$$1 \longrightarrow (k^*)^g/S \longrightarrow H^1(X, \mathcal{O}_X^*) \longrightarrow |k^*/\Lambda| \longrightarrow 1$$
where
\[|\Lambda| = \{ (|\lambda_1|, |\lambda_2|, \ldots, |\lambda_g|) : (\lambda_1, \ldots, \lambda_g) \in \Lambda \} \]
and \(S \) is a finitely generated subgroup of \((k^*)^g\). The group \((k^*)^g\) is in fact the Jacobi-variety of \(C \) and the subgroup \(S \) is the subgroup of the divisors of degree 0 on \(C \) with support in \(\{ p_1, \ldots, p_s \} \). So \((k^*)^g/S\) is again \(H^1(X_S, \mathcal{O}^*) \) where \(X_S \) denotes the stable reduction of \(X \).

BIBLIOGRAPHY

Manuscrit reçu le 4 février 1980.

Marius van der PUT,
Mathematisch Instituut
Universiteit van Groningen
WSN-Gebouw, Postbns 800
Groningen (Pays-Bas).

&
U.E.R. de Mathématiques
et d'Informatique
Université de Bordeaux I
F-33405 Talence Cedex.