ROBERT A. BLUMENTHAL Transversely homogeneous foliations

Annales de l'institut Fourier, tome 29, nº 4 (1979), p. 143-158 <http://www.numdam.org/item?id=AIF_1979__29_4_143_0>

© Annales de l'institut Fourier, 1979, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble **29**, 4 (1979), 143-158.

TRANSVERSELY HOMOGENEOUS FOLIATIONS

by Robert A. BLUMENTHAL

1. Introduction and statement of main results.

One way of defining a smooth codimension q foliation \mathfrak{F} of a manifold M is by a smooth N^q -cocyle $\{(U_{\alpha}, f_{\alpha}, g_{\alpha\beta})\}_{\alpha,\beta\in A}$ where N^q is a smooth q-dimensional manifold and

(i) $\{U_{\alpha}\}_{\alpha \in A}$ is an open cover of M.

(ii) $f_{\alpha}: U_{\alpha} \to N^{q}$ is a smooth submersion whose level sets are the leaves of \mathfrak{F}/U_{α} .

(iii) $g_{\alpha\beta}: f_{\beta}(U_{\alpha} \cap U_{\beta}) \to f_{\alpha}(U_{\alpha} \cap U_{\beta})$ is a diffeomorphism satisfying $f_{\alpha} = g_{\alpha\beta} \circ f_{\beta}$ on $U_{\alpha} \cap U_{\beta}$.

If N^{*q*} is a homogeneous space G/K (here G is a Lie group and $K \subset G$ is a closed subgroup) and each $g_{\alpha\beta}$ is (the restriction of) a G-translation of G/K, then \mathfrak{F} is called a (transversely) homogeneous G/K-foliation.

Let us consider an important example due to Roussarie. Let $G = SL(2, \mathbb{R}), K = \left\{ \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} : ac = 1, a > 0 \right\}$, and let Γ be a uniform discrete subgroup of $SL(2, \mathbb{R})$. The foliation of $SL(2, \mathbb{R})$ whose leaves are the left cosets of K induces on $M = \Gamma \setminus SL(2, \mathbb{R})$ a homogeneous $SL(2, \mathbb{R})/K \cong S^1$ -foliation \mathfrak{F} . Moreover, \mathfrak{F} is defined by a smooth nowhere zero one-form ω on M satisfying $d\omega = \omega \wedge \omega_1$, $d\omega_1 = \frac{1}{2}\omega_2 \wedge \omega$, $d\omega_2 = \omega_1 \wedge \omega_2$. Later in this paper we shall show that this set of equations completely characterizes the homogeneous $SL(2, \mathbb{R})/K \cong S^1$ -foliations.

Let G be a Lie group acting effectively on the connected homogeneous space G/K and let \mathfrak{F} be a homogeneous G/K-foliation of a connected manifold M.

8

THEOREM 1. – To a homogeneous G/K-foliation \mathfrak{F} on M is associated a homomorphism $\Phi: \pi_1(M) \to G$ well-defined up to conjugation. Let Γ be its image. The induced foliation \mathfrak{F} on the cover \mathfrak{M} of M associated to the kernel of Φ is given by a Γ -equivariant submersion $f: \mathfrak{M} \to G/K$ (Γ acting on \mathfrak{M} by covering transformations). The hononomy group of a leaf L of \mathfrak{F} is isomorphic to the isotropy subgroup $\Gamma_{\mathfrak{L}}$ of Γ at \mathfrak{L} , where \mathfrak{L} is a leaf of \mathfrak{F} projecting to L. If M is compact (whence each leaf of \mathfrak{F} has a well-defined growth type), the growth of L is dominated by the growth of the orbit $\Gamma(x)$, $x = f(\mathfrak{L})$. Thus, if $\pi_1(M)$ has non-exponential growth (respectively, polynomial growth of degree d), then all the leaves of \mathfrak{F} have non-exponential growth (respectively, polynomial growth of degree d).

See [3] for a more general statement of the first part of the theorem.

In Section 3 we provide a differential forms characterization of a large class of homogeneous foliations. Let $\{\theta_1, \ldots, \theta_{m-k}, \theta_{m-k+1}, \ldots, \theta_m\}$ be a basis of the space of left-invariant one-forms on G such that $\{\theta_{m-k+1}, \ldots, \theta_m\}$ is a basis of the left-invariant one-forms on K. We then have the structure equations of G relative to this basis :

$$d\theta_i = \sum_{1 \le j < l \le m} c_{jl}^i \theta_j \land \theta_l, \quad i = 1, \ldots, m \text{ where } c_{jl}^i \in \mathbf{R}.$$

THEOREM 2. – If $H^1(M;K)$ is trivial, then the normal bundle of \mathfrak{F} is trivial and there exist m - k independent one-forms $\omega_1, \ldots, \omega_{m-k} \in A^1(M)$ defining \mathfrak{F} and one-forms $\omega_{m-k+1}, \ldots, \omega_m \in A^1(M)$ satisfying

$$d\omega_i = \sum_{1 \leq j < l \leq m} c^i_{jl} \omega_j \wedge \omega_l, \quad i = 1, \ldots, m.$$

COROLLARY 1. – A codimension one foliation of M is a homogeneous SL(2,**R**)/K \cong S¹-foliation if and only if it is defined by a smooth nowhere zero one-form $\omega \in A^1(M)$ satisfying $d\omega = \omega \wedge \omega_1$, $d\omega_1 = \frac{1}{2}\omega_2 \wedge \omega$, $d\omega_2 = \omega_1 \wedge \omega_2$ where $\omega_1, \omega_2 \in A^1(M)$.

In Section 4 we shall establish the following :

THEOREM 3. - If M and K are compact, then

i) The universal cover of M fibers over the universal cover of G/K, the fibers being the leaves of the lifted foliation.

TRANSVERSELY HOMOGENEOUS FOLIATIONS

ii) The closure of each leaf $L \in \mathfrak{F}$ is a submanifold of M (thus $\mathfrak{F} = \{\overline{L} : L \in \mathfrak{F}\}$ is a foliation, possibly with singularities) foliated by the leaves of \mathfrak{F} , this foliation being a homogeneous G'/K_L -foliation where G' is a Lie group and K_L is a compact subgroup of G'.

iii) If G/K is compact with finite fundamental group (e.g., if G is a compact semi-simple Lie group), then there exists a connected, open, dense, \mathfrak{F} -saturated submanifold of M which fibers over a connected Hausdorff manifold, the fibers being the leaves of \mathfrak{F} . Moreover if $L \in \mathfrak{F}$ is a compact leaf whose holonomy group has non-exponential growth, then all the leaves of \mathfrak{F} have polynomial growth.

COROLLARY 2. – If M and K are compact and if the universal cover $(\widetilde{G/K})$ of G/K is contractible, then the universal cover of M is a product $\widetilde{L} \times (\widetilde{G/K})$ where \widetilde{L} is the (common) universal cover of the leaves of \mathfrak{F} and the leaves of the lifted foliation become identified with the sets $\widetilde{L} \times \{\text{pt.}\}$. Furthermore, the inclusion of a leaf $L \longrightarrow M$ induces a monomorphism $\pi_1(L) \to \pi_1(M)$ between fundamental groups.

In Section 5 we study several particular types of homogeneous foliations and the case where the leaves are one-dimensional. For instance, it is proved that if \mathfrak{F} is a one-dimensional homogeneous $SO(2q+1)/SO(2q) \cong S^{2q}$ foliation of a compact manifold M, then $\pi_1(M)$ has polynomial growth of degree ≤ 1 and \mathfrak{F} has a compact leaf. If M^3 is compact and $\pi_1(M^3)$ is not solvable, then M^3 does not support a codimension 2 Euclidean (homogeneous $SO(2) \cdot \mathbb{R}^2/SO(2) -)$ foliation.

2. Proof of Theorem 1.

Let $\{(U_{\alpha}, f_{\alpha}, \lambda_{g_{\alpha\beta}})\}_{\alpha,\beta\in A}$ be a G/K-cocycle defining \mathfrak{F} . Here $g_{\alpha\beta} \in G$ and $\lambda_{g_{\alpha\beta}}$ denotes the diffeomorphism of G/K sending *a*K to $g_{\alpha\beta}a$ K. Let $P = \{[\lambda_g \circ f_\alpha]_x : x \in U_\alpha, \alpha \in A, g \in G\}$, where $[\lambda_g \circ f_\alpha]_x$ denotes the germ of $\lambda_g \circ f_\alpha$ at x. By analyticity and the connectivity of G/K, P admits a differentiable structure such that the natural projection $\pi: P \to M$ is a smooth regular covering with G as the group of covering transformations. Let \tilde{M} be a connected component of P. The group of covering transformations of the covering $\pi: \tilde{M} \to M$ is a subgroup Γ of G and is the image of a homomorphism $\Phi: \pi_1(M) \to G$. The evaluation map $f: \tilde{M} \to G/K$ is a smooth Γ -equivariant submersion constant along the leaves of $\pi^{-1}(\mathfrak{F})$. Let L be a leaf of \mathfrak{F} and choose a leaf \tilde{L} of $\pi^{-1}(\mathfrak{F})$ which projects to L. Then

 $\pi/\tilde{L}: \tilde{L} \to L$ is a regular covering whose group of covering transformations, namely Γ_L , is isomorphic to the holonomy group of L. Note that the holonomy group of L can be realized as a subgroup of K and that if σ is a loop in L which is homotopically trivial in M, then the element of holonomy determined by σ is trivial.

We now assume that M is compact. Let $\{U_{i}, f_{i}, \lambda_{\gamma_{i}}\}_{i,j=1}^{m}$ be a finite G/Kcocycle defining \mathfrak{F} such that $\{U_i\}_{i=1}^m$ is a regular covering of M in the sense of [6, pp. 336-337] and such that $\gamma_{ij} \in \Gamma$ for i, j = 1, ..., m. By a plaque $\rho \subset U_i$ of the leaf $L \in \mathfrak{F}$ is meant a connected component of $L \cap U_i$. Fix $L \in \mathfrak{F}$ and let ρ be a plaque of L. Without loss of generality, we may assume that $\rho \subset U_1$. For each i = 1, ..., m, let $v_i(n)$ be the number of distinct plaques in U_i , which can be reached from the plaque ρ by a chain of plaques of length $\leq n$. If g_{ρ} denotes the growth function of L at ρ with respect to the regular covering $\{U_i\}_{i=1}^m$, then $g_0(n) = v_1(n) + \ldots + v_m(n)$, $n \in \mathbb{Z}^+$ [6]. Let $\Gamma^1 \subset \Gamma$ be a finite symmetric generating set for Γ such that $\gamma_{ii} \in \Gamma^1$ for all i, j = 1, ..., m. Set $z = f_1(\rho) \in G/K$. We may assume that $\Gamma(z)$ is the orbit $\Gamma(f(\tilde{L}))$ where $\tilde{L} \in \pi^{-1}(\mathfrak{F})$ is a leaf projecting to L. The growth function of Γ at z is $g_z(n) = |\Gamma^n(z)|, n \in \mathbb{Z}^+$ where | | denotes cardinality and $\Gamma^n(z) = \{z' \in G/K : z' = \lambda_{\gamma_i} \circ \ldots \circ \lambda_{\gamma_1}(z) \text{ for some } \}$ $\gamma_1, \ldots, \gamma_i \in \Gamma^1$ where $j \leq n$. Let τ be a plaque of L in U_i which can be reached from the plaque ρ by a chain of plaques of length $\leq n$. Let $(\rho = \rho_1, \rho_2, \dots, \rho_l = \tau)$ be such a chain, $l \leq n$. For each $k = 1, \dots, l$ choose U_{i_k} such that $\rho_k \subset U_{i_k}$, $U_{i_1} = U_1$, $U_{i_l} = U_i$. Then $\lambda_{\gamma_{i_l}i_{l-1}} \circ \ldots \circ \lambda_{\gamma_{i_2}i_1}(z) = f_i(\tau)$. Thus $f_i(\tau) \in \Gamma^{n-1}(z)$. If $\tau' \neq \tau$ is another such plaque, then $f_i(\tau') \neq f_i(\tau)$. Hence $v_i(n) \leq g_z(n-1)$ and so $g_{\rho}(n) \leq mg_{z}(n-1)$ which completes the proof of the theorem.

2.1. COROLLARY. – If G is nilpotent or if $\pi_1(M)$ is nilpotent then all the leaves of \mathfrak{F} have polynomial growth. Moreover, the holonomy group of every leaf is finitely generated and has polynomial growth.

Proof. — Since Γ is a finitely generated nilpotent group, it has polynomial growth [1], [11] and hence all the leaves of \mathfrak{F} have polynomial growth. Let L be a leaf of \mathfrak{F} and $\tilde{L} \in \pi^{-1}(\mathfrak{F})$ a leaf projecting to L. Since $\Gamma_{L} \subset \Gamma$ is a subgroup of a finitely generated nilpotent group, we have that Γ_{L} is finitely generated [7] and hence has polynomial growth.

2.2. COROLLARY. – If G is solvable and $\pi_1(M)$ has non-exponential growth, then all the leaves of \mathfrak{F} have polynomial growth.

Proof. – Since Γ is a finitely generated solvable group with non-exponential growth, it follows that Γ has polynomial growth [11].

2.3. COROLLARY. – If $L \in \mathfrak{F}$ is a leaf satisfying

i) $[\pi_1(M) : i_*\pi_1(L)] < \infty$,

ii) The holonomy group of L has non-exponential growth (respectively, polynomial growth of degree d),

then all the leaves of \mathfrak{F} have non-exponential growth (respectively, polynomial growth of degree d).

Proof. – If $\tilde{L} \in \pi^{-1}(\mathfrak{F})$ is a leaf projecting to L, then we have $[\Gamma : \Gamma_{\tilde{L}}] < \infty$. Hence $\Gamma_{\tilde{L}}$ is finitely generated [1] and, by (ii), has non-exponential growth (respectively, polynomial growth of degree d). Hence Γ has non-exponential growth (respectively, polynomial growth of degree d) [1].

3. Structure equations and the normal bundle.

The following is established using arguments similar to those found, e.g., in Chapter 10 of [9].

3.1. PROPOSITION. – Let \mathfrak{F} be a codimension m - k foliation of M defined by m - k linearly independent one-forms $\omega_1, \ldots, \omega_{m-k} \in A^1(M)$ and suppose that there are also one-forms $\omega_{m-k+1}, \ldots, \omega_m \in A^1(M)$ such that

$$d\omega_i = \sum_{1 \leq j < l \leq m} c^i_{jl} \omega_j \wedge \omega_l, \ i = 1, \ldots, m.$$

Then \mathfrak{F} is a homogeneous G/K-foliation.

We now prove Theorem 2. The canonical projection $p: G \to G/K$ makes G a smooth principal K-bundle over G/K. We may pull back this bundle via f to obtain a smooth principal K-bundle $\rho: f^*(G) \to \tilde{M}$ where $f^*(G) = \{(y,g) \in \tilde{M} \times G : f(y) = p(g)\}$ and $\rho(y,g) = y$. We also have a map $\bar{f}: f^*(G) \to G$, defined by $\bar{f}(y,g) = g$, such that $p \circ \bar{f} = f \circ \rho$. Define a left action of Γ on $\tilde{M} \times G$ by $\gamma(y,g) = (\gamma y, \gamma g)$ for $\gamma \in \Gamma$, $(y,g) \in \tilde{M} \times G$. This action of Γ preserves $f^*(G)$ and thus defines a smooth left action of Γ on $f^*(G)$ such that $\gamma \circ \rho = \rho \circ \gamma$ for each $\gamma \in \Gamma$. Let $\Gamma \setminus f^*(G)$ denote the space of orbits and let $\tau: f^*(G) \to \Gamma \setminus f^*(G)$ be the natural projection. The map $\rho: f^*(G) \to \tilde{M}$ induces a continuous surjection $\bar{\rho}: \Gamma \setminus f^*(G) \to M$ satisfying $\bar{\rho} \circ \tau = \pi \circ \rho$. Since the right action of K on $f^*(G)$ commutes with the left action of Γ , there is a free right action of K on $\Gamma \setminus f^*(G)$ such that $\bar{\rho} : \Gamma \setminus f^*(G) \to M$ is a smooth principal K-bundle. We remark that Γ acts freely and properly discontinuously on $f^*(G)$ and hence $\tau : f^*(G) \to \Gamma \setminus f^*(G)$ is a smooth regular covering with Γ as the group of covering transformations.

Now $p \circ \overline{f}$ is a submersion, whence \overline{f} is transverse to \mathfrak{F}_0 (where \mathfrak{F}_0 is the foliation of G by the left cosets of K) and so $\overline{f}^{-1}(\mathfrak{F}_0)$ is a well-defined foliation of $f^*(G)$. The foliation \mathfrak{F}_0 of G is defined by $\theta_1, \ldots, \theta_{m-k}$ and hence $\rho^{-1}(\pi^{-1}(\mathfrak{F})) = \overline{f}^{-1}(\mathfrak{F}_0)$ is defined by the m-k linearly independent smooth one-forms $\overline{f}^*\theta_1, \ldots, \overline{f}^*\theta_{m-k} \in A^1(f^*(G))$ which satisfy

$$d(\bar{f}^*\theta_i) = \sum_{1 \leq j < l \leq m} c^i_{jl} (\bar{f}^*\theta_j) \wedge (f^*\theta_l), i = 1, \ldots, m.$$

Note that $L_{\gamma} \circ \overline{f} \circ \gamma$ for each $\gamma \in \Gamma$ where $L_{\gamma} : G \to G$ denotes left translation by γ . Now \mathfrak{F}_0 and $\theta_1, \ldots, \theta_m$ are invariant under left translation by elements of Γ and hence $\overline{f}^{-1}(\mathfrak{F}_0)$ and $\overline{f}^*\theta_1, \ldots, \overline{f}^*\theta_m$ are invariant under the action of Γ on $f^*(G)$. Thus $\overline{f}^{-1}(\mathfrak{F}_0)$ projects to a welldefined foliation \mathfrak{F} of $\Gamma \setminus f^*(G)$ and $\overline{f}^*\theta_1, \ldots, \overline{f}^*\theta_m$ project to well-defined smooth one-forms $\alpha_1, \ldots, \alpha_m$ respectively such that \mathfrak{F} is defined by the m - k linearly independent smooth one-forms

$$\alpha_1, \ldots, \alpha_{m-k} \in \mathcal{A}^1(\Gamma \setminus f^*(\mathcal{G}))$$
$$d\alpha_i = \sum_{1 \le j < l \le m} c^i_{jl} \alpha_j \wedge \alpha_l,$$

which satisfy

$$i = 1, ..., m$$
. Note that $\mathfrak{F} = \overline{\rho}^{-1}(\mathfrak{F})$. Since $H^1(M; K)$ is trivial, there exists a smooth section $s: M \to \Gamma \setminus f^*(G)$. Now s is transverse to $\overline{\rho}^{-1}(\mathfrak{F})$ and $s^{-1}(\overline{\rho}^{-1}(\mathfrak{F})) = \mathfrak{F}$; hence, setting $\omega_i = s^* \alpha_i$ for $i = 1, ..., m$, we see that \mathfrak{F} is defined by the $m - k$ independent one-forms $\omega_1, \ldots, \omega_{m-k} \in A^1(M)$ which satisfy $d\omega_i = \sum_{1 \le j < l \le m} c_{jl}^i \omega_j \wedge \omega_l$, $i = 1, ..., m$. In particular, the normal bundle of \mathfrak{F} is trivial.

Noting that the two-dimensional affine group

$$\mathbf{K} = \left\{ \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} : ac = 1, a > 0 \right\}$$

is contractible, we see that Corollary 1 follows from Proposition (3.1) and Theorem 2.

3.2. COROLLARY. – Suppose G/K is a simply connected Riemannian homogeneous space of constant curvature. Let \mathfrak{F} be a codimension m - kfoliation of M with trivial normal bundle. Then \mathfrak{F} is a homogeneous G/Kfoliation if and only if there exist m - k linearly independent one-forms $\omega_1, \ldots, \omega_{m-k} \in A^1(M)$ defining \mathfrak{F} and one-forms $\omega_{m-k+1}, \ldots, \omega_m \in A^1(M)$

satisfying
$$d\omega_i = \sum_{1 \le j < l \le m} c_{jl}^i \omega_j \wedge \omega_l, \ i = 1, \ldots, m.$$

Proof. – If \mathfrak{F} is defined by such one-forms, then \mathfrak{F} is a homogeneous G/K-foliation by Proposition (3.1). If \mathfrak{F} is a homogeneous G/K-foliation, then the metric on G/K induces a smooth Riemannian metric on the normal bundle of \mathfrak{F} . The hypothesis on G/K implies that K is the full orthogonal group 0(m-k) and hence the principal K-bundle $\overline{\rho}: \Gamma \setminus f^*(G) \to M$ constructed in the proof of the theorem is just the bundle of orthonormal frames of the normal bundle of \mathfrak{F} . The conclusion now follows from the triviality of this principal K-bundle.

3.3. COROLLARY. – Let \mathfrak{F} be a codimension two foliation of M with trivial normal bundle. Then

a) & is transversely Euclidean (homogeneous SO(2) $\mathbb{R}^2/SO(2)$) if and only if it is defined by independent one-forms ω_1 , ω_2 satisfying $d\omega_1 = \frac{1}{2}\omega_2 \wedge \omega_3$, $d\omega_2 = -\frac{1}{2}\omega_1 \wedge \omega_3$, $d\omega_3 = 0$.

b) F is transversely hyperbolic (homogeneous SL(2,**R**)/SO(2)) if and only if it is defined by independent one-forms ω_1 , ω_2 satisfying $d\omega_1 = \frac{1}{2}\omega_2 \wedge \omega_3$, $d\omega_2 = \omega_1 \wedge \omega_2 - 2\omega_1 \wedge \omega_3$, $d\omega_3 = -\omega_1 \wedge \omega_3$.

c) F is transversely elliptic (homogeneous SO(3)/SO(2)) if and only if it is defined by independent one-forms ω_1 , ω_2 satisfying $d\omega_1 = \frac{1}{2}\omega_2 \wedge \omega_3$, $d\omega_2 = -\frac{1}{2}\omega_1 \wedge \omega_3$, $d\omega_3 = \frac{1}{2}\omega_1 \wedge \omega_2$.

3.4. COROLLARY. – Let \mathfrak{F} be a codimension q foliation of M with trivial normal bundle. Then \mathfrak{F} is transversely affine (homogeneous $GL(q,\mathbf{R}) \cdot \mathbf{R}^q/GL(q,\mathbf{R})$) if and only if there exist q = m - k independent one-

forms $\omega_1, \ldots, \omega_{m-k} \in A^1(\mathbf{M})$ defining \mathfrak{F} (where $k = q^2$) and one-forms $\omega_{m-k+1}, \ldots, \omega_m \in A^1(\mathbf{M})$ satisfying

$$d\omega_i = \sum_{1 \leq j < l \leq m} c^i_{jl} \omega_j \wedge \omega_l, \quad i = 1, \ldots, m.$$

Proof. – If \mathfrak{F} is transversely affine, then the principal K-bundle $\overline{\rho}: \Gamma \setminus f^*(G) \to M$ is just the bundle of frames of the normal bundle of \mathfrak{F} .

4. Riemannian homogeneous foliations.

Throughout this section we assume that M and K are compact. Pick and fix a G-invariant Riemannian metric on G/K.

4.1. THEOREM. – The universal cover of M fibers over the universal cover of G/K, the fibers being the leaves of the lifted foliation.

Proof. – Let π : $\tilde{M} \to M$ and $f : \tilde{M} \to G/K$ be as in Theorem 1. Let \hat{M} be the universal cover of M and choose a covering map π' : $\hat{M} \to \tilde{M}$. Let $\hat{\mathfrak{F}}$ be the foliation of \hat{M} obtained by lifting \mathfrak{F} via π ∘ π' and let $\hat{f} = f ∘ \pi'$. Then \hat{f} is a submersion defining \mathfrak{F} . Let E ⊂ T(M) be the bundle tangent to the leaves of \mathfrak{F} . Choose a subbundle Q ⊂ T(M) such that $T(M) = E \oplus Q$. If $\{(U_{\alpha}, f_{\alpha}, \lambda_{g_{\alpha\beta}})\}_{\alpha,\beta\in A}$ is a G/K-cocycle defining \mathfrak{F} , then Q inherits a smooth Riemannian metric by the requirement that $f_{\alpha_{k_x}} : Q_x \to T_{f_x(x)}(G/K), x \in U_\alpha$ be a vector space isometry. Choose a Riemannian metric on E and define a Riemannian metric on M by the requirement that E_x is orthogonal to Q_x for all $x \in M$. Then this metric on the foliated manifold (M, \mathfrak{F}) is bundle-like in the sense of [8]. Moreover, since M is compact, this bundle-like metric is complete.

The complete bundle-like metric on M lifts via $\pi \circ \pi'$ to a complete bundle-like metric on the foliated manifold $(\hat{M}, \hat{\mathfrak{F}})$. But $\hat{\mathfrak{F}}$ is regular since it is defined by a global submersion. Hence, by Corollary 3 in [8], the space of leaves $\hat{M}/\hat{\mathfrak{F}}$ of $\hat{\mathfrak{F}}$ is a complete, Riemannian, Hausdorff manifold and the natural projection $\hat{M} \to \hat{M}/\hat{\mathfrak{F}}$ is a fibration. Since \hat{M} is simply connected, it follows that $\hat{M}/\hat{\mathfrak{F}}$ is simply connected. Now \hat{f} induces a local isometry $\hat{M}/\hat{\mathfrak{F}} \to G/K$ which lifts to a local isometry $\hat{M}/\hat{\mathfrak{F}} \to (G/K)$ where (G/K)denotes the simply connected Riemannian cover of G/K. Hence $\hat{M}/\hat{\mathfrak{F}}$ and $(\widetilde{G/K})$ are isometric [4] since each is a connected, simply connected, complete, analytic, Riemannian manifold.

Remark. – Corollary 2 is an immediate consequence of Theorem (4.1). If we do not assume that $(\widetilde{G/K})$ is contractible, but only that $\pi_2(\widetilde{G/K}) = 0$, then the leaves of \mathfrak{F} are simply connected and we still have that $i_* : \pi_1(L) \to \pi_1(M)$ is injective for all $L \in \mathfrak{F}$.

4.2. COROLLARY. – Suppose the universal cover of G/K is contractible.

i) If dim $\mathfrak{F} = 1$, then \hat{M} is contractible.

ii) If dim $\mathfrak{F} = 2$, then either $\hat{\mathbf{M}}$ is contractible or has the homotopy type of S^2 . In the latter case, all the leaves of \mathfrak{F} are compact with universal cover S^2 .

We adopt the following notation for the rest of this section and the next. Let N denote the connected Riemannian manifold G/K. Thus G is a transitive group of isometries of N. Let \tilde{N} be the universal cover of N endowed with the Riemannian metric lifted from N and let \tilde{G} be the full group of isometries of \tilde{N} . Then \tilde{G} acts transitively on \tilde{N} . Theorem (4.1) tells us that we have a fibration $\rho: \hat{M} \to \hat{M}/\hat{\mathfrak{F}} \cong \tilde{N}$. Let $\pi_1(M)$ denote the group of covering transformations of \hat{M} . Each element $\tau \in \pi_1(M)$ induces an isometry $\psi(\tau): \hat{M}/\hat{\mathfrak{F}} \to \hat{M}/\hat{\mathfrak{F}}$. We regard $\psi(\tau)$ as an isometry of \tilde{N} . Hence $\psi(\tau) \in \tilde{G}$ and we have a homomorphism $\psi: \pi_1(M) \to \tilde{G}$. Let $\Sigma = \text{image } \psi \subset \tilde{G}$. For $x \in \tilde{N}$, let $\Sigma_x = \{\sigma \in \Sigma : \sigma(x) = x\}$ and $\Sigma(x) = \{\sigma(x) : \sigma \in \Sigma\}$. Let $L \in \mathfrak{F}$ and choose a leaf $L' \in \mathfrak{F}$ which projects to L. Then the orbit $\Sigma(x)$ of $x = \rho(L')$ under Σ depends only on L and we denote this orbit by Σ^{L} . The following lemma is elementary.

4.3. LEMMA. – Let L be a leaf of \mathfrak{F} . Then

i) L is proper (i.e., L is an imbedded submanifold of M) if and only if Σ^L is a discrete subset of \tilde{N} .

ii) L is compact if and only if Σ^{L} is discrete and closed.

iii) L is dense if and only if Σ^{L} is dense.

iv) The space of leaves of \mathfrak{F} is homeomorphic to the orbit space $\Sigma \setminus \tilde{N}$.

v) Let $\overline{\Sigma}$ denote the closure of Σ in \widetilde{G} . Then for $x \in \widetilde{N}$, we have $\overline{\Sigma(x)} = \overline{\Sigma}(x)$; that is, the orbit of x under $\overline{\Sigma}$ is the closure of the orbit of x under Σ .

4.4. THEOREM. – Let $L \in \mathfrak{F}$. Then \overline{L} is a submanifold of M and the foliation of \overline{L} by the leaves of \mathfrak{F} is a homogeneous G'/K_L -foliation where G' is a closed subgroup of \widetilde{G} and K_L is a compact subgroup of G'.

ROBERT A. BLUMENTHAL

Proof. – Let $\pi : \hat{\mathbf{M}} \to \mathbf{M}$ be the universal cover of \mathbf{M} . We have a fibration $\rho : \hat{\mathbf{M}} \to \tilde{\mathbf{N}}$ whose fibers are the leaves of $\hat{\mathfrak{F}} = \pi^{-1}(\mathfrak{F})$. Choose a leaf $\mathbf{L}' \subset \pi^{-1}(\mathbf{L})$ and let $x = \rho(\mathbf{L}') \in \tilde{\mathbf{N}}$. Then

$$\pi^{-1}(\overline{L}) = \overline{\pi^{-1}(L)} = \overline{\rho^{-1}(\Sigma(x))} = \rho^{-1}(\overline{\Sigma(x)}) = \rho^{-1}(\overline{\Sigma}(x))$$

and so we have a fibration $\rho/\pi^{-1}(\overline{L}) : \pi^{-1}(\overline{L}) \to \overline{\Sigma}(x)$. Now $\overline{\Sigma}(x)$ is the orbit of x under the action of the Lie group $\overline{\Sigma}$ and hence is a submanifold of \widetilde{N} from which it follows that $\pi^{-1}(\overline{L})$ is a submanifold of \widehat{M} . Hence \overline{L} is a submanifold of M.

It remains to demonstrate that the foliation of \overline{L} by the leaves of \mathfrak{F} is a homogeneous foliation. Now $\pi/\pi^{-1}(\overline{L}) : \pi^{-1}(\overline{L}) \to \overline{L}$ is a regular covering and $\rho/\pi^{-1}(\overline{L}) : \pi^{-1}(\overline{L}) \to \overline{\Sigma}(x)$ is a submersion defining $\mathfrak{F}/\pi^{-1}(\overline{L}) = \pi^{-1}(\mathfrak{F}/\overline{L})$. Moreover, for each covering transformation τ of $\pi^{-1}(\overline{L})$ we have $(\psi(\tau)/\overline{\Sigma}(x)) \circ (\rho/\pi^{-1}(\overline{L})) = (\rho/\pi^{-1}(\overline{L})) \circ (\tau/\pi^{-1}(\overline{L}))$. Hence there exists a $\overline{\Sigma}(x)$ -cocycle $\{(U_{\alpha}, f_{\alpha}, \sigma_{\alpha\beta})\}_{\alpha,\beta\in A}$ defining $\mathfrak{F}/\overline{L}$ such that $\sigma_{\alpha\beta} \in \Sigma \subset \overline{\Sigma}$ for all $\alpha, \beta \in A$. But $\overline{\Sigma}(x)$ inherits a Riemannian metric from \widetilde{N} and $\psi(\tau)/\overline{\Sigma}(x) : \overline{\Sigma}(x) \to \overline{\Sigma}(x)$ is an isometry. Moreover, $\overline{\Sigma}$ acts transitively on $\overline{\Sigma}(x)$ and so $\overline{\Sigma}(x) \cong \overline{\Sigma}/K_{L}$ where K_{L} is a compact subgroup of $\overline{\Sigma}$. Taking $G' = \overline{\Sigma}$, we have that $\mathfrak{F}/\overline{L}$ is a homogeneous G'/K_{L} -foliation.

Remark. - Since $\{\Sigma(x) : x \in \tilde{N}\} : \{\bar{\Sigma}(x) : x \in \tilde{N}\}$ partitions \tilde{N} , we see that $\{\bar{L} : L \in \mathfrak{F}\}$ partitions M and hence $\mathfrak{F} = \{\bar{L} : L \in \mathfrak{F}\}$ is a foliation of M, possibly with singularities.

4.5. THEOREM. – If \tilde{N} is compact (i.e., if N = G/K is compact with finite fundamental group), there exists a connected, open, dense, F-saturated submanifold V of M which fibers over a connected Hausdorff manifold, the fibers being the leaves of F. Thus, in particular, the leaves of F contained in V are mutually diffeomorphic.

Proof. – Since \tilde{N} is compact, it follows that \tilde{G} is compact. Thus $\bar{\Sigma}$ is a compact Lie group acting smoothly on \tilde{N} . Let $W \subset \tilde{N}$ be the union of the principal orbits [2]. Then W is an open, dense, saturated subset of \tilde{N} and $\bar{\Sigma} \setminus W$ is a connected Hausdorff manifold [2]. Let $V = \pi(\rho^{-1}(W)) \subset M$. Then V is an open, dense, \mathfrak{F} -saturated submanifold of M. We have a smooth submersion $V \to \bar{\Sigma} \setminus W$ defining \mathfrak{F}/V and hence \mathfrak{F}/V is a regular foliation of V with all leaves compact. Thus $V \to \bar{\Sigma} \setminus W = V/\mathfrak{F}$ is a fibration [5], the fibers being the leaves of \mathfrak{F}/V . In particular, V is connected.

4.6. THEOREM. – Suppose (G/K) is compact and that $L \in \mathfrak{F}$ is a compact leaf. If the holonomy group of L has non-exponential growth (respectively, polynomial growth of degree d), then all the leaves of \mathfrak{F} have polynomial growth (respectively, polynomial growth of degree d). If the fundamental group of L has non-exponential growth (respectively, polynomial growth of degree d), then $\pi_1(M)$ has non-exponential growth (respectively, polynomial growth of degree d) and all the leaves of \mathfrak{F} have polynomial growth (respectively, polynomial growth of degree d).

Proof. – Since L is compact we have that Σ^{L} is discrete and closed, hence finite. Thus $\pi^{-1}(L)$ is a finite union of leaves. Let L' be a leaf of $\hat{\mathfrak{F}}$ which projects to L and let $\pi_1(M)_{L'} = \{\tau \in \pi_1(M) : \tau(L') = L'\}$. Then the index of $\pi_1(M)_{L'}$ in $\pi_1(M)$ is finite and hence $[\pi_1(M) : i_*\pi_1(L)] < \infty$. The holonomy group of L is isomorphic to the linear holonomy group of L and hence is a finitely generated linear group with non-exponential growth, hence polynomial growth [10] (respectively, polynomial growth of degree d). Hence, by Corollary (2.3), all the leaves of \mathfrak{F} have polynomial growth (respectively, polynomial growth of degree d). If $\pi_1(L)$ has non-exponential growth (respectively, polynomial growth of degree d), then so does $i_*\pi_1(L)$. Since $[\pi_1(M) : i_*\pi_1(L)] < \infty$, it follows from [1] that $\pi_1(M)$ has nonexponential growth (respectively, polynomial growth of degree d).

Combining Theorems (4.1), (4.4), (4.5) and (4.6), we obtain Theorem 3.

4.7. PROPOSITION. – If $\pi_1(\overline{L})$ is finite for some leaf $L \in \mathfrak{F}$, then all the leaves of \mathfrak{F} are compact. If an addition $(\widetilde{G/K})$ is compact, then $\pi_1(M)$ is finite.

Proof. – Let $\pi : \hat{M} \to M$ be the universal cover of M and let $\pi^{-1}(\bar{L})_0$ be a connected component of $\pi^{-1}(\bar{L})$. Then $\pi/\pi^{-1}(\bar{L})_0 : \pi^{-1}(\bar{L})_0 \to \bar{L}$ is a covering of \bar{L} . Since \bar{L} is compact with finite fundamental group, it follows that $\pi^{-1}(\bar{L})_0$ is compact. Let L' be a leaf of $\hat{\mathfrak{F}}$ contained in $\pi^{-1}(\bar{L})_0$. Then L' is a closed subset of the compact space $\pi^{-1}(\bar{L})_0$ and hence L' is compact. Thus all the leaves of $\hat{\mathfrak{F}}$ are compact and so all the leaves of \mathfrak{F} are compact. If in addition \tilde{N} is compact, then $\pi : \hat{M} \to \tilde{N}$ is a fibration with compact base and compact fiber. Thus \hat{M} is compact and so $\pi_1(M)$ is finite.

5. Elliptic, Euclidean, and hyperbolic foliations.

Throughout this section M denotes a closed manifold.

5.1. PROPOSITION. – Let \mathfrak{F} be a one-dimensional homogeneous $SO(2q+1)/SO(2q) \cong S^{2q}$ -foliation of M. Then $\pi_1(M)$ has polynomial growth of degree $d \leq 1$ and \mathfrak{F} has a compact leaf.

Proof. – Suppose that no leaf of \Re is compact. Then all the leaves of \Re are simply connected and hence $i_{\perp}\pi_{\perp}(L)$ is trivial for all $L \in \mathfrak{R}$. Let $\tau \in \pi$. (M). Then, since $\psi(\tau) : S^{2q} \to S^{2q}$ has a fixed point, there exists a leaf Ľ ∈ Â such that $\tau(L') = L'. \quad \text{If}$ $L = \pi(L') \in \mathfrak{F}.$ we have $\tau \in \pi_1(M)_{\tau'} = \{\mu \in \pi_1(M) : \mu(L') = L'\} \cong i_{\star}\pi_1(L) \text{ and hence } \tau \text{ is the identity}$ covering transformation and so M is simply connected. Thus M fibers over S^{2q} , the fibers being the leaves of \mathfrak{F} . But this implies that all the leaves of \mathfrak{F} are circles which is impossible. Hence there exists a compact leaf $L \in \mathfrak{F}$. Since the fundamental group of L has polynomial growth of degree 1, it follows from Theorem (4.6) that $\pi_1(M)$ has polynomial growth of degree $d \leq 1$.

5.2. PROPOSITION. – Let \mathfrak{F} be a codimension two elliptic foliation of M . Then either

i) all the leaves of \mathfrak{F} are compact,

ii) all the leaves of \mathfrak{F} are dense, or

iii) all the leaves of \mathfrak{F} have polynomial growth and there exists a compact leaf.

Proof. – In this case $N = \tilde{N} = S^2$, $\tilde{G} = SO(3)$ and so we have $\psi : \pi_1(M) \to SO(3)$ with image $\Sigma \subset SO(3)$. Thus $\bar{\Sigma}$ is a compact Lie group and hence has only finitely many connected components. Let $(\bar{\Sigma})_0$ be the connected component of the identity. Then $(\bar{\Sigma})_0$ is a compact connected Lie group and $[\bar{\Sigma} : (\bar{\Sigma})_0] < \infty$. Let $\Sigma_0 = \Sigma \cap (\bar{\Sigma})_0$. Then Σ_0 is a subgroup of Σ and $[\Sigma : \Sigma_0] < \infty$. Hence, by [1], Σ_0 is finitely generated and has the same growth type as Σ . We consider four cases :

a) $(\overline{\Sigma})_0$ is zero-dimensional : Then Σ is discrete and hence finite. Thus $\Sigma(x)$ is finite for all $x \in S^2$ and so all the leaves of \mathfrak{F} are compact by Lemma (4.3).

b) $(\bar{\Sigma})_0$ is one-dimensional : Then $(\bar{\Sigma})_0$ is isomorphic to S¹ and so Σ_0 is (finitely generated) abelian. Hence Σ has polynomial growth. Thus, by arguments identical to those used to establish Theorem 1, all the leaves of \mathfrak{F} have polynomial growth. Now Σ_0 is not trivial for otherwise $(\bar{\Sigma})_0$ would be zero-dimensional. Choose a non-identity element $A \in \Sigma_0$. Then A has exactly two fixed points $x, y \in S^2$. If $B \in \Sigma_0$ is nontrivial, then ABx = BAx = Bx and ABy = BAy = By. Hence either Bx = x and By = y or else Bx = y and By = x. Either way, the orbit of x under Σ_0 is finite. Thus $\Sigma(x)$ is finite and so \mathfrak{F} has a compact leaf. c) $(\bar{\Sigma})_0$ is two-dimensional: Then $(\bar{\Sigma})_0$ is isomorphic to the two-dimensional torus which is impossible.

d) $(\overline{\Sigma})_0$ is three-dimensional : Then $(\overline{\Sigma})_0 = SO(3)$ and so Σ is dense in SO(3). Hence $\Sigma(x)$ is dense in S² for all $x \in S^2$ and so all the leaves of \mathfrak{F} are dense.

5.3. PROPOSITION. – Let \mathfrak{F} be a codimension two Euclidean, elliptic or hyperbolic foliation of M. If $L \in \mathfrak{F}$ is a compact leaf with $H^1(L) = 0$, then all the leaves of \mathfrak{F} are compact. If $L \in \mathfrak{F}$ is a (not necessarily compact) leaf with $H_1(L, \mathbb{Z}) = 0$, then $i_*\pi_1(L)$ is a normal subgroup of $\pi_1(M)$.

Proof. – Let $L \in \mathfrak{F}$ and choose a leaf $L' \in \mathfrak{F}$ which projects to L. Let $x = \rho(L') \in \mathbb{N}$. Since Σ_x is abelian, the composition

$$\pi_1(L) \xrightarrow{i_*} i_*\pi_1(L) \cong \pi_1(M)_{L'} \xrightarrow{\Psi} \Sigma_x$$

induces a surjection $H_1(L,\mathbb{Z}) \to \Sigma_x$. Suppose L is compact. Then $\Sigma(x) = \Sigma^L$ is discrete and closed. If $H^1(L) = 0$, then $H_1(L,\mathbb{Z})$ is finite and so Σ_x is finite. Thus Σ is a discrete subgroup of \tilde{G} and hence $\Sigma(x)$ is discrete and closed for all $x \in \tilde{N}$ [4]. Thus all the leaves of \mathfrak{F} are compact. If $H_1(L,\mathbb{Z}) = 0$, then Σ_x is trivial and hence $\pi_1(M)_L = \text{kernel } \psi$. Thus $i_*\pi_1(L)$ is normal in $\pi_1(M)$.

5.4. PROPOSITION. – Let \mathfrak{F} be a codimension two Euclidean or hyperbolic foliation of M. If $i_*\pi_1(L_0)$ is trivial for some leaf $L_0 \in \mathfrak{F}$, then the fundamental group of every leaf is abelian.

Proof. – Choose a leaf $L'_0 \subset \pi^{-1}(L_0)$. Then

``

kernel
$$\psi \subset \pi_1(\mathbf{M})_{\mathbf{L}'_0} \cong i_*\pi_1(\mathbf{L}_0)$$

and hence ψ is injective. Let $L \in \mathfrak{F}$. Choose $L' \subset \pi^{-1}(L)$ and let $z = \rho(L') \in \tilde{N}$. Since $\pi_2(\tilde{N}) = 0$ we know that $i_* : \pi_1(L) \to \pi_1(M)$ is oneone and so $\psi \circ i_*$ maps $\pi_1(L)$ isomorphically onto Σ_z . But $\Sigma_z \subset \{\tilde{g} \in \tilde{G} : \tilde{g}(z) = z\} \cong SO(2)$ and so Σ_z is abelian.

5.5. PROPOSITION. – Suppose \tilde{G} is solvable. If \mathfrak{F} contains a leaf whose fundamental group is solvable, then $\pi_1(M)$ is solvable. Thus if \tilde{G} is solvable and dim $\mathfrak{F} = 1$, then $\pi_1(M)$ is solvable.

Proof. – Suppose $L \in \mathfrak{F}$ is such that $\pi_1(L)$ is solvable. Then $i_*\pi_1(L)$ is solvable. Choose a leaf $L' \in \mathfrak{F}$ which projects to L. Then we have kernel $\psi \subset \pi_1(M)_{L'} \cong i_*\pi_1(L)$ and hence kernel ψ is solvable. But $\pi_1(M)$ /kernel $\psi \cong \Sigma$ is solvable since $\Sigma \subset \mathfrak{G}$. Thus $\pi_1(M)$ is solvable.

5.6. COROLLARY. – If $\pi_1(M^3)$ is not solvable, then M^3 does not support a codimension two Euclidean foliation.

5.7. PROPOSITION. – If $H_1(M,Z) = 0$, then M does not support a codimension two Euclidean foliation.

Proof. – If \mathfrak{F} is a codimension two Euclidean foliation of M, then we have $\psi : \pi_1(M) \to \tilde{G} = SO(2) \cdot \mathbb{R}^2$. Let $h : SO(2) \cdot \mathbb{R}^2 \to SO(2)$ be the projection. Since $H_1(M,\mathbb{Z}) = 0$ and SO(2) is abelian, it follows that $h \circ \psi$ is the trivial homomorphism. Thus if $\tau \in \pi_1(M)$, then $\psi(\tau)$ is a translation of \mathbb{R}^2 and hence \mathfrak{F} is a Lie \mathbb{R}^2 -foliation. Thus \mathfrak{F} is defined by two linearly independent closed one-forms and hence, since $H^1(M) = 0$, there exists a submersion $M \to \mathbb{R}^2$ defining \mathfrak{F} which is impossible.

5.8. PROPOSITION. – Let \mathfrak{F} be a codimension two Euclidean foliation of M. If all the leaves of \mathfrak{F} are simply connected, then \mathfrak{F} is a Lie \mathbb{R}^2 -foliation and $\pi_1(M)$ is abelian.

Proof. – Let $\sigma \in \Sigma$. Suppose $\sigma(x) = x$ for some $x \in \mathbb{R}^2$. Choose $\tau \in \pi_1(M)$ such that $\psi(\tau) = \sigma$ and let $L' \in \mathfrak{F}$ be a leaf such that $\rho(L') = x$. Then $\tau(L') = L'$. Setting $L = \pi(L') \in \mathfrak{F}$, we have that $\tau \in \pi_1(M)_{L'} \cong i_*\pi_1(L)$. Since L is simply connected, it follows that τ , and hence σ , is the identity transformation. Thus Σ acts freely on \mathbb{R}^2 and so Σ is a group of translations. Hence \mathfrak{F} is a Lie \mathbb{R}^2 -foliation. Finally, $\psi : \pi_1(M) \to \Sigma$ is an isomorphism and so $\pi_1(M)$ is abelian.

5.9. COROLLARY. – Let \mathfrak{F} be a codimension two Euclidean foliation of the 3-manifold M.

i) If $\pi_1(M)$ is not abelian, then \mathfrak{F} has a compact leaf.

ii) If \mathfrak{F} is not a Lie \mathbb{R}^2 -foliation, then \mathfrak{F} has a compact leaf.

5.10. PROPOSITION. – Let \mathfrak{F} be a codimension two Euclidean foliation of M and suppose that $\pi_1(M)$ is abelian. Then either

i) \mathfrak{F} is a Lie \mathbb{R}^2 -foliation, or

ii) \mathfrak{F} has a compact leaf L such that $i_*: \pi_1(L) \to \pi_1(M)$ is an isomorphism.

Proof. – Since $\pi_1(M)$ is abelian, we have that Σ is abelian. Hence all the non-identity elements of Σ have the same fixed point set Z. Either Z is empty or Z has one element. If Z is empty, then Σ is a group of translations and so \mathfrak{F} is a Lie \mathbb{R}^2 -foliation. Suppose $Z = \{x\}$, $x \in \mathbb{R}^2$. Let $L' \in \mathfrak{F}$ be a leaf such that $\rho(L') = x$ and let $L = \pi(L') \in \mathfrak{F}$. Then $\Sigma^L = \Sigma(x) = \{x\}$ and hence L is compact. Let $\tau \in \pi_1(M)$. Then, since $\psi(\tau)(x) = x$, we must have that $\tau(L') = L'$. Thus $\tau \in \pi_1(M)_{L'}$ and so

$$i_{\star}\pi_1(L) \cong \pi_1(M)_{L'} = \pi_1(M).$$

5.11. COROLLARY. – Let \mathfrak{F} be a codimension two Euclidean foliation of M where M is a 3-manifold with $\pi_1(M)$ abelian, $\pi_1(M) \neq \mathbb{Z}$. Then \mathfrak{F} is a Lie \mathbb{R}^2 -foliation.

Proof. – If not, then \mathfrak{F} has a compact leaf L such that $i_*: \pi_1(L) \to \pi_1(M)$ is an isomorphism. Since \mathfrak{F} is one-dimensional, we have that $L \cong S^1$ and hence $\pi_1(M) = \mathbb{Z}$, a contradiction.

5.12. COROLLARY. – Let \mathfrak{F} be a codimension two Euclidean foliation of M where M is an orientable 4-manifold with $\pi_1(M)$ abelian, $\pi_1(M) \neq \mathbb{Z} \times \mathbb{Z}$. Then \mathfrak{F} is a Lie \mathbb{R}^2 -foliation.

Proof. – If not, then \mathfrak{F} has a compact leaf L such that $i_*: \pi_1(L) \to \pi_1(M)$ is an isomorphism. Since M is orientable and \mathfrak{F} is transversely orientable, we have that the leaves of \mathfrak{F} are orientable. Thus L is a compact orientable surface. If the genus of L is one, then $\pi_1(M) = \mathbb{Z} \times \mathbb{Z}$, contrary to assumption. If the genus of L is greater than one, then $\pi_1(M)$ is not abelian, contrary to assumption. If the genus of L is zero, then M is simply connected and hence doesn't support a codimension two Euclidean foliation.

5.13. PROPOSITION. – If $\pi_1(M)$ has non-exponential growth, then M does not support a codimension two hyperbolic foliation.

Proof. – In this case $\tilde{G} = SL(2,\mathbb{R})$ and we have $\psi : \pi_1(M) \to SL(2,\mathbb{R})$ with image $\psi = \Sigma \subset SL(2,\mathbb{R})$. By Lemma (4.3), $\Sigma \setminus \tilde{N}$ is compact and hence $\Sigma \setminus \tilde{G}$ is compact. Thus $\Sigma \setminus SL(2,\mathbb{R})$ is compact which is impossible since Σ has non-exponential growth.

157

BIBLIOGRAPHY

- [1] H. BASS, The degree of polynomial growth of finitely generated nilpotent groups, Proc. London Math. Soc., (3), 25 (1972), 603-614.
- [2] G. BREDON, Introduction to compact transformation groups, Academic Press, New York, 1972.
- [3] A. HAEFLIGER, Structures feuilletées et cohomologie à valeur dans un faisceau de groupoïdes, *Comm. Math. Helv.*, 32 (1958), 248-329.
- [4] S. KOBAYASHI and K. NOMIZU, Foundations of differential geometry, vol. I, Interscience Tracts in Pure and Appl. Math., 15, Interscience, New York, 1963.
- [5] R. PALAIS, A global formulation of the Lie theory of transformation groups, Memoirs of the Amer. Math. Soc., 22 (1957).
- [6] J. F. PLANTE, Foliations with measure preserving holonomy, Ann. of Math., 102 (1975), 327-361.
- [7] M. S. RAGHUNATHAN, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (68), Springer-Verlag, Berlin, 1972.
- [8] B. REINHART, Foliated manifolds with bundle-like metrics, Ann. of Math., (1), 69 (1959), 119-132.
- [9] M. SPIVAK, A comprehensive introduction to differential geometry, vol. I, Publish or Perish, Boston, 1970.
- [10] J. TITS, Free subgroups in linear groups, J. of Alg., 20 (1972), 250-270.
- [11] J. WOLF, Growth of finitely generated solvable groups and curvature of Riemannian manifolds, J. of Diff. Geom., 2 (1968), 421-446.

Manuscrit reçu le 20 décembre 1978 révisé le 9 juillet 1979.

Robert A. BLUMENTHAL, Department of Mathematics St. Louis University St. Louis, Missouri 63103 (USA). and U.E.R. de Mathématiques, Université de Lille I 59650 Villeneuve d'Ascq (France).