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ON COMPACT,
HOMOGENEOUS SYMPLECTIC MANIFOLDS

by Ph. B. ZWAl{T and W. M. BOOTUBY (?le)

Dedicated to Professor S.S. Chern.
(On the occasion of the Chern Symposium, June 1979).

1. Introduction.

In this paper we study compact homogeneous spaces of Lie
groups which have a symplectic structure which is invariant under
the group action. Such objects have been studied quite extensively
since their relation to the representations of nilpotent Lie groups
was discovered by Kirillov (see e.g. Pukanszky [17]). Especially
noteworthy in this respect is the work of Kostant [11] and Souriau
[18], where many basic theorems of classification and characte-
rization of homogeneous symplectic manifolds are obtained and
applied to representation theory. In the present work the approach
and the methods are somewhat different from those above. Almost
no assumption is made about the Lie group G which acts transitively
on the symplectic manifold M except that it is connected. In par-
ticular it is not assumed to be simply connected, to be semi-simple,
nor to have any particular cohomology properties. We do however
suppose that M is compact, which is not the case in much of the
work cited above (and below); this assumption is essential to the
methods used. Finally, it is not assumed that the action of G on
M is effective, but merely almost effective. These properties, together
with the existence on M of a G-invariant, closed, exterior two-
form RM of maximum rank, i.e. the invariant symplectic form,

(*) This paper is based in part upon work supported by the National Science
Foundation under Grant No. ENG78-22166.
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are sufficient, it turns out, to give a fairly complete description of
G, M and the isotropy group K in terms of known results of
Borel [3] (also Lichnerowicz [12], [13] and Matsushima [14]), and
of the results obtained here in the solvable case.

Many of the basic results of this paper were obtained (with some-
what different proofs) in the Ph.D. dissertation [21] of one of the
authors, Philip Zwart, written under the direction of the other author.
For various reasons —an important one being that the computational
complexity and length of some of the original proofs made it difficult
to disengage any basic underlying principle— the results were never
submitted to a mathematical journal for publication despite the fact
that the authors, at least, both feel the results to be of interest.
Research in various aspects of symplectic manifolds has, if anything,
increased since then: a very nice summary of recent work may be
found in the Alan Weinstein's notes [20] of the NSF-CBMS Regional
Conference on Symplectic Manifolds at the University of North
Carolina. There have also been some further recent interesting papers
on the homogeneous case: B-Y Chu [6] and S. Sternberg [19]. With
this activity in mind we hope that the present publication of these
results is still timely.

In the present paper the results of Zwart [21] have not only
been extended, but the proofs have been completely reworked in
a number of ways. Although Section 2 is introductory and standard,
most of Section 3 is new and contains some essential ideas for the
later analysis. It is hoped that the ideas there can be applied to other
instances of invariant forms on compact homogeneous spaces. In
fact, a paper is in preparation applying similar techniques to the
cosymplectic and contact cases. Section 4 applies the results to the
general symplectic case and with Section 5 shows that the homo-
geneous manifold M can be split —as a homogeneous symplectic
space— into a cartesian product of a compact homogeneous sym-
plectic space of a compact semi-simple Lie group (a case already
studied by Borel [3]) and a compact symplectic solvmanifold. The
last two sections are devoted to a study of this latter case.
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2. Notation and generalities.

Throughout this article we consider a connected Lie group,
usually denoted G, acting transitively and almost effectively (on
the left) on a connected manifold, say M. (All data are C°°.)
It is assumed that a fixed basepoint is chosen so that M is identified
with G/K, the space of left cosets of K the isotropy group of
the basepoint. The canonical projection of G onto G/K is denoted
TT : G —> G/K and the assumption of almost effective action is
equivalent to the statement that K contains no connected normal
subgroup of G or that the Lie algebra f of K contains no ideal
of g , the Lie algebra of G.

It is an important aspect of the results obtained that we make
no assumption that M = G/K is simply connected —or even has
vanishing first Betti number. But as to G itself, let F: G —^ G
be its universal covering group; since M may be naturally iden-
tified with G/K, where K = F'^K), there is no loss of generality
in supposing that the group G is simply connected, even though
we do not wish to assume M simply connected. Composing
F: G —> G with the action of G on M gives again a transitive,
almost effective action.

We are interested in studying certain differential forms on M
which are G-invariant. Let e^e\P(U) and 6 = TT*^ GA^G),
then we have the following (e.g. see [2]).

(2.1) // 0^ is G-invariant, then

(i) 6 is invariant under Ie ft translations, i.e. 6^AP(Q),
(ii) Adx*6 = 9 for all x G K , and

(iii) i^Q = 0 for all X e f .

Conversely, any form 0 on G satisfying (i), (ii) and (iii) is
the image under TT* of a unique G-invariant form of G/K, which
we call the induced form on G/K.

We also remark that TT* is an isomorphism and 6 is closed
if and only if 0^ is closed. In fact we have the following useful
formula (see, e.g. [10]) for the value of d6 , 6 a left-invariant p -
form on G :
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(2.2) d0(X<,, X » , . . . , Xp) = ——— S (- ir/ 0([X,, X, ],
p I</ X X X X ^-A>0 5 • • • ? yv (• ? • • • 5 -̂ y ? • - • ? -̂ p7

for all XQ , X ^ , . . . , Xp E g. Thus 0 is closed if and only if the sum
on the right is zero.

If 6 is a left-invariant form on G, i.e. a form on g , we denote
by HQ -or (more usually) H- the closed subgroup
(2.3) He = {x E G | Mx*0 = 9} .

Clearly, in the circumstance that 6 = Tr*^^ discussed above,
H = HQ D K by (2.1) (ii), but they need not coincide. Even their
Lie algebras may be distinct. In fact, if Lx denotes the Lie deri-
vative with respect to X € g,

(2.4) ^ = {X € g | Lx0 == 0} == {X e g | (adX)*0 = 0}
and

f == { X e g | z x 0 = = 0 } .

If we assume further that 6 is closed, then the relation
Lx0 = di^Q + i^d6 allows us to rewrite these characterizations
as follows:
(2.5) S = { X E g l ^ x ^ == 0} and f = {X G g [ i^Q = 0} ;
thus d0 = 0 implies ^ D f .

We shall be particularly interested in the case of a left in-
variant 2-form St on G. If Z is a fixed element of g , then
di^Sl == 0 if and only if A z f t ( X , Y ) = 0 for all X , Y E g , i.e.

0=d^2(X,Y)=n(Z,[X,Y]) V X . Y G g .

It may happen that [g ,g ] = g in which case we have for
f tGA^g) sind closed:
(2.6) If [ g , g ] = g , t h e n ^ = {Z G g | i^Sl = 0} = f .

Finally we consider the case of a left-invariant form 0 on G
when g = 0 i ^ . . . ^ g ^ , i.e. its Lie algebra decomposes into a
direct sum of ideals. An example is a semi-simple G and some
^EA^g) . Let p,: g — ^ g , and ^ :g ,—^ g be the correspond-
ing projection and injection of Lie algebras. We let 6\ = q*0 EA(g,)
and 0,=p,*0;eA(g). If X = X i + . . . + X ^ and Y == Y^ + ... 4- Y^



ON COMPACT, HOMOGENEOUS SYMPLECTIC MANIFOLDS 133

in g with X, ,Y,eg^. , we could write —somewhat ambiguously—

0;(X, ,Y,)=0,(X, ,Y,)

if we make suitable identifications. We are particularly interested
in the following case:

(2.7) DEFINITION. - 9 is said to be decomposable if 6 = 0^ + ... 4- 6^ .

(2.8) Remark. — It is easily seen that 0 is decomposable if and
only if it vanishes whenever two of its arguments are from different
ideals g , , g , i ̂  f. For example if ^ E A ^ g ) , 6 is decomposable
if and only if 0(g,, g/) = 0 whenever i ^= j .

The following facts, stated as lemmas, will be useful to us.

(2.9) LEMMA. - // g = g^ C . . . e g^ is the Lie algebra of a Lie
group G and ^GA^g) is decomposable, then the algebra I)
of the subgroup H(= H^) has a compatible decomposition
^ = ^ (B . . . 0 ̂  , ̂ , = f) 0 g , , i = 1 , . . . , m. Moreover, if G
decomposes in to a corresponding direct product G = G x . . . x G^ ,
then so does H, ie. H = H^ x . . . x H^ with H, == H H G,.

Proof. — The Lie algebra statement follows from the decompo-
sability for groups (we pass, if necessary, to the simply connected
covering group of G). Therefore we check only the last statement.

If x G H C G , then x = x ^ . . . Xy^ , uniquely, with x^ € G,
and XfX^ = XjX^ for i ^ j . The ideals g, are invariant under the
adjoint action and in fact ArfXy is the identity on g, if i ^ f . We
must show that each x^ is in H, i.e. that Adx^O = 0 . Since
6 = 0i -h . . . + 6 ^ , it is enough to see that AdxfO^ = 0^ ,
;, / = 1 , . . . , m . Recall that Q^ (Z^,..., Z^) = 0 unless each
argument is in g. and that

Adx^O^Z^,..., Z00) == e^Adx.Z^ ,..., Adx.Z^).

If z ' = ^ / , then it is clear that Adx^Qj == 0y . Suppose i = / and
Z < l > , . . . , Z ( p ) € g , . . Then

Adx^e^Z^,..., Z^) = 0,(Ad x^0,..., Ad x, Z<^)
= 0,(Adjc Z<° ,..., Adx Z<p)) = e(AdxZW , . . . , A d x Z<^

= Arfjc^Z^ ,..., Z00) = 0(Z<° ,..., Z<^) = ̂ .(Z^ ,..., Z<^,
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where we have used the fact that 0^ = 0 on Z0^.. . , Z^ unless
/ = i and that A d x ^ A d x ^ = Adx.Adx^ etc. This completes the
proof.

3. Preliminary lemmas.

In this section we collect some results which will be used in
studying invariant forms on homogeneous spaces. Throughout G
denotes a connected Lie group.

(3.1) LEMMA. — Suppose G acts on a manifold M (not necessarily
transitively) and that K is the isotropy subgroup of XQ^M. If A
is any subgroup of G such that A(^o), the orbit of XQ , is closed
in M and such that K normalizes A, then AK = KA is a closed
subgroup of G.

Proof. — Let F denote the orbit A(^o) and define the subgroup
Gp = {g^G\g(F) = F}. If {g^} is a convergent sequence of ele-
ments of GF with limit ~g^. G and if x is any element of F, then
lim g^x = ][x by continuity of the action of G on M. However
{g^x} C F and F is closed, thus ^ G E F . Since x is arbitrary in
F, ^~(F) = F, therefore Gp is a closed subgroup of G.

On the other hand, Gp = AK. For if ak^AK, and x = a'x^
is any element of F = A(^), then

(aka')xQ == (aa'^XQ = (aa'^x^ e A(x^.

This implies that AK C Gp . Further, if g E Gp , then gx^ € F ,
i.e. gXQ = axQ for some a ^ A . It follows that (a~lg)xQ =^,
i.e. a-^GK and g ^ A K , or Gp C AK. Therefore Gp = AK,
which completes the proof.

(3.2) LEMMA. — Let p , V be a representation of the connected
Lie group A on V, a finite dimensional vector space. Suppose
that p(A) is a unipotent subgroup of G£(V), or equivalently that
p^(a) , the image of the Lie algebra a of A under the induced
homomorphism, consists of nilpotent endomorphisms of V. Then
for any v^ € V, the orbit p(A) (i^) is closed in V.
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Proof. — Let A^ = p(A), it is a connected, unipotent sub-
group of GC(V). According to § 3, page 50, of Pukansky [17],
there is a basis ^ i , . . . , ^ , of V such that the orbit of VQ consists
of the following subset

A,(VQ)= { w € V [ w ==z^ + . . . + z^ + P^iOOt^i + . . .
... + PJz) ̂  , P, polynomials in z = ( z ^ , . . . , z^> E R^}

(we have renumbered Pukansky's basis somewhat). Thus the orbit
is the graph of a continuous mapping of R^ into Rn~d, hence
is closed.

(3.3) LEMMA. - Let p , V be a finite dimensional representation
of the connected Lie group G and let VQ be a non-zero vector of
V whose orbit is compact. If A is a connected, normal subgroup
such that p(A) is unipotent in G£(V), then VQ is fixed by p(A),
or equivalently, p^(a) VQ = 0.

Proof. — We denote by Hy the isotropy group of VQ under
the induced action of G on V. By our assumption G/Hy is
compact and we must show that A C Hy . By the preceding lemma
p(A)(i;o) is closed and hence by (3.1) AHy == Hy A is a closed
subgroup of G. Thus AH /H is compact and hence A/A 0 H
is compact. Let A ' = p(A), G ' = p(G) and H^=p(H^) . We
know that these maps are onto and thus A' is a normal, unipotent
subgroup of G'. By the previous two lemmas AHy = Hy A and
A'H^ = H^ are closed in G, G' respectively. G'/H^ is compact
so A'H^/H^ = A'/A' H H^ is compact, in fact A'/A' H H^ is
a compact nilmanifold. It follows that there is a basis X[,..., X^
of a' such that expX^.EH^ (Malcev [16]). Thus for any n ^ Z ,
exp n X^ Hy for i = 1 , . . . , r . Now X,' is a nilpotent endo-
morphism of V and therefore exp t X[ is a polynomial in t ,
ff(t), with coefficients which are endomorphisms of V. We have
seen that P,(^) G H^ , i.e. P,(^) VQ == VQ , for all n G Z , but it
must then be true that P,(0 = exp t X,' leaves i^ fixed for all
t E R . This means that X^g = 0, i = 1 , . . . , r and thus
p^(a). VQ = a'. UQ = 0. From this it follows that P ( A ) V Q = V Q ,
or A C H as claimed.

In the next section these lemmas will be applied to the adjoint
representation of G on the space of left invariant p-forms on G.



136 Ph. B. ZWART AND W. M. BOOTHBY

More precisely we will consider the following situation: let
ff^AP(g), i.e. a left invariant p- form on G, and let a ^ , a 2 , . . . , a
be ideals of g , thus Ad G-invariant. We let 6 a ,...,Q denote the
restriction of 0 to a ^ x ... x dp and denote ^y' ^(c^ , . . . , a )
the subspace of A^(g) consisting of all such restricted p-forms.
Then G acts on 2 (c^ , . . . , d p ) as follows:

(Mx^Oo^ ,,^(X,,...,X^=0^ ..,a/A^)X,,...,ArfOc)X^),

where x G G, X, G a,, i = 1 , . . . , p . The correspondence
x—^(Arfx)* is a representation p of G on the vector space
v = 2 ( ^ i , . . . , d p ) in the terminology of the lemmas. Given
^GA^g) , Vff will denote the smallest p(G)-in variant subspace
of V which contain 0 . These conventions are used in the sequel.

4. Compact, homogeneous symplectic manifolds.

As a first application of the preceding ideas we consider a G-
invariant 2-form ^ on a compact, connected homogeneous space
M = G/K. Then n = TT*^ e A^g), and we define H = H^
as in (2.3), since H D K , G/H is also compact.

(4.1) LEMMA. - Let a , £ be ideals of g and let n be its nilradical
Define H^ = {x E G| (Arfx)*^^ = S2a,iJ- 77^ ̂  Lie algebra
^a ,b o/ HQ^ contains n , i6?. zf X E n then (flrfX)*^^ 0.
7/m addition dSl = 0 , rA^ ft( n , [ a , b ]) = 0 .

Proof. - Since H^ p H D K , G/H^ is compact. If XG n then
adX is a nilpotent endomorphism of g . it follows that it induces a
nilpotent endomorphism of 2 (a ,5 ) and hence of Vn r C 2 (a , £ ) .
The fact that H^ is the isotropy group of ft^ relative to the
action of G on V^^ and G/H^j, is compact give us via Lemma
(3.3) the conclusion that N , the analytic subgroup corresponding
to n lies m H^ and that ^n*n^=0. Let Z E n , X G a
and Y G B , then arf Z* satisfies

0 = (^Z*n^)(X,Y) = n( [Z ,X] ,Y) + ^(X, [Z,Y]).

If d^l = 0, this reduces to ft(Z , [X , Y]) = 0 by (2.2).
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(4.2) DEFINITIONS. -A 2-form Sl^ on a manifold M is a symplectic
form if d^l = 0 and ft has maximum rank, i.e. ft" never vanishes,
2n = dim M. // M = G/K and ft^j is G-invariant, ft^ is a
homogeneous symplectic form. In this case conditions (i)-(iii) of
( 2 . 1 ) are satisfied; moreover the condition of maximum rank is
equivalent to: ^ft == 0 if and only if ZG f , the Lie algebra of K .

(4.3) THEOREM. - Let a be any nilpotent ideal of g , then
^(0, [a ,a] ) == 0 and ft(a, [a,g]) = 0. In particular this holds
for the nilradical n .

Proof. — It is clearly sufficient to prove the assertion for
a == n , the nilradical. Let X € n , Y E n and Z E g with a == n
and £ = g in the preceding Lemma (4.1), then using ft( n, [ a, b ]) == 0
we obtain

0 = f t ( X , [ Y , Z ] ) and 0 = ft(Y, [X , Z]).

Because ft is closed (2.2) yields

(4.4) ft(X, [Y , Z]) == ft([X, Y], Z) 4- ft(Y , [X , Z]).

Thus f t ( [ X , Y ] , Z ) = 0 which implies f t ( [ n , n L g ) = 0 . The
lemma gives f t ( n , [n ,g ] ) as a special case (which we already used
above).

(4.5) THEOREM. — With the assumptions on ft of the preceding
theorem, let g = ^ 0 r b e a Levi decomposition of g with r
the radical and §> a semi-simple subalgebra. Then

" (9, [^r ] )==0==f t (^r ) .

Proof. - Since [^ ̂  ] = ^ , [g , g] D ^ . If n is the nilradical,
then we have just proved that ft(n, [g ,g]) = 0. It follows that
f t ( n , ^ ) = 0 . In particular ft([g, r ] ,^) = 0 , since [ g , r ] C n ,
see e.g. [8]; hence ft([^ ,r ] , ^ ) = 0. Let X , Y C ^ and Z < = r
be arbitrarily chosen. We have just seen that ft([X, Z], Y vanishes
as does f t ( [Y,Z] ,X) . From this and dSl = 0 (see 4.4), follows
ft(Z, [X,Y]) = 0, which give, using [^ ,^] = ^ , ft(r ,^) = 0 as
claimed.

Since g == ^ 9 r , in order to verify that f t ( g , [ ^ , r ] ) = 0 it
is now enough in view of the above to check that
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n(r,^,r])= i2([^,r ] , r )=0.
We note that

[ ^ r ]== [ [ ^ ^ ] , r ]C [ [ ^ r ] ^ ]+ [ ^ [ ^ r ] ] = [ [ ^ r ] ^ ]

by the Jacobi identity and [ ^ , ^ ] == ^ . Let X ^ , X ^ ^ and
Y ^ , Y^ e r and use the fact that dSl == 0 to obtain

ft([X^YJ,XJ,Y,) ==n([[X,YJ,YJ,X,)+n([X,YJ,[X,YJ).

The second term on the right vanishes since ft([g ,r ] , [g , r]) == 0
as we see by noting that [g , r ] C n and applying Lemma (4.1) with
a = g , Ii === r . The first term is zero since f t ( r , ^ ) = 0, thus
we conclude that ft([[^ , t * ] , ^ l , ^ ) = = 0 . Combining this with
[ ^ r ] C [ ^ , r ] ^ ] + [ ^ , [ ^ r ] ] gives ft(n, [„ ,r ]) == 0, which
completes the proof.

(4.6) NOTATION. - For convenience a CHS-space mil denote a com-
pact, homogeneous symplectic space M = G/K (as above) on which
we always assume G acts almost effectively. This last is equivalent to:

(4.7) K contains no connected normal subgroup of G, or f contains
no ideal of g except (0).

The fact that ftj^ has maximum rank means that dim G/K is
even say 2n, and ft^ ^ O . Combining this with (2.1) iii gives :

(4.8) XG f if and only if i^Sl = 0.

We also see that:

(4.9) a an ideal of g and ft(a , g ) = 0 implies a = (0).
For by (4.8) a C t , but f contains no ideal of g other

than (0).
Using this remark is helpful in proving:

(4.10) THEOREM. - Let M = G/K be a CHS-space and Sl = 7r*n^.
Then every nilpotent ideal of g is abelian.

Proof. — If n is the nilradical of g , then by (4.3)
^(9 » [ ^ ? ^ D = 0. Since [ n , n ] is an ideal, (4.9) implies [ n , n ] = 0 .
Thus n is abelian. Since it contains all nilpotent ideals, the statement
follows.
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Now let g == ^ + r be a Levi decomposition as before with
r the radical (maximal solvable ideal) and ^ a semi-simple subalgebra
complementary to it. In general ^ is neither an ideal nor unique.
Here, however we have for compact, homogeneous symplectic
manifolds:

(4.11) THEOREM. — In the Levi decomposition ^ is an ideal and
hence unique.

Proof. — Since ^ is a subalgebra, to see that ^ is an ideal we
need only show that [^ , r] = 0. For this, by virtue of the remark
(4.9) it is enough to see that it is an ideal since according to Theorem
(4.5), n ( g , [ ^ , r ] ) = = 0 .

We note that [5, r ] C [ g , r ] and the latter is a nilpotent, hence
abelian ideal since [ g , r ] lies in the nilradical (see Jacobson [8]).
Consider [g, [ § , r ] ] C [S , [^ ,r ]] + [r , [^ , r ]]. Since [^ , r ] C r ,
the first subspace already lies in [ ^ , r ] and we must show only
that [r , [^ , r ] ] C [ ^ , r ] . We use [ ^ , ^ 1 = ^ and write
[ r , [ ^ , r ] ] = [ r , [[^] , r ] ] . By the Jacobi identity:

[[^]^K[[^,r],^+ [^,r]]=[^,r]].

Hence:
[^^]]C[rJ^,rI]]C[[r^],[^r:|]+ [^ [ r [^ r ] ] ] .

On the right the first term vanishes since [ g , r ] is abelian and the
second lies in [^ ,r] since [r , [§ r]] C r , an ideal. This completes
the proof that ^ is an ideal, from which uniqueness follows also.

This result gives us the means to decompose G/K = M into
a cartesian product of similar symplectic manifolds.

5. Decomposition of CHS-spaces.

We consider now a CHS-space M = G/K which is such that
G = G ^ x .... x G^ , with corresponding Lie algebra decomposition
g == g^ e ... e g ̂  . The form S2 € A^g), as previously, is defined
by H = T T * S I ^ . According to Definition (2.7) and Remark (2.8),
ft is decomposable if f t ( g , . , g y ) = 0 for i ^= j in which case
n = n^ + ... + a^.
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(5.1) Example. -According to Theorems (4.5) and (4.11), if
G === ^ 9 r is the Levi decomposition of g , then ^ , as well as
r , is an ideal and f t ( ^ , r ) = 0. If G is simply connected,
G = S x R , i.e. the group has a corresponding direct product
decomposition.

A further example will result from the next Lemma.

(5.2) LEMMA. - // a , 5 are ideals of g with a semi-simple and
a n £ = (0), then for any closed 2-form ft on g we have
0(a ,b) = 0.

Proof. - dSl = 0 is equivalent to

(5.3) ft(Z , [X, Y]) == ft([Z , X], Y) + n.(X , [Z , Y])

for all X . Y . Z G g , see (4.4). Let X . Y G a and Z G b , then
O H I) = 0 implies [ a , b ] = 0, so the right side vanishes and we
see that 0<Z, [a ,a ]) = 0. However, Z is arbitrary in b and
since a is semi-simple [ a , Q ] = a , thus f t ( J 5 , a ) = 0 so the
conclusion holds.

(5.4) COROLLARY. - If Sl is a closed 2-form on a semi-simple Lie
algebra, g == g ^ C . . . C g ̂  , g , simple ideals for i = 1 , . . . , m,
then 0 is decomposable: ft = ̂  + ... -+- ft^ a/zd n<g/ , g.) = 0
/or z =5^ /'.

This corollary is an immediate consequence of the lemma and
the criterion for decomposability of ft given in (2.8). Again, simple
connectedness of the Lie group G whose Lie algebra is g is suffi-
cient to guarantee a direct product decomposition of the group cor-
responding to that of g .

We must now consider to what extent K and H decompose
into direct products compatible with the decomposition of G. We
also will make more precise the relation between K and H. As
we shall see, this is easier in the semi-simple case.

(5.5) LEMMA. - Let Sl be a closed left-invariant 2-form on the
connected Lie group G. Then M = G/H is a symplectic homo-
geneous space with symplectic form R^ induced by ft if and
only if ^ = { Z E g |^n = 0}. This is automatically satisfied if
G is semi-simple.
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Proof. — This is basically a direct consequence of (2.1). Note
that H is the maximal subgroup of G satisfying (2.1) ii. (2.1) i
is satisfied by hypothesis as is (2.1) iii by our restriction on ^ . On
the other hand, ftj^ on M = G/H —given that it is induced from
ft— will have maximum rank if and only if f^f t == 0 exactly if
Z G () . To see that the condition on ^ is automatic if g is semi-
simple we note that by (2.5)

^= { Z e g | ^ f t = 0 } = { Z E g ] f t ( Z , [ g , g ] = 0 } .

Since g semi-simple implies [ g , g ] = = 8 , the statement follows.
Combining this with the fact that when ft decomposes to

ft = ft^ + . . . 4- ft^ the form ft is closed if and only if each
ft^. and ft^. is closed, we easily obtain the following consequence.

(5.6) COROLLARY. — Let g= g^ ^ ... 0 g^ be a semi-simple
Lie algebra G a simply connected group with Lie algebra g , and
Gf the analytic subgroups corresponding to g , . // ft is a closed
2-form on G, then G/H , H = H^ , and G,./H/, H, = H n G, ,
are symplectic with forms induced by ft , ft^ respectively.

The next theorem leads to one of our basic results in the
analysis of compact, homogeneous symplectic spaces since it
makes possible the application of powerful known results of
Borel [3]. We suppose M = G/K to be a CHS-space with G acting
almost effectively. For convenience we take a realization in which
G is simply connected.

(5.7) THEOREM. — If G is semi-simple, then it must be compact.

Proof. — If G = G^ x ... x G^ is the decomposition of G
into simple groups and g = g ^ 9 . . . 3 g ^ the corresponding
Lie algebra decomposition, we consider ft = 7r*ft^ and H.
Since G D H D K , G/H is compact and also has a homogeneous
symplectic structure induced by ft. The same holds for each
Gf/Hf which must be compact also and have a homogeneous sym-
plectic structure derived from ft,'. Clearly it is enough to show
that each G, is compact.

For convenience of notation then, we drop the subscript i
and suppose G/H to be a compact, symplectic homogeneous space
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with G simple. We shall assume G noncompact and show that this
results in a contradiction. Let n = dim G/H, n > 0, then fl^ is
a G-invariant volume element on G/H. This implies, according to
arguments of Selberg (Borel [4]) that H has the Selberg property
in G: if x G G, U a neighborhood of e in G, then there
exists an integer k > 0 such that x1^ E U H U. According to
Borel [4], it follows that f) is stable under Ad G so f) is an ideal.
However g is simple so ^ == g or I) = (0). The former is impossible
since dim G/H > 0. If d = (0), then G has a bi-invariant closed
form ft of rank equal to the dimension of G. Since the real 2-
dimensional cohomology of a simple Lie algebra is zero (Chevalley-
Eilenberg [5]), there must be a 1-form, O G A ^ g ) , such that
d6 = Sl. Let Z € g be dual to this form relative to the Killing
form: < Z , X > = = 0(X). Thenforall X E g

ft(Z,X) == rf0(Z,X) = 0([Z,X]) = <Z, [Z ,X]> .

But < Z , [Z ,X]> == < [ Z , Z ] , X ) = 0 by a standard property of the
Killing form. Hence Z = 0 since ft has maximum rank. This implies
that 0 and d6 = ft are zero, an obvious contradiction. The theorem
then follows.

The theorem just proved makes it possible to apply the following
result of Borel [3].

(5.8) THEOREM (Borel). — If G is a compact semi-simple Lie group
acting effectively on the homogeneous manifold M == G/K and leaving
invariant a symplectic form ftj^ on M , then G/K is simply
connected, the center of G is {e}, K is connected and is the
centralizer of a torus. Moreover G/K = G^/K^ x . . . x G^/K^ when
G = G^ x .. . x G^ with G^ compact simple groups, K, == K H G,
and the restriction of Sl^ to each G,./K, is a G-invariant symplectic
structure on G^/K,.

If we combine this with Theorem (5.7), we have the following
result.

(5.9) THEOREM. — Suppose M = G/K is a compact, symplectic
homogeneous (CHS-) space, that G acts almost effectively on M ,
and that G is semi-simple. Then G is compact, M is simply
connected and K is connected and contains the center of G.



ON COMPACT, HOMOGENEOUS SYMPLECTIC MANIFOLDS 143

Further M decomposes naturally into the product of CHS-spaces
corresponding to the simple parts.

Proof. — Let D be the maximal normal subgroup of G contain-
ed in K . It is exactly the set of elements of G which act as the
identity on M = G/K, hence it is discrete. Being a discrete normal
subgroup, it is in the center of G. Let G' = G/D and K' = K/D,
then G/K ^ G'/K' ̂  M where ^ means naturally diffeomorphic -
in fact, they have equivalent symplectic structures. By Theorem
(5.7) G is compact. Thus G' is compact, semi-simple and effec-
tive on M. All of the conclusions of the theorem follow from BoreFs
Theorem (5.8) except that we must verify that the center of G lies
in K . But this follows since the image of the center of G lies in the
center of G', which is {e} the identity and thus center of G lies
in D. Thus, D = center of G.

(5.10) COROLLARY. - With the hypotheses of the theorem satisfied,
it follows that H = K .

Proof. — Since G is semi-simple, Lemma (5.5) asserts that
^ = { Z E g ! i^Sl = 0}. But by (4.2) the condition of maximum
rank (and (2.1)) require that f = {Z € g | ̂ ft = 0} . Hence H
and K have the same Lie algebra. However both G/K and G/H
are CHS-spaces with form induced by ft = 7r*ft^ (see (5.5)); Since
the theorem implies H and K are connected we see that H = K .

We turn next to the general case, except that we shall assume
that the connected Lie group G decomposes into a product
G = S x R corresponding to the Levi decomposition. This involves
no real loss of generality, since as has been noted, we may replace
G by its universal covering group and K by its preimage under the
covering map. With this reservation we have:

(5.11) THEOREM. - Let M = G/K be a CHS-space, g = S e r the
Levi decomposition of the Lie algebra and G = S x R the correspond-
ing decomposition of G. Then ft decomposes into ft = Sly 4- ft^.,
K= K, x K, , K, = K 0 S and K, = K H R a compatible direct
product to that of G and G/K ^ S/K, x R/K, where S/K, and
R/K,. are CHS-spaces with forms induced by Siy and f t^.
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Proof. - Since S 2 ( ^ , r ) = 0 by (4.5) and both % and r
are ideals by (4.11), 12 is decomposable - this was Example (5.1).
By Lemma (2.9) H decomposes into H == H, x H,, with<j r '
H^ == H H S and H,. = H H R; moreover these are exactly the
subgroups of S and R whose action leaves Sly and ^, respec-
tively, invariant. According to (5.6) S/H, is a CHS-space and by
(5.10) we see that H,. = K H S . Since H D K any x E K decomposes
uniquely into x = x,. x^ with x, G H, and Xy G H,.. It follows
that x, and Xy are also in K . Thus K splits into a direct product
K = K, x K, with Ks = Hs • ^is means that G/K = S/K, x R/K,.
M K,. leaves Sly on R invariant and it is easy to verify that i^Sl = 0
if and only if i^Sl, == 0 and i^Sly = 0, Z = Z, + Z, being the
direct sum decomposition of f = f ^ e f ^ . This guarantees that
the form induced on R/K^ by Sl^ will have maximum rank.
Hence it induces a symplectic structure on R/K,. as does Sly on
S/K^ = S/H,. This completes the proof.

As a result of this theorem and (5.8) and (5.9) it remains only
to study CHS-spaces of the form G/K with G solvable. This is
done in the next section.

6. The solvable case.

We now consider exclusively the case of a compact homogeneous
symplectic (CHS) manifold M = G/K with G a simply connected
solvable Lie group acting almost effectively on M , which carries
the G-invariant symplectic form Sl^ . Other notations and assump-
tions are as before: Sl = TT*SI^ on g determines the subgroup
H = H^ which contains K , n is the nil-radical and N the corres-
ponding analytic (i.e. connected) subgroup of G, etc. The simplest
example of such a manifold M is the torus T2" = R^/Z2" with

n
Sl = ^ dx, A dx^ and H = R2". Here, of course, G is the

1=1
simply connected abelian group R2" and K is necessarily a lattice
of G — since the action is almost effective. As we shall see, G need
not be abelian. However, the compactness of G/K, together with
the invariant symplectic structure, impose strong restrictions on the
structure of G.
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We begin by restating some of the facts already proved, and
add a few further observations.

(6.1) Since H D K , G/H is compact.

(6.2) The nilradical n and the corresponding connected subgroup
N are abelian.

The following facts concerning analytic subgroups of simply
connected solvable groups are useful.

(6.3) Any analytic subgroup of G, for example N , is closed and
simply connected. The coset space of any such group is also simply
connected and G is diffeomorphic to the cartesian product of the
subgroup and the coset space.

Proofs of these statements may be found in Hochschild [9],
Chapter XII.

We have seen earlier that f t (n , [g ,n]) = 0. This can be
strengthened in this case to

(6.4) ^ O i , [ g , g l ) == 0 and further, H D N .

This statement is demonstrated as follows. By Mostow [15],
since K contains no proper connected normal analytic subgroup
of G, the group NK is closed in G. Therefore NK/K is compact
and so is N/N H K which is, in our case a torus. There exists then,
a basis N ^ , . . . , N^ of n such that exp N, G K , ; = 1 , . . . , t . Since
ft is Ad K-invariant, and Arf(exp N,) = e^i,

ft(X,Y) == Ad (exp N,)*n(X,Y) = ^(^^X, c^'Y)
= K(X, Y) + ft([N,, X], Y + ft(X, [N,, Y])

for all X, Y G g and ; = 1 , . . . , t . Higher brackets vanish since n
is abelian and contains g f = [ g , g ] . This implies

n ( [ N , , X ] , Y ) + f t ( X , [ N , , Y ] ) = = 0 ,

which, by linearity implies that for any Z €E n we have

(ad Z)*ft(X, Y) = n([Z, X], Y) + ft(X, [Z, Y]) = 0.

Thus ^ D n so Hg D N , HQ being the identity component of H.
At the same time, since d^l = 0 application of (2.2), or better
(4.4),gives f t (Z , [X ,Y] )= 0. This proves ft(n, [g , g]) = 0.
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Having seen that H D N , we shall next prove a lemma.

(6.5) LEMMA. - H is a normal subgroup of G and lies in the cen-
tralize^ C^CN), of N in G.

Proof. - If Z E g such that exp Z G H, then just as above
we see that for any X, Y E g

K(X,Y) = Ad(expZ)*ft(X,Y) = ̂ (^X, e^Y).

If now we write ^X = X + [Z,X] 4- — [Z[Z,X]] + . . . and

further assume Y e n (so that ^^YG n also), then according to
(6.4) the right side reduces to S2(X, c^Y). Combining left and
right sides of the equation gives for all X € g , Y € n , and Z such
that exp Z C H ,

n(X,((?f ldz-I)Y)= 0.

It follows that (eadz-l)(n)C I . It is easy to verify directly
that (^^-DOt) is an ideal of g . In fact let X , Y E g and
V G n, then the Jacobi identity reads

[Y,[X,V]] + [X,[V,Y]] + [V,[X,Y]] =0 .

The last term is zero since [ X , Y ] G g ' C n and V E n which is
abelian. Thus ad X ad Y(V) = ad Y ad X(V) and hence

ad\(eadx-l)(n) = (eadx - I) adY(u) C (eadx-l)(n).

But f contains no ideals except (0), thus ((?adz - I) (n) = (0).
Therefore e^7' = Arf(exp Z) is the identity on n or equivalently,
exp Z commutes with every element of N whenever Z is such
that exp Z €E H. In particular this holds for all Z G f) , so ^ C c.(n),
the centralizer in g of f . We still must show H is normal and
every element of H is of the form exp X for some X € g . H is
normal because of the following observation.

(6.6) If L D N , then L is a normal subgroup of G and L/N is
abelian.

Indeed n D g ' = [ g , g ] , hence G/G' is abelian - G' being
the analytic subgroup of G corresponding to g '. Further, if
L 3 G\ then L is the complete inverse image in G of the (normal)
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subgroup L/G' in G/G'. Hence L is normal. Clearly if L D N D G',
then L/N ^ L/G'/N/G' is abelian.

Returning to the proof of (6.5), G/HQ must then be an abelian
group and simply connected since Ho is a connected subgroup of
a simply connected group. Thus G/HQ s R^, a vector space and the
compact group G/H is a factor group of G/Hg by the discrete
(lattice) group H/H^ . Let p : G —^ G/H^ be the natural homo-
morphism and p* : g — ^ g / 0 the corresponding Lie algebra homo-
morphism. Clearly given x € H there is an X' £ g / ^ such that
e x p X ' = x H o , and an X E g such that p * ( X ) = X ' . It follows that
p(exp X) = xH^ G H/HQ . This can only be so if exp X = XXQ , XQ G H(),
Then x = (exp X)x^1 and since both XQ and exp X commute
with every element of N , so must x . This completes the proof
of (6.5).

We now consider the adjoint representation Ad^(G) of G
on the ideal n and the corresponding Lie algebra representation
ad^(Q). The restriction of Arf^(G) to the subgroup H is trivial
by the preceding lemma, hence Arf^(G) determines a representa-
tion p of G/H on n by p(xH) = Ad^(x), i.e. p o 7r(x) = Ad^(x)
where TT is the natural homomorphism of G to G/H. Since
G/H ^ T^ a torus, the representation space n of p (and hence
of Ad^) has a (non-unique) invariant inner product. It decomposes
into a direct sum of (orthogonal) invariant subspaces n, of dimen-
sion 2 and c , c being the center of g and kernel of Ad^ and p.
To each n , corresponds a weight 0 , ^ 0 and to c corresponds
the weight 0. Choosing once and for all an orthonormal basis
Xf , Y, of n, , the representations (restricted to n , ) Arf^.(exp tX)
and ad^ (tX) are given by the matrices

/ cos 27r 0,(rX) sin 27T O^tX) \ I 0 27r r0,(X)\
R / = 5 Q / = =

\-sin27r 0,(rX) coslTrO^tX)/ \ -27rr0,(X) 0

respectively. Choosing Z ^ , . . . , Z^ a basis of c , then

X Y Y Y 7 7
1 » A 1 5 • • • 9 -€v^ ? A /• ? ^J 1 ? • • • 5 A-'̂

is a basis of n which we will fix. Relative to these bases AcL(exp tX)
and ad^(tX) are given by matrices:
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RI 0 . . . 0 \ /Qi 0 . . . 0'

6 . . . 'R, , : and f O . / . ' Q , . . . 0

• • / \ °-0 . . . 0 . . . I / \ 0 -0 ,

The weights 6 ^ , . . . , By take integer values on any X E g such
that exp X € H , reflecting the fact that Arf^(exp X) == identity.

(6.7) DEFINITION. - We shall call a set of m elements P ^ , . . . , P^
of g a complementary set (to n ) if (i)

r>! » • • • ? PW » ^1 ' ̂ 1 ? • • • » r̂ ? ^r ? ^1 ? • • • ' ^s

is a basis of g , called the associated basis, and (ii) exp P, G H ,
i = 1 , 2 , . . . , m .

Condition (ii) implies that 0.(P,) is an integer for / = = 1 , . . . , / •
and / = 1 , . . . , m. Note that if X e ^ , then A^(exp tX) = 1^
and all 0,(X) = 0.

(6.8) There exist complementary sets. If P ^ , . . . , P ^ is such a
set, then so is any set P ^ , . . . , P^ of g which is linearly inde-
pendent mod n and whose expressions in the associated basis to
P ^ , . . . , P^ have integral coefficients with respect to the P/ s .

Proof. - We know G/H^ ^ R^ and G/H ̂  T^ , with the
integral lattice H/H() as kernel of the natural homomorphism
G/HQ——^G/H. Thus we may choose a basis Y ^ , . . . , Y ^ of g / f i
such that exp Y, E H/H^ . Let p : G —> G/H^ be the natural
projection and p* : g — ^ g / ^ be the corresponding Lie algebra
homomorphism. There exists a linearly independent set of m
vectors P ^ , . . . , P^ in g , spanning a space complementary to
n and such that p*(P,) = Y, for i = 1 , . . . , d and p*(P,.) = 0
for i == d 4- 1 , . . . , m , i.e. P^ , . . . , P^ e F) . Since

p(exp P,) = exp p*(P,) == exp Y, if 1 < / < d

and the identity if i> d , we see that exp P, EH for i = 1,..., m.

Now let P == ^ ^P, + X, ^, G Z and X C n . Then
< = i

p(exp P) = exp p*(]L ni P! + x) = exp ̂  ^,Y, = 7r(exp Y,)"1.
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Hence e x p P E H and the proposition is proved. With this establish-
ed we state a theorem.

(6.9) THEOREM. - The complementary set P^ . . . , P^ may be
chosen so that [P,,P,] = 0 , ie. so that they span an abelian Lie
algebra a complementary to n .

Proof. - We have decomposed n into the direct sum of the
center c of g and ideals n ^ , . . . , n ^ . If U E n we let U
^(o) + U(i) + • • • + ^(r) be the unique decomposition of U
corresponding to n = c e n, e . . . C n ^ . For any U E n there
is an integer k, 0 < k < r , such that U E c + n^ + . . . + n^ ,
i.e. such that U^^ = . . . = IL,) = 0. U € c is equivalent to
k = 0 .

Let P ^ , . . . , P^ be a complementary set such that for 1 < ;,
7 < w we have [ P , , P , ] € c + n ^ + . . . 4 - n ^ , k < r . We shall
demonstrate that a new complementary set P [ , . . . , P^ may be
chosen such that [P/, P/] G c + n^ + ... + n^ for all / , / .
This shows by recursion that there exists such a set with all brackets
lying in the center c .

As a first step we note that by renumbering the given comple-
mentary set if necessary we may assume that ^(P^) ^ 0. (Remark
that no 0fi vanishes on all the P ' ^ s ) . With this assumption satisfied,
we define

PI = PI ; P, - <W)P, - 0,(P,)Pi , i = 2 , . . . , m.
Since 6^ takes_integer values on P ^ , . . . , P^ this is a new comple-
mentary set. [P,.,P,] are linear combinations of [P , ,P^ ] , hence
also lie in c + n^ + . . . 4- n^ . Moreover for i> 2 and X^,Y^
the basis of n^

arfP,(X^ == 27r(^(P^(P,) - 0,(^) 0,(P,)) X, == 0,

similarly orf P,(YJ = 0. Thus orfP, |̂  = 0 for f == 2 , . . . , k .
It follows that [^ , [g ,g]L = [P,.,[g,g]j = 0 for ; > 2 , since
[g, g] c n . More particularly for any ;, / > 2 we have

0= [Pi,[P,,P/l]w + [P,,[P,-,Pi]]^) + [^,[PI,PJ^)
=[P,,[P,,^]^].
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However, ^(Pi) =^ 0 so ad PJ^ is non-singular, thus [P,, P.]^) = 0,
i.e. [P,,P^e c + n ^ + ... + n ^ _ i if / , 7 > 2.

However, we are unable to make the same assertion about
[P^, P. ], so we choose another complementary set:

P,=P, and P;-P,-(fldP,)^[P,,PJ^.

For i, 7 > 2 , [P^., P^} == [P,, P .̂ ], if we make use of the facts
that n isabelianand adf^ = 0 for i> 2 . Thus

[P / ,P , ]ec + u i + ... + n ^ _ i

in this case. Finally consider [ P [ , Pj]

[P;,P;] == [P,,P,] -^P,((flrfP,)^[P^,P,]^)

-[Pi^J-lPi,?,]^.

But we have already seen that [P, , P. ] G c + n ^ + ... 4- n^ for
all i , / , including [P^.P,] , z = 1 , . . . , m. Thus

[P;,P;]= [Pi,P,]-[P^P,]^ec +n^+ ...+n^.

It follows then by recursion that we may choose a complementary
set P ^ , . . . , P^ such that all the brackets [P/, P/l are in c . Assume
such a set has been chosen.

Since [Pp Pg] E c for j , C = 1, 2 , . . . , m , they span an ideal
I of g . Because exp P/E H, Arf(expP/)*n = f t , from which
it follows that

^..P^^^^^P,^^)
= n(p^ P,) + n([p;, P,] , P,) + n(p;, [P;, P,])

with other terms vanishing since [P^., P? ] G c for all ? , / . Thus

ft([P;, P^], P,) + S2(Pj,, [P;., P,]) = 0 for all i, ^, £ .

Since ft is closed this gives via (4.4) that ft(P,' , [P^, Pg]) = 0.
Using this and f t ( n , [ 0 , g ] == 0 we see that f t ( g , I ) = 0. Thus
I C f which contains only the ideal (0). It follows that [P^, Pg] = 0
for / , £ = = l , 2 , . . . , m and therefore P ^ , . . . , P ^ span an abelian
subalgebra a , which is complementary to n .

This proves the theorem. We have several corollaries.
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(6.10) COROLLARY. - If A is the analytic group corresponding to
a then A is closed and simply connected and G = AN, a semi-
direct product of A and the normal subgroup N .

Proof. - According to (6.3) A is closed and simply connect-
ed. From the Lie algebra Q = a + n we can construct a semi-direct
product AN of A and N which will be simply connected and
locally isomorphic to G. Since G is also simply connected both
the local isomorphism and its inverse can be extended so that G
is isomorphic to AN .

(6.11) COROLLARY. - () = n and Ho = N. Cc(N) is abelian, is
the direct sum of Cc(N) 0 A and N , and Cc(N) == H .

That HQ = N follows once we establish ^ == n . We know
that c g (n) D I) D n , c g (n) being the centralizer in g of n . If
Z G a, then [Z , n ] ̂  (0) for otherwise Z G c and a n c = (0).
Since any element of g may be written uniquely as a sum of its
component in a and its component in n , we see that if it cen-
tralises n it must lie in n . Thus Cg(n ) = I) = n .

To prove the last statement, note that Cc(N) consists of
elements of the form an, where a G A and ^ G N are uniquely
determined. Moreover an = na since ^^Cc(N), which implies
that aECG(N) . Now Ad(an) = Ad(a)Ad(n) leaves n invariant
as does Arf(^), hence f l G H , i.e. an^H. This shows that
H = C c ( N ) .

(6.12) COROLLARY. - [a ,n ] = [g,g] and the adjoint representa-
tion of a on n^ 4- ... + u, = [g ,g] is faithful, ie. if XE a then
X = 0 ifandonlyif 0,(X) = ̂ (X) = ... = 0,(X) = 0.

This is an immediate consequence of the fact that a is spanned
by a complementary set P i , . . . , P ^ and for each p^ we have
0, (P^)^=0 for some 0,. Otherwise ad(P^)\^==0 and since a
is abelian ad(P^)\Q = 0 , i.e. [P^., g] = 0 and P, e c , a contra-
diction. This implies the following fact.

(6.13) COROLLARY. - dim a < dim [ 6 ^ , . . . , 6,} < r , { 6 ^ , . . . , 6,}
being the subspace of a * spanned by 6 ^ , . . . , B y .
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Otherwise there would be non-zero elements of a vanishing
on Q ^ , . . . , Qy , which we have seen to be impossible.

7. A further result in the solvable case. An example.

We continue our discussion of the solvable case making use of
the characterization of G obtained in the previous section: G = AN,
a semi-direct product with A ^ R'", with N ^ R2^, and with the
homomorphism of A into the automorphisms of N given by the
forms (or "weights") 6 ^ , . . . , 6y on a defined in Section 6. Recall
that H may be described as the centralizer of N in G, H = Cc(N),
and in fact, H = DN a direct product with

D = { a e A | f l = e x p ( f ^.P,.), ^,eZ}.
v 1=1 '

The vectors P ^ , . . . , P^ are the vectors of the basis of a defined
in Theorem (6.9). Although above we began with G, K and ftj^
and arrived at this description of G, here we will not assume any
prescribed K or ^2^ for the present, but just work with the
structure on G outlined above.

Let G4' = A ̂  N denote the (abelian) direct sum of A, N.
We shall write its elements as pairs (a, n) and continue to use mul-
tiplicative notation: (a, n) (a\ n ' ) = ( a a ' , nn') for the group
operation. There is an obvious 1:1 correspondence V/ : G4 '—>G.
In fact V / ( a , n) = an (juxtaposition denotes the product in G = AN).
This correspondence is a diffeomorphism and, restricted to A or
to N (and even to H) is a group isomorphism as well. Let
A-1- = V/'^A), N4' = V/'^N) and H"" = ^(H), then V/-1 and
V/ are group isomorphisms. To any closed subgroup K C H will
correspond a closed subgroup K4" C H'^, and K is uniform in G
if and only if K'1" is uniform in G+ . But more surprising is the
fact that given such K^ and K , cosets of K^ correspond to
(left) cosets of K under the mapping ^ . For suppose x = (^ , n^),
y = (a^, n^) are in the same coset of K4", i.e.

y-^x = (a^ n^-^a^ n^) = (a^a^, n^n^)^Y^ .

Applying V/ we obtain, first, that
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^(y-^) == V^-1^, n^n,) = a^a^1 EK
and, second, that \l^(x) == a ^ n ^ , \l^(y) = a^n^ , thus

^W^)=^lfl2-lfll'zl•

However, since K C H = DN, a direct product, it follows that
f l L ^ G D C h and hence commutes with elements of N. Therefore
n^a^a^n^ = a^a^n^n^, which is in K; so V/0) and \l^(y)
are in the same coset of K . This proves that ^ induces a fibre
space isomorphism of the fibre bundle G^/K^ onto G/K , in fact it is
a bundle isomorphism since if (1, ^2) € K'1' then \p o R = R^ o ^/ ^
i.e. right translation by elements of K is preserved by ^ .

Now suppose that ft is any differential form on G which
is left invariant, i.e. f t € A ( g ) , and is also Ad(H)-invariant. Let
^+ = V/*ft, then we claim ft4' is an invariant form on the abelian
group G^. Let (a^, n^) be an element of G+ and a^n^ the
corresponding element of G, and denote by I _i the inner auto-

"o
morphism of G determined by ^o 1 . Then for any (a,^)€G'1 '

V/-^ L^^o 1̂  o i//(a, ^2) = ^-^flo^^^a^)^)

= (^o. ^o) (fl ' ^ ) = ̂ a^) (a,n).
Thus U^^^ = i//* o Ad(^1)* o L^ ° V/-1*^ == V/^ = ̂
as claimed. Since any invariant form on a abelian group is closed,
ft"*" and hence Sl are closed. In summary

(7.1) // ft is any left invariant and Ari(H) invariant exterior form
on G, then ft'1' = V/*ft f5 invariant under the translations of the
abelian group G'1' and rfft'1' = 0 = rfft.

If we apply this to the case of interest to us, namely M = G/K
a CHS-space with symplectic form ftj^ we see that we have a
commutative diagram

^
G+ ————-G

^ 7r

v ./ ' »
G+ ——•——^ G/K

corresponding to the bundle map and ^'*^M ls invariant under
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the action of G^ on G^/K^ just as X^ is invariant under the
action of G on G/K == M . Since ^ , ^ \ are diffeomorphisms,
G/K is diffeomorphic to G^/K^ which is a factor group of
G+ ^ R^-^-^ by a uniform subgroup K4' and hence is a toral
group, T2'7 , 2q = m+2r+ s - dim K . Thus M is diffeomorphic
to a torus T2'7 by V / ' , and ^ '*^l^ is an invariant symplectic
form on T2'7. However, it is important to realize that G4' acting
on G^/K^ and G on G/K are not equivariantly related by \p'.

We now can construct an example of a CHS manifold
M = G/K with G solvable (but not abelian). According to Section
6, G = AN is a semi-direct product so we begin with connected,
simply connected abelian groups A and N of dimensions m and
2m respectively. Using the fact that exp : a——> A is an isomorphism
of the vector group a onto A we will identify A with its Lie
algebra a = R^ and let ^ == ( ^ , . . . , ̂ ) denote a typical ele-
ment. N is isomorphic to the real vector space R2'" which it is
often convenient to identify with C'", writing an element as
( x ^ , y ^ . . . , x ^ , y ^ ) or z = ( z ^ , . . . , z^), with z, == x, + iy^ ,
as suits our purpose. The structure of G is then determined by an
arbitrary choice of m linear forms 6 ^ , . . . , Oy^ on a which (1)
take values which are integral multiples of 27r on the lattice 7.m
in R^ = a and (2) are linearly independent, i.e. a basis of a*,
the dual space to a . We may then denote an element of G by
( t , z) = (^ , . . . , t^ , z ^ , . . . , z^). With this notation, the group
product is expressed as follows:

(^ ,z) (^^z ' )=(^+^, .< 0 1 ( r )z;+z, ,^ 2 ( r )z,
(7<2) ^,.,^(f)z,+z,)
where t + t ' = (^ + t[, ^ + ^ » • • • » ̂  + ̂ ) • Note that the sub-
group Cc(N) = Z^N since e61^ = 1 if and only if t = (^i,...,^)
with n^ integral. We define the form Sl at ( ^ , z ) € G by

(7.3) n^ = 1 2 (e-^dz^ + e^d^) Arf0,.
2 /=!

w
Here, if O^t^..., t^) = 27r ^ a^dt^ , then d .̂ = 27r ^ a^dt^ .

fc=i
The a^ are integers and d 0 ^ , . . . , d 0 ^ are linearly independent.
Of course, this can be written out in real form as
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(7.4) n^ = 27T Z (cos 0,0) Ac, + sin 0,0)^,) A S a,^ .
7 fc

Using (7.2) and (7.3) it is easy to verify directly that
I* Q S2 = ft and that ft is AdH invariant. For the latter we
use the formula which follows for the inner automorphism IQ : G —^ G
determined by the group element (t°, z°) :

(7.5)Vr, z) = (r, z, + z? - e-Wz^,..., z, + z^, - ̂ ^z0^).

It follows from (7.1) that rfft == 0 and since at the identity
(r , z) = (0,0) we have

\ m w
(7.6) ft == - ^ (rfz, 4- rfz;) Arf0, == ̂  rfx, Arf0,,

2 7=1 /=1

we see that the subalgebra f of g must be spanned by —— ? • • • ? —— •
Thus if we take 9y! ^m

K = { ( ^ z ) E G | ^ E Z W , z , + z , = 0 , / = l , . . . , m }
or, in real notation,

K = { ( ^ i , . . . , ^ ,0 ,^ i ,0 ,^ . . . . , 0 ,^ ) | ^ , eZ , / = l , . . . , w }

we will have G/K = M compact of dimension 2m, and Sl^ deter-
mined by ft a G-invariant symplectic form (of rank 2m).

Finally, it is of some interest to see explicitly the maps ^ , ^'
and the groups G"^, K'1' in this example.

Let G'*' = AC N = R^ x R2^ be the vector group of all
3m-tuples (^ , . . . , ̂  , w ^ , . . . , w^) where w, = ^ + ,̂ (we
have again identified R^ with C^). Then V / : G"^—^G is defined
by

V/(^,w)-(^ ,0)(0,w)=(^, , . . . ,^ ,^0 1 ( ow,, . . . ,^0 w ( ow^).
(7.7)
The multiplication on the right is in G = AN. This gives ^+ = i//*ft
on G4' as follows

(7.8) n^ = -^ S (dw, + rfw;.) Arf0, = ^ ^ ̂ , A d0,,

the last expression being in real terms. This gives a form with the
same expression on the torus T^ = G+|K+ ,
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K+ == ZmxZmxRm

== {(^,..., n^, /^,..., k^, ̂  ,..., v^)\ n^ ^.GZ, i^.eR}

V/ induces the diffeomorphism V/' of T2^ = G+/K+ onto M = G/K

and n^ corresponds to the form ft^ = "~ 1.1 ^uj A ̂ / on ^2W •
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