Annales de l'institut Fourier

Hirohiko Shima Homogeneous hessian manifolds

Annales de l'institut Fourier, tome 30, n03 (1980), p. 91-128

http://www.numdam.org/item?id=AIF_1980__30_3_91_0
© Annales de l'institut Fourier, 1980, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

HOMOGENEOUS HESSIAN MANIFOLDS

by Hirohiko SHIMA

Introduction.

In [8] [9] [10] we introduced the notion of Hessian manifolds and studied the geometry of such manifolds. We first recall the definition of Hessian manifolds (*). Let M be a flat affine manifold, i.e., M admits open charts $\left(\mathrm{U}_{\alpha},\left\{x_{\alpha}^{1}, \ldots, x_{\alpha}^{n}\right\}\right)$ such that $\mathrm{M}=\cup \mathrm{U}_{\alpha}$ and whose coordinate changes are all affine functions. Such local coordinate systems $\left\{x_{\alpha}^{1}, \ldots, x_{\alpha}^{n}\right\}$ will be called affine local coordinate systems. Throughout this paper the local expressions for geometric concepts on M will be given in terms of affine local coordinate systems.

A Riemannian metric g on M is said to be Hessian if for each point $p \in \mathrm{M}$ there exists a C^{∞}-function ϕ defined on a neighbourhood of p such that $g_{i j}=\frac{\partial^{2} \phi}{\partial x^{i} \partial x^{j}}$. Let D denote the covariant differential with respect to the flat affine structure on M. Using D we may define the exterior differentiation for cotangent bundle valued forms. We know that a Riemannian metric g is Hessian if and only if the cotangent bundle valued 1 -form g^{0} corresponding to g has an exterior differential zero [8];

$$
\mathrm{D}_{\mathrm{X}} g^{0}(\mathrm{Y})-\mathrm{D}_{\mathrm{Y}} g^{0}(\mathrm{X})-g^{0}([\mathrm{X}, \mathrm{Y}])=0
$$

for all vector fields X, Y on M. A flat affine manifold provided

[^0]with a Hessian metric is called a Hessian manifold. As we see (Proposition 0.1), the tangent bundle over a Hessian manifold admits in a natural way a Kählerian structure. Thus the geometry of Hessian manifolds is related with that of certain Kählerian manifolds.

Let M be a Hessian manifold. A diffeomorphism of M onto itself is called an automorphism of M if it preserves both the flat affine structure and the Hessian metric. The set of all automorphisms of M, denoted by $\operatorname{Aut}(\mathrm{M})$, forms a Lie group. A Hessian manifold M is said to be homogeneous if the group $\operatorname{Aut}(\mathrm{M})$ acts transitively on M.

For homogeneous Kählerian manifolds Vinberg and Gindikin proposed the following conjecture and settled the related problems [1] [14].

Every homogeneous Kählerian manifolds admits a holomorphic fibering, whose base space is holomorphically isomorphic with a homogeneous bounded domain, and whose fiber is, with the induced Kählerian structure, isomorphic with the direct product of a locally flat homogeneous Kählerian manifold and a simply connected compact homogeneous Kählerian manifold.

In this paper we consider analogous problems for homogeneous Hessian manifolds and obtain the following results.

Main Theorem. - Let M be a connected homogeneous Hessian manifold. Then we have

1) The domain of definition E_{x} for the exponential mapping $\exp _{x}$ at $x \in \mathrm{M}$ given by the flat affine structure is a convex domain. Moreover E_{x} is the universal covering manifold of M with affine projection $\exp _{x}: \mathrm{E}_{x} \longrightarrow \mathrm{M}$.
2) The universal covering manifold E_{x} of M has a decomposition $\mathrm{E}_{x}=\mathrm{E}_{x}^{0}+\mathrm{E}_{x}^{+}$where E_{x}^{0} is a uniquely determined vector subspace of the tangent space $\mathrm{T}_{x} \mathrm{M}$ of M at x and E_{x}^{+}is an affine homogeneous convex domain not containing any full straight line. Thus E_{x} admits a unique fibering with the following properties:
(i) The base space is E_{x}^{+}.
(ii) The projection $p: \mathrm{E}_{x} \longrightarrow \mathrm{E}_{x}^{+}$is given by the canonical projection from $\mathrm{E}_{x}=\mathrm{E}_{x}^{0}+\mathrm{E}_{x}^{+}$onto E_{x}^{+}.
(iii) The fiber $\mathrm{E}_{x}^{0}+v$ through $v \in \mathrm{E}_{x}$ is characterized as the set of all points which can be joined with v by full straight lines contained in E_{x}. Moreover each fiber is an affine subspace of $\mathrm{T}_{x} \mathrm{M}$ and is a Euclidean space with respect to the induced metric.
(iv) Every automorphism of E_{x} is fiber preserving.
(v) The group of automorphisms of E_{x} which preserve every fiber, acts transitively on the fibers.

Corollary 1. - Let β denote the canonical bilinear form on a connected homogeneous Hessian manifold $\mathrm{M} ; \beta_{i j}=\frac{\partial^{2} \log \mathrm{~F}}{\partial x^{i} \partial x^{j}}$ where $\mathrm{F}=\sqrt{\operatorname{det}\left[g_{i j}\right]}$. Then we have
(i) β is positive semi-definite.
(ii) The null space of β at $x \in \mathrm{M}$ coincides with E_{x}^{0}. In particular
(iii) $\beta=0$ if and only if $\mathrm{E}_{\boldsymbol{x}}=\mathrm{T}_{\boldsymbol{x}} \mathrm{M}$ and it is a Euclidean space with respect to the induced metric.
(iv) β is positive definite if and only if E_{x} is an affine homogeneous convex domain not containing any full straight line.

In [5] Kobayashi considered pseudo-distances $c_{\mathrm{M}}^{a}, c_{\mathrm{M}}, d_{\mathrm{M}}^{a}$ and d_{M} on a flat affine (more generally flat projective) manifold M (see also [11]).

Corollary 2. - Let M be a connected homogeneous Hessian manifold and let d be one of the pseudo-distances on E_{x} listed above. Then the fiber through a point $v \in \mathrm{E}_{x}$ is characterized by the set of all points $w \in \mathrm{E}_{x}$ such that $d(v, w)=0$. In particular we have:
(i) $d=0$ if and only if $\mathrm{E}_{x}=\mathrm{T}_{x} \mathrm{M}$ and it is a Euclidean space with respect to the induced metric.
(ii) d is a distance on E_{x} if and only if E_{x} is an affine homogeneous convex domain not containing any full straight line.

Corollary 3. - Let M be a connected homogeneous Hessian manifold. If there is no affine map of \mathbf{R} into \mathbf{M} except for constant
maps, then the universal covering manifold of M is an affine homogeneous convex domain not containing any full straight line.

Corollary 4. - If a connected Lie subgroup G of Aut(M) acts transitively on a Hessian manifold M and if the isotropy subgroup of G at a point in M is discrete, then G is a solvable Lie group.

Corollary 5. - If a connected homogeneous Hessian manifold M admits a transitive reductive Lie subgroup of $\operatorname{Aut}(\mathrm{M})$, then the universal covering manifold of M is a direct product of a Euclidean space and an affine homogeneous convex self-dual cone not containing any full straight line.

Corollary 6. - A compact connected homogeneous Hessian manifold is a Euclidean torus.

At the conclusion of this introduction we show the relation between Hessian manifolds and Kählerian manifolds. Let M be a flat affine manifold and let $\pi: \mathrm{TM} \longrightarrow \mathrm{M}$ be the tangent bundle over M with projection π. Then the space $T M$ admits in a natural way a complex structure induced by the flat affine structure on M . Indeed, for an affine local coordinate system $\left\{x^{1}, \ldots, x^{n}\right\}$ we put $z^{i}=y^{i}+\sqrt{-1} y^{n+i}$ where $y^{i}=x^{i} \circ \pi, y^{n+i}=d x^{i}, \quad i=1, \ldots, n$. The systems $\left\{z^{1}, \ldots, z^{n}\right\}$ defined as above give a complex structure on TM (cf. [2]).

Let g be a Riemannian metric on M. If we set

$$
g^{\mathrm{T}}=\sum_{i, j=1}^{n}\left(g_{i j} \circ \pi\right) d z^{i} d \bar{z}^{j}
$$

then g^{T} is a Hermitian metric on $T M$ (the definition of g^{T} is independent of the choice of affine local coordinate systems).

Proposition 0.1. - A Riemannian metric g on M is Hessian if and only if the corresponding Hermitian metric g^{T} on TM is Kählerian.

Proof. - Since the fundamental 2-form ρ of the Hermitian metric g^{T} is expressed locally as

$$
\rho=2 \sum_{i, j=1}^{n}\left(g_{i j} \circ \pi\right) d y^{i} \wedge d y^{n+j}
$$

we know that $d \rho=0$ if and only if $\frac{\partial g_{i j}}{\partial x^{k}}=\frac{\partial g_{k j}}{\partial x^{i}}$, which is equivalent to g being Hessian (cf. [8]). q.e.d.

1. Proof of Main Theorem 1) .

In this section we prove the first part of Main Theorem along the same line as Koszul [6] [7]. Let M be a Hessian manifold with Hessian metric g. A C^{∞}-function ϕ defined on an open set U in M is called a primitive of g on U if it satisfies the condition $g_{i j}=\frac{\partial^{2} \phi}{\partial x^{i} \partial x^{j}}$ on a neighbourhood of each point in U .

From now on we always assume that M is a connected homogeneous Hessian manifold.

Lemma 1.1. - Let $\left\{x^{1}, \ldots, x^{n}\right\}$ be an affine local coordinate system in U . If ϕ is a primitive of g on U , then $\frac{\partial \phi}{\partial x^{j}}(j=1, \ldots, n)$ are regular rational functions in $x^{1}, \ldots, x^{n}(*)$.

Proof. - Let g be the Lie algebra of the automorphism group Aut(M). For $X \in g$ we denote by X^{*} the vector field on M induced by $\exp (-\mathbf{t X})$. For fixed $p \in \mathrm{U}$ there exist a neighbourhood W of p in U and elements X_{1}, \ldots, X_{n} in g such that the values of the vector fields $\mathrm{X}_{1}^{*}, \ldots, \mathrm{X}_{n}^{*}$ at each point $q \in \mathrm{~W}$ form a basis of the tangent space of M at q. So we have $\frac{\partial}{\partial x^{j}}=\sum_{i} \eta_{j}^{i} \mathrm{X}_{i}^{*}$ on W , where each η_{j}^{i} is a C^{∞}-function on W . Since X_{i}^{*} is an infinitesimal affine transformation, the components ξ_{i}^{j} of $\mathrm{X}_{i}^{*}=\sum_{j} \xi_{i}^{j} \frac{\partial}{\partial x^{j}}$ are affine functions in x^{1}, \ldots, x^{n}. Therefore η_{j}^{i} are rational functions in x^{1}, \ldots, x^{n}. Since $\mathrm{X}^{*}=\sum_{j} \xi^{j} \frac{\partial}{\partial x^{j}}(\mathrm{X} \in g)$ is an infini-

[^1]tesimal isometry and its components are affine functions, we get $\frac{\partial^{2} X^{*} \phi}{\partial x^{i} \partial x^{j}}=\sum_{p} \frac{\partial \xi^{p}}{\partial x^{i}} g_{p j}+\sum_{p} \frac{\partial \xi^{p}}{\partial x^{j}} g_{p i}+\sum_{p} \xi^{p} \frac{\partial g_{i j}}{\partial x^{p}}=0$, and so $\mathrm{X}^{*} \phi$ is an affine function in x^{1}, \ldots, x^{n}. Thus $\frac{\partial \phi}{\partial x^{j}}=\sum_{i} \eta_{j}^{i} \mathrm{X}_{i}^{*} \phi$ is a regular rational function in x^{1}, \ldots, x^{n} on W , and also on U because p is an arbitrary point in U .

We now need the following lemma due to Koszul [7].

Lemma 1.2. - Let M be a connected flat affine manifold and let E_{x} be the domain of definition for the exponential mapping $\exp _{x}$ at $x \in \mathrm{M}$ given by the flat affine structure. Then $\exp _{x}$ is an affine mapping from E_{x} to M and its rank is maximum at every point in E_{x} and equal to $\operatorname{dim} \mathrm{M}$. Moreover if E_{x} is convex it is the universal covering manifold of M with covering projection $\exp _{x}$.

It follows from this lemma that the induced metric $\tilde{g}=\exp _{x}^{*} g$ on E_{x} is Hessian.

Lemma 1.3. - There exists a primitive ψ of \widetilde{g} on E_{x}.
Proof. - Let $\left\{y^{1}, \ldots, y^{n}\right\}$ be an affine coordinate system on $\mathrm{T}_{x} \mathrm{M}$. Define a 1-form γ_{i} on E_{x} by $\gamma_{i}=\sum_{j} \tilde{g}_{i j} d y^{j}$. We have then $d \gamma_{i}=\sum_{k<j}\left(\frac{\partial \widetilde{g}_{i j}}{\partial y^{k}}-\frac{\partial \widetilde{g}_{i k}}{\partial y^{j}}\right) d y^{k} \wedge d y^{j}=0$. Since E_{x} is starshaped with respect to the origin 0 , by Poincaré Lemma there exists a C^{∞}-function h_{i} on $\mathrm{E}_{\boldsymbol{x}}$ such that $\gamma_{i}=d h_{i}$. If we define a 1 -form γ on E_{x} by $\gamma=\sum_{i} h_{i} d y^{i}$, we get $d \gamma=\sum_{j<i}\left(\frac{\partial h_{i}}{\partial y^{j}}-\frac{\partial h_{j}}{\partial y^{i}}\right) d y^{j} \wedge d y^{i}=0$. Again by Poincaré Lemma there exists a C^{∞}-function ψ such that $\gamma=d \psi$. Thus we have $\tilde{g}_{i j}=\frac{\partial^{2} \psi}{\partial y^{i} \partial y^{j}}$.

Lemma 1.4 (Koszul [6]). - Let a be an element in $\mathrm{T}_{x} \mathrm{M}$ such that $t a \in \mathrm{E}_{x}$ for $0 \leqslant t<1$ and $a \notin \mathrm{E}_{x}$. Then we have

$$
\lim _{t \rightarrow 1} \psi(t a)=\infty,
$$

where ψ is a primitive of \tilde{g} on E_{x}.

Proof. - The length of the curve $\exp _{x}(t a)(0 \leqslant t<\theta)$ with respect to g is given by

$$
1(\theta)=\int_{0}^{\theta} g\left(\exp _{x}(t a), \exp _{x}(t a)\right)^{1 / 2} d t=\int_{0}^{\theta}\left(\frac{d \mathrm{~F}}{d t}\right)^{1 / 2} d t
$$

where $\mathrm{F}(t)=\frac{d}{d t} \psi(t a)$. Since the Riemannian metric g on M is complete because M is homogeneous, we have

$$
\lim _{\theta \rightarrow 1} 1(\theta)=\lim _{\theta \rightarrow 1} \int_{0}^{\theta}\left(\frac{d \mathrm{~F}}{d t}\right)^{1 / 2} d t=\infty
$$

For each $0 \leqslant t_{0}<1$ there exists a primitive $\phi_{t_{0}}$ defined on a neighbourhood of $\exp _{x}\left(t_{0} a\right)$ such that $\psi=\phi_{t_{0}} \circ \exp _{x}$ and so by Lemma 1.1 and 1.2 $\mathrm{F}(t)$ is a regular rational function in $t(0 \leqslant t<1)$. This together with $\lim _{\theta \rightarrow 1} \int_{0}^{\theta}\left(\frac{d \mathrm{~F}}{d t}\right)^{1 / 2} d t=\infty$ means that $\mathrm{F}(t)$ has a pole of order $\geqslant 1$ at $t=1$. Thus we get

$$
\lim _{t \rightarrow 1} \psi(t a)=\lim _{\theta \rightarrow 1} \int_{0}^{\theta} \mathrm{F}(t) d t+\psi(0)=\infty
$$

According to Lemma 1.4, Lemma 4.2 in [6] and the fact that E_{x} is star-shaped with respect to the origin $0, \mathrm{E}_{x}$ is a convex domain in $\mathrm{T}_{x} \mathrm{M}$. Moreover by Lemma $1.2 \mathrm{E}_{x}$ is the universal covering manifold of M with projection $\exp _{x}: E_{x} \longrightarrow M$. Thus Main Theorem 1) is completely proved.

2. Normal Hessian algebras.

Let Ω be an affine homogeneous domain in \mathbf{R}^{n} with an invariant Hessian metric g. In this section we first show that Ω admits a simply transitive triangular subgroup of $\operatorname{Aut}(\Omega)$ and using this we construct a normal Hessian algebra (Definition 2.3). According to Theorem 2.1 the study of affine homogeneous domains with invariant Hessian metric is reduced to that of normal Hessian algebras.

Let $\mathrm{A}(n)$ denote the group of all affine transformations of \mathbf{R}^{n} and $\operatorname{Aff}(\Omega)$ the set of all elements in $\mathrm{A}(n)$ leaving Ω invariant. Then it is easy to see that $\operatorname{Aff}(\Omega)$ is a closed subgroup of $\mathrm{A}(n)$. Denoting by $I(\Omega)$ the group of all isometries of Ω with respect
to the Hessian metric g it follows $\operatorname{Aut}(\Omega)=\operatorname{Aff}(\Omega) \cap \mathrm{I}(\Omega)$. A subgroup of $\mathrm{A}(n)$ is said to be algebraic if it is selected from $\mathrm{A}(n)$ by polynomial equations connecting the coefficients of an affine transformation in an affine coordinate system.

Lemma 2.1. - Let N be the normalizer of the identity component of $\operatorname{Aff}(\Omega)$ in $\mathrm{A}(n)$. Then N is algebraic and $\mathrm{N}, \operatorname{Aff}(\Omega)$ have the same identity component.

For the proof see Vinberg [13].
Proposition 2.1. - The identity component $\operatorname{Aut}_{\mathbf{0}}(\Omega)$ of $\operatorname{Aut}(\Omega)$ coincides with that of an algebraic group in $\mathrm{A}(n)$.

Proof. - Let $\left\{x^{1}, \ldots, x^{n}\right\}$ be an affine coordinate system on \mathbf{R}^{n}. For $a \in \mathrm{~A}(n)$ we denote by $\mathbf{f}(a)=\left[\mathbf{f}(a)_{j}^{i}\right]$ and $\mathbf{q}(a)=\left[\mathbf{q}(a)^{i}\right]$ the linear part and the translation part of a respectively, where $x^{i} \circ a=\sum_{j} \mathrm{f}(a)_{j}^{i} x^{j}+\mathbf{q}(a)^{i}$. An element $a \in \operatorname{Aff}(\Omega)$ is contained in $\mathrm{I}(\Omega)$ if and only if $\sum_{r, s} f(a)_{i}^{r} f(a)_{j}^{s} g_{r s}(a p)=g_{i j}(p)$ holds for all $p \in \Omega$. Let ϕ be a primitive of g on Ω. Then by Lemma 1.1 the functions $g_{i j}=\frac{\partial^{2} \phi}{\partial x^{i} \partial x^{j}}$ defined on Ω are rational functions in x^{1}, \ldots, x^{n}. Therefore we may regard $g_{i j}$ as rational functions on R^{n} with respect to x^{1}, \ldots, x^{n}. Put
$\mathrm{H}=\left\{a \in \mathrm{~A}(n) \mid \sum_{r, s} \mathrm{f}(a)_{i}^{r} \mathbf{f}(a)_{j}^{s} g_{r s}(a x)=g_{i j}(x)\right.$ for all $\left.x \in \mathbf{R}^{n}, \quad, \quad \begin{array}{r}i, j=1, \ldots, n\end{array}\right\}$.
Then H is an algebraic group in $\mathrm{A}(n)$ and $\operatorname{Aut}(\Omega)=\operatorname{Aff}(\Omega) \cap \mathrm{H}$. Therefore by Lemma $2.1 \quad \operatorname{Aut}_{0}(\Omega)$ coincides with the identity component of the algebraic group $N \cap H$.
q.e.d.

Proposition 2.2. - The isotropy subgroup of $\operatorname{Aut}_{0}(\Omega)$ at a point in Ω is a maximal compact subgroup of $\operatorname{Aut}_{0}(\Omega)$.

Proof. - Let K be the isotropy subgroup of $\operatorname{Aut}_{0}(\Omega)$ at $p \in \Omega$. Since $\operatorname{Aff}(\Omega)$ and H are closed in $A(n), \operatorname{Aut}_{0}(\Omega)$ is closed in $\mathrm{A}(n)$ and so K is closed in $\mathrm{A}(n)$. Let $\left\{x^{1}, \ldots, x^{n}\right\}$ be an affine coordinate system such that $x^{i}(p)=0$ and $g_{i j}(p)=\delta_{i j}$
where $\delta_{i j}$ is Kronecker's delta. Representing affine transformations in terms of x^{1}, \ldots, x^{n} it follows $\mathrm{K} \subset \mathrm{O}(n)$ where $\mathrm{O}(n)$ is the orthogonal matrix group. Therefore K is a compact subgroup of $\operatorname{Aut}_{0}(\Omega)$. Let K^{\prime} be a maximal compact subgroup of $\operatorname{Aut}_{0}(\Omega)$ containing K . Then there exists a fixed point $p^{\prime} \in \Omega$ for K^{\prime} because Ω is a convex domain. Taking $a \in \operatorname{Aut}_{0}(\Omega)$ such that $a p^{\prime}=p$ we get $a \mathrm{~K}^{\prime} a^{-1} \subset \mathrm{~K}$. Since $a \mathrm{~K}^{\prime} a^{-1}$ is a maximal compact subgroup of Aut $_{0}(\Omega)$ we obtain $K=a K^{\prime} a^{-1}$ and so K is a maximal compact subgroup of $\mathrm{Aut}_{0}(\Omega)$. q.e.d.

A subgroup T of $\mathrm{A}(n)$ is said to be triangular if the linear parts of the transformation in T can be written as upper triangular matrices with respect to some affine coordinate system.

By Proposition 2.1 and by a theorem of Vinberg [12] we get a decomposition $\mathrm{Aut}_{0}(\Omega)=\mathrm{TK}$, where T and K are a maximal connected triangular subgroup and a maximal compact subgroup of $\mathrm{Aut}_{0}(\Omega)$ respectively, and $\mathrm{T} \cap \mathrm{K}$ consists of the unit element only. Using this together with Proposition 2.2 we have

Proposition 2.3. - Let Ω be an affine homogeneous domain in $\mathbf{R}^{\boldsymbol{n}}$ with an invariant Hessian metric. Then Ω admits a simply transitive triangular subgroup of $\operatorname{Aut}(\Omega)$.

Choose a point $o \in \Omega$ and an affine coordinate system $\left\{x^{1}, \ldots, x^{n}\right\}$ such that $x^{i}(o)=0 \quad(i=1, \ldots, n)$. Let T be a connected triangular subgroup of $\operatorname{Aut}(\Omega)$ acting simply transitively on Ω and t the Lie algebra of T. For $X \in t$ we denote by X^{*} the vector field on Ω induced by a one parameter subgroup of $\exp (-\mathrm{tX})$. We have then $\mathrm{X}^{*}=-\sum_{i}\left(\sum_{j} f(\mathrm{X})_{j}^{i} x^{j}+q(\mathrm{X})^{i}\right) \frac{\partial}{\partial x^{i}}$, where $f(\mathrm{X})_{j}^{i}$ and $q(\mathrm{X})^{i}$ are constants determined by X . Let V be the tangent space of Ω at o. Define mappings $q: \ddagger \longrightarrow \mathrm{V}$ and $f: \mathfrak{t} \longrightarrow \mathrm{gl}(\mathrm{V})$ by

$$
\begin{aligned}
q(\mathrm{X}) & =\sum_{i} q(\mathrm{X})^{i}\left(\frac{\partial}{\partial x^{i}}\right)_{0} \\
f(\mathrm{X}) q(\mathrm{Y}) & =\sum_{i, j} f(\mathrm{X})_{j}^{i} q(\mathrm{X})^{i}\left(\frac{\partial}{\partial x^{i}}\right)_{0} .
\end{aligned}
$$

Then we have
(1) f is a representation of t in V.
(2) q is a linear isomorphism from t onto V satisfying

$$
q([\mathrm{X}, \mathrm{Y}])=f(\mathrm{X}) q(\mathrm{Y})-f(\mathrm{Y}) q(\mathrm{X}) \text { for } \mathrm{X}, \mathrm{Y} \in \mathrm{t}
$$

We now define an operation of multiplication in V by the formula

$$
\begin{equation*}
x \cdot y=f\left(q^{-1}(x)\right) y \text { for } x, y \in \mathrm{~V} \tag{3}
\end{equation*}
$$

The algebra V with this multiplication is called the algebra of the affine homogeneous domain Ω with respect to the point $o \in \Omega$ and the simply transitive connected triangular group T. Using the notation

$$
\begin{aligned}
& x \cdot y=\mathrm{L}_{x} y=\mathrm{R}_{y} x \\
& {[x \cdot y \cdot z]=x \cdot(y \cdot z)-(x \cdot y) \cdot z}
\end{aligned}
$$

from (1) (2) we get

$$
\begin{align*}
{\left[\mathrm{L}_{x}, \mathrm{~L}_{y}\right] } & =\mathrm{L}_{x \cdot y-y \cdot x} \tag{4}\\
{[x \cdot y \cdot z] } & =[y \cdot x \cdot z] \tag{5}\\
{\left[\mathrm{L}_{x}, \mathrm{R}_{y}\right] } & =\mathrm{R}_{x \cdot y}-\mathrm{R}_{y} \mathrm{R}_{x} \tag{6}
\end{align*}
$$

for $x, y, z \in \mathrm{~V}$. The conditions (4), (5) and (6) are mutually equivalent.

Definition 2.1 - An algebra satisfying one of the conditions (4)(5)(6) is said to be left symmetric (cf. Vinberg [13]).

Definition 2.2. - A left symmetric algebra is said to be normal if all operators L_{x} have only real eigenvalues (cf. [13]).

Let \langle,$\rangle denote the inner product on \mathrm{V}$ given by the Hessian metric. Then we have

$$
\begin{equation*}
\langle x \cdot y, z\rangle+\langle y, x \cdot z\rangle=\langle y \cdot x, z\rangle+\langle x, y \cdot z\rangle \tag{7}
\end{equation*}
$$

for all $x, y, z \in \mathrm{~V}$ (cf. [8]).

Definition 2.3. - A left symmetric algebra endowed with an inner product satisfying (7) is called a Hessian algebra.

Summing up the obtained results, we have

Proposition 2.4. - Let Ω be an affine homogeneous domain with an invariant Hessian metric. Then the algebra of Ω with respect to a point in Ω and a simply transitive connected triangular group is a normal Hessian algebra.

Conversely we shall prove that a normal Hessian algebra determines an affine homogeneous domain with an invariant Hessian metric.

Let V be a normal Hessian algebra endowed with an inner product \langle,$\rangle . Let \left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis of V with respect to \langle,$\rangle and \left\{x^{1}, \ldots, x^{n}\right\}$ the affine coordinate system on V given by $v=\sum_{i} x^{i}(v) e_{i}$ for all $v \in \mathrm{~V}$. We denote by $\mathrm{f}(a) \in \mathrm{GL}(\mathrm{V})$ and $\mathrm{q}(a) \in \mathrm{V}$ the linear part and the translation part of $a \in \mathrm{~A}(n)$ respectively; $a v=\mathbf{f}(a) v+\mathbf{q}(a)$. For $v \in \mathrm{~V}$ we define an infinitesimal affine transformation X_{v}^{*} by

$$
\begin{equation*}
\mathrm{X}_{v}^{*}=-\sum_{i, j}\left(\mathrm{~L}_{v_{j}}^{i} x^{j}+v^{i}\right) \frac{\partial}{\partial x^{i}} \tag{8}
\end{equation*}
$$

where $\mathrm{L}_{v_{j}}^{i}, \quad v^{i}$ are the components of L_{v}, v with respect to $\left\{e_{1}, \ldots, e_{n}\right\} ; \mathrm{L}_{v} e_{j}=\sum_{i} \mathrm{~L}_{v_{j}}^{i} e_{i}, v=\sum_{i} v^{i} e_{i}$. From (4) it follows

$$
\begin{equation*}
\left[\mathrm{X}_{v}^{*}, \mathrm{X}_{w}^{*}\right]=\mathrm{X}_{v . w-w . v}^{*} \text { for } v, w \in \mathrm{~V} \tag{9}
\end{equation*}
$$

and so $\mathfrak{t}(\mathrm{V})=\left\{\mathrm{X}_{v}^{*} \mid v \in \mathrm{~V}\right\}$ forms a Lie algebra. Let $\mathrm{T}(\mathrm{V})$ denote the connected Lie subgroup of $\mathrm{A}(n)$ generated by $\mathrm{t}(\mathrm{V})$. We denote by $\Omega(\mathrm{V})$ the open orbit of $\mathrm{T}(\mathrm{V})$ through the origin $0 ; \Omega(\mathrm{V})=\mathrm{T}(\mathrm{V}) 0$, which we call the affine homogeneous domain corresponding to V .

We first show that $\mathrm{T}(\mathrm{V})$ acts simply transitively on $\Omega(\mathrm{V})$. By (8) the isotropy subgroup B of $T(V)$ at 0 is discrete. Suppose $b \in B$. Since the exponential mapping exp: $t(V) \longrightarrow T(V)$ is surjective because $T(V)$ is triangular, there exists $X_{w}^{*} \in t(V)$ such that $b=\exp X_{w}^{*}$. If we put $b^{\prime}=\exp 1 / 2 \mathrm{X}_{w}^{*}$, then we have $0=b 0=b^{\prime 2} 0=\mathbf{f}\left(b^{\prime}\right) \mathbf{q}\left(b^{\prime}\right)+\mathbf{q}\left(b^{\prime}\right)$ and so $\mathbf{f}\left(b^{\prime}\right) \mathbf{q}\left(b^{\prime}\right)=-\mathbf{q}\left(b^{\prime}\right)$. Since $f\left(b^{\prime}\right)=\exp \left(-1 / 2 L_{w}\right)$ and since L_{w} is triangular, the eigenvalues of $\mathbf{f}\left(b^{\prime}\right)$ are all positive. This means $b^{\prime} 0=\mathbf{q}\left(b^{\prime}\right)=0$ and so $b^{\prime}=\exp 1 / 2 X_{w}^{*} \in B$. By the same argument we have $\exp 1 / 2^{n} X_{w}^{*} \in B$ for all non-negative integer n. Thus $X_{w}^{*}=0$ because B is discrete. Therefore B consists of the unit element only and $T(V)$ acts simply transitively on $\Omega(\mathrm{V})$.

Now we denote by g the $\mathrm{T}(\mathrm{V})$-invariant Riemannian metric on $\Omega(\mathrm{V})$ satisfying $g_{i j}(0)=\delta_{i j}$ (Kronecker's delta). It follows then

$$
\begin{equation*}
g_{i j}(a 0)=\sum_{p} \mathbf{f}\left(a^{-1}\right)_{i}^{p} f\left(a^{-1}\right)_{j}^{p} \quad \text { for } \quad a \in \mathrm{~T}(\mathrm{~V}) \tag{10}
\end{equation*}
$$

where $f(a)_{i}^{j}$ are the components of $f(a)$ with respect to $\left\{e_{1}, \ldots, e_{n}\right\}$. Denoting by $\exp t X_{v}^{*}$ the one parameter group generated by X_{v}^{*} we get $\left.\quad \frac{d}{d t}\right|_{t=0} f\left(\operatorname{exp~tX}{ }_{v}^{*}\right)=-\mathrm{L}_{v} \quad$ and $\left.\quad \frac{d}{d t}\right|_{t=0} \mathbf{q}\left(\operatorname{exp~tX}{ }_{v}^{*}\right)=-v$. Choose an element $a \in \mathrm{~T}(\mathrm{~V})$ and define an isomorphism $v \longrightarrow v^{\prime}$ of V by $a^{-1} \exp \mathrm{tX}_{v}^{*} a=\exp \mathrm{tX}_{v^{\prime}}^{*}$. Then we have

$$
\begin{align*}
& v^{\prime}=\mathbf{f}(a)^{-1} \mathrm{~L}_{v} \mathbf{q}(a)+\mathbf{f}(a)^{-1} v=\mathrm{L}_{v^{\prime}} \mathbf{f}(a)^{-1} \mathbf{q}(a)+\mathbf{f}(a)^{-1} v, \tag{11}\\
& \mathrm{~L}_{v^{\prime}}=\mathbf{f}(a)^{-1} \mathrm{~L}_{v} \mathbf{f}(a) .
\end{align*}
$$

Let D denote the natural flat linear connection on $\Omega(\mathrm{V})$ given by $\mathrm{D} d x^{i}=0$. Put $\mathrm{A}_{\mathrm{X}^{*}}=\mathrm{L}_{\mathrm{X}^{*}}-\mathrm{D}_{\mathrm{X}^{*}}$ where $\mathrm{L}_{\mathrm{X}^{*}}$ and $\mathrm{D}_{\mathrm{X}^{*}}$ are the Lie differentiation and the covariant differentiation by a vector field X^{*} respectively. We have

$$
\begin{equation*}
\left(\mathrm{A}_{\mathrm{x}_{u}^{*}} \mathrm{X}_{v}^{*}\right)_{x}=-\sum_{i}\left(\mathrm{~L}_{u} \mathrm{~L}_{v} x+\mathrm{L}_{u} v\right)^{i}\left(\frac{\partial}{\partial x^{i}}\right)_{x} \tag{12}
\end{equation*}
$$

for all $x \in \Omega(V)$. Since $A_{X_{u}^{*}}$ is a derivation of the algebra of tensor fields and maps every function into zero and since $\mathrm{L}_{\mathrm{x}^{*}} g=0$, it follows

$$
\begin{equation*}
\left(\mathrm{D}_{\mathrm{X}_{u}^{*}} g\right)\left(\mathrm{X}_{v}^{*}, \mathrm{X}_{w}^{*}\right)=g\left(\mathrm{~A}_{\mathrm{X}_{u}^{*}} \mathrm{X}_{v}^{*}, \mathrm{X}_{w}^{*}\right)+g\left(\mathrm{X}_{v}^{*}, \mathrm{~A}_{\mathrm{X}_{u}^{*}} \mathrm{X}_{w}^{*}\right) \tag{13}
\end{equation*}
$$

Using (10) (11) (12) we obtain
$g(a 0)\left(\left(\mathrm{A}_{u}^{*} \mathrm{X}_{v}^{*}\right)_{a 0},\left(\mathrm{X}_{w}^{*}\right)_{a 0}\right)$

$$
\begin{aligned}
& =\sum_{i, j, p} f\left(a^{-1}\right)_{i}^{p} \mathbf{f}\left(a^{-1}\right)_{j}^{p}\left(\mathrm{~L}_{u} \mathrm{~L}_{v} a 0+\mathrm{L}_{u} v\right)^{i}\left(\mathrm{~L}_{w} a 0+w\right)^{j} \\
& =\sum_{p}\left(\mathbf{f}\left(a^{-1}\right)\left(\mathrm{L}_{u} \mathrm{~L}_{v} \mathbf{q}(a)+\mathrm{L}_{u} v\right)\right)^{p}\left(\mathbf{f}\left(a^{-1}\right)\left(\mathrm{L}_{w} \mathbf{q}(a)+w\right)\right)^{p} \\
& =\sum_{p}\left(\mathrm{~L}_{u^{\prime}} \mathrm{L}_{v^{\prime}} \mathbf{f}(a)^{-1} \mathbf{q}(a)+\mathrm{L}_{u^{\prime}}, \mathbf{f}(a)^{-1} v\right)^{p}\left(\mathrm{~L}_{w^{\prime}}, \mathbf{f}(a)^{-1} \mathbf{q}(a)\right. \\
& =\sum_{p}\left(u^{\prime} \cdot v^{\prime}\right)^{p_{w}, p} \\
& =\left\langle u^{\prime} \cdot v^{\prime}, w^{\prime}\right\rangle .
\end{aligned}
$$

This together with (7) (13) implies

$$
\left(\mathrm{D}_{\mathrm{x}_{u}^{*}} g\right)\left(\mathrm{X}_{v}^{*}, \mathrm{X}_{w}^{*}\right)=\left(\mathrm{D}_{\mathrm{X}_{v}^{*}} g\right)\left(\mathrm{X}_{u}^{*}, \mathrm{X}_{w}^{*}\right)
$$

and so g is a Hessian metric (cf. [8]).
Let Ω be an affine homogeneous domain in \mathbf{R}^{n} with an invariant Hessian metric and V the normal Hessian algebra of Ω with respect to $0 \in \Omega$ and a simply transitive triangular group. Identifying the tangent space V of Ω at 0 with R^{n} the domain $\Omega(\mathrm{V})$ corresponding to V coincides with Ω. Therefore we have

Theorem 2.1. - Let V be a normal Hessian algebra. Then the domain $\Omega(\mathrm{V})$ constructed as above is an affine homogeneous domain with invariant Hessian metric. All affine homogeneous domains with invariant Hessian metric are obtained in this way.

Definition 2.4 (cf. [3]). - A normal left symmetric algebra U is called a clan if it admits a linear function ω satisfying the condition
(i) $\omega(x \cdot y)=\omega(y \cdot x)$ for all $x, y \in \mathrm{U}$,
(ii) $\omega(x \cdot x)>0$ for all $x \neq 0 \in \mathrm{U}$.

Remark. - Let U be a clan with ω. If we put $\langle x, y\rangle=\omega(x \cdot y)$, then \langle,$\rangle is an inner product on U$ satisfying the condition (7) and so U is a normal Hessian algebra.

The following theorem is due to Vinberg [13].
Theorem 2.2. - Let V be a clan. Then the domain $\Omega(\mathrm{V})$ is an affine homogeneous convex domain not containing any full straight line. All affine homogeneous convex domains not containing any full straight line are obtained in this way.

3. Structure of normal Hessian algebras.

In this section we state a fundamental theorem for normal Hessian algebras. Let V be a normal Hessian algebra.

Definition 3.1. - Let W be a vector subspace of V .
(a) W is called a commutative subalgebra of V if $\mathrm{W} \cdot \mathrm{W}=\{0\}$.
(b) W is said to be an ideal of V if $\mathrm{W} \cdot \mathrm{V} \subset \mathrm{W}$ and $\mathrm{V} \cdot \mathrm{W} \subset \mathrm{W}$.

Theorem 3.1. - Let V be a normal Hessian algebra. Then V is decomposed into the semi-direct sum $\mathrm{V}=\mathrm{I}+\mathrm{U}$, where I is a commutative ideal of V and U is a subalgebra with an element s satisfying the following properties:
(i) $s \cdot s=s$,
(ii) the restriction of L_{s} on U is diagonalizable and has eigenvalues $1,1 / 2$,
(iii) $\mathrm{R}_{s}=2 \mathrm{~L}_{s}-1$ on U ,
where 1 is the identity transformation of U . (An element s in U satisfying the above conditions is called a principal idempotent of U.)

The proof of this theorem is carried out by induction on the dimension of normal Hessian algebras in an analogous way as Gindikin and Vinberg [1] [14].

For later use we prepare some lemmas.
Lemma 3.1. - Let W be an ideal of V . Then the orthogonal complement W^{\perp} of W in V is a subalgebra.

Proof. - Let $x, y \in \mathrm{~W}^{\perp}$ and $a \in \mathrm{~W}$. We have then

$$
\langle a, x \cdot y\rangle=-\langle x \cdot a, y\rangle+\langle a \cdot x, y\rangle+\langle x, a \cdot y\rangle=0
$$

This implies $x \cdot y \in \mathrm{~W}^{\perp}$.
q.e.d.

Lemma 3.2. - Let u be a non-zero element in V and let $\mathrm{P}=\{p \in \mathrm{~V} \mid p \cdot u=0\}$. Suppose P is invariant by L_{u}. Then for $p \in \mathrm{P}, x \in \mathrm{~V}$ we have
(i) $\mathrm{L}_{u}(p \cdot x)=\left(\mathrm{L}_{u} p\right) \cdot x+p \cdot\left(\mathrm{~L}_{u} x\right)$,
(ii) $\exp t \mathrm{~L}_{u}(p \cdot x)=\left(\exp t \mathrm{~L}_{u} p\right) \cdot\left(\exp t \mathrm{~L}_{u} x\right)$,
(iii) $\frac{d}{d t}\left\langle\exp \mathrm{tL}_{u} p, \exp \mathrm{tL}_{u} x\right\rangle=\left\langle u, \exp \mathrm{tL}_{u}(p \cdot x)\right\rangle$.

Proof.- (i) follows from

$$
u \cdot(p \cdot x)=(u \cdot p) \cdot x+p \cdot(u \cdot x)-(p \cdot u) \cdot x
$$

(ii) is a consequence of (i). Using (7) in 2 and (ii) we obtain

$$
\begin{aligned}
\frac{d}{d t}\langle\exp & \left.\mathrm{tL}_{u} p, \exp \mathrm{tL}_{u} x\right\rangle \\
& =\left\langle\mathrm{L}_{u} \exp \mathrm{tL}_{u} p, \exp \mathrm{tL}_{u} x\right\rangle+\left\langle\exp \mathrm{tL}_{u} p, \mathrm{~L}_{u} \exp \mathrm{tL}_{u} x\right\rangle \\
& =\left\langle\left(\exp \mathrm{tL}_{u} p\right) \cdot u, \exp \mathrm{tL}_{u} x\right\rangle+\left\langle u,\left(\exp \mathrm{tL}_{u} p\right) \cdot\left(\exp \mathrm{tL}_{u} x\right)\right\rangle \\
& =\left\langle u, \exp \mathrm{tL}_{u}(p \cdot x)\right\rangle .
\end{aligned}
$$

Lemma 3.3. - Let W be a subspace of V. Suppose that an element $a \neq 0 \in \mathrm{~V}$ satisfies the following conditions :
(a) $a \cdot a=\epsilon a$, where $\epsilon=0,1$,
(b) L_{a} and R_{a} leave W invariant,
(c) a is orthogonal to $\mathrm{W} \cdot \mathrm{W}$.

Then we have:
(i) If $\epsilon=0, \mathrm{~L}_{a}=\mathrm{R}_{a}=0$ on W .
(ii) If $\epsilon=1$, the restriction of L_{a} on W is symmetric and its eigenvalues are $0,1 / 2$. Moreover $\mathrm{R}_{a}=2 \mathrm{~L}_{a}$ on W .

Proof. - From (6) in 2, (a) and (b) it follows

$$
\begin{equation*}
\left[\mathrm{L}_{a}, \mathrm{R}_{a}\right]=\epsilon \mathrm{R}_{a}-\mathrm{R}_{a}^{2} \text { on } \mathrm{W} \tag{1}
\end{equation*}
$$

By (c) we have

$$
\langle a \cdot x, y\rangle+\langle x, a \cdot y\rangle=\langle x \cdot a, y\rangle+\langle a, x \cdot y\rangle=\langle x \cdot a, y\rangle
$$

for all $x, y \in \mathrm{~W}$. This implies

$$
\begin{equation*}
\mathrm{L}_{a}+{ }^{t} \mathrm{~L}_{a}=\mathrm{R}_{a} \text { on } \mathrm{W} \tag{2}
\end{equation*}
$$

Put $\mathrm{S}=\epsilon \mathrm{R}_{a}-\mathrm{R}_{a}^{2}$. S being commutative with R_{a} we have $\operatorname{Tr}_{\mathrm{W}} \mathrm{S}^{2}=\operatorname{Tr}_{\mathrm{W}}\left[\mathrm{L}_{a}, \mathrm{R}_{a}\right] \mathrm{S}=\operatorname{Tr}_{\mathrm{W}}\left[\mathrm{L}_{a} \mathrm{~S}, \mathrm{R}_{a}\right]=0$. This means $\mathrm{S}=0$ on W because S is symmetric on W by (2) and so

$$
\begin{equation*}
\mathrm{R}_{a}^{2}=\epsilon \mathrm{R}_{a} \text { on } \mathrm{W},\left[\mathrm{~L}_{a}, \mathrm{R}_{a}\right]=0 \text { on } \mathrm{W} \tag{3}
\end{equation*}
$$

Suppose $\epsilon=0$. The facts that R_{a} is symmetric on W and that $\mathrm{R}_{a}^{2}=0$ on W imply $\mathrm{R}_{a}=0$ on W . Using this and (2), L_{a} is skew symmetric on W and its eigenvalues are purely imaginary. Therefore we must have $\mathrm{L}_{a}=0$ on W . Suppose $\epsilon=1$. Since $\mathrm{R}_{a}^{2}=\mathrm{R}_{a}$ on W the eigenvalues of R_{a} on W are 0,1 . From (2) it follows $\mathrm{L}_{a}-{ }^{t} \mathrm{~L}_{a}=2 \mathrm{~L}_{a}-\mathrm{R}_{a}$ on W . Since $\left[\mathrm{L}_{a}, \mathrm{R}_{a}\right]=0$
on W and since the eigenvalues of $\mathrm{L}_{a}, \mathrm{R}_{a}$ on W are real, the eigenvalues of $2 \mathrm{~L}_{a}-\mathrm{R}_{a}$ on W are real. On the other hand $\mathrm{L}_{a}-{ }^{t} \mathrm{~L}_{a}$ is skew symmetric and its eigenvalues are purely imaginary. Therefore we have $\mathrm{L}_{a}-{ }^{t} \mathrm{~L}_{a}=2 \mathrm{~L}_{a}-\mathrm{R}_{a}=0$ on W and so ${ }^{t} \mathrm{~L}_{a}=\mathrm{L}_{a}$ on $\mathrm{W}, \mathrm{R}_{a}=2 \mathrm{~L}_{a}$ on W . This means (ii). q.e.d.

The following lemmas $3.4^{*}-3.7^{*}$ are immediate consequences of Theorem 3.1.

Lemma 3.4.* - Let U_{λ} denote the eigenspaces of L_{s} on U corresponding to λ. Then we have:
(i) $\mathrm{U}=\mathrm{U}_{1}+\mathrm{U}_{1 / 2}$,

$$
\mathrm{U}_{\lambda} \cdot \mathrm{U}_{\mu} \subset \mathrm{U}_{\mu-\lambda+1}
$$

(ii) U is a clan.

Proof. - For $x \in \mathrm{U}_{\lambda}, y \in \mathrm{U}_{\mu}$ we have

$$
\begin{aligned}
& s \cdot(x \cdot y)=(s \cdot x) \cdot y+x \cdot(s \cdot y)-(x \cdot s) \cdot y \\
& \quad=\lambda x \cdot y+\mu x \cdot y-(2 \lambda-1) x \cdot y=(\mu-\lambda+1) x \cdot y
\end{aligned}
$$

and so $x \cdot y \in \mathrm{U}_{\mu-\lambda+1}$. Define a linear function ω on U by

$$
\omega(x)=\frac{1}{\lambda}\langle s, x\rangle \text { for } x \in \mathrm{U}_{\lambda}
$$

Let $x \in \mathrm{U}_{\lambda}, y \in \mathrm{U}_{\mu}$. Using

$$
\langle s \cdot x, y\rangle+\langle x, s \cdot y\rangle=\langle x \cdot s, y\rangle+\langle s, x \cdot y\rangle
$$

$\mu-\lambda+1 \neq 0$ and $x \cdot y \in \mathrm{U}_{\mu-\lambda+1}$ we get

$$
\langle x, y\rangle=\frac{1}{\mu-\lambda+1}\langle s, x \cdot y\rangle=\omega(x \cdot y)
$$

Thus we have $\langle x, y\rangle=\omega(x \cdot y)$ for all $x, y \in \mathrm{U}$. Therefore U is a clan.
q.e.d.

Lemma 3.5.* - (i) The restriction of L_{s} on I is symmetric and its eigenvalues are $0,1 / 2$.
(ii) Let I_{λ} denote the eigenspace of L_{s} on I corresponding to λ. Then we have $\mathrm{I}=\mathrm{I}_{0}+\mathrm{I}_{1 / 2}$,

$$
\mathrm{U}_{\lambda} \cdot \mathrm{I}_{\mu} \subset \mathrm{I}_{\mu-\lambda+1}, \quad \mathrm{I}_{\lambda} \cdot \mathrm{U}_{\mu} \subset \mathrm{I}_{\mu-\lambda}
$$

(iii) $\mathrm{R}_{s}=2 \mathrm{~L}_{s}$ on I .

Proof. - Since I is a commutative ideal of V and since $s \cdot s=s$, applying Lemma 3.3 it follows that the restriction of L_{s} on I is symmetric and its eigenvalues are $0,1 / 2$ and moreover $\mathrm{R}_{s}=2 \mathrm{~L}_{s}$ on I . Let $x \in \mathrm{U}_{\lambda}, a \in \mathrm{I}_{\mu}$. By Theorem 3.1 (iii) we obtain

$$
\begin{aligned}
s \cdot(x \cdot a) & =(s \cdot x) \cdot a+x \cdot(s \cdot a)-(x \cdot s) \cdot a \\
& =\lambda x \cdot a+\mu x \cdot a-(2 \lambda-1) x \cdot a=(\mu-\lambda+1) x \cdot a
\end{aligned}
$$

and $x \cdot a \in \mathrm{I}_{\mu-\lambda+1}$. Let $a \in \mathrm{I}_{\lambda}, x \in \mathrm{U}_{\mu}$. By (iii) we have

$$
\begin{aligned}
s \cdot(a \cdot x) & =(s \cdot a) \cdot x+a \cdot(s \cdot x)-(a \cdot s) \cdot x \\
& =\lambda a \cdot x+\mu a \cdot x-2 \lambda a \cdot x=(\mu-\lambda) a \cdot x
\end{aligned}
$$

and so $a \cdot x \in \mathrm{I}_{\mu-\lambda}$.
q.e.d.

Lemma 3.6*. - The commutative ideal I of V is characterized by the set of all points $x \in \mathrm{~V}$ such that $x \cdot x=0$.

Proof. - Suppose $x \cdot x=0$. If $x=a+y$ where $a \in \mathrm{I}$ and $y \in \mathrm{U}$, we have $0=x \cdot x=a \cdot y+y \cdot a+y \cdot y$ and so $y \cdot y=0$. By Lemma 3.4* (ii) there exists a linear function ω on U satisfying the conditions in Definition 2.4. Since $\omega(y \cdot y)=0$, we have $y=0$ and $x=a \in \mathrm{I}$. q.e.d.

Lemma 3.7*. - The subspaces $\mathrm{I}_{0}, \mathrm{I}_{1 / 2}$ and U are mutually orthogonal with respect to \langle,$\rangle .$

Proof. - By Lemma 3.5* (i) I_{0} and $\mathrm{I}_{1 / 2}$ are orthogonal. For $a \in \mathrm{I}_{\lambda}$ we have
$0=\langle s \cdot a, s\rangle+\langle a, s \cdot s\rangle-\langle a \cdot s, s\rangle-\langle s, a \cdot s\rangle=(-3 \lambda+1)\langle a, s\rangle$
and so $\langle a, s\rangle=0$ because $\lambda=0,1 / 2$. This implies s and I are orthogonal. Applying this, for $a \in \mathrm{I}_{\lambda}, x \in \mathrm{U}_{\mu}$ we obtain

$$
0=\langle s \cdot a, x\rangle+\langle a, s \cdot x\rangle-\langle a \cdot s, x\rangle-\langle s, a \cdot x\rangle=(\mu-\lambda)\langle a, x\rangle
$$

and $0=\langle s \cdot x, a\rangle+\langle x, s \cdot a\rangle-\langle x \cdot s, a\rangle-\langle s, x \cdot a\rangle$

$$
=(\lambda-\mu+1)\langle a, x\rangle
$$

This shows $\langle a, x\rangle=0$. Therefore I and U are orthogonal. q.e.d.

4. The case $u \cdot u=u$.

Since V is a normal left symmetric algebra, by Lie's Theorem there exists an element $u \neq 0 \in \mathrm{~V}$ such that $x \cdot u=\kappa(x) u$ for all $x \in \mathrm{~V}$, where κ is a linear function on V . Multiplying u by non-zero scalar (if necessary) the following two cases are possible ;

$$
\begin{aligned}
& u \cdot u=u, \\
& u \cdot u=0 .
\end{aligned}
$$

In this section we consider the case $u \cdot u=u$ and prove the following.

Proposition 4.1. - Suppose $u \cdot u=u$. Then the operator L_{u} is diagonalizable and has eigenvalues $0,1 / 2,1$. Denoting by V_{λ} the eigenspace of L_{u} corresponding to λ we have:
(i) $\mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{1 / 2}+\mathrm{V}_{0}$ (orthogonal decomposition).
(ii) $\mathrm{V}_{1}=\{u\}$.
(iii) $u \cdot p=\frac{1}{2} p, p \cdot u=0 \quad$ for $p \in \mathrm{~V}_{1 / 2}$.
(iv) $u \cdot q=0, q \cdot u=0 \quad$ for $\quad q \in \mathrm{~V}_{0}$.
(v) $\mathrm{V}_{0} \cdot \mathrm{~V}_{1 / 2} \subset \mathrm{~V}_{1 / 2}, \quad \mathrm{~V}_{1 / 2} \cdot \mathrm{~V}_{0} \subset \mathrm{~V}_{1 / 2}$,
$\mathrm{V}_{0} \cdot \mathrm{~V}_{0} \subset \mathrm{~V}_{0}, \quad \mathrm{~V}_{1 / 2} \cdot \mathrm{~V}_{1 / 2} \subset \mathrm{~V}_{1}$.
In particular $\mathrm{V}_{1}+\mathrm{V}_{1 / 2}$ is an ideal of V with principal idempotent u and V_{0} is a subalgebra.

Let P denote the kernel of R_{u};

$$
\begin{equation*}
\mathbf{P}=\{p \in \mathrm{~V} \mid p \cdot u=0\} \tag{1}
\end{equation*}
$$

Then we have

$$
\begin{align*}
& \mathrm{L}_{u} \mathrm{P} \subset \mathrm{P}, \tag{2}\\
& \mathrm{~V}=\{u\}+\mathrm{P} . \tag{3}
\end{align*}
$$

Indeed for $p \in \mathrm{P}$ we have

$$
(u \cdot p) \cdot u=u \cdot(p \cdot u)+(p \cdot u) \cdot u-p \cdot(u \cdot u)=0
$$

which implies (2). (3) follows from $x-\kappa(x) u \in \mathrm{P}$ for all $x \in \mathrm{~V}$.
Lemma 4.1. - The restriction of L_{u} on P is diagonalizable and has eigenvalues $0,1 / 2$.

Proof. - By Lemma 3.2 for $p \in \mathrm{P}$ we have

$$
\frac{d}{d t}\left\langle\exp \mathrm{LL}_{u} p, \exp t \mathrm{~L}_{u} u\right\rangle=\left\langle u, \exp \mathrm{tL}_{u}(p \cdot u)\right\rangle=0
$$

and so

$$
\begin{equation*}
\left\langle\exp \mathrm{tL}_{u} p, u\right\rangle=a e^{-t} \tag{4}
\end{equation*}
$$

where a is a constant determined by p not depending on t. Using this for $x=c u+p \in \mathrm{~V}(c \in \mathbf{R}, p \in \mathrm{P})$ we obtain

$$
\begin{align*}
\left\langle u, \exp \mathrm{tL}_{u} x\right\rangle & =\left\langle u, c e^{t} u+\exp \mathrm{LL}_{u} p\right\rangle \\
& =\left\langle u, \exp \mathrm{tL}_{u} p\right\rangle+c\langle u, u\rangle e^{t}=a e^{-t}+b e^{t} \tag{5}
\end{align*}
$$

where a, b are constants determined by x not depending on t. Applying Lemma 3.2 and (5) we have for $p, q \in \mathrm{P}$

$$
\frac{d}{d t}\left\langle\exp \mathrm{tL}_{u} p, \exp \mathrm{tL}_{u} q\right\rangle=\left\langle u, \exp \mathrm{tL}_{u}(p \cdot q)\right\rangle=a e^{-t}+b e^{t}
$$

and consequently

$$
\begin{equation*}
\left\langle\exp \mathrm{tL}_{u} p, \exp \mathrm{tL}_{u} q\right\rangle=-a e^{-t}+b e^{t}+c, \tag{6}
\end{equation*}
$$

where a, b and c are constants determined by p, q not depending on t. From (6) it follows that L_{u} is diagonalizable on P . Indeed, if L_{u} is not diagonalizable on P there exist non-zero elements $p, q \in \mathrm{P}$ such that $\mathrm{L}_{u} p=\lambda p, \mathrm{~L}_{u} q=\lambda q+p$. We have then

$$
\begin{aligned}
\left\langle\exp \mathrm{tL}_{u} p, \exp \mathrm{tL}_{u} q\right\rangle & =\left\langle e^{\lambda t} p, e^{\lambda t} q+t e^{\lambda t} p\right\rangle \\
& =t e^{2 \lambda t}\langle p, p\rangle+e^{2 \lambda t}\langle p, q\rangle
\end{aligned}
$$

which contradicts to (6). Let λ be an eigenvalue of L_{u} on P and $p \neq 0 \in \mathrm{P}$ an eigenvector corresponding to λ. It follows then

$$
\frac{d}{d t}\left\langle\exp \mathrm{tL}_{u} p, \exp \mathrm{tL}_{u} p\right\rangle=2 \lambda\langle p, p\rangle e^{2 \lambda t}
$$

On the other hand (6) implies

$$
\frac{d}{d t}\left\langle\exp \mathrm{tL}_{u} p, \quad \exp \mathrm{tL}_{u} p\right\rangle=a e^{-t}+b e^{t}
$$

Therefore we obtain

$$
\begin{equation*}
2 \lambda\langle p, p\rangle e^{2 \lambda t}=a e^{-t}+b e^{t} \tag{7}
\end{equation*}
$$

consequently $\lambda=0,1 / 2,-1 / 2$. By (4) we get $\langle p, u\rangle e^{(\lambda+1) t}=a$, so $\langle p, u\rangle=0$ and $a=0$ because $\lambda+1 \neq 0$. Thus we have

$$
\begin{gather*}
\langle p, u\rangle=0 \text { for all } p \in \mathrm{P} \\
\left\langle u, \exp \mathrm{tL}_{u} x\right\rangle=b e^{t} \text { for } x \in \mathrm{~V}, \\
2 \lambda\langle p, p\rangle e^{2 \lambda t}=b e^{t}
\end{gather*}
$$

(7') shows $\lambda=0,1 / 2$.
q.e.d.

Let P_{λ} denote the eigenspace of L_{u} in P corresponding to λ. From Lemma 4.1 and (3) it follows

$$
\begin{equation*}
\mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{1 / 2}+\mathrm{V}_{0} \tag{8}
\end{equation*}
$$

where $\mathrm{V}_{1}=\{u\}, \mathrm{V}_{1 / 2}=\mathrm{P}_{1 / 2}$ and $\mathrm{V}_{0}=\mathrm{P}_{0}$.
Lemma 4.2. - The decomposition (8) is orthogonal and we have $\mathrm{P}_{\lambda} \cdot \mathrm{P}_{\mu} \subset \mathrm{V}_{\lambda+\mu}$.

Proof. - For $p \in \mathrm{P}_{\lambda}$ and $q \in \mathrm{P}_{\mu}$ we have

$$
u \cdot(p \cdot q)=(u \cdot p) \cdot q+p \cdot(u \cdot q)-(p \cdot u) \cdot q=(\lambda+\mu) p \cdot q
$$

This implies $P_{\lambda} \cdot P_{\mu} \subset V_{\lambda+\mu}$. The orthogonality of $\{u\}$ and P follows from (4'). Applying this for $p \in \mathrm{P}_{1 / 2}$ and $q \in \mathrm{P}_{0}$ we obtain $1 / 2\langle p, q\rangle=\langle u \cdot p, q\rangle=-\langle p, u \cdot q\rangle+\langle p \cdot u, q\rangle+\langle u, p \cdot q\rangle=0$ because $p \cdot q \in \mathrm{P}_{1 / 2}$. Thus $\mathrm{P}_{1 / 2}$ and P_{0} are orthogonal. q.e.d.

The assertion of Proposition 4.1 follows from Lemma 4.2 and (8).

5. The case $u \cdot u=0$.

The purpose of this section is to prove the following.

Proposition 5.1. - Suppose $u \cdot u=0$. Then there exists a commutative ideal of V containing u.

Lemma 5.1. $-\mathrm{L}_{u}^{2}=0$.
Proof. - Let P denote the kernel of $\mathrm{R}_{u} ; \mathrm{P}=\{p \in \mathrm{~V} \mid p \cdot u=0\}$. Then we have

$$
\begin{equation*}
\mathrm{L}_{u} \mathrm{~V} \subset \mathrm{P} \tag{1}
\end{equation*}
$$

because $(u \cdot x) \cdot u=u \cdot(x \cdot u)+(x \cdot u) \cdot u-x \cdot(u \cdot u)=0$ for all $x \in \mathrm{~V}$. For $p \in \mathrm{P}, x \in \mathrm{~V}$ it follows from (1) and Lemma 3.2

$$
\begin{aligned}
& \frac{d^{3}}{d t^{3}}\left\langle\exp \mathrm{tL}_{u} p, \exp \mathrm{tL}_{u} x\right\rangle \\
&=\frac{d^{2}}{d t^{2}}\left\langle u, \exp \mathrm{tL}_{u}(p \cdot x)\right\rangle=\left\langle u, u \cdot p^{\prime}\right\rangle \\
&=-\left\langle p^{\prime}, u \cdot u\right\rangle+\left\langle p^{\prime} \cdot u, u\right\rangle+\left\langle u, p^{\prime} \cdot u\right\rangle=0
\end{aligned}
$$

where $p^{\prime}=\mathrm{L}_{u} \exp \operatorname{tL}_{u}(p \cdot x) \in \mathrm{P}$, and consequently

$$
\begin{equation*}
\left\langle\exp \mathrm{tL}_{u} p, \exp t \mathrm{~L}_{u} x\right\rangle=a t^{2}+b t+c \tag{2}
\end{equation*}
$$

where a, b, c are constants independent of t. Let λ be an eigenvalue of L_{u} on P and $p \neq 0 \in \mathrm{P}$ an eigenvector corresponding to λ. By (2) we get $e^{2 \lambda t}\langle p, p\rangle=a t^{2}+b t+c$, and so $\lambda=0$. This together with (1) implies that the eigenvalues of L_{u} are equal to 0 . Assume $\mathrm{L}_{u}^{2} \neq 0$. Then there exist non-zero elements $x, y, z \in \mathrm{~V}$ such that $u \cdot x=0, u \cdot y=x, u \cdot z=y$. From this we have $\exp \mathrm{tL}_{u} y=y+t x, \exp \mathrm{tL}_{u} z=z+t y+\frac{t^{2}}{2} x$. Since $y=u \cdot z \in \mathrm{P}$, applying (2) we obtain $\left\langle y+t x, z+t y+\frac{t^{2}}{2} x\right\rangle=a t^{2}+b t+c$. This is a contradiction because $\langle x, x\rangle \neq 0$. Thus we have $\mathrm{L}_{u}^{2}=0$. q.e.d.

Using $L_{u}^{2}=0$ we define a filtration of V. Consider the subspaces of V

$$
\begin{aligned}
& \mathrm{V}^{(-1)}=\mathrm{V} \\
& \mathrm{~V}^{(0)}=\left\{x \in \mathrm{~V} \mid \mathrm{L}_{u} x \in\{u\}\right\} \\
& \mathrm{V}^{(1)}=\mathrm{L}_{u} \mathrm{~V}+\{u\} \\
& \mathrm{V}^{(2)}=\{u\}
\end{aligned}
$$

Then we have

Lemma 5.2. - The subspaces $\mathrm{V}^{(i)}$ form a filtration of the algebra V;
(i) $V^{(-1)} \supset V^{(0)} \supset V^{(1)} \supset V^{(2)}$,
(ii) $\mathrm{V}^{(i)} \cdot \mathrm{V}^{(j)} \subset \mathrm{V}^{(i+j)}$.

Moreover we have
(iii) $\mathrm{V}^{(1)} \cdot \mathrm{V}^{(1)}=\{0\}$.

Proof. - (i) follows from $u \cdot u=0$ and $\mathrm{L}_{u}^{2}=0$. Note that

$$
\begin{equation*}
(u \cdot x) \cdot(u \cdot y)=0 \quad \text { for all } \quad x, y \in \mathrm{~V} . \tag{3}
\end{equation*}
$$

In fact for $x, y \in \mathrm{~V}$ we have

$$
\begin{aligned}
& 0=u \cdot(u \cdot(x \cdot y))=u \cdot((u \cdot x) \cdot y+x \cdot(u \cdot y)-(x \cdot u) \cdot y) \\
&=u \cdot((u \cdot x) \cdot y)+u \cdot(x \cdot(u \cdot y))-\kappa(x) u \cdot(u \cdot y)=(u \cdot(u \cdot x)) \cdot y \\
&+(u \cdot x) \cdot(u \cdot y)-((u \cdot x) \cdot u) \cdot y+(u \cdot x) \cdot(u \cdot y)+x \cdot(u \cdot(u \cdot y)) \\
&-(x \cdot u) \cdot(u \cdot y)=2(u \cdot x) \cdot(u \cdot x)
\end{aligned}
$$

because $\mathrm{L}_{u}^{2}=0, \mathrm{~V} \cdot u \subset\{u\}$ and $\mathrm{L}_{u} \mathrm{~V} \subset \mathrm{P}$. Let

$$
u \cdot x+\lambda u, u \cdot y+\mu u \in \mathrm{~V}^{(1)}(x, y \in \mathrm{~V}, \lambda, \mu \in \mathbf{R}) .
$$

Using (1) and (3) we get

$$
\begin{aligned}
(u \cdot x+\lambda u) \cdot(u \cdot y+\mu u)= & (u \cdot x) \cdot(u \cdot y)+\mu(u \cdot x) \cdot u \\
& +\lambda u \cdot(u \cdot y)+\lambda \mu u \cdot u \\
= & 0 .
\end{aligned}
$$

This implies (iii). Let $x \in \mathrm{~V}^{(0)}, u \cdot y+\mu u \in \mathrm{~V}^{(1)}(y \in \mathrm{~V}, \mu \in \mathbf{R})$. We have then $u \cdot x=\nu u(\nu \in \mathbf{R})$ and

$$
\begin{aligned}
x \cdot(u \cdot y+\mu u)= & x \cdot(u \cdot y)+\mu x \cdot u=(x \cdot u) \cdot y+u \cdot(x \cdot y) \\
& -(u \cdot x) \cdot y+\mu x \cdot u \\
= & \kappa(x) u \cdot y+u \cdot(x \cdot y)-\nu u \cdot y+\mu \kappa(x) u \in \mathrm{~V}^{(1)} .
\end{aligned}
$$

In the same way $(u \cdot y+\mu u) \cdot x \in \mathrm{~V}^{(1)}$. Therefore we have

$$
\begin{equation*}
\mathrm{V}^{(0)} \cdot \mathrm{V}^{(1)} \subset \mathrm{V}^{(1)}, \quad \mathrm{V}^{(1)} \cdot \mathrm{V}^{(0)} \subset \mathrm{V}^{(1)} \tag{4}
\end{equation*}
$$

Let $u \cdot x+\mu u \in \mathrm{~V}^{(1)}(x \in \mathrm{~V}, \mu \in \mathbf{R})$ and $y \in \mathrm{~V}^{(-1)}$. By (iii) we have

$$
\begin{aligned}
& u \cdot((u \cdot x+\mu u) \cdot y)=u \cdot((u \cdot x) \cdot y)+\mu u \cdot(u \cdot y)=(u \cdot(u \cdot x)) \cdot y \\
&+(u \cdot x) \cdot(u \cdot y)-((u \cdot x) \cdot u) \cdot y+\mu u \cdot(u \cdot y)=0 \\
& \text { and } \begin{aligned}
u \cdot(y \cdot(u \cdot x & +\mu u))=u \cdot(y \cdot(u \cdot x))+\mu u \cdot(y \cdot u) \\
& =(u \cdot y) \cdot(u \cdot x)+y \cdot(u \cdot(u \cdot x))-(y \cdot u) \cdot(u \cdot x) \\
& =0 .
\end{aligned} \quad+\mu u \cdot(y \cdot u)
\end{aligned}
$$

This implies

$$
\begin{equation*}
\mathrm{V}^{(1)} \cdot \mathrm{V}^{(-1)} \subset \mathrm{V}^{(0)}, \mathrm{V}^{(-1)} \cdot \mathrm{V}^{(1)} \subset \mathrm{V}^{(0)} \tag{5}
\end{equation*}
$$

Let $x, y \in \mathrm{~V}^{(0)}$. We have then $u \cdot x=\mu u, u \cdot y=\nu u$ and so $u \cdot(x \cdot y)=(u \cdot x) \cdot y+x \cdot(u \cdot y)-(x \cdot u) \cdot y=\mu \nu u$

$$
+\nu \kappa(x) u-\kappa(x) \nu u=\mu \nu u .
$$

This means

$$
\begin{equation*}
\mathrm{V}^{(0)} \cdot \mathrm{V}^{(0)} \subset \mathrm{V}^{(0)} \tag{6}
\end{equation*}
$$

The other relations $\mathrm{V}^{(i)} \cdot \mathrm{V}^{(j)} \subset \mathrm{V}^{(i+j)}$ are trivial. q.e.d.

If $\mathrm{V}^{(0)}=\mathrm{V}$, then $\mathrm{V}^{(2)}=\{u\}$ is a commutative ideal of V and consequently Proposition 5.1 is proved. From now on we assume $\mathrm{V}^{(0)} \neq \mathrm{V}$. Since $\mathrm{V}^{(0)}$ is a subalgebra of dimension less than $\operatorname{dim} \mathrm{V}$, by the inductive hypothesis we have $\mathrm{V}^{(0)}=\mathrm{I}+\mathrm{U}$, where I is a commutative ideal of $\mathrm{V}^{(0)}$ and U is a subalgebra with a principal idempotent s.

Lemma 5.3. $-\mathrm{V}^{(1)} \subset \mathrm{I}$.
Proof. - According to Lemma 3.6* it follows

$$
\mathrm{I}=\left\{x \in \mathrm{~V}^{(0)} \mid x \cdot x=0\right\}
$$

This and $\mathrm{V}^{(1)} \cdot \mathrm{V}^{(1)}=\{0\}$ imply $\mathrm{V}^{(1)} \subset \mathrm{I}$.
q.e.d.

Lemma 5.4. - $\mathrm{V} \cdot \mathrm{I} \subset \mathrm{V}^{(0)}, \mathrm{I} \cdot \mathrm{V} \subset \mathrm{V}^{(0)}$.
Proof. - Let $x \in \mathrm{~V}$ and $a \in \mathrm{I}$. Since I is commutative and since $u, u \cdot x, x \cdot u \in \mathrm{I}$ by Lemma 5.2 and 5.3 , we have

$$
u \cdot(x \cdot a)=(u \cdot x) \cdot a+x \cdot(u \cdot a)-(x \cdot u) \cdot a=0
$$

and

$$
u \cdot(a \cdot x)=(u \cdot a) \cdot x+a \cdot(u \cdot x)-(a \cdot u) \cdot x=0
$$

This means $x \cdot a, a \cdot x \in \mathrm{~V}^{(0)}$.
q.e.d.

If $\mathrm{I}=\mathrm{V}^{(0)}$, Lemma 5.4 implies that I is a commutative ideal of V containing u and Proposition 5.1 is proved. Henceforth we assume $I \neq V^{(0)}$, i.e., $U \neq\{0\}$.

Let s be a principal idempotent of U. Since $V^{(1)} \subset I$ and since $\mathrm{V}^{(1)}$ is invariant by L_{s} and R_{s}, by Lemma 3.3 we have:

The restriction of L_{s} on $V^{(1)}$ is symmetric and its eigenvalues are $0,1 / 2$. Therefore denoting by $\mathrm{V}_{\lambda}^{(1)}$ the eigenspace of L_{s} corresponding to λ we obtain the orthogonal decomposition

$$
\begin{align*}
& \mathrm{V}^{(1)}=\mathrm{V}_{0}^{(1)}+\mathrm{V}_{1 / 2}^{(1)} \tag{7}\\
& \mathrm{R}_{s}=2 \mathrm{~L}_{s} \quad \text { on } \quad \mathrm{V}^{(1)} \tag{8}
\end{align*}
$$

We set $s \cdot u=\alpha u$. From (8) it follows $u \cdot s=2 s \cdot u=2 \alpha u$. Thus

$$
\begin{align*}
& \mathrm{L}_{s} u=\alpha u, \\
& \mathrm{R}_{s} u=2 \alpha u, \text { where } \alpha=0,1 / 2 \tag{9}
\end{align*}
$$

Consider the graded algebra $\overline{\mathrm{V}}$ associated to the filtered algebra $\mathrm{V}: \overline{\mathrm{V}}=\overline{\mathrm{V}}^{(-1)}+\overline{\mathrm{V}}^{(0)}+\overline{\mathrm{V}}^{(1)}+\overline{\mathrm{V}}^{(2)}$, where $\overline{\mathrm{V}}^{(i)}=\mathrm{V}^{(i)} / \mathrm{V}^{(i+1)}$ $(-1 \leqslant i \leqslant 1)$ and $\overline{\mathrm{V}}^{(2)}=\mathrm{V}^{(2)}$. For $x \in \mathrm{~V}^{(i)}$ we denote by \bar{x} the element in $\overline{\mathrm{V}}^{(i)}$ corresponding to x and by $\mathrm{L}_{\bar{x}}$ (resp. $\mathrm{R}_{\bar{x}}$) the left (resp. right) multiplication by \bar{x}.

Lemma 5.5. - (i) The mapping $\mathrm{L}_{\bar{u}}: \overline{\mathrm{V}}^{(-1)} \longrightarrow \overline{\mathrm{V}}^{(1)}$ is an isomorphism.
(ii) $\mathrm{L}_{\bar{s}} \mathrm{~L}_{\bar{u}}=\mathrm{L}_{\bar{u}}\left(\mathrm{~L}_{\bar{s}}-\alpha\right)$ on $\overline{\mathrm{V}}^{(-1)}$. In particular the restriction of $\mathrm{L}_{\bar{s}}$ on $\overline{\mathrm{V}}^{(-1)}$ is diagonalizable and its eigenvalues are α, $\alpha+1 / 2$.
(iii) $\mathrm{R}_{\bar{s}} \mathrm{~L}_{\bar{u}}=\mathrm{L}_{\bar{u}} \mathrm{R}_{\bar{s}}$ on $\overline{\mathrm{V}}^{(-1)}$.

Proof. - The mapping $\mathrm{L}_{\bar{u}}: \overline{\mathrm{V}}^{(-1)} \longrightarrow \overline{\mathrm{V}}^{(1)}$ is surjective because $\overline{\mathrm{V}}^{(1)}=\mathrm{L}_{u} \mathrm{~V}+\{u\} /\{u\}$. Suppose $\mathrm{L}_{\bar{u}} \bar{x}=0\left(x \in \mathrm{~V}^{(-1)}\right)$. Then it follows $u \cdot x \in\{u\}$, consequently $x \in \mathrm{~V}^{(0)}$ and $\bar{x}=0$. Thus (i) is proved. By (9) we have

$$
\begin{aligned}
\mathrm{L}_{\bar{s}} \mathrm{~L}_{\bar{u}} \bar{x}=\overline{s \cdot(u \cdot x)}=\overline{(s \cdot u) \cdot x} & +\overline{u \cdot(s \cdot x)}-\overline{(u \cdot s) \cdot x} \\
& =\overline{u \cdot(s \cdot x)}-\overline{\alpha u \cdot x}=\mathrm{L}_{\bar{u}}\left(\mathrm{~L}_{\bar{s}}-\alpha\right) \bar{x}
\end{aligned}
$$

for all $x \in \mathrm{~V}^{(-1)}$, which implies $\mathrm{L}_{\bar{s}} \mathrm{~L}_{\bar{u}}=\mathrm{L}_{\bar{u}}\left(\mathrm{~L}_{\bar{s}}-\alpha\right)$ on $\overline{\mathrm{V}}^{(-1)}$. Using this together with (7) the restriction of $\mathrm{L}_{\bar{s}}$ on $\overline{\mathrm{V}}^{(-1)}$ is diagonalizable and has eigenvalues $\alpha, \alpha+1 / 2$. This shows (ii). By (9) we obtain

$$
\begin{aligned}
& \mathrm{R}_{\bar{s}} \mathrm{~L}_{\bar{u}} \bar{x}=\overline{(u \cdot x) \cdot s}=\overline{u \cdot(x \cdot s)}+\overline{(x \cdot u) \cdot s}-\overline{x \cdot(u \cdot s)}=\overline{u \cdot(x \cdot s)} \\
& \quad+\kappa(x) \overline{u \cdot s}-2 \overline{\alpha x \cdot u}=\overline{u \cdot(x \cdot s)}=\mathrm{L}_{\bar{u}} \mathrm{R}_{\bar{s}} \bar{x} \text { for all } x \in \mathrm{~V}^{(-1)}
\end{aligned}
$$

which means (iii). q.e.d.

According to Lemma 3.5*, (7) and Lemma 5.5 the operator $\underline{L}_{\bar{s}}$ leaves each subspace $\overline{\mathrm{V}}^{(i)}$ invariant and is diagonalizable on $\overline{\mathrm{V}}^{(i)}$. We denote by $\overline{\mathrm{V}}_{\lambda}^{(i)}$ the eigenspace of $\mathrm{L}_{\bar{s}}$ in $\overline{\mathrm{V}}^{(i)}$ corresponding to $\lambda \in R$.

Lemma 5.6. - Let $\bar{a} \in \overline{\mathrm{~V}}_{\lambda}^{(-1)}$. Then we have
(i) $\mathrm{L}_{\bar{s}} \bar{a}=\lambda \bar{a}$,
(ii) $\mathrm{R}_{\bar{s}} \bar{a}=2(\lambda-\alpha) \bar{a}$.

Proof. - Using Lemma 5.4 and (8) we obtain

$$
\begin{aligned}
\mathrm{L}_{\bar{u}} \mathrm{R}_{\bar{s}} \bar{a}=\mathrm{R}_{\bar{s}} \mathrm{~L}_{\bar{u}} \bar{a}=\overline{\mathrm{R}_{s} \mathrm{~L}_{u} a} & =\overline{2 \mathrm{~L}_{s} \mathrm{~L}_{u} a}=2 \mathrm{~L}_{\bar{s}} \mathrm{~L}_{\bar{u}} \bar{a} \\
& =2 \mathrm{~L}_{\bar{u}}\left(\mathrm{~L}_{\bar{s}}-\alpha\right) \bar{a}=\mathrm{L}_{\bar{u}}(2(\lambda-\alpha) \bar{a}) .
\end{aligned}
$$

This implies $\mathrm{R}_{\bar{s}} \bar{a}=2(\lambda-\alpha) \bar{a}$ because $\mathrm{L}_{\bar{u}}: \overline{\mathrm{V}}^{(-1)} \longrightarrow \overline{\mathrm{V}}^{(1)}$ is an isomorphism.
q.e.d.

For simplicity we denote by $a^{\prime} \in \mathrm{V}^{(1)}$ the element $u \cdot a$ where $a \in \mathrm{~V}^{(-1)}$.

Lemma 5.7. -
(i) If $\bar{a} \in \mathrm{~V}_{\lambda}^{(-1)}$, then $\bar{a}^{\prime} \in \overline{\mathrm{V}}_{\lambda-\alpha}^{(1)}$.
(ii) Let $\bar{a} \in \mathrm{~V}_{\lambda}^{(-1)}, \bar{b} \in \overline{\mathrm{~V}}_{\mu}^{(-1)}$. Then we have

$$
\bar{a}^{\prime} \cdot \bar{b}, \bar{a} \cdot \bar{b}^{\prime} \in \overline{\mathrm{V}}_{-\lambda+\mu+\alpha}^{(0)} .
$$

Proof. - From Lemma 5.5 (ii) it follows

$$
\mathrm{L}_{\bar{s}} \bar{a}^{\prime}=\mathrm{L}_{\bar{s}} \mathrm{~L}_{\bar{u}} \bar{a}=\mathrm{L}_{\bar{u}}\left(\mathrm{~L}_{\bar{s}}-\alpha\right) \bar{a}=(\lambda-\alpha) \mathrm{L}_{\bar{u}} \bar{a}=(\lambda-\alpha) \bar{a}^{\prime},
$$

which implies (i). Using (i), (8) and Lemma 5.6 (ii) we obtain

$$
\begin{aligned}
& \bar{s} \cdot\left(\bar{a}^{\prime} \cdot \bar{b}\right)=\left(\bar{s} \cdot \bar{a}^{\prime}\right) \cdot \bar{b}+\bar{a}^{\prime} \cdot(\bar{s} \cdot \bar{b})-\left(\bar{a}^{\prime} \cdot \bar{s}\right) \cdot \bar{b}=(\lambda-\alpha) \bar{a}^{\prime} \cdot \bar{b} \\
&+\mu \bar{a}^{\prime} \cdot \bar{b}-2(\lambda-\alpha) \bar{a}^{\prime} \cdot \bar{b}=(-\lambda+\mu+\alpha) \bar{a}^{\prime} \cdot \bar{b}
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{s} \cdot\left(\bar{a} \cdot \bar{b}^{\prime}\right)= & (\bar{s} \cdot \bar{a}) \cdot \bar{b}^{\prime}+\bar{a} \cdot\left(\bar{s} \cdot \bar{b}^{\prime}\right)-(\bar{a} \cdot \bar{s}) \cdot \bar{b}^{\prime}=\lambda \bar{a} \cdot \bar{b}^{\prime} \\
& +(\mu-\alpha) \bar{a} \cdot \bar{b}^{\prime}-2(\lambda-\alpha) \bar{a} \cdot \overline{b^{\prime}}=(-\lambda+\mu+\alpha) \bar{a} \cdot \bar{b}^{\prime} .
\end{aligned}
$$

This shows (ii). q.e.d.

According to Lemma 3.5* and Lemma 5.3 we get

$$
\begin{aligned}
\mathrm{V}_{\lambda}^{(0)} \cdot \mathrm{V}_{\mu^{\prime}}^{(1)} \subset \mathrm{V}^{(1)} \cap\left(\mathrm{I}_{\lambda}+\mathrm{U}_{\lambda}\right) \cdot \mathrm{I}_{\mu^{\prime}} & =\mathrm{V}^{(1)} \cap \mathrm{U}_{\lambda} \cdot \mathrm{I}_{\mu^{\prime}} \subset \mathrm{V}^{(1)} \cap \mathrm{I}_{\mu^{\prime}-\lambda+1} \\
& =\mathrm{V}_{\mu^{\prime}-\lambda+1}^{(1)}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{V}_{\lambda^{\prime}}^{(1)} \cdot \mathrm{V}_{\mu}^{(0)} \subset \mathrm{V}^{(1)} \cap \mathrm{I}_{\lambda^{\prime}} \cdot\left(\mathrm{I}_{\mu}+\mathrm{U}_{\mu}\right) & =\mathrm{V}^{(1)} \cap \mathrm{I}_{\lambda^{\prime}} \cdot \mathrm{U}_{\mu} \subset \mathrm{V}^{(1)} \cap \mathrm{I}_{\mu-\lambda^{\prime}} \\
& =\mathrm{V}_{\mu-\lambda^{\prime}}^{(1)} .
\end{aligned}
$$

Thus we have

$$
\begin{align*}
& \mathrm{V}_{\lambda}^{(0)} \cdot \mathrm{V}_{\mu^{\prime}}^{(1)} \subset \mathrm{V}_{-\lambda+\mu^{\prime}+1}^{(1)} \\
& \mathrm{V}_{\lambda^{\prime}}^{(1)} \cdot \mathrm{V}_{\mu}^{(0)} \subset \mathrm{V}_{-\lambda^{\prime}+\mu}^{(1)} \tag{10}
\end{align*}
$$

Consider the subspace $\mathrm{W}^{(1)}$ of $\mathrm{V}^{(1)}$ defined by

$$
\mathrm{W}^{(1)}=\left\{a \in \mathrm{~V}^{(1)} \mid\langle a, u\rangle=0\right\}
$$

The subspace $\mathrm{W}^{(1)}$ is invariant by L_{s}. In fact for $a \in \mathrm{~W}^{(1)}$ using (8), (9) and $\mathrm{V}^{(1)} \cdot \mathrm{V}^{(1)}=\{0\}$ we have

$$
\begin{gathered}
\langle s \cdot a, u\rangle=-\langle a, s \cdot u\rangle+\langle a \cdot s, u\rangle+\langle s, a \cdot u\rangle=-\alpha\langle a, u\rangle \\
+2\langle s \cdot a, u\rangle=2\langle s \cdot a, u\rangle
\end{gathered}
$$

and $\langle s \cdot a, u\rangle=0$, consequently $s \cdot a \in \mathrm{~W}^{(1)}$. We denote by $\mathrm{W}_{\lambda}^{(1)}$ the eigenspace of L_{s} in $\mathrm{W}^{(1)}$.

Lemma 5.8. - Suppose $\rho^{\prime}=\nu^{\prime}-\beta+1$. If $\mathrm{W}_{\rho^{\prime}}^{(1)} \cdot \mathrm{V}_{\beta}^{(0)} \subset\{u\}$, then $\mathrm{V}_{\beta}^{(0)} \cdot \mathrm{W}_{\nu^{\prime}}^{(1)} \subset\{u\}$.

Proof. - Let $a_{1} \in \mathrm{~W}_{\nu^{\prime}}^{(1)}, \quad b_{1} \in \mathrm{~W}_{\rho^{\prime}}^{(1)} \quad$ and $\quad x \in \mathrm{~V}_{\beta}^{(0)}$. By (10) we have $x \cdot a_{1} \in \mathrm{~V}_{\rho^{\prime}}^{(1)}$ and $x \cdot b_{1} \in \mathrm{~V}_{\rho^{\prime}-\beta+1}^{(1)}$. Since $b_{1} \cdot x \in\{u\}$ and $\mathrm{W}^{(1)} \cdot \mathrm{W}^{(1)}=\{0\}$, we obtain

$$
\left\langle x \cdot b_{1}, a_{1}\right\rangle+\left\langle b_{1}, x \cdot a_{1}\right\rangle=\left\langle b_{1} \cdot x, a_{1}\right\rangle+\left\langle x, b_{1} \cdot a_{1}\right\rangle=0 .
$$

If $\rho^{\prime}-\beta+1 \neq \nu^{\prime}$, the orthogonality of the decomposition $\mathrm{V}^{(1)}=\mathrm{V}_{0}^{(1)}+\mathrm{V}_{1 / 2}^{(1)}$ implies $\left\langle b_{1}, x \cdot a_{1}\right\rangle=0 \quad$ and consequently $x \cdot a_{1} \in\{u\}$. If $\rho^{\prime}-\beta+1=\nu^{\prime}$, then $\beta=1$ and $\rho^{\prime}=\nu^{\prime}$. From this it follows $L_{x} W_{\nu^{\prime}}^{(1)} \subset V_{\nu^{\prime}}^{(1)}$. Define the mapping

$$
\mathrm{A}_{x}=p r \circ \mathrm{~L}_{x}: \mathrm{W}^{(1)} \longrightarrow \mathrm{W}^{(1)}
$$

where $p r$ is the projection from $\mathrm{V}^{(1)}=\mathrm{W}^{(1)}+\{u\}$ onto $\mathrm{W}^{(1)}$. Then we have $\left\langle\mathrm{A}_{x} b_{1}, a_{1}\right\rangle+\left\langle b_{1}, \mathrm{~A}_{x} a_{1}\right\rangle=0$ for all $a_{1}, b_{1} \in \mathrm{~W}_{\nu}^{(1)}$ and so A_{x} is skew symmetric on $\mathrm{W}_{\nu^{\prime}}^{(1)}$. On the other hand A_{x} has only real eigenvalues because the eigenvalues of L_{x} are real. This means $\mathrm{A}_{x}=0$ on $\mathrm{W}_{\nu^{\prime}}^{(1)}$ and $\mathrm{L}_{x} \mathrm{~W}_{\nu^{\prime}}^{(1)} \subset\{u\}$. Thus the proof of this lemma is completed.
q.e.d.

Lemma 5.9. - Let $a, b, c \in \mathrm{~V}^{(-1)}$. Then the products of $\bar{a}, \bar{b}^{\prime}$ and \bar{c}^{\prime} are equal to 0 where $b^{\prime}=u \cdot b$ and $c^{\prime}=u \cdot c$.

Proof. - For each $b \in \mathrm{~V}^{(-1)}$ we denote by b_{1} the element in $\mathrm{W}^{(1)}$ such that $\bar{b}_{1}=\bar{b}^{\prime}$. Let $\bar{a} \in \overline{\mathrm{~V}}_{\lambda}^{(-1)}, \bar{b} \in \overline{\mathrm{~V}}_{\mu}^{(-1)}$ and $\bar{c} \in \overline{\mathrm{~V}}_{\nu}^{(-1)}$. By Lemma 5.7 we see $\bar{b}^{\prime}=\bar{b}_{1} \in \overline{\mathrm{~V}}_{\mu-\alpha}^{(1)}, \bar{c}^{\prime}=\bar{c}_{1} \in \overline{\mathrm{~V}}_{\nu-\alpha}^{(-1)}$ and $\bar{a} \cdot \bar{b}^{\prime} \in \overline{\mathrm{V}}_{-\lambda+\mu+\alpha}^{(0)}$. We first prove
(i) $\left(\bar{a} \cdot \bar{b}^{\prime}\right) \cdot \bar{c}^{\prime}=0$.

According to Lemma 5.8, for the proof of (i) it suffices to show

$$
\begin{equation*}
\bar{d}_{1} \cdot\left(\bar{a} \cdot \bar{b}_{1}\right)=0 \quad \text { for all } \bar{d} \in \overline{\mathrm{~V}}_{\rho}^{(-1)} \tag{i}
\end{equation*}
$$

where $\rho=\lambda-\mu+\nu-\alpha+1$. From $W^{(1)} \cdot W^{(1)}=\{0\}$ it follows

$$
\bar{d}_{1} \cdot\left(\bar{a} \cdot \bar{b}_{1}\right)=\left(\bar{d}_{1} \cdot \bar{a}\right) \cdot \bar{b}_{1}-\left(\bar{a} \cdot \bar{d}_{1}\right) \cdot \bar{b}_{1} .
$$

Using Lemma 5.7 and (10) we have

$$
\begin{aligned}
& \bar{d}_{1} \cdot\left(\bar{a} \cdot \bar{b}_{1}\right) \in \overline{\mathrm{V}}_{-2 \lambda+2 \mu-\nu+3 \alpha-1}^{(1)}, \\
& \left(\bar{d}_{1} \cdot \bar{a}\right) \cdot \bar{b}_{1} \in \overline{\mathrm{~V}}_{\nu-3 \alpha+2}^{(1)}, \\
& \left(\bar{a} \cdot \bar{d}_{1}\right) \cdot \bar{b}_{1} \in \overline{\mathrm{~V}}_{2 \mu-\nu-\alpha}^{(1)} .
\end{aligned}
$$

(A) the case $\alpha=0$. By Lemma 5.5 we know $\lambda, \mu, \nu=0,1 / 2$. This implies $\nu-3 \alpha+2=\nu+2=2,5 / 2$. Consequently by (7) we have $\left(\bar{d}_{1} \cdot \bar{a}\right) \cdot \bar{b}_{1}=0$ and $\bar{d}_{1} \cdot\left(\bar{a} \cdot \bar{b}_{1}\right)=-\left(\bar{a} \cdot \bar{d}_{1}\right) \cdot \bar{b}_{1}$. If $\bar{d}_{1} \cdot\left(\bar{a} \cdot \bar{b}_{1}\right) \neq 0$, then we obtain $-2 \lambda+2 \mu-\nu+3 \alpha-1=2 \mu-\nu-\alpha$ and so $\lambda=-\frac{1}{2}$, which is a contradiction. Thus (i) ' holds.
(B) the case $\alpha=\frac{1}{2}$. By Lemma 5.5 we have $\lambda, \mu, \nu=\frac{1}{2}, 1$. Therefore we obtain $v-3 \alpha+2=\nu+\frac{1}{2}=1, \frac{3}{2}, \quad$ so by (7) $\left(\bar{d}_{1} \cdot \bar{a}\right) \cdot \bar{b}_{1}=0$ and
(a) $\bar{d}_{1} \cdot\left(\bar{a} \cdot \bar{b}_{1}\right)=-\left(\bar{a} \cdot \bar{d}_{1}\right) \cdot \bar{b}_{1}$.

This shows $\bar{d}_{1} \cdot\left(\bar{a} \cdot \bar{b}_{1}\right)=0$ if $-2 \lambda+2 \mu-\nu+3 \alpha-1 \neq 2 \mu-\nu-\alpha$. Thus we may assume $-2 \lambda+2 \mu-\nu+3 \alpha-1=2 \mu-\nu-\alpha$. Then it follows
(b)

$$
\alpha=\frac{1}{2}, \quad \lambda=\frac{1}{2}, \quad \rho=-\mu+\nu+1 .
$$

Let $h_{1} \in \mathrm{~W}_{2 \mu-\nu-\frac{1}{2}}^{(1)}$. Since $\mathrm{W}^{(1)} \cdot \mathrm{W}^{(1)}=\{0\}$, we have
(c) $\left\langle\left(a \cdot d_{1}\right) \cdot b_{1}, h_{1}\right\rangle=-\left\langle b_{1},\left(a \cdot d_{1}\right) \cdot h_{1}\right\rangle+\left\langle b_{1} \cdot\left(a \cdot d_{1}\right), h_{1}\right\rangle$.

Applying Lemma 5.7 and (10) we obtain

$$
\left(\bar{a} \cdot \bar{d}_{1}\right) \cdot \bar{h}_{1} \in \overline{\mathrm{~V}}_{3 \mu-2 \nu-\frac{1}{2}}^{(1)}, \bar{b}_{1} \cdot\left(\bar{a} \cdot \bar{d}_{1}\right) \in \overline{\mathrm{V}}_{-2 \mu+\nu+\frac{3}{2}}^{(1)}
$$

Therefore we have $\left\langle b_{1},\left(a \cdot d_{1}\right) \cdot h_{1}\right\rangle=0$ if $\mu-\alpha \neq 3 \mu-2 \nu-\frac{1}{2}$, i.e.,
(d)

$$
\left\langle b_{1},\left(a \cdot d_{1}\right) \cdot h_{1}\right\rangle=0 \quad \text { if } \quad \mu \neq \nu .
$$

If $\quad-2 \mu+\nu+\frac{3}{2} \neq 2 \mu-\nu-\frac{1}{2}$, then $\left\langle b_{1} \cdot\left(a \cdot d_{1}\right), h_{1}\right\rangle=0$. Suppose $-2 \mu+\nu+\frac{3}{2}=2 \mu-\nu-\frac{1}{2}$. Then we get $\nu=2 \mu-1$ and so $\mu=1, \nu=1$ or $\mu=\frac{1}{2}, \nu=0$. The case $\mu=\frac{1}{2}, \nu=0$ is impossible because $\nu=\frac{1}{2}, 1$. Consequently we have

$$
\begin{equation*}
\left\langle b_{1} \cdot\left(a \cdot d_{1}\right), h_{1}\right\rangle=0 \quad \text { except for } \quad \mu=\nu=1 . \tag{e}
\end{equation*}
$$

(B^{\prime}) The case $\mu \neq \nu$. By (c) (d) (e) we have $\left(a \cdot d_{1}\right) \cdot b_{1} \in\{u\}$ and so by (a) $\bar{d}_{1} \cdot\left(\bar{a} \cdot \bar{b}_{1}\right)=-\left(\bar{a} \cdot \bar{d}_{1}\right) \cdot \bar{b}_{1}=0$.
($\mathrm{B}^{\prime \prime}$) The case $\mu=\nu=\frac{1}{2}$. It follows then $b_{1}, h_{1},\left(a \cdot d_{1}\right) \cdot b_{1}$, $\left(a \cdot d_{1}\right) \cdot h_{1} \in \mathrm{~V}_{0}^{(1)} \quad$ and $\quad \mathrm{L}_{a \cdot d_{1}} \mathrm{~W}_{0}^{(1)} \subset \mathrm{V}_{0}^{(1)}$. Define the mapping $\mathrm{A}_{a \cdot d_{1}}=p r \circ \mathrm{~L}_{a \cdot d_{1}}: \mathrm{W}_{0}^{(1)} \longrightarrow \mathrm{W}_{0}^{(1)}$ where $p r$ is the projection from $\mathrm{V}_{0}^{(1)}=\mathrm{W}_{0}^{(1)}+\{u\}$ onto $\mathrm{W}_{0}^{(1)}$. (c) and (e) imply

$$
\left\langle\mathrm{A}_{a \cdot d_{1}} b, h_{1}\right\rangle=-\left\langle b_{1}, \mathrm{~A}_{a \cdot d_{1}} h_{1}\right\rangle
$$

and so $\mathrm{A}_{a \cdot d_{1}}$ is skew symmetric. Since the eigenvalues of

$$
\mathrm{A}_{a \cdot d_{1}}=p r \circ \mathrm{~L}_{a \cdot d_{1}}
$$

are all real, we obtain $\mathrm{A}_{a \cdot d_{1}}=0,\left(a \cdot d_{1}\right) \cdot b_{1} \in\{u\}$, and so by (a) $\bar{d}_{1} \cdot\left(\bar{a} \cdot \bar{b}_{1}\right)=-\left(\bar{a} \cdot \bar{d}_{1}\right) \cdot \bar{b}_{1}=0$.

Summing up the results mentioned above (A), (B^{\prime}) and ($\mathrm{B}^{\prime \prime}$) we have

$$
\begin{align*}
& \bar{d}_{1} \cdot\left(\bar{a} \cdot \bar{b}_{1}\right)=0, \\
& \left(\bar{a} \cdot \bar{b}_{1}\right) \cdot \bar{c}_{1}=0 \tag{f}
\end{align*}
$$

except for the case $\alpha=\frac{1}{2}, \lambda=\frac{1}{2}, \mu=\nu=1, \rho=1$.
($\mathrm{B}^{\prime \prime \prime}$) The case $\mu=\nu=1$. Then it follows $\alpha=\frac{1}{2}, \lambda=\frac{1}{2}$, $\mu=\nu=1, \rho=1$. Using $a \cdot b^{\prime}+a^{\prime} \cdot b, d \cdot b^{\prime}+d^{\prime} \cdot b \in \mathrm{~V}^{(1)}$ and $\mathrm{V}^{(1)} \cdot \mathrm{V}^{(1)}=\{0\}$, we get

$$
\begin{aligned}
& \bar{d}_{1} \cdot\left(\bar{a} \cdot \bar{b}_{1}\right)=\bar{d}^{\prime} \cdot\left(\bar{a} \cdot \bar{b}^{\prime}\right)=-\bar{d}^{\prime} \cdot\left(\bar{a}^{\prime} \cdot \bar{b}\right)=-\left(\bar{d}^{\prime} \cdot \bar{a}^{\prime}\right) \cdot \bar{b} \\
& \quad-\bar{a}^{\prime} \cdot\left(\overline{d^{\prime}} \cdot \bar{b}\right)+\left(\bar{a}^{\prime} \cdot \bar{d}^{\prime}\right) \cdot \bar{b}=-\bar{a} \cdot\left(\overline{d^{\prime}} \cdot \bar{b}\right)=\bar{a}^{\prime} \cdot\left(\bar{d} \cdot \bar{b}^{\prime}\right)=\overline{a_{1}} \cdot\left(\bar{d} \cdot \overline{b_{1}}\right) .
\end{aligned}
$$

For $h_{1} \in \mathrm{~W}_{1 / 2}^{(1)}$ we obtain

$$
\begin{aligned}
\left\langle a_{1} \cdot\left(d \cdot b_{1}\right), h_{1}\right\rangle=-\left\langle d \cdot b_{1}\right. & \left., a_{1} \cdot h_{1}\right\rangle+\left\langle\left(d \cdot b_{1}\right) \cdot a_{1}, h_{1}\right\rangle \\
& +\left\langle a_{1},\left(d \cdot b_{1}\right) \cdot h_{1}\right\rangle=\left\langle\left(d \cdot b_{1}\right) \cdot a_{1}, h_{1}\right\rangle
\end{aligned}
$$

because $a_{1} \cdot h_{1}=0$ and $\left(\bar{d} \cdot \bar{b}_{1}\right) \cdot \bar{h}_{1} \in \overline{\mathrm{~V}}_{1}^{(1)}=\{0\}$. Since $\bar{a}_{1} \cdot\left(\bar{d} \cdot \bar{b}_{1}\right)$, $\left(\bar{d} \cdot \bar{b}_{1}\right) \cdot \bar{a}_{1} \in \overline{\mathrm{~V}}_{1 / 2}^{(1)}$, we have $a_{1} \cdot\left(d \cdot b_{1}\right)-\left(d \cdot b_{1}\right) \cdot a_{1} \in\{u\} \quad$ and $\bar{d}_{1} \cdot\left(\bar{a} \cdot \bar{b}_{1}\right)=\bar{a}_{1} \cdot\left(\bar{d} \cdot \bar{b}_{1}\right)=\left(\bar{d} \cdot \bar{b}_{1}\right) \cdot \bar{a}_{1}$. (f) implies $\left(\bar{d} \cdot \bar{b}_{1}\right) \cdot \bar{a}_{1}=0$. Thus (i)' holds.

Therefore the proof of (i)' is completed.
Finally we show
(ii) $\bar{c}^{\prime} \cdot\left(\bar{a} \cdot \bar{b}^{\prime}\right)=0$,
(iii) $\left(\bar{b}^{\prime} \cdot \bar{a}\right) \cdot \bar{c}^{\prime}=0$,
(iv) $\bar{c}^{\prime} \cdot\left(\bar{b}^{\prime} \cdot \bar{a}\right)=0$.

Using (i) and $\mathrm{V}^{(1)} \cdot \mathrm{V}^{(1)}=\{0\}$, for $d_{1} \in \mathrm{~W}^{(1)}$ we get

$$
\begin{aligned}
\left\langle c_{1} \cdot\left(a \cdot b_{1}\right), d_{1}\right\rangle & =-\left\langle a \cdot b_{1}, c_{1} \cdot d_{1}\right\rangle+\left\langle\left(a \cdot b_{1}\right) \cdot\right. \\
& \left.c_{1}, d_{1}\right\rangle \\
& +\left\langle c_{1},\left(a \cdot b_{1}\right) \cdot d_{1}\right\rangle
\end{aligned}
$$

This implies (ii). From (i), $b^{\prime} \cdot a+b \cdot a^{\prime} \in \mathrm{V}^{(1)}$ and $\mathrm{V}^{(1)} \cdot \mathrm{V}^{(1)}=\{0\}$ we obtain $\left(\bar{b}^{\prime} \cdot \bar{a}\right) \cdot \bar{c}^{\prime}=-\left(\bar{b} \cdot \bar{a}^{\prime}\right) \cdot \bar{c}^{\prime}=0$. In the same way (iv) follows from (ii).

According to (i) - (iv) and $\mathrm{V}^{(1)} \cdot \mathrm{V}^{(1)}=\{0\}$, the proof of this lemma is completed.
q.e.d.

Lemma 5.10. - Let $a, b \in \mathrm{~V}^{(-1)}$. Then the products of u, a^{\prime}, b are equal to 0 where $a^{\prime}=u \cdot a$.

Proof. - By $\mathrm{V}^{(1)} \cdot \mathrm{V}^{(1)}=\{0\}$ we obtain
(i) $u \cdot\left(a^{\prime} \cdot b\right)=0$,
(ii) $u \cdot\left(b \cdot a^{\prime}\right)=0$.

In fact we have $u \cdot\left(a^{\prime} \cdot b\right)=\left(u \cdot a^{\prime}\right) \cdot b+a^{\prime} \cdot(u \cdot b)-\left(a^{\prime} \cdot u\right) \cdot b=0$ and $u \cdot\left(b \cdot a^{\prime}\right)=(u \cdot b) \cdot a^{\prime}+b \cdot\left(u \cdot a^{\prime}\right)-(b \cdot u) \cdot a^{\prime}=0$. From (i) it follows
$\left\langle\left(a^{\prime} \cdot b\right) \cdot u, u\right\rangle+\left\langle u,\left(a^{\prime} \cdot b\right) \cdot u\right\rangle=\left\langle u \cdot\left(a^{\prime} \cdot b\right), u\right\rangle+\left\langle a^{\prime} \cdot b, u \cdot u\right\rangle=0$, so $\left\langle\left(a^{\prime} \cdot b\right) \cdot u, u\right\rangle=0$. This implies
(iii) $\left(a^{\prime} \cdot b\right) \cdot u=0$.

In the same way by (ii) we get
(iv) $\left(b \cdot a^{\prime}\right) \cdot u=0$.

The other cases easily follow from $\mathrm{V}^{(1)} \cdot \mathrm{V}^{(1)}=\{0\}$. q.e.d.

From Lemma 5.10 we have
Lemma 5.10'. - Let $a \in \mathrm{~V}^{(-1)}$ and $b^{1} \in \mathrm{~V}^{(1)}$. Then the products of a, b^{1}, u are equal to 0 .

Lemma 5.11. - Let $a \in \mathrm{~V}^{(-1)}$ and $b^{1}, c^{1} \in \mathrm{~V}^{(1)}$. Then the products of a, b^{1}, c^{1} are equal to 0 .

Proof. - By Lemma 5.9 we have $\left(a \cdot b^{1}\right) \cdot c^{1} \in\{u\}$. Using Lemma 5.10^{\prime} and $\mathrm{V}^{(1)} \cdot \mathrm{V}^{(1)}=\{0\}$ we get

$$
\begin{aligned}
& \left\langle u,\left(a \cdot b^{1}\right) \cdot c^{1}\right\rangle=-\left\langle\left(a \cdot b^{1}\right) \cdot u, c^{1}\right\rangle+\left\langle u \cdot\left(a \cdot b^{1}\right), c^{1}\right\rangle \\
& \quad+\left\langle a \cdot b^{1}, u \cdot c^{1}\right\rangle=0 .
\end{aligned}
$$

Thus we have $\left(a \cdot b^{1}\right) \cdot c^{1}=0$. By the same way we obtain

$$
c^{1} \cdot\left(a \cdot b^{1}\right)=0, \quad\left(b^{1} \cdot a\right) \cdot c^{1}=0, \quad c^{1} \cdot\left(b^{1} \cdot a\right)=0
$$

The other cases follow from $\mathrm{V}^{(1)} \cdot \mathrm{V}^{(1)}=\{0\}$. q.e.d.

Consider the centralizer Z of $\mathrm{V}^{(1)}$ in V ;

$$
\mathrm{Z}=\left\{z \in \mathrm{~V} \mid z \cdot a^{1}=a^{1} \cdot z=0 \quad \text { for all } \quad a^{1} \in \mathrm{~V}^{(1)}\right\}
$$

Then we have

Lemma 5.12. - Z is an ideal of V .
Proof. - Let $z \in \mathrm{Z}, a \in \mathrm{~V}$. We have
$u \cdot(z \cdot a)=(u \cdot z) \cdot a+z \cdot(u \cdot a)-(z \cdot u) \cdot a=0$, $u \cdot(a \cdot z)=(u \cdot a) \cdot z+a \cdot(u \cdot z)-(a \cdot u) \cdot z=0$ and so $z \cdot a, a \cdot z \in \mathrm{~V}^{(0)}$. From this $\mathrm{V}^{(1)}$ is invariant by $\mathrm{L}_{z \cdot a}$, $\mathrm{R}_{z \cdot a}, \mathrm{~L}_{a \cdot z}$ and $\mathrm{R}_{a \cdot z}$. Using Lemma 5.11 and $\mathrm{V}^{(1)} . \mathrm{V}^{(1)}=\{0\}$, for $b^{1}, c^{1} \in \mathrm{~V}^{(1)}$ we get

$$
\begin{aligned}
\left\langle\mathrm{L}_{z \cdot a} b^{1}\right. & \left., c^{1}\right\rangle+\left\langle b^{1}, \mathrm{~L}_{z \cdot a} c^{1}\right\rangle=\left\langle b^{1} \cdot(z \cdot a), c^{1}\right\rangle+\left\langle z \cdot a, b^{1} \cdot c^{1}\right\rangle \\
& =\left\langle b^{1} \cdot(z \cdot a), c^{1}\right\rangle=\left\langle\left(b^{1} \cdot z\right) \cdot a+z \cdot\left(b^{1} \cdot a\right)-\left(z \cdot b^{1}\right) \cdot a, c^{1}\right\rangle \\
& =\left\langle z \cdot\left(b^{1} \cdot a\right), c^{1}\right\rangle=-\left\langle z \cdot c^{1}, b^{1} \cdot a\right\rangle+\left\langle c^{1} \cdot z, b^{1} \cdot a\right\rangle \\
& +\left\langle z, c^{1} \cdot\left(b^{1} \cdot a\right)\right\rangle \\
& 0 .
\end{aligned}
$$

This means that $\mathrm{L}_{z . a}$ is skew symmetric. On the other hand the eigenvalues of $\mathrm{L}_{z \cdot a}$ are all real. Therefore it must be $\mathrm{L}_{z \cdot a}=0$ on $\mathrm{V}^{(1)}$, i.e., $(z \cdot a) \cdot b^{1}=0$ for all $b^{1} \in \mathrm{~V}^{(1)}$. From this it follows

$$
\begin{aligned}
& \left\langle b^{1} \cdot(z \cdot a), c^{1}\right\rangle=-\left\langle z \cdot a, b^{1} \cdot c^{1}\right\rangle+\left\langle(z \cdot a) \cdot b^{1}, c^{1}\right\rangle \\
& \\
& +\left\langle b^{1},(z \cdot a) \cdot c^{1}\right\rangle=0 \text { for all } b^{1}, c^{1} \in \mathrm{~V}^{(1)}
\end{aligned}
$$

and so $b^{1} \cdot(z \cdot a)=0 \quad$ for all $b^{1} \in \mathrm{~V}^{(1)}$. Thus we get
(a)

$$
z \cdot a \in \mathbb{Z}
$$

Applying Lemma 5.11 and $\mathrm{V}^{(1)} \cdot \mathrm{V}^{(1)}=\{0\}$, we obtain

$$
\begin{aligned}
\left\langle\mathrm{L}_{a \cdot z} b^{1}\right. & \left., c^{1}\right\rangle+\left\langle b^{1}, \mathrm{~L}_{a \cdot z} c^{1}\right\rangle=\left\langle b^{1} \cdot(a \cdot z), c^{1}\right\rangle+\left\langle a \cdot z, b^{1} \cdot c^{1}\right\rangle \\
= & \left\langle b^{1} \cdot(a \cdot z), c^{1}\right\rangle=\left\langle\left(b^{1} \cdot a\right) \cdot z+a \cdot\left(b^{1} \cdot z\right)-\left(a \cdot b^{1}\right) \cdot z, c^{1}\right\rangle \\
= & \left\langle\left(b^{1} \cdot a-a \cdot b^{1}\right) \cdot z, c^{1}\right\rangle=-\left\langle\left(b^{1} \cdot a-a \cdot b^{1}\right) \cdot c^{1}, z\right\rangle \\
& \quad+\left\langle c^{1} \cdot\left(b^{1} \cdot a-a \cdot b^{1}\right), z\right\rangle+\left\langle b^{1} \cdot a-a \cdot b^{1}, c^{1} \cdot z\right\rangle=0
\end{aligned}
$$

for all $b^{1}, c^{1} \in \mathrm{~V}^{(1)}$. Consequently $\mathrm{L}_{a \cdot z}$ is skew symmetric on $\mathrm{V}^{(1)}$. Since the eigenvalues of $\mathrm{L}_{a \cdot z}$ are real, we have $\mathrm{L}_{a \cdot z}=0$ on $\mathrm{V}^{(1)}$, i.e., $(a \cdot z) \cdot b^{1}=0$ for all $b^{1} \in \mathrm{~V}^{(1)}$. Using this and $\mathrm{V}^{(1)} \cdot \mathrm{V}^{(1)}=\{0\}$ we get

$$
\begin{aligned}
\left\langle b^{1} \cdot(a \cdot z), c^{1}\right\rangle & =-\left\langle a \cdot z, b^{1} \cdot c^{1}\right\rangle+\left\langle(a \cdot z) \cdot b^{1}, c^{1}\right\rangle+\left\langle b^{1},(a \cdot z) \cdot c^{1}\right\rangle \\
& =0
\end{aligned}
$$

for all $b^{1}, c^{1} \in \mathrm{~V}^{(1)}$ and hence
(b)

$$
b^{1} \cdot(a \cdot z)=0 \quad \text { for all } \quad b^{1} \in \mathrm{~V}^{(1)}
$$

Therefore we have $a \cdot z \in Z$. (a) and (b) imply that Z is an ideal of V. q.e.d.

Let C denote the center of Z;

$$
\mathrm{C}=\{c \in \mathrm{Z} \mid c \cdot z=z \cdot c=0 \quad \text { for all } \quad z \in \mathbf{Z}\}
$$

Then we have

Lemma 5.13. - C is a commutative ideal of V containing u.
Proof. - From $\mathrm{C} \supset \mathrm{V}^{(1)}$ it follows $u \in \mathrm{C}$. Let $c \in \mathrm{C}, x \in \mathrm{~V}$. Since Z is an ideal of V, we have

$$
z \cdot(c \cdot x)=(z \cdot c) \cdot x+c \cdot(z \cdot x)-(c \cdot z) \cdot x=0
$$

and $z \cdot(x \cdot c)=(z \cdot x) \cdot c+x \cdot(z \cdot c)-(x \cdot z) \cdot c=0$ for all $z \in \mathrm{Z}$. This implies
(a)

$$
\mathrm{R}_{a}=0 \text { on } \mathrm{Z}
$$

where $a=c \cdot x$ or $x \cdot c$. Using this and Lemma 3.2, for $z, z^{\prime} \in \mathrm{Z}$ we get
(b)

$$
\begin{aligned}
& \frac{d^{2}}{d t^{2}}\left\langle\exp \mathrm{tL}_{a} z, \exp \mathrm{tL}_{a} z^{\prime}\right\rangle=\frac{d}{d t}\left\langle a, \exp \mathrm{tL}_{a}\left(z \cdot z^{\prime}\right)\right\rangle \\
& =\left\langle a, \mathrm{~L}_{a}\left(\exp \mathrm{tL}_{a}\left(z \cdot z^{\prime}\right)\right)\right\rangle=-\langle w, a \cdot a\rangle+\langle w \cdot a, a\rangle \\
& \quad+\langle a, w \cdot a\rangle=0
\end{aligned}
$$

where $w=\exp \operatorname{tL}_{a}\left(z \cdot z^{\prime}\right) \in Z$. Let λ be an eigenvalue of L_{a} on Z and z an eigenvector corresponding to λ. Then we have $\frac{d^{2}}{d t^{2}}\left\langle\exp \mathrm{tL}_{a} z, \exp \mathrm{tL}_{a} z\right\rangle=\frac{d^{2}}{d t^{2}}\langle z, z\rangle e^{2 \lambda t}=(2 \lambda)^{2} e^{2 \lambda t}\langle z, z\rangle$ and by (b) $\lambda=0$. Thus the eigenvalues of L_{a} on Z are equal to 0 . We show

$$
\begin{equation*}
\mathrm{L}_{a}=0 \text { on } \mathrm{Z} \tag{c}
\end{equation*}
$$

Suppose $\mathrm{L}_{a} \neq 0$ on Z . Then there exist elements $z, w \in \mathrm{~V}$ such that $\mathrm{L}_{a} w=0, w=\mathrm{L}_{a} z \neq 0$. Since $\exp \mathrm{tL}_{a} z=z+t w$, we have $\frac{d^{2}}{d t^{2}}\left\langle\exp \mathrm{tL}_{a} z, \exp \mathrm{~L}_{a} z\right\rangle=\frac{d^{2}}{d t^{2}}\langle z+t w, z+t w\rangle$

$$
=2\langle w, w\rangle t+2\langle z, w\rangle
$$

which contradicts to (b). Thus (c) holds. (a) and (c) imply $a \in C$ and consequently $c \cdot x, x \cdot c \in \mathrm{C}$. Therefore C is an ideal of V . q.e.d.

Proposition 5.1 follows from Lemma 5.13.

6. Proof of Theorem 3.1.

We first consider the case $u \cdot u=u$. By Proposition 4.1 we have the orthogonal decomposition $\mathrm{V}=\{u\}+\mathrm{V}_{1 / 2}+\mathrm{V}_{0}$. Since V_{0} is a subalgebra, by the inductive assumption we get $V_{0}=I+U_{0}$, where I is a commutative ideal of V_{0} and U_{0} is a subalgebra with principal idempotent s_{0}. Put $\mathrm{E}=\{u\}+\mathrm{V}_{1 / 2}$. Then E is an ideal of V. Let $a \in I$. Since E is invariant under L_{a}, R_{a} and is orthogonal to a and since $a \cdot a=0$, by Lemma 3.3 we obtain $\mathrm{L}_{a}=\mathrm{R}_{a}=0$ on E. From this we know that I is a commutative ideal of V. Put

$$
\begin{aligned}
\mathrm{U} & =\mathrm{E}+\mathrm{U}_{0} \\
s & =u+s_{0}
\end{aligned}
$$

Using Proposition 4.1 (iv), $u \cdot u=u$ and $s_{0} \cdot s_{0}=s_{0}$, we have (i) $s \cdot s=s$.

By Proposition 4.1 (iv) we have $\mathrm{L}_{u}=\mathrm{R}_{u}=0$ on U_{0}. Therefore $\mathrm{L}_{s}=\mathrm{L}_{s_{0}}$ is diagonalizable on U_{0} and its eigenvalues on U_{0} are equal to $1 / 2,1$ and moreover $\mathrm{R}_{s}=\mathrm{R}_{s_{0}}=2 \mathrm{~L}_{s_{0}}-1=2 \mathrm{~L}_{s}-1$ on U_{0}. Since E is invariant under $\mathrm{L}_{s_{0}}, \mathrm{R}_{s_{0}}$ and is orthogonal to s_{0} and since $s_{0} \cdot s_{0}=s_{0}$, applying Lemma 3.3 it follows that the restriction of $L_{s_{0}}$ on E is diagonalizable and its eigenvalues are $0,1 / 2$ and that $\mathrm{R}_{s_{0}}=2 \mathrm{~L}_{s_{0}}$ on E . Therefore using $\mathrm{L}_{s_{0}} u=0$, $\mathrm{L}_{s_{0}} \mathrm{~V}_{1 / 2} \subset \mathrm{~V}_{1 / 2}$ and $\mathrm{L}_{u}=1 / 2$ on $\mathrm{V}_{1 / 2}, \mathrm{~L}_{s}=\mathrm{L}_{u}+\mathrm{L}_{s_{0}}$ is diagonalizable on E and its eigenvalues on E are equal to $1 / 2,1$. Since $\mathrm{R}_{u}=2 \mathrm{~L}_{u}-1$ and $\mathrm{R}_{s_{0}}=2 \mathrm{~L}_{s_{0}}$ hold on E , we have $\mathrm{R}_{s}=2 \mathrm{~L}_{s}-1$ on E . Thus we obtain
(ii) The restriction of L_{s} on U is diagonalizable and its eigenvalues on U are equal to $1 / 2,1$.
(iii) $\mathrm{R}_{s}=2 \mathrm{~L}_{s}-1$ on U .
(i) (ii) (iii) imply that s is a principal idempotent of U . Thus in the case $u \cdot u=u$ the proof of Theorem 3.2 is completed.

Next we consider the case $u \cdot u=0$. By Proposition 5.1 there exists a commutative ideal C of V containing u. Let V^{\prime} be the orthogonal complement of C in V . By Lemma $3.1 \mathrm{~V}^{\prime}$ is a subalgebra. From the inductive assumption we get $\mathrm{V}^{\prime}=\mathrm{I}^{\prime}+\mathrm{U}$, where I^{\prime} is a commutative ideal of V^{\prime} and U is a subalgebra with principal idempotent s. Let $a^{\prime} \in \mathrm{I}^{\prime}$. Since C is invariant under $\mathrm{L}_{a^{\prime}}$, $\mathrm{R}_{a^{\prime}}$ and $\mathrm{C} \cdot \mathrm{C}=\{0\}$ and since $a^{\prime} \cdot a^{\prime}=0$, by Lemma 3.3 we obtain $\mathrm{L}_{a^{\prime}}=\mathrm{R}_{a^{\prime}}=0$ on C . This shows that $\mathrm{I}=\mathrm{C}+\mathrm{I}^{\prime}$ is a commutative ideal of V . Thus the decomposition $\mathrm{V}=\mathrm{I}+\mathrm{U}$ has the desired properties.

Therefore the proof of Theorem 3.1 is completed. q.e.d.

7. Proof of Main Theorem 2) and Corollaries.

Let V be the tangent space of M at x. In view of Main Theorem 1), Proposition 2.4 and Theorem 2.1 V admits a structure of normal Hessian algebra and $E_{x}=T(V) 0$.

Proof of Main Theorem 2). - According to Theorem 3.1 the normal Hessian algebra V is decomposed in $V=I+U$, where I is a commutative ideal of V and U is a clan. Denote by $\mathrm{T}(\mathrm{I})$ the commutative normal subgroup of $\mathrm{T}(\mathrm{V})$ generated by $\left\{\mathrm{X}_{a}^{*} \mid a \in \mathrm{I}\right\}$ and $T(U)$ the subgroup of $T(V)$ generated by $\left\{X_{w}^{*} \mid w \in U\right\}$. Then we get $T(V)=T(I) T(U)$. Let E_{x}^{+}denote the orbit of $T(U)$ through the origin $0 ; \mathrm{E}_{x}^{+}=\mathrm{T}(\mathrm{U}) 0$. For $a \in \mathrm{I}, v^{+} \in \mathrm{E}_{x}^{+}$we have $\exp \mathrm{X}_{a}^{*} v^{+}=v^{+}+\sum_{k=0}^{\infty} \frac{\mathrm{L}_{a}^{k+1}}{(k+1)!}\left(\mathrm{L}_{a} v^{+}+a\right)=a+a \cdot v^{+}+v^{+}$because I is a commutative ideal of V . Thus $\mathrm{T}(\mathrm{I}) v^{+} \subset \mathrm{I}+v^{+}$. Suppose $v^{+}=h 0$ where $h \in \mathrm{~T}(\mathrm{U})$. Since

$$
\mathrm{T}(\mathrm{I}) v^{+}=\mathrm{T}(\mathrm{I}) h 0=h h^{-1} \mathrm{~T}(\mathrm{I}) h 0=h \mathrm{~T}(\mathrm{I}) 0=h \mathrm{I}
$$

and since h is an affine transformation of V , we obtain $\mathrm{T}(\mathrm{I}) v^{+}=\mathrm{I}+v^{+}$.
Therefore, putting $\mathrm{E}_{x}^{0}=\mathrm{I}$ we get

$$
\mathrm{E}_{x}=\mathrm{T}(\mathrm{~V}) 0=\mathrm{T}(\mathrm{I}) \mathrm{T}(\mathrm{U}) 0=\mathrm{T}(\mathrm{I}) \mathrm{E}_{x}^{+}=\mathrm{E}_{x}^{0}+\mathrm{E}_{x}^{+}
$$

Let $p: \mathrm{E}_{x} \longrightarrow \mathrm{E}_{x}^{+}$denote the projection from $\mathrm{E}_{x}=\mathrm{E}_{x}^{0}+\mathrm{E}_{x}^{+}$onto E_{x}^{+}. Then E_{x} admits a fibering with projection p. Since U is a clan, applying Theorem 2.2 (Vinberg's result) the base space E_{x}^{+} is an affine homogeneous convex domain not containing any full straight line. The fiber $p^{-1}\left(v^{+}\right)=\mathrm{T}(\mathrm{I}) v^{+}=\mathrm{E}_{x}^{0}+v^{+}$over $v^{+} \in \mathrm{E}_{x}^{+}$ is an affine subspace of V and a Euclidean space with respect to the induced metric because $T(I)$ is commutative. It is clear that the fiber $\mathrm{E}_{x}^{0}+v$ through $v \in \mathrm{E}_{x}$ is characterized as the set of all points which can be joined with v by full straight lines contained in E_{x}. This implies that our fibering of E_{x} is unique and that every affine transformation of E_{x} is fiber preserving. q.e.d.

Proof of Corollary 1. - If we put $\alpha_{x}(v)=\operatorname{Tr} \mathrm{L}_{v}$ for $v \in \mathrm{~V}$, the value β_{x} of the canonical bilinear form β at x has an expression (cf. [8]) $\beta_{x}(v, w)=\alpha_{x}(v \cdot w)$ for $v, w \in \mathrm{~V}$. By Theorem 3.1 V is decomposed in $V=I+U$, where I is a commutative ideal of V and U is a clan. I being a commutative ideal of V we get

$$
\begin{align*}
& \alpha_{x}(a)=0 \tag{1}\\
& \beta_{x}(a, v)=0, \quad \text { for } \quad a \in \mathrm{I}, v \in \mathrm{~V}
\end{align*}
$$

Because $\quad\langle v \cdot a, b\rangle+\langle a, v \cdot b\rangle=\langle a \cdot v, b\rangle+\langle v, a \cdot b\rangle=\langle a \cdot v, b\rangle$ for $a, b \in \mathrm{I}$ and $v \in \mathrm{~V}$, we have

$$
\begin{equation*}
\mathrm{L}_{v}+{ }^{t} \mathrm{~L}_{v}=\mathrm{R}_{v} \quad \text { on } \mathrm{I} \tag{2}
\end{equation*}
$$

Since U is a clan, it follows

$$
\begin{equation*}
\mathrm{Tr}_{\mathrm{U}} \mathrm{~L}_{v . v}>0 \quad \text { for } v \neq 0 \in \mathrm{U} \tag{3}
\end{equation*}
$$

Using $\mathrm{R}_{v . v}=\mathrm{R}_{v} \mathrm{R}_{v}+\left[\mathrm{L}_{v}, \mathrm{R}_{v}\right]$ and (2) we obtain

$$
\mathrm{Tr}_{\mathrm{I}} \mathrm{~L}_{v \cdot v}=\frac{1}{2} \mathrm{Tr}_{\mathrm{I}} \mathrm{R}_{v \cdot v}=\frac{1}{2} \mathrm{Tr}_{\mathrm{I}} \mathrm{R}_{v}{ }^{t} \mathrm{R}_{v} \geqslant 0
$$

From this and (3) we get $\beta_{x_{0}}(v, v)=\operatorname{Tr}_{\mathrm{I}} \mathrm{L}_{v \cdot v}+\mathrm{Tr}_{\mathrm{U}} \mathrm{L}_{v \cdot v}>0$ for all $v \neq 0 \in U$. This together with (1) implies that β_{x} is positive semi-definite and that the null space of β_{x} coincides with $\mathrm{E}_{x}^{0}=\mathrm{I}$.
q.e.d.

Proof of Corollary 2. - Let $v \in \mathrm{E}_{x}$. Since the fiber $\mathrm{E}_{x}^{0}+v$ through v is an affine subspace of V , it follows $d(v, w)=0$ for all $w \in \mathrm{E}_{x}^{0}+v$ (cf. [5]). Conversely, suppose $d(v, w)=0$. Then we get $0 \leqslant c_{\mathrm{E}_{x}^{+}}^{a}(p(v), p(w)) \leqslant c_{\mathrm{E}_{x}}^{a}(v, w) \leqslant d(v, w)=0$ because the projection $p: \mathrm{E}_{x} \longrightarrow \mathrm{E}_{x}^{+}$is an affine mapping. By a result of Vey [11] $c_{\mathrm{E}_{x}^{+}}^{a}$ is a distance on E_{x}^{+}. This implies $p(v)=p(w)$.

Proof of Corollary 3. - Our assertion follows from the facts that the covering projection $\exp _{x}: \mathrm{E}_{x}=\mathrm{E}_{x}^{0}+\mathrm{E}_{x}^{+} \longrightarrow \mathrm{M}$ is an affine mapping and that E_{x}^{0} is an affine subspace of V .
q.e.d.

Let G be a connected Lie subgroup of $\operatorname{Aut}(M)$ which acts transitively on M and B the isotropy subgroup of G at a point x in $\mathrm{M} ; \mathrm{M}=\mathrm{G} / \mathrm{B}$. We denote by $\widetilde{\mathrm{G}}$ the universal covering group of G and by $\pi: \widetilde{G} \longrightarrow G$ the covering projection. Then $\widetilde{M}=\widetilde{G} / \widetilde{B}$ is the universal covering manifold of $M=G / B$, where \widetilde{B} is the identity component of $\pi^{-1}(\mathrm{~B})$. Let $\widetilde{\mathrm{N}}$ be the normal subgroup of $\widetilde{\mathrm{G}}$ consisting of all elements in $\widetilde{\mathrm{G}}$ which induce the identity transformation of \widetilde{M}. We put $\mathrm{G}^{*}=\widetilde{\mathrm{G}} / \widetilde{\mathrm{N}}, \mathrm{B}^{*}=\widetilde{\mathrm{B}} / \widetilde{\mathrm{N}}$. According to Main Theorem 1) it follows that $\widetilde{M}=G^{*} / B^{*}$ is a convex domain in \mathbf{R}^{n} and that G^{*} is a subgroup of the affine transformation group $\mathrm{A}(n)$ of \mathbf{R}^{n}.

Proof of Corollary 4. - Assume G is not solvable. Since G* is not solvable, there exists a connected semi-simple Lie subgroup S^{*} of G^{*}. Let K^{*} be a maximal compact subgroup of S^{*}. Since $\widetilde{\mathrm{M}}$ is a convex domain in $\mathrm{R}^{n}, \mathrm{~K}^{*}$ has a fixed point \tilde{y} in $\widetilde{\mathrm{M}}$.

Therefore we have

$$
\operatorname{dim} \mathrm{G}^{*}=\operatorname{dim} \tilde{\mathrm{M}}=\operatorname{dim} \mathrm{G}^{*} \tilde{y} \leqslant \operatorname{dim} \mathrm{G}^{*}-\operatorname{dim} \mathrm{K}^{*}<\operatorname{dim} \mathrm{G}^{*},
$$ which is a contradiction. Thus G must be a solvable Lie group. q.e.d.

Proof of Corollary 5. - Let G be a transitive reductive Lie subgroup of $\operatorname{Aut}(\mathrm{M})$ and let g be the Lie algebra of G. Then g is decomposed into the direct sum $\mathfrak{g}=\mathfrak{c}+\mathfrak{z}$ where \mathfrak{c} is the center of g and \mathfrak{g} the semi-simple part of g. Denoting by C^{*} and S^{*} the connected Lie subgroup of G^{*} corresponding to \mathfrak{c} and \mathfrak{F} respectively, we have $\mathrm{G}^{*}=\mathrm{C}^{*} \mathrm{~S}^{*}$. Since S^{*} is a connected semisimple Lie subgroup of $\mathrm{A}(n), \mathrm{S}^{*}$ is closed in $\mathrm{A}(n)$ (cf. [15]). Let $\overline{\mathrm{C}}^{*}$ denote the closure of C^{*} in $\mathrm{A}(n)$. Then the subgroup $\overline{\mathrm{C}}^{*} \mathrm{~S}^{*}$ is closed in $\mathrm{A}(n)$ (cf. [3]) and so coincides with the closure $\overline{\mathrm{G}}^{*}$ of G^{*} in $\mathrm{A}(n)$. It is easy to see that every element in $\overline{\mathrm{G}}^{*}$ preserves the domain \widetilde{M} and leaves invariant the Hessian metric on $\widetilde{\mathrm{M}}$. Denoting by K_{c}^{*} and K_{s}^{*} maximal compact subgroups of $\overline{\mathrm{C}}^{*}$ and S^{*} respectively, the group $\mathrm{K}^{*}=\mathrm{K}_{c}^{*} \mathrm{~K}_{s}^{*}$ is a maximal compact subgroup of $\overline{\mathrm{G}}^{*}=\overline{\mathrm{C}}^{*} \mathrm{~S}^{*}$ because the center of S^{*} is finite. Since $\widetilde{\mathrm{M}}$ is a convex domain in $\mathbf{R}^{n}, \mathrm{~K}^{*}$ has a fixed point \widetilde{o} in $\widetilde{\mathrm{M}}$. We may assume that \widetilde{o} is the origin in \mathbf{R}^{n}. The isotropy subgroup $\mathrm{K}^{* \prime}$ of $\overline{\mathrm{G}}^{*}$ at \widetilde{o} is contained in an orthogonal group and is closed in $\overline{\mathrm{G}}^{*}$. Thus $\mathrm{K}^{* \prime}$ is a compact subgroup of $\overline{\mathrm{G}}^{*}$ containing K^{*} and so $\mathrm{K}^{* \prime}=\mathrm{K}^{*}$. Since $\overline{\mathrm{G}}^{*}$ acts effectively on $\widetilde{\mathrm{M}}, \overline{\mathrm{K}}_{c}^{*}$ is reduced to the identity and so $\mathrm{K}^{* \prime}=\mathrm{K}^{*}=\mathrm{K}_{s}^{*}$. We denote by $\overline{\mathfrak{g}}^{*}, \overline{\mathrm{c}}^{*}, \mathfrak{F}^{*}$ and \mathfrak{f}_{s}^{*} the Lie algebras of $\overline{\mathrm{G}}^{*}, \overline{\mathrm{C}}^{*}, \mathrm{~S}^{*}$ and K_{s}^{*} respectively, and by \mathfrak{p}_{s}^{*} the orthogonal complement of \mathfrak{f}_{s}^{*} in \mathfrak{S}^{*} with respect to the Killing form of \mathfrak{s}^{*}. Putting $\mathfrak{f}^{*}=\mathfrak{f}_{s}^{*}$ and $\mathfrak{p}^{*}=\overline{\mathfrak{c}}^{*}+\mathfrak{p}_{s}^{*}$, we have

$$
\overline{\mathfrak{g}}^{*}=\mathfrak{f}^{*}+\mathfrak{p}^{*},\left[\mathfrak{f}^{*}, \mathfrak{f}^{*}\right] \subset \mathfrak{f}^{*},\left[\mathfrak{f}^{*}, \mathfrak{p}^{*}\right] \subset \mathfrak{p}^{*},\left[\mathfrak{p}^{*}, \mathfrak{p}^{*}\right] \subset \mathfrak{f}^{*}
$$

From this using the same argument as in [9] it follows that $\tilde{\mathbf{M}}=\mathrm{G}^{*} / \mathrm{K}^{*}$ is the direct product of a Euclidean space and an affine homogeneous convex self-dual cone not containing any full straight line. q.e.d.

Proof of Corollary 6. - Since M is compact, the automorphism group $G=\operatorname{Aut}(\mathrm{M})$ is compact. Therefore the Lie algebra g of G is decomposed into the direct sum $\mathfrak{g}=\mathfrak{c}+\mathfrak{z}$ where \mathfrak{c} is the center of \mathfrak{g} and \mathfrak{z} is a compact semi-simple subalgebra of \mathfrak{g}. Denote by

C* and S^{*} the connected Lie subgroups of G^{*} corresponding to c and \mathfrak{i} respectively. Then $G^{*}=C^{*} S^{*}$, and S^{*} is compact by a theorem of Weyl. Since $\widetilde{M}=G^{*} / B^{*}$ is a convex domain, S^{*} has a fixed point in M. Therefore $B^{*} \supset S^{*}$ and so S^{*} is a normal subgroup of G^{*} contained in B^{*}. From this and the effectiveness, S^{*} is reduced to the identity. Thus we have $g=c$. Consequently G is commutative and M is a Euclidean torus. q.e.d.

BIBLIOGRAPHY

[1] S.G. Gindikin, I.I. Pjateckil-Sapiro and E.B. Vinberg, Homogeneous Kähler manifolds, in "Geometry of Homogeneous Bounded Domains", Centro Int. Math. Estivo, 3 Ciclo, Urbino, Italy, 1967, 3-87.
[2] P. Dombrowski, On the geometry of the tangent bundles, J. Reine Angew. Math., 210 (1962), 73-88.
[3] M. Gото, Faithful representations of Lie groups I, Math. Japon., 1 (1948), 1-13.
[4] J. Helmstetter, Doctorat de 3^{e} cycle "Radical et groupe formel d'une algèbre symétrique à gauche" novembre 1975, Grenoble.
[5] S. Kobayashi, Intrinsic distances associated with flat affine or projective structures, J. Fac. Sci. Univ. of Tokyo, IA 24 (1977), 129-135.
[6] J.L. Koszul, Domaines bornés homogènes et orbites de groupes de transformations affines, Bull. Soc. Math. France, 89 (1961), 515-533.
[7] J.L. Koszul, Variétés localement plates et convexité, Osaka J. Math., 2 (1965), 285-290.
[8] H. Shima, On certain locally flat homogeneous manifolds of solvable Lie groups, Osaka J. Math., 13 (1976), 213-229.
[9] H. Shima, Symmetric spaces with invariant locally Hessian structures, J. Math. Soc. Japan, 29 (1977), 581-589.
[10] H. Shima, Compact locally Hessian manifolds, Osaka J. Math., 15 (1978) 509-513.
[11] J. Vey, Une notion d'hyperbolicité sur les variétés localement plates, C.R. Acad. Sci. Paris, 266 (1968), 622-624.
[12] E.B. Vinberg, The Morozov-Borel theorem for real Lie groups, Soviet Math. Dokl., 2 (1961), 1416-1419.
[13] E.B. Vinberg, The theory of convex homogeneous cones, Trans. Moscow Math. Soc., 12 (1963), 340-403.
[14] E.B. Vinberg and S.G. Gindikin, Kaehlerian manifolds admitting a transitive solvable automorphism group, Math. Sb., 75 (116) (1967), 333-351.
[15] K. Yoshida, A theorem concerning the semi-simple Lie groups, Tohoku Math. J., 43 (Part II) (1937), 81-84.

Manuscrit reçu le 11 septembre 1979 révisé le 21 janvier 1980.

Hirohiko Shima, Department of Mathematics Yamaguchi University Yamaguchi 753 (Japan).

[^0]: (*) In this paper for the sake of brevity we adopt the term of Hessian instead of locally Hessian used in [8] [9] [10].

[^1]: (*) The author learned this result from Professor Koszul.

