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A CHARACTERIZATION
OF THE MINIMAL STRONGLY

CHARACTER INVARIANT SEGAL ALGEBRA

by Viktor LOSERT

Let G be a locally compact abelian group. It is well known
that any dense L1 (G)-Banach-module S in L^G) contains all
functions whose Fourier transform has compact support (see e.g.
[13], p. 20). If S is also a multiplicative A(G)-module (A(G)
denotes the Fourier algebra), then H.G. Feichtinger [6] has shown
that S necessarily contains a larger space So (G). These spaces
S()(G) have been studied by Feichtinger in [6] and it turned out
that they have a number of remarkable properties. Some of them
resemble those of the Schwartz-space of test functions and could
make S()(G) valuable for the theory of multipliers and distribu-
tions (So(G) has the advantage of being a Banach space).

Another aspect, which will be studied more closely in this paper,
are the 'functoriaF properties of the family {S()(G) : G abelian}.
It has been shown in [6] that S()(G) is invariant under the Fourier
transform, that restrictions of functions from SQ to closed subgroups
belong again to So and finally that So(Gi x G^) = S^G^) ® SoCG^).
We will show that these stability properties actually characterize the
family {So(G)} (Theorem 1).

The definition of S()(G) is based on a construction which was
also used by other authors (see e.g. the so-called "amalgams" of Holland
[9], and the spaces /^(I/) of Bertrandias et al. [ I ] , [2]). This
raises the question whether or not So(G) coincides with one of these
spaces, or more generally, what can be said about functions belonging
to S()(G). For exemple, it can be shown that S()(G) contains the
space of Schwartz-test-functions. We will prove two results which
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give alternative descriptions of the elements of S()(G) (Prop. 1,2).
On the other hand, let W(G) be the Wiener algebra on G ([12])
and put Wo(G) == { / E W ( G ) : /'^(G^)}. Wo(G) shares some
of the functorial properties with S()(G). Nevertheless we will prove
that So(G)^Wo(G) except for trivial cases (Theorem 2). This
proof uses a construction, which enables one to get functions satis-
fying prescribed norm properties and at the same time certain esti-
mates for the Fourier transform. This construction could also be
used to construct non trivial elements in other function spaces of
similar type as WQ (G).

Acknowledgement : I want to thank H.G. Feichtinger for a
number of fruitful discussion on the subject of this paper.

Notations and definitions. — G will always be a locally compact,
abelian group (written additively), G^ its dual group. Integration on
G will always refer to a fixed Haar measure X on G, if Fourier
transforms are considered we will implicitely assume that the mea-
sure on G is chosen in such a way that the inversion theorem holds.
L1 (G) denotes the space of integrable (complex valued) functions
on G , | | /Hi == f \f(x)\dx. The Fourier algebra A(G) is defined

•'G
as the space of functions / on G , for which there exists g G L1 (G^)
such that / = g\ the Fourier transform of g . We put ||/|L = \\g I I i .
If x G G, Ly shall denote the translation operator for functions
on G : L^ /(z) = /(z - x) . Similarly for y G G\ My shall denote
the multiplication operator for functions on G .

A Banach space (S(G), [| Hg) is called a Segal algebra on G
if the following holds : (i) S(Ci) is a dense subspace of L/(G) and
the inclusion mapping is continuous, (ii) S(G) is invariant under
4 and 114/|ls= 11/lls for all /CS(G), x E G , (iii) hm4/=/
holds in S(G) for all /eS(G) (see [13] for details). S(G)° is called
strongly character invariant if it is also invariant under M and
l|M^/|ls= 11/lls for all /eS(G), yCG^ (equivalently one can
say that S(G) is an A(G)-module, i.e. g.feS(G) f o r ^ E A ( G ) ,
/GS(G) and || g . /||g < ||g||^ . H / H g ) .

We recall now the definition of S()(G) from [6]: Let Q be
a fixed compact subset of G with nonempty interior. Then
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So(G)={/: 3(/^iCA(G), (x^)CG such that supp/^CQ V«,
00

/= y L^ /^ pointwise, 2 ||/^ ||̂  < 00} with the norm
w = i

I I /lls^ = inf {2 || /j|^ : / = 2 L^ /„ as above} .

It is easy to see that another compact set Q gives an equivalent
norm on So (G). So (G) is a Segal algebra (even for arbitrary locally
compact groups). We mention another important property from [6] :
So(G) is the minimal strongly character invariant Segal algebra on
G, i.e. if S is any strongly character invariant Segal algebra on G,
then So (G) ^ S and the embedding mapping is continuous.

PROPOSITION 1. — Assume that a function gEA(G) with compact
support is given and that there exists a discrete subgroup M of G such
that ^ Lyg = 1 pointwise on G. Then a function f belongs to

xGM
So(G) iff ^ ||/. L^g\\^ <°° and the last expression defines an

jceM
equivalent norm on So (G).

Remark. — This result is particularly useful in the case G = R"
with M = y . For g one can take e.g. a suitably adjusted trapezoid
function. See also [ I I ] , p. 293 where a similar construction has been
used for the spaces W p .

Proof. — The condition 2 ||/. Lyg\\^ < °° is clearly sufficient
to ensure that / G So (G), since g has compact support and
/= 2/. Lyg pointwise. If we choose Q = supp g as the fixed
compact set in the definition of So (G), we have also
||/[Is < 2 ||/.;L,g[[A. For the converse, note that the set
M^ == M H (Q + Q - Q) is finite, since M is discrete. If x^ E G,
then x^ = x^ + x^ with ^ G Q, x^ € M , since M + Q = G.
If /„ G A(G) satisfies supp /„ C Q , then L^ f^ . 4 g = 0 if
x G M\(x^ + Mi). This gives

^ || L /, . 4^ < card M, . \\g\\^ . ||/, [^ .
x^M

The result follows now from the definition of So(G).

PROPOSITION 2. — Assume that a non zero function g^So(G)
is given. The following statements are equivalent for a function f
on G:
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a) /eSo(G)

b) ^ ||/.L^||^<oo

c) ^ ll/.L^||^<oo.

77^ expressions in b) and c) define norms on S()(G) w/z/c/z
are equivalent to the original one.

Remark. — This is a continuous analogon of Prop. 1. It was
first proved in a different fashion (using structure theory) by D.
Poguntke ([15], Satz 2) and by H.G. Feichtinger [6]. Our proof
is valid even for arbitrary locally compact topological groups, if g
has compact support and L^ g is replaced by L _ i g .

Proof - a) =» c)
This is similar to Prop. 1 . Let Q be the compact subset of G

used in the definition of S()(G) and put c = X(Q - Q). If supp/,
supp g C Q, then supp /. L^ g C Q and /. L, g = 0 for x f Q - Q .
Consequently

/ ||/.L^|is^</ ||/.4^dx= y_ ||/.4^Ac
^^c. I I / H A . I I ^ I A .

The same argument holds for translates of / and g , and by

bilinearity we get J I I / - L^IL dx ^ c II/11s • 11^ 11s for arbitra-
ry / ,^eSo(G).

c) =^ b) is trivial.
b) ^ a)
Since A(G) is a Banach algebra, we may replace g by / z . g

with /z E A(G). In particular, we may assume that g has compact
support and satisfies j g(x)dx = 1 . We take Q = suppg. The
support of /. L^g lies in a translate of Q, therefore
I I /. L^ g \\^ < [I /. L^ g [|̂  for all x e G and consequently
f [|/. L^llg^ dx < j |[/. L^HA dx < oo holds. This shows that
the continuous function u^g : G -^ S()(G) defined by Uy (x) ==/. L^g
is Bochner integrable. Since S()(G) is complete, it follows that
j ^^(x)dxESo(G). So(G) is continuously embedded into
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A(G), consequently all point functionals are continuous and we
may evaluate the integral pointwise. For z E G we get :

(/ u^ g(x)dx) (z) = f u^(x)(z)dx = f f(z)g(z - x ) d x
= f ( z ) f g ( x ) d x =/(z) .

This shows that / = f u^g(x) dx E S()(G) and

'I ^"So = II / ̂ M dx llso < / II u^,(x) |[^ dx

= f \\f.L,g\\^dx<f \\f.^g\\^dx.

THEOREM 1. - Assume that {S(G)} is a family of Segal algebras,
defined for all locally compact abelian groups. We consider the follow-
ing "functional" properties for {S(G)}:

(i) every continuous automorphism of G induces an auto-
morphism of S(G) (in the canonical way)

(ii) S(G') = {/\ /ES(G)} for all G (invariance under
Fourier transforms)

(iii) if H is a closed subgroup of G, /GS(G) then / |HGS(H)
(restriction property)

(iv) if f, E S(G,) 0 = 1 , 2) then f, 0 ̂  ^ S(G, x G^) (here
(/i ® fz) 0*1 ,^2) = A(^i) -^2(^2) - multiplication pro-
perty).

(v) y H ^ an open subgroup of G, /ES(G) and f^ denotes
the restriction of f to the coset x + H (/^ = 0 outside
x + H), T C G is a set of representatives for G/H, then
/= ^ /^ and the series converges absolutely in S(G)

^GT

(decomposition with respect to open subgroups).
If (i) - (v) hold then S(G) = So(G) /or a// G.

Remark. - Condition (i) is only needed to ensure that (iii)
makes sense : if H is an abstract group, then the statement "H is
a closed subgroup of G" means that there exists a continuous mono-
morphism from H onto a closed subgroup of G. This monomor-
phism is unique only up to an automorphism of H and in general
there is no "canonical" way to select such a monomorphism.
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In the case of So (G) the properties (i) — (iv) are valid even
in a stronger form (see [6]). For exemple in (iii) the restriction
operator is surjective and (iv), (v) are special cases of the more
general formula S()(GI x G^) = So(Gi) ® 8(^2).

Proof. — An application of the closed graph theorem shows
that the map /—> f from S(G) to S(G^) is continuous, hence
an isomorphism. This shows that S(G) is strongly character inva-
riant (since the operator My on S(G) corresponds to L on
S(G^)). By the minimality of S()(G), we get So(G)CS(G). For
the proof of the opposite inclusion, note that property (v) implies
that S(G) is uniquely determined by S(H), if H is an open sub-
group of G. By the general structure theory ([8], 24.30), this
reduces the problem to the case G = R" x K (K compact). If we
apply (ii) once again, we arrive at G = R" .

Observe that by (ii) S(G)CA(G), consequently the point
functionals are continuous. Another application of the closed graph
theorem shows that the restriction mappings in (iii) and the bilinear
mapping in (iv) are always continuous. Now we want to apply Prop. 1
in order to show that S(R") C So(FQ. Put M = Z" and choose
a compactly supported function ^€A(R") such that ^ Lyg = 1

xGZn

pointwise. If /GS(R") , then /® g G S(R" x R^) by (iv). Now
we consider the subgroups H = {(x , x + y ) : x E R" , y E V} and
Hi == {( ;c , jc) : x E R " } of R2". By (iii) f^g\H belongs to
S(H). Hi ^ R" is open in H and T = { ( 0 , ^ ) : j^eZ"} is a set
of representatives for H/H^ . The restriction of / ® g to the coset
defined by (0, — y ) is simply f.Lyg and (v) gives now
S I I / .L^L^. <oo. It follows that S 11/.L^||A<00

y^n •r S(R ) y^

holds too and Prop. 1 gives now / G Sg (R").

We recall the definition of Wiener's Algebra W(G) on a locally
compact abelian group G (see [12]): let g be a continuous func-
tion on G with compact support. Then

W(G)= { /EC(G) : / 114/.^JL^<oo}

with the norm 11/llw = f 114/-^IL (GC0) denotes here thew G
space of all bounded, continuous functions G , || !!„ the supremum
norm, see also [5] and [3] for equivalent definitions and some pro-
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perties of W(G)). W(G) is a Segal algebra on G and also a C(G)-
module (by multiplication). H.G. Feichtinger has shown that it is
the smallest C(G)-module which is also a Segal algebra [5]. The
definition of W(G) resembles closely that of S()(G) in Prop. 2 but
in general W(G) is not invariant under Fourier transforms. Therefore
we put Wo(G) = { / eW(G) : /^EWCG')} , with the norm
I I / llw = I I f llw + I I f^ llw • u can easily be P^ved that W^ (G) has the
properties (i) - (iv) of Theorem 1 and R. Burger [4] has proved
that the restriction operator in (iii) is again surjective. Nevertheless
we will prove now that W()(G) and S()(G) are different in general.

First we prove a technical lemma.

LEMMA. — If H is an arbitrary discrete abelian group, K a
subgroup of H and ord H/K > (e/2)~12 , then there exists M e /1 (H)
such that || M l l i = 1 , HJLTIL^ and suppjn intersects each coset
of K in at most one point.

proof. - Put n = ord H/K (the case of infinite H/K can be
proved in a similar way). H/K can be decomposed into a product
of cyclic subgroups : H/K = H^ x . . . x H^ with ord H, = n,,
n = n^ . . . n^ . Let x, be an element of H such that x, + K ge-
nerates H, (i = 1, . . . , k). Put m, = [log ^./log 2], m = 2 m,
([a] denotes the largest integer not exceding a). Then we consider

^i ^m\ ~l

the elements ^ 1 = ^ 1 , Yz = 2^i , y^ = 22 x ^ , . . . , y^^ = 2
y^ ^ = ̂ , . . . , j^ = 2^ -1 x^ . Since 2 '̂ < ̂ , it is easily seen

m
that the points V /^. are pairwise different, for different choices

< = i
of /, E {0 ,1} . The number ko of indices for which n, > 3 is at
most log nl\og 3 . Therefore

m = 2 m, > S log ^./log 2 - feo > log ^ (-—- - -—-) > - log ^ .Mog 2 log 37 3
yi

The set of points ,̂ /,^, : /, = 0 ,1 forms what is called in [10]

an «m-maille» . We put ^ y = — (S^ + 5^ + 6y — 6 ^ + y ) and

^-^l^*^^*-"*^'-!^ where m = m if m iseven

and m' = m - 1 if m is odd. Then it has been shown in [10] p. 31
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m i

that I I jn H i = 1 and | | jLT|L<2 4 <2n 12 < e. The condition
on the support of 1̂ follows immediately from the choice of
x 1 9 ' ' • ^ xk '

THEOREM 2. - So(G) = Wo(G) holds iff G is either compact
or discrete.

Proof-If G is discrete, then So(G) = WJG) = ^(G). If
G is compact, we may pass to the dual group (by property (ii)) and
get the same conclusion.

For the proof of the converse, assume that G is neither compact
nor discrete. If S()(G) = Wo(G) set-theoretically, it follows from
the closed graph theorem that the norms on both spaces are equi-
valent. In order to show So (G) ̂  Wo (G), it is sufficient to prove
the existence of elements / ̂  So (G) such that the quotient
I I / llw / I I f 11s becomes arbitrarily small.

We fix a compactly supported function ^EA(G) which serves
for the definition of the norm on So(G) (as in Prop. 2b) and on
Wo(G). We may assume that \\g\\^ = f^ \\L^g. g\\^dx = 1 .

Put Q = supp g — supp g and assume that e > 0 is given.
Now two cases are possible : either Q generates a compact,

open subgroup of G. Since G is not compact, we can apply the
n

Lemma to find a discrete measure fJi == V ^.5^. on G such that
i^l l

[| ̂  ||^ = £ i a, | = 1 and || JLT ||̂  < e and the sets x, + Q (; =1, . . . , n)
are pairwise disjoint. In the other case G contains a discrete subgroup
isomorphic to Z ([8] 9.10,9.1). Then a simple modification of the
Lemma gives the same conclusion. (This second case follows also
from the classical fact that A(T) is different from C(T).)

Recall that g'CL^G^). By the Dunford-Pettis criterion [7]
p. 220 the family of functions {M^^: x G G} is weakly-relatively
compact in L1 (G ). Since convolution is continuous, the same
holds for the family { ^ T * M ^ ^ : x E G } . Consequently there
exists a compact set Q^ in G such that

/^i,-.M.rMi^<^
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for all x E G. In the same way as before, we find a discrete measure
v = S bi6yi on G ? such that IMIi = 1 , | | ^ IL<e and the

^i
sets Yf + Q^ are pairwise disjoint. Finally we put /= p. * (^A .^).

First we compute the S^-norm of /. By Prop. 2b :
II/11s = / l l / . L ^ H ^ d x . By the definition of Q and since the
sets Xf + Q are pairwise disjoint, this integral equals

t Kl/ IÎ .̂ .L ÎÎ  =f \\v\g.L^g\\^dx (||jLi|[,=l) .

Now || ̂  . g . L^g 11^ == I I ^ * g^ * M^^' H i . From the fact that the
sets Y{ + Q^ are pairwise disjoint and the properties of Q^ we get :

^ m

||^*r*M^rili = j IS b,LyXg^^g^(y)\dy
-G- / = i <

> S l ^ l ( ^ . ^ Q \LyXg^^g-)(y)\dy

'^vy^^^y^^^^^)

>4 IVM^-)MI^-4^Q)

>nr.M.,-n.-^.
Integration over Q gives (recall that f \\g^ * M^g^ [|i rfjc = 1) :

1 1 °
|| /llg > 1 — — = — . The W(G)-norm can be estimated as follows :

117 llw = II ^ * (^- ^) llw < I I ̂  ' S llw < I I ̂  IL • I I g llw < ^ II ^ llw (since
W(G) is a C(G)-module).

Similarly we have on the dual group :

1 1 / ^ 1 ^ = ii^'.^*r)iiw <ii^'iL.ii^*niw <^iiniw.
This gives combined: ||/||w <e\\g\\^ (recall that gEA(G)
with compact support, therefore g^ S()(G) C W()(G)). Since we
have chosen g independently of e , we get the desired conclusion.
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