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HOMOGENEOUS HESSIAN MANIFOLDS

by Hirohiko SHIMA

Introduction.

In [8] [9] [10] we introduced the notion of Hessian manifolds
and studied the geometry of such manifolds. We first recall the defi-
nition of Hessian manifolds (*). Let M be a flat affine manifold, i.e.,
M admits open charts (U^, {x^, . . . ,^}) such that M = U U^
and whose coordinate changes are all affine functions. Such local
coordinate systems { x ^ , . . . , x ^ } will be called affine local coor-
dinate systems. Throughout this paper the local expressions for
geometric concepts on M will be given in terms of affine local
coordinate systems.

A Riemannian metric g on M is said to be Hessian if for
each point p € M there exists a C°°-function 0 defined on a

y<t>
neighbourhood of p such that g,, = —:—- • Let D denote the1 ^^ l^x ;

covariant differential with respect to the flat affine structure on
M. Using D we may define the exterior differentiation for cotan-
gent bundle valued forms. We know that a Riemannian metric g
is Hessian if and only if the cotangent bundle valued 1-form g°
corresponding to g has an exterior differential zero [8];

D^°(Y) - D^°(X) - g°([X, Y]) = 0

for all vector fields X, Y on M. A flat affine manifold provided

(*) In this paper for the sake of brevity we adopt the term of Hessian
instead of locally Hessian used in [8] [9] [10].
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with a Hessian metric is called a Hessian manifold. As we see (Pro-
position 0.1), the tangent bundle over a Hessian manifold admits
in a natural way a Kahlerian structure. Thus the geometry of Hessian
manifolds is related with that of certain Kahlerian manifolds.

Let M be a Hessian manifold. A diffeomorphism of M onto
itself is called an automorphism of M if it preserves both the flat
affine structure and the Hessian metric. The set of all automorphisms
of M , denoted by Aut(M), forms a Lie group. A Hessian manifold
M is said to be homogeneous if the group Aut(M) acts transitively
on M.

For homogeneous Kahlerian manifolds Vinberg and Gindikin
proposed the following conjecture and settled the related problems
[1] [14] .

Every homogeneous Kahlerian manifolds admits a holomorphic
fibering, whose base space is holomorphically isomorphic with a
homogeneous bounded domain, and whose fiber is, with the induced
Kahlerian structure, isomorphic with the direct product of a locally
flat homogeneous Kahlerian manifold and a simply connected compact
homogeneous Kahlerian manifold.

In this paper we consider analogous problems for homogeneous
Hessian manifolds and obtain the following results.

MAIN THEOREM. — Let M be a connected homogeneous Hessian
manifold. Then we have

1) The domain of definition E^. for the exponential mapping
exp^ at x € M given by the flat affine structure is a convex domain.
Moreover E^. is the universal covering manifold of M with affine
projection exp^: E^ —^ M .

2) The universal covering manifold E^ of M has a decompo-
sition E^ = E^ + E^ where E^ is a uniquely determined vector
subspace ofthe tangent space T^.M of M at x and E^ is an affine
homogeneous convex domain not containing any full straight line.
Thus E^ admits a unique fibering with the following properties:

(i) The base space is E^ .

(ii) The projection p : E^ —^ E^ is given by the canonical
projection from E^. = E^ 4- E^ onto E^ .
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(iii) The fiber E^ + v through v G E^ ^ characterized as the
set of all points which can be joined with v by full straight lines
contained in E^ . Moreover each fiber is an affine sub space of T^M
and is a Euclidean space with respect to the induced metric.

(iv) Every automorphism of E^ is fiber preserving.
(v) The group of automorphisms of E^ which preserve every

fiber, acts transitively on the fibers.

COROLLARY 1. — Let p denote the canonical bilinear form
y\ogF

on a connected homogeneous Hessian manifold M ; j3,, = —:——/ QxlQx/

where F = ^/det [g^ ] . Then we have

(i) j3 is positive semi-definite.
(ii) The null space of j3 at x E M coincides with E^ . In

particular
(hi) j3 = 0 if and only if E^ = T^M and it is a Euclidean space

with respect to the induced metric.
(iv) j8 is positive definite if and only if Ey is an affine homo-

geneous convex domain not containing any full straight line.

In [5] Kobayashi considered pseudo-distances c^ , Cj^ , d^
and d^ on a flat affine (more generally flat projective) manifold
M (see also [11]).

COROLLARY 2. — Let M be a connected homogeneous Hessian
manifold and let d be one of the pseudo-distances on E^ listed
above. Then the fiber through a point v E E^ is characterized by
the set of all points w G E^ such that d(v , w) == 0. In particular
we have:

(i) d = 0 if and only if E^ = T^M and it is a Euclidean space
with respect to the induced metric.

(ii) d is a distance on E^ if and only if E^ is an affine homo-
geneous convex domain not containing any full straight line.

COROLLARY 3. — Let M. be a connected homogeneous Hessian
manifold. If there is no affine map of R into M except for constant
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maps, then the universal covering manifold of M is an affine homo-
geneous convex domain not containing any full straight line.

COROLLARY 4. - // a connected Lie subgroup G of Aut(M)
acts transitively on a Hessian manifold M and if the isotropy
subgroup of G at a point in M is discrete, then G is a solvable
Lie group.

COROLLARY 5. - If a connected homogeneous Hessian manifold
M admits a transitive reductive Lie subgroup of Aut(M), then
the universal covering manifold of M is a direct product of a Euclidean
space and an affine homogeneous convex self-dual cone not contain-
ing any full straight line.

COROLLARY 6. — A compact connected homogeneous Hessian
manifold is a Euclidean torus.

At the conclusion of this introduction we show the relation
between Hessian manifolds and Kahlerian manifolds. Let M be a
flat affine manifold and let TT : TM —> M be the tangent bundle
over M with projection TT . Then the space TM admits in a natural
way a complex structure induced by the flat affine structure on M.
Indeed, for an affine local coordinate system { x l , . . . , x n } we put
z1 = y1 -h ^/— 1 y^1 where y1 = x1r o TT , y^1 = dx1, i = 1 , . . . , n.
The systems { z 1 , . . . , z"} defined as above give a complex structure
on TM (cf. [2]).

Let g be a Riemannian metric on M . If we set

S1 == £ Q?,,o7rW^ ,
<,/=!

then g^ is a Hermitian metric on TM (the definition of g7 is in-
dependent of the choice of affine local coordinate systems).

PROPOSITION 0.1. — A Riemannian metric g on M is Hessian
if and only if the corresponding Hermitian metric g^ on TM is
Kahlerian.

Proof. — Since the fundamental 2-form p of the Hermitian
metric g^ is expressed locally as
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P == 2 t (^°7T)^Arf^,
< , / = 1

we know that dp = 0 if and only if —^- = -^4-, which is equiva-
Qx^ 3;c1

lent to ^ being Hessian (cf. [8]). q.e.d.

1. Proof of Main Theorem 1) .

In this section we prove the first part of Main Theorem along
the same line as Koszul [6] [7]. Let M be a Hessian manifold with
Hessian metric g . A C°°-function 0 defined on an open set U
in M is called a primitive of g on U if it satisfies the conditiony<i>
gi! == ^ i^ / on a ̂ ^hbourhood of each point in U.

From now on we always assume that M is a connected homo-
geneous Hessian manifold.

LEMMA 1.1.- Let {x 1 , . . . , x'1} bean affine local coordinate sys-

tem in U. // 0 is a primitive of g on U, then —- (/ = 1 , . . . , n)
Qx^

are regular rational functions in x 1 , . . . , x" (*).

Proof. - Let g be the Lie algebra of the automorphism group
Aut(M). For X E g we denote by X* the vector field on M induced
by exp(-tX). For fixed p€U there exist a neighbourhood W
of p in U and elements X i , . . . , X ^ in g such that the values
of the vector fields X ^ , . . . , X ^ at each point ^ G W form a basis

of the tangent space of M at q. So we have —- = v T/ X* on
Qx' i f l

W , where each 17? is a C°° -function on W . Since X* is an infini-»\
tesimal affine transformation, the components ^ of X* = S S7 —"

are affine functions in x1 , . . . ,^. Therefore 17?' are rational func--\ i
tions in x 1 , . . . , x" . Since X* = S ^ —- (X C g) is an infini-

/ Qx'

(*) The author learned this result from Professor Koszul.
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tesimal isometry and its components are affme functions, we get
^!x^y ̂  -.y^-. ^ y ^ ^ - oax^' ^ ax- gpf L w gpi L' ax^ ~ °5

and so X*0 is an affme function in x1,..., x" . Thus —- = ̂  rf. X*0

is a regular rational function in x 1 , . . . , ^ " on W , and also on U
because p is an arbitrary point in U. q.e.d.

We now need the following lemma due to Koszul [7].

LEMMA 1.2. - Let M be a connected flat af fine manifold and
let E^ be the domain of definition for the exponential mapping
exp^. at x G M given by the flat affme structure. Then exp^. is
an affme mapping from E^ to M and its rank is maximum
at every point in E^ and equal to dim M. Moreover if E^ is
convex it is the universal covering manifold of M with covering
projection exp^ .

It follows from this lemma that the induced metric "g = exp^g
on E^ is Hessian.

LEMMA 1.3. - There exists a primitive ^ of "g on E^ .

Proof. — Let { .V 1 , . ..,.>'"} be an affine coordinate system
on T^M. Define a 1-form 7 .̂ on E^ by 7 ,=^ ^ dy1 . We have

then rf7, = Z (^-- ̂ ) ̂  A^' = 0. Since E , is star-
k^j^y ^Y /

shaped with respect to the origin 0 , by Poincare Lemma there exists a
C°°-function h^ on E^ such that 7, = rf/z, . If we define a 1-form 7

on E^ by 7 = ^ /?, rf^, we get dj = ^ (—— - ——) dy1 ^ d y i = 0.
f /<, ^o^7 o^'/

Again by Poincare Lemma there exists a C°°-function V/ such that
^ a2!//

7 = r f^ / . Thus we have ,̂, = —^—r. q.e.d./ a^1 a^7

LEMMA 1.4 (Koszul [6]). - Let a be an element in T^M such
that ta G E^ for 0 < t < 1 a^rf a ̂  E^ . Then we have

I™ i//(^) = oo^
where ^ is a primitive of ̂  on E^ .
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Proof. - The length of the curve exp^(^) (0 < t < 6) with
respect to g is given by

1(0)= ^(exp.Oa), exp,(^))^= ^(^F)1/2^

rf
where F(r) == ^—,//(^). Since the Riemannian metric ^ on M

is complete because M is homogeneous, we have

Jim 1(0)-Inn n^V^^.
0->1 6^1 JQ \^( /

For each 0 < ^ < 1 there exists a primitive ^ defined on a
neighbourhood of exp^(^a) such that ^ = 0^ o ^xp^ and so by
Lemma 1.1 and 1.2 F(r) is a regular rational function in t (0 < t < 1).

This together with Jim J^ (^r)172 dt = oo means that F(Q has

a pole of order > 1 at ^ = 1 . Thus we get

l i m ^ ( ^ ) = l i m /^FCO^+^CC^oo. q e d^-*-1 o —> i »/o * *

According to Lemma 1.4, Lemma 4.2 in [6] and the fact that
E^ is star-shaped with respect to the origin 0, E^ is a convex domain
in T^M. Moreover by Lemma 1.2 E^ is the universal covering
manifold of M with projection exp^: E^ —> M . Thus Main Theo-
rem 1) is completely proved.

2. Normal Hessian algebras.

Let ft be an affine homogeneous domain in R" with an inva-
riant Hessian metric g . In this section we first show that K admits
a simply transitive triangular subgroup of Aut(^2) and using this
we construct a normal Hessian algebra (Definition 2.3). According
to Theorem 2.1 the study of affine homogeneous domains with in-
variant Hessian metric is reduced to that of normal Hessian algebras.

Let A(n) denote the group of all affine transformations of
R" and Aff(^2) the set of all elements in A(n) leaving ft invariant.
Then it is easy to see that Aff(ft) is a closed subgroup of A(n).
Denoting by 1(0) the group of all isometries of S2 with respect
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to the Hessian metric g it follows Aut(ft) = Aff(ft) n I(S2). A
subgroup of A(n) is said to be algebraic if it is selected from A(n)
by polynomial equations connecting the coefficients of an affine
transformation in an affine coordinate system.

LEMMA 2.1. — Let N be the normalizer of the identity com-
ponent of Aff(ft) in A(n). Then N is algebraic and N, Aff(ft)
have the same identity component.

For the proof see Vinberg [13].

PROPOSITION 2.1. - The identity component Auto(ft) of
Aut(ft) coincides \^ith that of an algebraic group in A(n).

Proof. — Let {x1 , . . . , .^} be an affine coordinate system on
R". For aCA(n) we denote by f(a) = [f(a)j] and q(a) = [q(a)1]
the linear part and the translation part of a respectively, where
x1 o a == ^ fCfl^x7 + q(ay. An element f lEAff(ft) is contained

in I(ft) ^f and only if ^ f(aY,f(a)^g^ap) = g ^ ( p ) holds for all
r,s

p e ft . Let 0 be a primitive of g on f t . Then by Lemma 1.1y<j>
the functions ga = —:—-r defined on S2 are rational functions/ Qx1^
in x 1 , . . . , ^ " . Therefore we may regard g^ as rational functions
on R" with respect to x 1 , . . . , x" . Put

H = a G A(^2) ^ f(a); f(a); g^ax) = ^,(x) for all x G R"
f , / = 1 , . . . , ^

Then H is an algebraic group in A(n) and Aut(S2) = Aff(?2) H H.
Therefore by Lemma 2.1 AutQ(S2) coincides with the identity com-
ponent of the algebraic group N H H. q.e.d.

PROPOSITION 2.2. — The isotropy subgroup of Auto (ft) at a
point in Sl is a maximal compact subgroup of Auto(ft).

Proof. — Let K be the isotropy subgroup of Auto(ft) at
p G f t . Since Aff(S2) and H are closed in A(^), Auto(ft) is
closed in A(n) and so K is closed in A(n). Let {x 1 , . . . ,^} be
an affine coordinate system such that x^p) = 0 and gf.(p) = 5,.
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where § .̂ is Kronecker's delta. Representing affine transforma-
tions in terms of x 1 , . . . ,^" it follows K C 0(n) where 0(n) is
the orthogonal matrix group. Therefore K is a compact subgroup
of Auto (ft). Let K' be a maximal compact subgroup of Auto (ft)
containing K . Then there exists a fixed point p ' ^ ft for K'
because ft is a convex domain. Taking a G Auto (ft) such that
ap' = p we get aK'a'1 C K . Since aK'a'1 is a maximal compact
subgroup of Auto (ft) we obtain K = dK'a~1 and so K is a maximal
compact subgroup of Auto (ft), q.e.d.

A subgroup T of A(n) is said to be triangular if the linear
parts of the transformation in T can be written as upper triangular
matrices with respect to some afflne coordinate system.

By Proposition 2.1 and by a theorem of Vinberg [12] we get
a decomposition Auto (ft) = TK, where T and K are a maximal
connected triangular subgroup and a maximal compact subgroup
of Auto (ft) respectively, and T O K consists of the unit element
only. Using this together with Proposition 2.2 we have

PROPOSITION 2.3. — Let ft be an affme homogeneous domain
in R" \with an invariant Hessian metric. Then ft admits a simply
transitive triangular subgroup of Aut(ft).

Choose a point o G ft and an affme coordinate system
{ x 1 , . . . , x"} such that xi(o)=0 O ' = l , . . . , ^ ) . Let T be a
connected triangular subgroup of Aut(ft) acting simply transitively
on ft and t the Lie algebra of T. For X G t we denote by X*
the vector field on ft induced by a one parameter subgroup of^
exp(-tX). We have then X* = - ̂  (Z/(X)'x/ + q(X)') ——,

i ' / ' ' 9x'
where /(X)j and q(X)' are constants determined by X. Let V
be the tangent space of S2 at o. Define mappings q: i —»• V
and /: t —> gI(V) by

^-^(X)1^,

f(X)q(Y) = ̂  /(X);<?(Xy (^ .

Then we have
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(1) / is a representation of t in V.

(2) q is a linear isomorphism from t onto V satisfying

^([X,Y])=/(X)^(Y)-/(Y)^(X) for X , Y G f .

We now define an operation of multiplication in V by the
formula

x ' y =f(q~lW)y for x , ^ E V . (3)

The algebra V with this multiplication is called the algebra of the
affine homogeneous domain ^l with respect to the point o E ^2 and
the simply transitive connected triangular group T. Using the notation

x ' y = L^y == RyX,

[x ' y . z] = x • (y • z) - (x ' y ) • z ,

from (1) (2) we get
[L^,L^,] = Ly,y__y^ , (4)

[ x ' y ' z ] = [ y - x ' z ] , (5)

[L^ , R^] = R;c.^ — ^y^x » (6)

for x , ̂  , z ̂  V . The conditions (4), (5) and (6) are mutually equi-
valent.

DEFINITION 2.1 —An algebra satisfying one of the conditions
( 4 ) ( 5 ) ( ( j ) is said to be left symmetric (cf. Vinberg [ 13]).

DEFINITION 2.2. — A left symmetric algebra is said to be normal
if all operators L^ have only real eigenvalues (cf. [13]).

Let < , > denote the inner product on V given by the Hessian
metric. Then we have

( x ' y , z ) + ( y , x - z ) = ( y ' x , z ) + ( x , y ' z ) (7)

for all ; c , ^ , z G V (cf. [8]).

DEFINITION 2.3. - A left symmetric algebra endowed with an
inner product satisfying ( 7 ) is called a Hessian algebra.

Summing up the obtained results, we have
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PROPOSITION 2.4. — Let ^l be an affine homogeneous domain
with an invariant Hessian metric. Then the algebra of ^l with res-
pect to a point in ^l and a simply transitive connected triangular
group is a normal Hessian algebra.

Conversely we shall prove that a normal Hessian algebra deter-
mines an affine homogeneous domain with an invariant Hessian metric.

Let V be a normal Hessian algebra endowed with an inner pro-
duct ( , ) . Let { ^ , . . . , ^ } be an orthonormal basis of V with
respect to < , ) and { x 1 , . . . , x " } the affine coordinate system on V
given by v = ̂  x^v) e, for all v E V . We denote by f(a) e GL(V)

i
and q ( a ) G V the linear part and the translation part of a G A ( ^ )
respectively; av = f(a)v 4- q(a). For v £ V we define an infini-
tesimal affine transformation X^ by

X,*=-S (L^'W) ̂  (8)

where L[. , v1 are the components of L^ , v with respect to

[e^ , . . . , e^} ; L,, .̂ = ^ L[. e,, v = ^ v1 e,. From (4) it follows
;• 7 i

[X,*,X^]=X^_^ for t ; , w E V , (9)

and so t(V) = {X^ | v G V} forms a Lie algebra. Let T(V) denote the
connected Lie subgroup of A(n) generated by t(V). We denote by
^(V) the open orbit of T(V) through the origin 0 ; ^(V) = T(V) 0,
which we call the affine homogeneous domain corresponding to V.

We first show that T(V) acts simply transitively on ^2(V).
By (8) the isotropy subgroup B of T(V) at 0 is discrete. Suppose
6 G B . Since the exponential mapping exp : t(V) —^ T(V) is sur-
jective because T(V) is triangular, there exists X^ G t (V) such
that b = expX^ . If we put b ' = exp 1/2 X^ , then we have
0 = 60 = b^O = f(6') q(Z/) + q(Z/) and so f(6') q(6') = - q(6').
Since f(b') = exp (— 1/2 L^,) and since Ly, is triangular, the eigen-
values of f(6') are all positive. This means 6 ' 0 = q ( 6 ' ) = 0 and so
b ' == exp 1/2 X^ G B . By the same argument we have exp 1/2" X^ GB
for all non-negative integer n. Thus X^ = 0 because B is discrete.
Therefore B consists of the unit element only and T(V) acts simply
transitively on ^(V).
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Now we denote by g the T(V)-invariant Riemannian metric
on K(V) satisfying ^.(0) = S,,. (Kronecker's delta). It follows
then

^0)=^ t^-1)? t^-1)^ for aGT(V) (10)
p

where f(a)J are the components of f (a) with respect to {e^...,e^}.
Denoting by exp tX^ the one parameter group generated by X* we

get ^ r=o f(exp tx^ = - L. and i .̂o ^P tX:) = - ..
Choose an element a G T(V) and define an isomorphism v —> v '
of V by a~1 exp tX^* a = exp tX^ . Then we have

v ' = fCa)-1!^^) + ^ar'v = L^f^)-^^) + f(a)-1!;,
L.^f^)-1^^). (11)

Let D denote the natural flat linear connection on n(V) given
by D ^ = 0 . Put A x * = L x * - D x * where L^* and D^ are
the Lie differentiation and the covariant differentiation by a vector
field X* respectively. We have

(Ax^X;), = - S (L,L^ + L^vY (^ , (12)

for all x G ft(V). Since A^* is a derivation of the algebra of tensor
fields and maps every function into zero and since L^*g = 0, it
follows

(D^g) (X,* , X:) = g(A^ , X:) + g(X^ . A^X;). (13)

Using (10) (11) (12) we obtain

^0)((A^X^,(X:),o)

= S f^-1)? f(a-1)/(L.L^O + L,t;)'(L^aO + wy
iJ.P

= Z (^a-'KL^q^) + L^v))" (f(a-1) (Lq(a) + w))"
Pp

= S (L^L„,f(a)-lq(a) + L^f^)-1!;)/'(^^(^-^(a)a)-1^)

+ f(a)- lw)p

= Z (y'-uy"'"'p
= < U ' . t ; ' , W ' > .

This together with (7) (13) implies
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(D^g) (X,*,X:) = (Dx^) (X,*,X:),

and so g is a Hessian metric (cf. [8]).
Let ft be an affine homogeneous domain in R" with an inva-

riant Hessian metric and V the normal Hessian algebra of ft with
respect to 0 ̂  ft and a simply transitive triangular group. Identifying
the tangent space V of ft at 0 with R" the domain ft(V) corres-
ponding to V coincides with ft . Therefore we have

THEOREM 2.1. - Let V be a normal Hessian algebra. Then the
domain ft(V) constructed as above is an affine homogeneous domain
with invariant Hessian metric. All affine homogeneous domains with
invariant Hessian metric are obtained in this way.

DEFINITION 2.4 (cf. [3]). - A normal left symmetric algebra
U is called a clan if it admits a linear function cj satisfying the
condition

(i) o?(x • y ) = o)(y ' x) for all x , y ^ \ J ,
(ii) o)(x • x) > 0 for all x ^ 0 e U.

Remark. — Let U be a clan with c^?. If we put (x , y > = o;(x • y ) ,
then < , ) is an inner product on U satisfying the condition (7) and
so U is a normal Hessian algebra.

The following theorem is due to Vinberg [ 13].

THEOREM 2.2. - Let V be a clan. Then the domain ft(V) is
an affine homogeneous convex domain not containing any full straight
line. All affine homogeneous convex domains not containing any
full straight line are obtained in this way.

3. Structure of normal Hessian algebras.

In this section we state a fundamental theorem for normal Hessian
algebras. Let V be a normal Hessian algebra.

DEFINITION 3 . 1 . — Let W be a vector subspace of V .

(a) W is called a commutative subalgebra of V if W - W = {0}.
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(b) W is said to be an ideal of V if W- V C W and V - W C W .

THEOREM 3.1.-Z^ V be a normal Hessian algebra. Then
V is decomposed into the semi-direct sum V = I 4- U , where I
is a commutative ideal of V and U is a subalgebra with an element
s satisfying the following properties:

(i) s ' s = s ,
(ii) the restriction of Ly on U is diagonalizable and has eigen-

values 1 , 1/2,
(iii) R, = 2L, - 1 on U ,

where 1 is the identity transformation of U. 04^2 element s in
U satisfying the above conditions is called a principal idempotent
of U.)

The proof of this theorem is carried out by induction on the
dimension of normal Hessian algebras in an analogous way as Gindikin
andVinberg [1] [14].

For later use we prepare some lemmas.

LEMMA 3.1. — Let W be an ideal of V. Then the orthogonal
complement W1 of W in V is a subalgebra.

Proof. - Let x , y G W1 and a G W . We have then

{ a , x ' y ) = — (x ' a , y ) + ( a - x , y ) + {x , a • y ) = 0.

This implies x - y € W1. q.e.d.

LEMMA 3.2. — Let u be a non-zero element in V and let
p = { p G V | p - t < = 0 } . Suppose P ^ invariant by L^ . TTz^z
/oy p €E P , x €E V we have

(i) L^.x)=(L^) .^ +p. (L^) ,
(ii) exp tL^(p • x) = (exp tL^). (exp tL^x),

(iii) — <exp tL^p , exp tL^x) = (u , exp tLJ^? - x ) > .
a^

Proo/ - (i) follows from

u ' (p • x) = (^ • p ) ' x + p . (^ • x) — (p ' u) - x .
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(ii) is a consequence of (i). Using (7) in 2 and (ii) we obtain
d

—(expt l^p, exptL^)
at

= (L^exp tL^ , exp tl^x) 4- <exp i\p , I^exp tl^x)
= <(exp tL^p) • ^ , exp tL^x ) + (^ , (exp tL^p) • (exp iL^x))
= < K , exp tL^(p • ^ ) > . q.e.d.

LEMMA 3.3. —Let W 6^ a subspace of V. Suppose that an
element a =^ 0 ̂  V satisfies the following conditions:

(a) a ' a = ea, where e = 0, 1 ,
(b) L^, a^ R^ leave W invariant,
(c) a ^ orthogonal to W- W .

F/z^^ we have:

(i) // 6 = 0 , L, =R, = 0 o^z W.
(ii) // e = 1 , ^/z^ restriction of L^ 0^2 W ^ symmetric and

its eigenvalues are 0, 1/2. Moreover R^ = 2L^ 0^2 W .

Proof. — From (6) in 2, (a) and (b) it follows

[ 4 , R J = e R , - R ^ on W . (1)
By (c) we have

(a- x , y ) + < x , a - ^ > = < x - a , ^ > + { a , x • y ) == (x - a, y )

for all x , ̂  € W . This implies

La ^L, = R , on W . (2)

Put S = eR^ — R 2 . S being commutative with R^ we have
Tr^S2 = Tr^[L^ , R^]S = Tr^[L^S,RJ = 0. This means S = 0
on W because S is symmetric on W by (2) and so

R^eR, on W , [L, , RJ = 0 on W. (3)

Suppose e = 0. The facts that R^ is symmetric on W and that
R2 = 0 on W imply R^ = 0 on W . Using this and (2), L^ is
skew symmfctric on W and its eigenvalues are purely imaginary.
Therefore we must have L^ = 0 on W . Suppose e = 1 . Since
R2 = R^ on W the eigenvalues of R^ on W are 0 , 1 . From
(2°) it follows L^ - 'L^ = 2L^ - R^ on W. Since [L^, RJ == 0
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on W and since the eigenvalues of L^, R^ on W are real, the eigen-
values of 21̂  - R^ on W are real. On the other hand L^ - ̂
is skew symmetric and its eigenvalues are purely imaginary. Therefore
we have L^ - ̂  = 21̂  - R^ = 0 on W and so ^ = \ on
W, R^ = 2L^ on W . This means (ii). q.e.d.

The following lemmas 3.4*-3.7* are immediate consequences
of Theorem 3.1.

LEMMA 3.4.* - Let U^ denote the eigenspaces of L, on U
corresponding to \. Then we have:

(i) U = U, + U,/, ,
u,.u,cu,_^.

(ii) U is a clan.

Proof. - For x G U^ , y E U^ we have
s ' ( x - y ) = ( s ' x ) ' y -^- x ' ( s ' y ) - ( x ' s ) ' y

= XX..Y 4- ^ix.y - (2X - l ) x ' y = (^ - X + l ) x ' y

and so x - y ^ - V ^ ^ ^ . Define a linear function a? on U by

a;(x) = — ( s , x ) for x G U^ .
A.

Let ;c G U^ , ^ G U^ . Using

(s • x , y > + ( x , s • y > = <x • 5, y > + ( s , x • y > ,

ju - X + 1 ¥= 0 and x • y £ U^_^ we get

( x , y ) = ——-——- <5, x • y > = co(x • ̂ ).
JLl — A ~r 1

Thus we have < x , y ) = o;(x. y ) for all ; c , ^ G U . Therefore U
is a clan. q.e.d.

LEMMA 3.5.* - (i) The restriction of Ly on I is symmetric
and its eigenvalues are 0, 1/2 .

(ii) Let \ denote the eigenspace of Ly on I corresponding
to \. Then we have I = 1̂  + 1̂  ,

U, .^CI,_^, I,.U,CI^.
(iii) R, = 2L, 0^2 I.
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Proof. — Since I is a commutative ideal of V and since
s ' s = s , applying Lemma 3.3 it follows that the restriction of Ly
on I is symmetric and its eigenvalues are 0 , 1 / 2 and moreover
R^ = 2L, on I. Let x G U^ , a E 1̂  . By Theorem 3.1 (iii) we
obtain
s • (x • a) = (s' x)' a 4- x ' (s • a) - (x • s)' a

= \x . a + JLIX . a - (2X - 1) x . a = (jn - X + 1) x . a

and x . a G I^_^ . Let a E 1̂  , x E U^ . By (iii) we have

s' (a - x) = (s • a)' x + a' (s • x) - (a • s) ' x
= \a ' x + /xa . x - 2\a' x = (ju - X) a ' x

and so a ' x ^ I ^ _ ^ . qe.d.

LEMMA 3.6*. — 77^ commutative ideal I of V is characte-
rized by the set of all points x G V such that x ' x = 0 .

Proof. - Suppose x - x = 0. If x == a + ^ where a G I and
y € U, we have 0 = x - x = a - ^ 4 - ^ . a + ^ . ^ and so y ' y = 0.
By Lemma 3.4* (ii) there exists a linear function a? on U satisfying
the conditions in Definition 2.4. Since o ? ( ^ - ^ ) = 0 , we have
y = 0 and x = a G I . q.e.d.

LEMMA 3.7*. - The subspaces I^ , 1̂  a^rf U are mutually
orthogonal with respect to < , ) .

Proof. - By Lemma 3.5* (i) I^ and 1̂  are orthogonal. For
a €E 1̂  we have

0 = < ^ - f l , 5> 4- < a , 5 . 5 > - ( a ' s , s) - ( s , a ' s ) = (-3X + \ ) ( a , s )

and so ( a , s ) = 0 because X = 0, 1/2. This implies s and I are
orthogonal. Applying this, for a C 1̂  , x E U^ we obtain

0 = (^. fl, x > + (a, s • x > - (a. ̂ , x > - (^, a • x > = (jn - X) <a, x )

and 0 = ( s ' x , a) + (x , s ' a) - (x ' s , a ) — ( s , x ' a)
= (X - JLI + l ) < a , ; c > .

This shows < f l , x > = 0 . Therefore I and U are orthogonal, q.e.d.
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4. The case u ' u = u .

Since V is a normal left symmetric algebra, by Lie's Theorem
there exists an element u ^= 0 G V such that x ' u = K ( x ) u for
all x G V , where K is a linear function on V. Multiplying u by
non-zero scalar (if necessary) the following two cases are possible ;

u - u = u,
u ' u = 0.

In this section we consider the case u ' u = u and prove the following.

PROPOSITION 4.1. - Suppose u ' u == u. Then the operator
L^ is diagonalizable and has eigenvalues 0, 1/2, 1. Denoting by
V^ the eigenspace of L^ corresponding to \ v^e have:

(i) V = V\ + V\^ + VQ (orthogonal decomposition).

(ii) V, = {u}.

(iii) u ' p = = - ^ p , p ' u = = 0 for p £ V\^ •

(iv) u ' q = 0 , q - u == 0 for ^ G V ^ .

(v) V, .V^CV^, V ^ . V o C V ^ ,

V o - V o C V , , V ^ . V ^ C V , .

/^ particular V^ + V^ ;5 ̂  ;rf^/ o/ V wY/z principal idempotent
u and VQ /5 a subalgebra.

Let P denote the kernel of R,, ;u '

P = [ p ^ y \ p - u = o}. (i)
Then we have

L ^ P C P , (2)

V = { ^ } + P . (3)

Indeed for p G P we have

( u ' p ) ' u = u ' (p • u) + (p - u) ' u — p ' (u . u) = 0 ,

which implies (2). (3) follows from x - K(x)u^f for all x G V .

LEMMA 4.1. — The restriction of L^ on P is diagonalizable
and has eigenvalues 0, 1/2.
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Proof. — By Lemma 3.2 for p G P we have

—(exptL^p , exptL^) = (^ , exp tL^(p- ^)) = 0,
and so

(exptL^, M > = ^-r, (4)

where a is a constant determined by p not depending on t . Using
this for x = cu + p E V (c G R , p G P) we obtain

{u, exp tL^x) = <^ , C^K + exp tL^p)
= < ^ , exptl^p) + c ( u , u ) e t = ae~~t + 6^, (5)

where a , b are constants determined by x not depending on t .
Applying Lemma 3.2 and (5) we have for p , q G P

rf
—<exp tL^ , exptL^) = (u, exptLJp.<?)) = ^-r + 6^,

and consequently
<exp tL^p , exp tL^(7 > = — ae~t 4- 6^ + c , (6)

where a, 6 and c are constants determined by p , q not depend-
ing on t . From (6) it follows that L^ is diagonalizable on P.
Indeed, if Ly is not diagonalizable on P there exist non-zero ele-
ments p , q G P such that L^p = \p , L^q = \q + p . We have
then
<exp tL^ , exp iL^q ) = <^p , e^q 4- ^r^ >

= te2^ ( p , p ) + e2^ < p , q } ,

which contradicts to (6). Let X be an eigenvalue of L^ on P and
p ^ 0 G P an eigenvector corresponding to X . It follows then

— <exp tL^p , exp tL^p > = 2X (p , p > e2^ .

On the other hand (6) implies

— <exp tL^p, exp tL^p) = ae'~t + 6^ .

Therefore we obtain
2 \ ( p , p ) e 2 x t =ae-t ^ b e t , (7)

consequently X = 0 , 1/2 , - 1/2 . By (4) we get (p , u > ̂ +1^ = a,
so ( p , u) = 0 and a = 0 because X + 1 =^ 0. Thus we have
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( p , u ) = 0 for all p E P , (4')

(u , exptL^x) = bet for x E V , (5')

2 \ ( p , p ) e 2 x t =bet. (7')

(7') shows X == 0, 1/2. q.e.d.

Let P^ denote the eigenspace of L^ in P corresponding to
X . From Lemma 4.1 and (3) it follows

V = Vi 4- V^ + V, , (8)

where V^ = {^}, V^ = P^ and VQ = Po.

LEMMA 4.2. — 77^ decomposition ( 8 ) is orthogonal and we
have P^ .P^CV^ .

Proo/ — For p G P^ and (7 G P we have

^ • (p ' q) = (u ' p). q + p . (M • q) - (p . ̂ ). q = (X + jn) ̂  . ̂  .

This implies P ^ - P ^ C V ^ . The orthogonaUty of {u} and P
follows from (4'). Applying this for p G P^ and ^ G P^ we obtain
1/2 (p , q > = ( u ' p , q ) = — ( p , u - q ) ^ - ( p ' u , q ) - ^ ( u , p ' q ) = 0
because p - q ^ P ^ . Thus P^ and P^ are orthogonal, q.e.d.

The assertion of Proposition 4.1 follows from Lemma 4.2 and (8).

5. The case u - u = 0 .

The purpose of this section is to prove the following.

PROPOSITION 5.1. - Suppose u ' u = 0. Then there exists a
commutative ideal of V containing u.

LEMMA 5.1. - L^ = 0.

Proof. - Let P denote the kernel of R^ ; P = {p EV | p ' u = 0} .
Then we have

L , V C P , (1)

because (u • x). u = u. (x . u) + (x ' u). u - x ' (u ' u) = 0 for all
x E V. For p G P, x G V it follows from (1) and Lemma 3.2
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A- <exp tl̂ p , exp tL^x )
dt3 2

= JL. (u, exptLJ^.jc)) = (u, u ' p )
dt1

= - (p\ u ' u ) + ( p ' - u , u) + ( u , p f ' u ) = 0,

where p' = L^exp tL^(p • x) € P, and consequently

<exp iL^p , exp tL^x ) = ar2 4- bt + c, (2)

where a, b , c are constants independent of r . Let X be an eigen-
value of Lu on P and p i= 0 G P an eigenvector corresponding
to X . By (2) we get e2^ ( p , p ) = at2 + bt 4- c, a n d s o X = = 0 .
This together with (1) implies that the eigenvalues of L^ are equal to
0 . Assume L^ ^ 0. Then there exist non-zero elements x , y , z G V
such that M . X = = O , u . ^ = x , u ' z = y . From this we have

^2
exp iL^y = y -\- tx , exp tl^z = z + ^ + — x . Since ^ = u ' z G P,

t1

applying (2) we obtain (y + tx , z + ty + — x ) = at2 -\- bt -\- c .

This is a contradiction because (x , x ) ^= 0. Thus we have L2 = 0.
q.e.d.

Using L^ = 0 we define a filtration of V. Consider the sub-
spaces of V

v<-i)=v,
v(°) = {x GV|L^E{^}} ,
V<1) = L , V + { ^ } ,
V<2) = {u}.

Then we have

LEMMA 5.2. - The subspaces V0^ /orm a filtration of the alge-
bra V ;

(i) V^DV^DV^:^2),

(ii) V<° . V0^ C V0'^ .

Moreover we have

(iii) V^.V^ == {0}.
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Proof. - (i) follows from u • u = 0 and L^ = 0. Note that

( u ' x ) ' ( u ' y ) = 0 for all x , ^ E V . (3)

In fact for x , y G V we have
0 = u . (u. (x . ̂ )) = ^ . ((u . x). y + x . (^ . y) - (x ' u)' y)

= u . ((u - x) . >0 4- u' (x . (u . ̂ )) - /<(x) u ' ( u ' y ) == ( u ' ( u - x)). ̂
4- (^ . x). (^ . y) - ((u . x) ' u) . ̂  + (u ' x) . (u ' y) + ̂  . (u ' (u . y))

— (x ' u). (u ' y) = 2(u ' x ) ' ( u ' x )

because L^ = 0, V. u C {u} and L^V C P. Let

M - x 4 - X ^ , ^ . ^ 4 - ^ E V°) (x , ^ E V , X , JLI G R ) .
Using (1) and (3) we get
( u ' x 4- \u).(u-y 4- JLI^) = (^ . j c ) . ( ^ - ^ ) + ^ { u ' x ) ' u

-\- \u ' (u ' y) •¥ \fJiu • ^
= 0.

This implies (iii). Let x E V^ , u . y + JL^ G V<° (^ G V , jn G R).
We have then ^ • x = ̂  (^ E R) and
x • (u ' y 4- jLiiQ = x ' (u • y ) + p.x ' u = (x • u) ' y + u • (x • y )

— (u - x ) - y + JLUC • u
= K(x) M . y + ^ . (x • y) — vu' y 4- ^K(x) u G V^ .

In the same way (u ' y 4- ixu)' x E V(l) . Therefore we have
y(0) y(l) ^ y(l) ^ y(l) ^ y(0) ^ y(l) ^

Let K - X 4 - JL l^EV ( l ) ( x E V , ^ E R ) and ^EV^ 0 . By (iii) we
have
^ • ((u • ̂  4- JLA^) . y ) = ^ . ((u ' x) • .y) + flu • (^ . y ) = (u ' (u • x)) ' y

4- (^ • x ) ' (u ' y ) — ((u • x ) ' u ) ' y + [LU - (u • y ) = 0

and u ' (y • (u ' x 4- ^u)) = u ' (y ' (u • x)) -^ f J i u ' (y ' u)
== ( u ' y ) ' ( u ' x ) ^ y ' ( u ' ( u ' x ) ) — ( y ' u ) ' ( u ' x )

-^ ^ u ' ( y ' u )
= 0.

This implies
yd). y(-l) c y(0) ^ y(-l) ^ y(l) ̂  y(0) ^ ^^

Let x , ^ E V^ . We have then u ' x = VLU , u- y = vu and so
^ . (x ' y) = (^ . x) • ̂  4- x ' (u • ^) - (x • tQ . y = JLI^M

4- ^(x) u — K(x) vu = VLVU.
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This means
V^.V^CV^. (6)

The other relations V0^ • V0^ C V0'^ are trivial, q.e.d.

If v^ = V , then V^ = {u} is a commutative ideal of V
and consequently Proposition 5.1 is proved. From now on we assume
V^ =7^= V . Since V^ is a subalgebra of dimension less than dim V ,
by the inductive hypothesis we have V^ = I + U, where I is
a commutative ideal of V^ and U is a subalgebra with a principal
idempotent s .

LEMMA 5.3. - V^ C I .

Proof. — According to Lemma 3.6* it follows

I = [x G V^ | x • x = 0} .

This and V^.V^ = {0} imply V^ C I . q.e.d.

LEMMA 5.4. - V. I C V^ , I . V C V^ .

Proof. — Let x G V and a G I. Since I is commutative and
since u, u- x , x ' u^-l by Lemma 5.2 and 5.3, we have

u - (x ' a) = ( u ' x) - a + x ' (u ' a) — (x - u ) ' a = 0

and u • ( a ' x) = (u • a) ' x + a ' (u • x) — ( a ' u) • x = 0 .

This means x • a , a • x ̂  V^ . q.e.d.

If I = V^ , Lemma 5.4 implies that I is a commutative ideal
of V containing u and Proposition 5.1 is proved. Henceforth we
assume I ̂  V^ , i.e., U ^ { 0 } .

Let s be a principal idempotent of U. Since V^ C I and
since V^0 is invariant by Ly and R,, by Lemma 3.3 we have:

The restriction of L, on V^ is symmetric and its eigenvalues
are 0 ,1 /2 . Therefore denoting by V^0 the eigenspace of L^ corres-
ponding to X we obtain the orthogonal decomposition

yd) = V^0 + V% . (7)

R, = 2L, on V^. (8)

We set s - u = au . From (8) it follows u ' s = 2s - u = 2au.
Thus
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LM = au.
R,u = 2au , where a = 0, 1/2 . (9)

Consider the graded algebra V associated to the filtered algebra
V : V = V^0 4- V^ 4- V^ + V^ , where V<° = V<° / V0'^
(- i < i < i) and V^ = V(2) . For xCV0^ we denote by x
the element in V^ corresponding to x and by L^ (resp. R^)
the left (resp. right) multiplication by ~x .

LEMMA 5.5. — (i) The mapping L^-: V^"0—> V(l) ^ 0^2 ^o-
morphism.

(ii) LyL^ = L^(Ly-a) on V^"0. 7^ particular the restric-
tion of L- 0^2 V^0 Z5 diagonalizable and its eigenvalues are a,
a + 1/2.

(hi) R^=L^ on V^0.

proof. — The mapping L-: V^~1^ —> V(l) is surjective because
V<° = L^V + { M } / { ^ } . Suppose L ^ = 0 ( x E V < - 0 ) . Then it
follows u ' x ^ . { u } , consequently x G V(o) and ;c" = 0. Thus (i)
is proved. By (9) we have
L- L-x' = s - ( u ' x ) = ( s - u ) ' x + u ' (s • x) — (u • s) • x

= u - ( s ' x) — au ' x = L^- (L- — a) 'x
for all x E V<-° , which implies L^- L^- = L^- (L^- - a)_ on V^0 .
Using this together with (7) the restriction of Ly on V^0 is dia-
gonalizable and has eigenvalues a, a + 1/2. This shows (ii). By (9)
we obtain
R- L^v = ( u ' x ) - s = u ' (x . s) + ( x ' u ) ' s - x ' ( u ' s) = u ' ( x ' s)

+ ^Oc)^- 2 a x . M = u ' ( x ' s ) = L^R-^-~x for all jcGV^0 ,

which means (iii). q.e.d.

According to Lemma 3.5*, (7) and Lemma 5.5 the operator
L- leaves each subspace V^0 invariant and is diagonalizable on
V^0 . We denote by v[° the eigenspace of L^- in V^0 correspond-
ing to X E R .

LEMMA 5.6. - Let a"G V^"0 . Then we have
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(i) L^.~a= \~a,

(ii) R,-'o'= 2(X -a) ~a .

Proof. - Using Lemma 5.4 and (8) we obtain
L. ̂ ^ ^L^= Rj^a =2Lj^a= 2L,-L^

= 2L, (L^ - a)o-= L^ (2(X - 0)0-).

This impUes R^~a= 2(X - a) a" because L- : V^ —^ ^^ is
an isomorphism. q .e .d.

For simplicity we denote by a 'GV^0 the element u ' a where
f lCV<- 1 ) .

LEMMA 5.7. -
(i) // ~ae V^-^ , then ~d1 C V^ .

(ii) Let ^EV^, FeV^-^. Thence have

-a ' . 6 , ^Pev<_0^.

Pwo/ - From Lemma 5.5 (ii) it follows
L^' =^L^~a= L^(L^--a)~a= (X -a)L^^= (\-a)a"',

which implies (i). Using (i), (8) and Lemma 5.6 (ii) we obtain

y^-fe^ (s~''al)^+~at.(^.~b)- (a'.-sY'b = (X -a)7.6"
4- jLi7."&- 2(X - a)a~^~b = (-X + JLI 4- a)a''.6'

and
7. ( .̂p) = (7.a').P 4-^(7.^) - (a".7).F' = X^-.P

+ (JLI - a)fl".P- 2(X - a)fl".P= (-X+JLI+ a)~a'~b'.

This shows (ii). q.e.d.

According to Lemma 3.5* and Lemma 5.3 we get
v^. v^ c vo) n (i, 4- u,). 1,, = v<1) n u,. i,, c v<1) n i^,

== v<1)
M'-\+l

and

v^>. v^0) c v<1) n i,,. (i^ + u,) = v(1) n i,,. u, c v<1) n i^_,,
= \w

' M - X ' -

Thus we have
V^.V^CV^ ,\ M ' - A . + M + l »

v^.v^cv0) (10)
A.' p, —X'+fj, '
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Consider the subspace W^ of V^ defined by

W<1) = { ^ E V < ° | < a , u) = 0}.

The subspace W^ is invariant by L y . In fact for aEW^ using
(8), (9) and V^ . V(l) = {0} we have
{ s ' a ,u} •= — ( a , s - u ) -^ ( a - s , u) + ( s , a ' u ) = — a ( a , u)

+ 2 < 5 - a , ^) = 2 < 5 - a , ^ >

and < s • a , ^ ) = 0 , consequently s ' a E W^ . We denote by W^
the eigenspace of Ly in W ^ ' .

LEMMA 5.8. -Suppose p ' = ^ - j 3 + l . // W^° . V^ C {u} ,
^^ V^.W^P C {^}.

Proo/:-Let fl^W^, f r i e W ^ P and x E V^. By (10)
we have x - a ^ E V ^ P and x - b^ G V^^^^ . Since ^ . x G { i < } and
W< 1 ) .W ( 1 ) = {0}, we obtain

< x - & i , a^) 4- < & ^ , x • a i > = < 6 i . x , ̂  ) + < x , f r ^ - a ^ ) = 0.

If p' — j8 + 1 ^= i / ' , the orthogonality of the decomposition
V^ = V^° 4- V0^ impUes < ^ i , x - a ^ > = 0 and consequently
x ' a ^ e{u}. If p' - j3 + 1 = i/ ' , then j3 = 1 and p ' = v ' . From
this it follows L^ W^0 C V^P . Define the mapping

A^ = p r o L^V^0 —^W (1)

where pr is the projection from V^0 = W^ + {u} onto W0^ Then
we have <A^Z? i , a^ > + < & ^ , A^ ) = 0 for all a^b^ew^ and
so A^ is skew symmetric on W^P. On the other hand A^ has only
real eigenvalues because the eigenvalues of L^. are real. This means
A^ = 0 on W^P and L^W^P C {^} . Thus the proof of this lemma
is completed, q.e.d.

LEMMA 5.9. - Let a , b , c E V^0 . 77?^ r/^ products of ~a, bf

and ~c' are equal to 0 where b9 = u ' b and c ' = u • c .

proof — For each A G V ^ ^ we denote by b^ the element
in W^ such that ~b^ =6"'. Let a^V^, 6'EV^ and cGV^- 0 .
By Lemma 5.7 we see ~b' = £4 G V^ , 7 = ^ E V^ and
a".'&' G V^^^^ . We first prove

(i) ( a ' ~ b f ) ' ~ c f = 0.
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According to Lemma 5.8, for the proof of (i) it suffices to show

(i)' ~d^. (a. £4) = 0 for all ~d E V^-1),

where p = X - j L i + ^ - a 4 - l . From W^. W^ = {0} it follows

rf i . (^ .6\) = ( d ^ a ) ' ~ b , - ( a ' d ~ ^ . ~ b , .

Using Lemma 5.7 and (10) we have

^.(a-.F^GV^^.^^,

(^.j).J,GJ^^,

(a.^).^GV^_^.

(A) the case a = 0 . By Lemma 5.5 we know X , /x, v = 0, 1/2 .
This implies j/ - 3o_4- 2 = v + 2 =_2, 5/2_ Consequently by (7)
we Jiave (d^ . ' a ) . ̂  = 0 and ^ . (a- b^) = - ( a - J^) .6\ . If
d ^ ' ( a ' b ^ ) •^ 0, then we obtain - 2X4- 2fJi -v + 3a - 1 = 2^i - v - a
and so X = — — ? which is a contradiction. Thus (i)' holds.

(B) the case a == -^ . By Lemma 5.5 we have X , JLI , ^ = -^ , 1.
i ^

TJierefore_ we obtain v - 3a 4- 2 = v + — = 1 , — , so by (7)
(fif i .a").^ = 0 and ^ 2

(a) d~,.(a'~b,)==-(a.d~,).~b, .

This shows rf^ • (a- b^) = 0 if - 2X + 2p. - v + 3a - 1 i=- 2fJi - v - a.
Thus we may assume - 2 X + 2 j L i - ^ + 3 a - l = 2 j n - ^ - a . Then
it follows

1 , 1
(b) a = - , X = — , p = - / z + ^ + l .

^ z,

Let / ^ l eW ( l ) , . Since W^.W^ = {0}, we have
tH-v--^

(c) < ( a . r f i ) . & i , Ai > = - < & , , (a • r f i ) . / ! i > + < & i . ( a . r f i ) , / 2 , ) .

Applying Lemma 5.7 and (10) we obtain

(a". ̂ ). ii e V<0 i , "&i. (a", rf.) £ ̂ ^ , .
3M-2f-^ ' _2ju+v+3

Therefore we have (b^ , (a • d^) • ̂  > = 0 if ^ - a ?'= 3ju - Iv — ~-,
i.e., 2

(d) < 6 i , ( a . r f i ) . / ; , ) = 0 if / x ^ » / .
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If - 2 ^ + i / + y ^ 2 A i - ^ - - then ( b ^ ( a ' d ^ ) , h^) = 0.

Suppose - 2 ^ 4 - ^ 4 - - = 2 ^ - ^ - ^ - . Then we get v = 2jn - 1

and so ^ = 1 , ^ = 1 or jn = ^-, ^ = 0. The case {ji = ]- , ^ = 0

is impossible because v = — , 1 . Consequently we have

(e) ( b ^ ( a ' d ^ ) , h^) == 0 except for JLI = v = 1 .

(B') The case ji + v . By (c)_(d) (e) we have ( a ' d ^ ) ' b ^ [ u }
and so by (a) d^ • (a". &i) = - (a. d ^ ) ' b ^ = 0.

(B") The case ^ = ^ = ^-. It follows then b ^ , h^, (a- d ^ ) . ^^ ,

(a. rf ,) . h, G V^0 and L,.^ W^0 C V^0 . Define the mapping
\.d^ = ̂  ° ̂ a.d^ : W^0 —^ W^ where ^r is the projection from
V^0 = W^ + {u} onto W^° . (c) and (e) imply

<A, .^ ,^>=-<^,A, ,^>
and so A^ ̂  is skew symmetric. Since the eigenvalues of

\.d, = Pr°^a.^

are all real, we obtain A^ = 0 , ( a ' d ^ ' b ^ e {u}, and so by (a)
d , ' ( a . b , ) =-(a-.^).^ = o.

Summing up the results mentioned above (A), (B') and (B")
we have
^ ^ . (^ .6 , )=0 ,

(~a'~b^)'~c^ = 0

except for the case a = ^ - , X = — , j L i = ^ = l , p = l .

(B'") The case p. = (/ = 1 . Then it follows a = ^, X = ^-,

^ = ^ = l , p = l . Using a. 6' + a ' b , r f . 6 ' 4 - d' .6ev ( l ) and
V(D.v<1) = {0}, we get
~d^(-a.~b,) = rf7. ( .̂p) = - J'. (^.fc-) = - (^.a-').^

- a ' t . ( d ~ f ^ ) + ( a f ' d f ) ^ = - 7 . ( ^ . ^ ) = ^ f . ^ . ^ ) = a ~ ^ ( d ~

For ^ i^W^ we obtain
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< ^ . ( 6 ? . ^ ) , ^ ) = - < r f . ^ , ^ . ^ > + < ( d . ^ ) . a , , ^ >

+ <^, (^ .^ ) .^>=<(d.^) .^ ,^>

because ^. h^ = 0 and (d.^).7z\ G V^0 = {0} . Since ^ • (d"-6\),
( r f .^) .a \ EV0/^, we have a ^ ' ( d - b ^ ) - ( d - b ^ ) ' a ^ {u} and
di.(^.^) = f l 4 . ( r f . & i ) = (d'.6\).^ . (f) implies (J-^) .^ = 0 .
Thus (i)' holds.

Therefore the proof of (i)' is completed.
Finally we show

( i i ) ~ c f ' ( a ' ~ b t ) = 0 ,
(iii) ( b f ' ' a ) ' ~ c f =0,
(iv) ~ c f - ( b f ' ~ a ) = 0.

Using (i) and V^. V(l) = {0} , for ^GW^ we get
< c , . ( a . 6 , ) , d i > = - < f l . & i , c r ^ > + < ( a . ^ ) . c , , d , >

+ < c , , ( f l . 6 i ) . d ^ >
= 0.

This implies (u). From (i), Z?'_fl + ^ . ^EV^ and V < 1 > . V < 1 > = {0}
we obtain (6 ' -o^) -^ '= — ( & - ^ ) - c ^ ' = 0. In the same way (iv)
follows from (ii).

According to (i) - (iv) and V^. V^ = {0}, the proof of
this lemma is completed, q.e.d.

LEMMA5.10 . -Le r f l^EV^^. Then the products of u, a ' , b
are equal to 0 where a ' = u ' a.

Proof. - By V^. V^ = {0} we obtain

(i) u . ( a . b ) = 0 ,
(ii) u ' (b . a) = 0 .

In fact we have u . (a'. 6) = (u . a') • 6 + a ' , ( u ' b ) - (a- u ) ' b = 0
and u ' ( b ' a ) = ( u - b ) ' a -}- b ' ( u ' a ) - ( b ' u ) ' a =0. From (i)
it follows
( ( a - b). u, M > + (u , (a'. b ) ' u ) = (u- ( a - b), ^ > + (a'. 6 , ^ . K > = 0,
so ((a'- 6) • M , u) = 0. This implies

(iii) ( a ^ b ) ' u = 0.
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In the same way by (ii) we get

(iv) (b . a ' ) . u = 0 .

The other cases easily follow from V^ . V^ = {0} . q.e.d.

From Lemma 5.10 we have

LEMMA 5.10'. - Let aEV^ and b1 EV^ . Then the pro-
ducts of a, b1, u are equal to 0.

LEMMA 5.11. - Let aGV<- 1 ) and b^c^V^. Then the
products of a, b1, c1 are equal to 0.

Proof. - By Lemma 5.9 we have ( a ' b1). c1 G {u} . Using
Lemma 5.10' and V^.V^ = {0} we get
(u, (a.^.c1) = -<(a .6 1 ) . u, c 1 ) - ^ - ( u ' ( a ' b 1 ) , c1 >

+ ( a ' b l , u ' c l ) = 0.
Thus we have ( a ' b 1 ) ' c1 = 0 . By the same way we obtain

c l ' ( a ' b l ) = 0 , ( b l . a ) ' c l = 0 , c l ' ( b ^ a ) = 0 .

The other cases follow from V^ . V^ = {0} . q.e.d.

Consider the centralizer Z of V^ in V ;

Z = {z^V\ z ' a 1 = a 1 ' z = 0 for all a1 G V^} .
Then we have

LEMMA 5.12. - Z isanidealof V.

Proof. - Let z E Z , a G V . We have

u - (z . a) = (u • z). a + z . (^ • a) - (z . ̂ ) • a = 0,
K • (a • z) = (u - a) - z + a ' (u - z) — (a - ^) • z = 0

and so z • a, a - z G V^ . From this V^ is invariant by L^.
R^, L^ and R^ . Using Lemma 5.11 and V^. V^ = {^,
for & 1 , c^V^ we get

<L , . ^ l , c l >+<6 1 , L , . , c l >=<6 1 . ( z .a ) , c l >+<z . f l , 6 1 . c l >
= < 6 1 • ( z . ^ ) , c l > = < ( & l . z ) • f l 4 - z . ( 6 1 . f l ) - ( z . & l ) . f l , c l >
= < z . ( 6 1 . f l ) , c l > = - < z . c l , & l . f l > + <c1 . z^ .a)

+ <z , ^.(^.a))
=0.
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This means that L^ is skew symmetric. On the other hand the
eigenvalues of L^ are all real. Therefore it must be L^ = 0 on
V^, i.e., ( z ' a ) ' b 1 == 0 for all b1 ̂ V^ . From this it follows

( b l ' ( z ' a ) , c l ) = - ( z ' a , b l ' c l ) + ( ( z ' a ^ b ^ c 1 )
+ (^ .(z .^ .c 1) = 0 for all ^^EV^

and so f r 1 - ^ -^ )^ for all ^GV 0 ^ Thus we get

(a) z . a E Z .

Applying Lemma 5.11 and V0^ V^ = {0}, we obtain

< L ^ 6 1 , c l > + < 6 1 , L ^ c l > = < 6 1 . ( a . z ) , c l > + (a.z^.c1)
== (^ . (a .z ) , c1) = ( ( ^ . f lO .z + a ' ( b ^ z ) - ( a ' b 1 ) ^ , c1)
= ((b^a - f l . 6 1 ) . z , c l > = -((^.a - a • & l ) . c l , z >

+ (c1 .^1-^ - a • & l ) , z ) + (Z?1^ - a ' b l , c l ' z ) = 0

for all b1, c1 GV ( 1 ) . Consequently L^ is skew symmetric on
V0^ Since the eigenvalues of L^ are real, we have L^ == 0 on
V0^ i.e., ( a ' z ) ' b l = 0 for all f t^V^^. Using this and
V^.V^ = {0} we get

( ^ . ( a . z ) , ^ ) = - ( a ' z , b l • c l ) + < ( a . z). Z? 1 , c1) + ( b ^ ^ a - z ) - c1)
= 0

for all b1, c1 G V<° and hence

(b) ^.(a.z)^ for all 6 1 G V < 1 ) .

Therefore we have a • z G Z. (a) and (b) imply that Z is an ideal
o f V . q.e.d.

Let C denote the center of Z ;
C = { c G Z | c .z = z . c = 0 for all z E Z } .

Then we have

LEMMA 5.13. — C is a commutative ideal of V containing u.

Proof. - From C D V<° it follows uCC. Let c G C , x G V .
Since Z is an ideal of V, we have

z • (c • x) = (z • c) • x + c - (z • x) — (c ' z)' x = 0

and z . (x ' c) = (z . x) ' c + x ' (z . c) - (x • z). c = 0 for all z E Z .
This implies
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(a) Ra = 0 on Z

where a == c ' x or x . c. Using this and Lemma 3.2, for z , z' G Z
we get

^2 rf
(b) ,-2" <exptl^z, exptL^z')= — < a , exp tL^z • z ' )>

= (fl.L^exptL^z.z'))) =- < w , f l . a ) 4- (w . a , a)
+ < a , w . a ) = 0,

where w = exp tl^(z . z') E Z . Let X be an eigenvalue of \ on
Z and z an eigenvector corresponding to X . Then we have
d2 d2

^ <exp tL^z , exp tL^z) = —— <z , z > ̂  = (2X)2 ^<z , z > and

by (b) X = 0. Thus the eigenvalues of L^ on Z are equal to 0.
We show
(c) L^ = 0 on Z.

Suppose L^ + 0 on Z . Then there exist elements z , w G V such
that L^ w = 0 , w = L^z ^ 0. Since exp tL^z = z + tw , we have
rf2 d2

—— <exp tL^z, exp tL^z > = —— <z + tw , z + tw)
= 2 < w , w ) r + 2 <z , w > ,

which contradicts to (b). Thus (c) holds, (a) and (c) imply a EC
and consequently c ' x , x • c G C . Therefore C is an ideal of V .

q.e.d.
Proposition 5.1 follows from Lemma 5.13.

6. Proof of Theorem 3.1.

We first consider the case u ' u = u. By Proposition 4.1 we
have the orthogonal decomposition V = {u} + V^ + V^ . Since
VQ is a subalgebra, by the inductive assumption we get V^ = I + U^ ,
where I is a commutative ideal of V^ and Ug is a subalgebra with
principal idempotent SQ . Put E = {u} + V^ . Then E is an ideal
of V. Let a € I. Since E is invariant under L^ , R^ and is ortho-
gonal to a and since a - a = 0, by Lemma 3.3 we obtain L^ = R^ = 0
on E. From this we know that I is a commutative ideal of V. Put

U = E + Uo ,
s = u + SQ ,
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Using Proposition 4.1 (iv), u - u = u and SQ- SQ = SQ , we have

(i) s ' s = s .
By Proposition 4.1 (iv) we have Ly = R^ == 0 on Uo . Therefore
Ly = L, is diagonalizable on Ug and its eigenvalues on UQ are
equal ^o 1 / 2 , 1 and moreover R, = R, = 2L, — 1 = 2L, - 1
on U/, . Since E is invariant under L- , R- and is orthogonalu " o - o
to SQ and since SQ - SQ = SQ , applying Lemma 3.3 it follows that
the restriction of L, on E is diagonalizable and its eigenvalues
are 0, 1/2 and that R, = 2Ly on E. Therefore using Ly u = 0,
^0^1/2 c ̂ 1/2 and L^ = ^2 on V^/2 , L, = L^ 4- L^ is diago-
nalizable on E and its eigenvalues on E are equal to 1/2, 1 . Since
R^ = 2L^ - 1 and R, = 2L, hold on E, we have R^ = 2L, - 1
on E. Thus we obtain

(ii) The restriction of L^ on U is diagonalizable and its eigen-
values on U are equal to 1 / 2 , 1 .

(iii) R, = 2L, - 1 on U.

(i) (ii) (iii) imply that s is a principal idempotent of U. Thus in
the case u - u = u the proof of Theorem 3.2 is completed.

Next we consider the case u ' u = 0. By Proposition 5.1 there
exists a commutative ideal C of V containing u. Let V be the
orthogonal complement of C in V. By Lemma 3.1 V ' is a sub al-
gebra. From the inductive assumption we get V = I' + U, where
I' is a commutative ideal of V' and U is a subalgebra with prin-
cipal idempotent s . Let a ' € I'. Since C is invariant under L^»,
R^ and C - C == {0} and since a ' a' = 0, by Lemma 3.3 we obtain
L^ = R^ = 0 on C. This shows that I = C + I' is a commutative
ideal of V. Thus the decomposition V = I + U has the desired
properties.

Therefore the proof of Theorem 3.1 is completed, q.e.d.

7. Proof of Main Theorem 2) and Corollaries.

Let V be the tangent space of M at x . In view of Main
Theorem 1), Proposition 2.4 and Theorem 2.1 V admits a structure
of normal Hessian algebra and E^ = T(V) 0 .



124 H. SHIMA

Proof of Main Theorem 2). — According to Theorem 3.1
the normal Hessian algebra V is decomposed in V = I + U, where
I is a commutative ideal of V and U is a clan. Denote by T(I)
the commutative normal subgroup of T(V) generated by {X^ | a ̂  1}
and T(U) the subgroup of T(V) generated by {X^ | w G U}. Then
we get T(V) = T(I) T(U). Let E^ denote the orbit of T(U)
through the origin 0 ; E^ = T(U) 0. For a E I , i^ G E^ we have

oo ^k+l
exp X ^ v + = = v + + ^ a (L^ + a) = a + a. V + v+ because

k^O ( K 1 1)'
I is a commutative ideal of V. Thus T(I) v^C I + v^ . Suppose
v+ = hO where h E T(U). Since

Td)^ = T(I)M) = hh-^WhO = CT(I)0 = hi
and since h is an affine transformation of V , we obtain
Td)^ = I + r4- .
Therefore, putting E^ = I we get

E^ = T(V)0 = T(I)T(U)0 = T(I)E^ = E$ + E^ .

Let p : E^ —> E^ denote the projection from E^ = E^ + E^ onto
E^ . Then E^ admits a fibering with projection p. Since U is a
clan, applying Theorem 2.2 (Vinberg's result) the base space E^
is an affine homogeneous convex domain not containing any full
straight line. The fiber p^^) == ^(l)v+= E°, + v^ over v+eE^
is an affine subspace of V and a Euclidean space with respect to
the induced metric because T(I) is commutative. It is clear that
the fiber E^ + v through v G E^. is characterized as the set of
all points which can be joined with v by full straight lines contained
in E .̂ . This implies that our fibering of E^ is unique and that every
affine transformation of E^ is fiber preserving, q.e.d.

Proof of Corollary 1. - If we put a^v) = TrLy for u G V ,
the value j3^ of the canonical bilinear form j8 at x has an expression
(cf. [8]) j3^(i;,w) = a ^ ( v ' w) for u . w G V . By Theorem 3.1 V
is decomposed in V = I + U, where I is a commutative ideal of
V and U is a clan. I being a commutative ideal of V we get

"•w = °- CD
^(a,v) =0, for a£I, uGV.

Because <i» - a , b) + (a, v - b ) = ( a - v , b) + (v, a - b ) = ( a - v , b)
for a, b £ I and v € V , we have

Ly + 'Ly = Ry on I . (2)



HOMOGENEOUS HESSIAN MANIFOLDS 125

Since U is a clan, it follows

^u ^v.v > 0 for i; ̂  0 E U. (3)
Using R^ = R^ + [4, RJ and (2) we obtain

Tri L,., = ^- Tr^ R,., = ^ Tr^ R/R, > 0.

From this and (3) we get ^(v, v) = Tr, L,., + Tr^j L,., > 0 for
all i ^ O G U . This together with (1) implies that ^ is positive
semi-definite and that the null space of ^ coincides with E$ = I.

q.e.d.

Proof of Corollary 2. - Let v E E^ . Since the fiber E°, + v
through v is an affine subspace of V, it follows d ( v , w ) = 0
for all wCE^+v (cf. [5]). Conversely, suppose d ( v , w ) - = 0 .
Then we get 0 < c^ (p(^), ̂ )) < ̂  (^ ̂ ) ̂  ̂  ̂ ) = Q
because the projection ^: E^——^ E^ is m affine mapping. By a
result of Vey [ 11 ] c^ is a distance on E^ . This implies p ( v ) = p ( w ) .
Therefore we get E^ "+- v = [w G E^ | rf(i;, w) = 0} . q.e.d.

Proof of Corollary 3. - Our assertion follows from the facts
that the covering projection exp^ : E^ = E^ + E^ ——> M is an affine
mapping and that E^ is an affine subspace of V. q.e.d.

Let G be a connected Lie subgroup of Aut(M) which acts
transitively on M and B the isotropy subgroup of G at a point
x in M ; M = G/B. We denote by G the universal covering group
of G and by TT : G —> G the covering projection. Then M = G/B
is the universal covering manifold of M = G/B, where B is the
identity component of TT-^B). Let N be the normal subgroup
of G consisting of^all elements in G which induce the identity
transformation of M. We put G* = G/N, B * = B / N . Accord-
ing to Main Theorem 1) it follows that M = G*/B* is a convex
domain in FT and that G* is a subgroup of the affine transfor-
mation group A(n) of R".

Proof of Corollary 4. - Assume G is not solvable. Since G*
is not solvable, there exists a connected semi-simple Lie subgroup
S^ of G* . Let K* be a maximal compact subgroup of S* . Since
M is a convex domain in R" , K* has a fixed point y in M.
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Therefore we have
dim G* = dim M = dim G*? < dim G* - dim K* < dim G* ,

which is a contradiction. Thus G must be a solvable Lie group, q.e.d.

Proof of Corollary 5. - Let G be a transitive reductive Lie sub-
group of Aut(M) and let g be the Lie algebra of G. Then g is
decomposed into the direct sum g = c + § where c is the center
of g and ^ the semi-simple part of g . Denoting by C* and S*
the connected Lie subgroup of G* corresponding to c and ^
respectively, we have G* = C*S*. Since S* is a connected semi-
simple Lie subgroup of A(n), S* is closed in A(n) (cf. [15]).
Let C* denote the closure of C* in A(n). Then the subgroup
C*S* is closed in A(n) (cf. [3]) and so coincides with the closure
G* of G* in A(n). It is easy to see that every element in G*
preserves the domain M and leaves invariant the Hessian metric on
M. Denoting by K^ and K^ maximal compact subgroups of C*
and S* respectively, the group K* = K^K* is a maximal compact
subgroup of G* = C*S* because the center of S* is finite. Since
^ a. ^ ^M is a convex domain in R" , K has a fixed point o in M. We
may assume that 7) is the origin in R" . The isotropy subgroup
K*' of G* at 7) is contained in an orthogonal group and is closed
in G*. Thus K*' is a compact subgroup of G* containing K*
and so K*' == K* . Since G* acts effectively on M , K^ is reduced
to the identity and so K*' =_K*j= K,* . We denote by '^,7*,^*
and f ^ the Lie algebras of G*, C*, S* and K^ respectively, and
by ^ the orthogonal complement of f ^ in ^* with respect to
the Killing form of ^*. Putting f* = f,* and fr* = T* + ^*,
we have

- g * = f * + ^ * , [ f * , f * ] C f * , [ f * , ^ * ]C t ) * , [y* , t ) * ]C f * .

From this using the same argument as in [9] it follows that M = G*/K*
is the direct product of a Euclidean space and an affine homogeneous
convex self-dual cone not containing any full straight line. q.e.d.

Proof of Corollary 6. — Since M is compact, the automorphism
group G = Aut(M) is compact. Therefore the Lie algebra g of G
is decomposed into the direct sum g = c 4- ^ where c is the center
of g and ^ is a compact semi-simple subalgebra of g . Denote by
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C* and S* the connected Lie subgroups of G* corresponding to
c and ^ respectively. Then G* ==C*S*, and S* is compact by
a theorem of Weyl. Since M = G*/B* is a convex domain, S* has
a fixed point in M. Therefore B* D S* and so S* is a normal
subgroup of G* contained in B*. From this and the effectiveness,
S* is reduced to the identity. Thus we have g = c . Consequently
G is commutative and M is a Euclidean torus, q.e.d.
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