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ON GROUP REPRESENTATIONS
WHOSE C*-ALGEBRA
IS AN IDEAL IN ITS VON NEUMANN ALGEBRA

by Edmond E. GRANIRER

Introduction. — Let t be a unitary continuous representation of the
locally compact group G on the Hilbert space H, and denote by
L(H,)[LC(H,)] the algebra of all bounded [compact] linear operators on
H,. t© can belifted in the usual way to a *-representation of L!(G). Denote
by C*(G) = C* the norm closure of t[L!(G)] in L(H,) (with operator
norm) and by VN _(G) = VN, the W*-algebra generated by t1[L'(G)] in
L(H,). Let

M,(C}) = {9 € VN,; ¢C* + Cg < C¥)

i.e. the two sided multipliers of C¥ in VN, (not in the bidual (C¥)" of C¥).

The representation 1 is said tobe CCR if C* < LC(H,). Furthermore,
supp t will denote the closed subset of G of all © in G which are weakly
contained (a la Fell) in 1 (see the notations that follow).

One of the main results in this paper (in slightly shortened fashion) is :
THEOREM 1. — Let G be o-compact and T a unitary continuous

representation of G such that M (C¥) = VN,. Then supp t is a (closed)
discrete subset of G and each m in suppt is CCR (ie. C*¥ = LC(H,)).

A result of I. Kaplanski will hence imply that moreover C¥ isa dual C*-
algebra (see [6] (10.10.6)).

Our main application of this theorem is to induced representations and in
particular to the quasiregular representation ny on L?*(G/H), for some
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closed subgroup H, as detailed in what follows :

THEOREM 2 (!). — Let H be a subgroup of the c-compact group G and
v = VX therepresentation of G induced by the'representation x of H. If 15
is weakly contained in v and M (C¥) = VN, then H has finite covolume in
G, suppv is discrete and any m in supv is CCR.

Note that I is the unit representation of G -on C.

We improve somewhat theorem 2 for the case that v = my is the
quasiregular representation of G on L2(G/H) in

THEOREM 6. — Let G be o-compact, H a closed subgroup and v = ny.
If my weakly contains a nonzero finite dimensional representation and
M,[H(C,’:‘H = VN, then H has finite covolume in G, sup ny is discrete and
any m in supp my is CCR.

It seems to be in the folklore that if G is arbitrary and H is a closed
subgroup such that G/H is a compact coset space then M, (CT) = VN,
(see proposition 4).

It seems to us that the fact that H has finite covolume in G and sup my
is discrete should imply, at least for o-compact G that G/H is compact.

This would generalize a result of L. Baggett [20], A. H. Shtern and S. P.
Wang [17] who have proved it for the regular representation (i.e. H={e}) of
a o-compact group G. We pose the above as an open question.

The assumptions of theorem 6 still imply that G/H is compact at least in
the following cases (1) H is compact. (2) H is a semidirect summand. (3) H
is open in G. (4) G is connected and H = Zg(A) for some set A of
automorphisms of G. (5) G isaconnected Lie groupand H is a connected
subgroup. (6) G isasolvable Lie groupand H is any subgroup (both (5)and
(6) using some deep theorems of G.D. Mostow). (7) G is any Lie group and
H = Z5(A) (A as above) etc... See corollaries 1, 2, 3 after theorem 6.

In case my does not weakly contain any finite dimensional nonzero
representation we still have the

THEOREM 5. — Let G be o-compact H a closed subgroup. If
M, (C¥) = VN, then supp my isdiscrete and any m € supp ny is CCR.

(*) Forsecond countable G thm. 8.2 of Mackey iﬁ [22] p. 120implies that I can
be replaced by any finite dimensional representation. Thanks are due to L. Baggett for
an inspiring conversation connected with this fact.
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It seems to us that the fact that supp my is discrete, each m in supp ny is
CCR and G is o-compact should imply that G/H is compact.

A proof for this statement would provide an answer to the above open
question. We commission hereby a proof of this statement from people in the
know. It would imply, together with our theorem 5 the following statement :

«Let G be o-compact H a closed subgroup. Then M,,H(C,’:‘H) = VN,
if and only if G/H 1is a compact coset space. »

In case H = e we have a slightly better result than the above, namely :

THEOREM 3. — Let G be any locally compact group and p the left regular
representation. If M (C¥) = VN, then G is compact (and conversely).

This result improves a result of oursin [10] where it was assumed in
addition that G is amenable. M. A. Barnes has informed us that the has also
obtained this improvement of our result in [10] using different methods.

Notations. — Most of the notations in this paper are consistent with
Dixmier [6] and Eymard [7] and [8].

Let A be a C*-algebra. Let A” be the bidual (or the enveloping) C*-
algebra of A as in [6] 12.1.4. Denote by M(A) = {9 e A”;pA+pAcA}
the multipliers of A in A” (or the idealizer of A in A”). If H is a Hilbert
space, L(H)[LC(H)] will denote the algebra of all [compact] bounded
linear operators on H.

G will always stand for a locally compact group with a given left Haar
measure. We say that m isarepresentation of G if © is a unitary continuous
representation of G asin[6] 13.1.1. H, will denote a Hilbert space on which
the operators {n(x);x€ G} act. m can be lifted as usual to a *-
representation of L'(G) [in fact of M(G)] in the usual way. We denote by
C¥(G) or C¥, when G is obvious, the C*-algebra which is the operator
norm closure of n[L*(G)] in L(H,).VN_(G) = VN_ will denote the W*-
algebra generated by n[L!(G)] in L(H,).

The following notation isimportant :if © isarepresentationof G on H,
then

M,(C) = M,(C¥(G)) = {9 € VN,,; 9CF+CFo = CJ}

i.e. theidealizer of C¥ in VN,. Note that M_(C¥) does not usually coincide
with M(C¥*) which is the idealizer of C* in its bidual (C*)”. Proposition
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12.1.15 of [6] is important in this respect and it shows that the bidual of C¥ is
universal in a certain sense not shared usually by VN, .

p will denote the left regular representation of G on L%(G) and VN
willdenote VN,. C*(G) will denote the full C*-algebraof G asin[6] 13.9.
Theset P(G) of all positive definite continuous functions on G is identified
with the positive linear functionals on C*(G). P,(G) = P, will be the set of
those u in P(G) which are weakly associated with m (this set is canonically
identified with the positive linear functionals on C¥). B (G) = B,[B(G)]
will be the complex linear span of P [P(G)] and is identified canonically
with the dual of C¥[C*(G)] see Eymard [7], pp. 189-191.

B(G) is equipped with the dual norm on C*(G) and B,(G) < B(G) with
the subspace norm. A,(G) = A, will denote the norm closure in B, of the
set of all coefficient functions of the representation = ie. of
{{n(x)¢,n> ¢, neH,}. A,(G) is canonically identified with the predual of the
WH*-algebra VN,. Many results on A, (G) are contained in G. Arsac’s
elegant thesis [3] which unfortunately was never published. We were unable
to find them in such an elegant and suitable form anywhere else and will quote
hence reference [3].

If m is a representation of G, it will be identified with its unitary
equivalence class. G will as usual denote the set (of equivalence classes) of
irreducible representations of G with the usual weak containment topology
of Fell, i.e. that one transported from the hull-kernel topology of C*(G)”" as
in Dixmier [6] 18.1, p. 314. Let mn,, t, be representations of G. We say that
n, is weakly contained (a la Fell) in =, if B, < B,, (see [7], p. 189).

We denote the support of T, supp m as the set of © in G which are
weakly contained in n (ala Fell)see [6] 18.1. supp © is a closed subset of G.
I will denote the unit representation of G on C (the complex numbers)i.e.
<Ig(x)o, B> = afp foreach x in G and o, B in C.

A representation © of G is CCR if C¥ <« LC(H,).

Let H beaclosed subgroupof G. G/H = {x=xH; e G} is the space of
left cosets of G with the quotient topology. G/H admits a quasi invariant
measure (see S. Gaal [9], V.3). If Ag(Ay) are the modular functions of G (H)
andif A = Ay on H then G/H admits a (not necessarily finite) invariant
* measure [9] V. 3,p. 266. G/H may be compact and G/H need not admit an
invariant measure. It happens in numerous important cases that G/H
admits a finite invariant measure (in other terminology that H has finite
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covolumein G) andstill G/H is not compact (see for ex G. D. Mostow [11],

(12].

LemMMA 0. — Let o be a continuous unitary representation of the locally
compact group G such that M (C¥) = VN;. If v,e A, nP,(G) is a
sequence such that v, — v, uniformly on compactathen vy € A; N P (G) and
v, = vy weakly in the Banach space A, (i.e. in w(A, VN,)).

Proof. — Clearly ||v,|| = v,(e) is bounded and by the w* compactness of
closed bounded balls in the dual B, of C¥ asubnet of v, will converge w*
(hence in w(B,, L!)) and also uniformly on compacta to some u, € B,.
Hence uy(x) = vy(x) for each x € Gie. v, € P,. By Akeman and Walter’s
proposition 2 of [2], p. 458 it follows that (®,v,>" — (®,u,»" for each
® e M(C¥) where < )" (¢ ») wiil stand for the {(C¥)", B;> (VN A,D>)
duality. Let i: C¥ > VN, be the identity embedding then i can be
extended uniquely to a faithful representation also denoted by i to all of
M(C¥) and i(M(C?)) is the idealiser of i(C¥) inits weak closureie.in VN,
by a result of Akeman Pedersen and Tomiyama [1], p. 280, Prop. 2.4 (and
independently obtained by M.C. Flanders in his thesis at Tulane Univ. 1968).
If x: C*¥ - (C})" is the canonical embedding then by Dixmier [6] (12.1.5)
there exist a unique ultraweakly continuous representation 7 of (C¥)” to
VN, such that ik(p) = i(p) foreach ¢ € C¥. Asremarked in the proof of
[1], p. 280, prop. 2.4 7 restricted to M(C¥) is just i. Since we assume that
M, (C¥) = VN, it follows that I(M(C¥)) = VN,.

Claim 1. — If ®e(C})” and ve A, = B, the predual of VN, then
(Dv)" = (i®w). In fact let f, € L'(G) be such that

{ka(f) )" = (Du”

for each ue B, (ie. ultraweakly in (C¥)”, see Dixmier [6] 12.1). Then
iko(f,) - i® ultraweakly in VN, by the uw. continuity of 7. But
ixo(f,) = io(f,) and since ve A, one has

Ciko(fvy = io(fhv) = J JaX¥(x) dx = (ko (f)vd" — (D)”

by Dixmier [6] 12.13 (ii). But the left hand side converges to {i®,v) which
proves the present claim.

Claim2. — v, isaweak (ie. w(A,, VN,)) Cauchy sequencein A;. Infact
by the Akeman Pedersen Tomiyama result quoted above each element of
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VN, can be expressed as i® for some ® e M(C¥). Hence
v,y = (D" = {Dug)"
by the Akeman Walter prop. 2.4 of [2], p. 458, which proves claim 2.

Now A, is weakly sequentially complete as any predual of any W*
algebra by Sakai [13]. Hence there is some v" € A, such that v, > v in

w(A,,VN,) and in particular jf(x)v,,(x) dx —»Jf(x)v(x) dx for each

f € LY(G). But theleft hand side converges to jf(x)uo(x) dx. Thus u, = o'

almost everywhere and since u, and v’ are continuous uy(x) = v(x) for
each x. Thus uye A, n P, (G) and v, —» u, weakly as claimed.

CoroLLARY. — If G is o-compact and © is a representation of G such
that M (C¥) = VN, then A, = B,.

Proof. — For any v, € P, there exists a sequence v, € A, n P, such that
v, = vy uniformly on compacta. Thus v,eA,, Hence P, « A, and
A, = B,.

THEOREM 1. — Let G be any o-compact loc. cpt. group and & a unitary
continuous representation of G such that M (C¥) = VN, .

Then supp o is a discrete {-losed) subset of G, and A, = B, for each
representation vV weakly contained o. In addition :

a) for some cardinal ¢, co ~ c¢{Z @ n;n esupp o}, (=~ stands for equi-
valence of representations and £ @ for direct Hilbert sum),

(b) B, = A, = {£ @ A,;nesuppoc} (the I' direct sum, see Arsac [3], p.
27 and 39) and

(¢) C¥G) = LC(H,) for each mesuppo.

By a theorem of Kaplanski, as stated in Dixmier [6] (10.10.6) C¥ is
moreover, a dual C*-algebra (see also [6](4.7.20) and [1] prop. 2.4 and thm.
2.8).

Remark. — If for some wneG, C*=LC(H,) then Cclearly
M, (CF) = VN, = L(Hy). '

Proof. — Let v be a representation weakly contained in o. Let
vo€P, P, and v,eP, n A, c P, = P, n A, (by the above corollary)
be such that v, — v, uniformly on compacta. We apply lemma O to the
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sequence v, €A, vyeB,. It implies that v,eA, and v, > v, in
w(A,,VN,). Thus a net of convex combinations of the v)s will converge in
the norm of A, to v,. Since v, € A, and A, is norm closed it follows that
v, €A, ie. A, =B,.

Let m, esupp o. We show that {n,} is open in supp c. Let
v={Z @®n;nesupp o, n # My}

If n, isnotopenin supp o then w, e supp v. Thus A, =B, =B, =A,
by above. Thus m, is quasi-equivalent to a subrepresentation v, of v by
Arsac [3] Cor. 3.14, p. 40. Thus v, is equivalent to km, for some cardinal k
(see Dixmier [6], p. 105 (iii) = (iv)). But then m, which is irreducible, is a
subrepresentation of v, and hence of v, which cannot be, by the definition
of v. Thus {m,} is open in supp o which has hence, to be discrete.

Let now t={Z @® n; mesupp ¢}. Then, by Arsac [3], p. 39, Cor. 1, A, is
the ' direct sum of all A,=B_cB_=A_, with mesuppo. Hence
A, = A, and by Arsac [3], p. 43, thm. 3.18 A, = A, @ A, where v is the
linear span of the coefficients of the representations v of G contained in &
and disjoint from 1 (see also Dixmier [6], 5.2. p. 101).

Let m, esupp v’ < supp o. Then n; < t. Thus A, = A, n A, = {0}
by Arsac [3], p. 37, (3.12). This shows that A, = A, which implies that for
some cardinal ¢, ¢co ~ ¢t (see Dixmier [6], p. 105).

Now A, =A,=A,=A, by Arsac [3], p.29 and
A, ={Z@A,;nesuppo} (the I, direct sum) by [3], p. 39, Cor. 1. To
complete the proof one still has to show that C¥(G) = LC(H,) for each
nesupp o. Fixnowsucha m. Itisenough toshow that C*(G) is a norm
separable C*-algebra, since then using the fact that A, = B, we get by Arsac
[3], p- 47 that CX(G) = LC(H,). (This result is stated in [3] only for
separable groups G. However, only the separability of C¥*(G) is used in the
proof). Let a € H,a # 0. Then {n(x)a; x € G} spans a dense linear subspace
of H,. If K = G iscompact then {n(x)a; xeK} isanorm compact hence
separable subset of H,. Since G is o-compact, it follows that {n(x)a;x € G}
is separable hence so is H,. Thus C}(G) is a C*-algebra acting on the
separable H,, whose dual is the singleton {n} (if m' is irreducible and
weakly contained in 7 then, since n is closed in G, is equivalent to ).
We apply now lemma 1.5 of S. P. Wang [17], p. 21 and get that C*(G) is
separable. This finishes the proof.

Remark. — If A, = B, for some representation o, it does not follow
that M (C¥) = VN, evenif G isabelian. In factlet G be locally compact
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abelianand {v,}¢ = S besuch that y, - y, uniformly on compact subsets
of G. (Each v, is a continuous character on G). Then S is a compact
subset of G.

Let k be the counting measure on S and o the representation of G on
L%(S,x) = I*(S) given by (5(x)f)(y) = {y,x>f(y) for yeS, xeG and
fel?(S). If peM(G) then for f,, f, € I>(S) one has

CoWf f0 = j

S

j Y(0) dp(x) [, (1), () dx
G

= f B0 de = Sy, o

ie. o(Wfi(y) = p(y)fi(v) (pointwise multiplication of functions) and the
operator norm of o(n) on 1,(S) isjust sup {|u(y)l; yeS}. Thus C¥ = {sup
norm closure of L'(G)" restricted to S} = C(S) the continuous complex
functions on S. Furthermore VN, = [*(S) hence

M, (C¥) = {f €1°(S); fg € C(S) for each g € C(S)} = C(S) # I°(S) = VN,
since

C) = {f €1=(8); lim f(r,) = f(¥o)}-

(Note that multiplication of operators in VN, is just pointwise multiplica-
tion of functions.) However A, = B, since B, (the dual of C(S)) is just
M(S) = I*(S), since S is countable and the predual A, of [®(S) is just
I'(S). In factif yo,€S and heL'(G) then

(B> = <8y hy = J 8y (x)h(x) dx = h(yo).
Thus A, = B, but M,(C¥) # VN,.

Denote by Ig the trivial unit representation of G on H = C. For
definitions related to induced representations we follow S. Gaal [9]. Ap-
plying the previous theorem to induced representations we get.

THEOREM 2. — Let H be a closed subgroup of the o-compact group G and
v = VX therepresentation induced on G by the representation y of H. If Ig
is weakly contained in v and M,(C¥) = VN, then H has finite covolume in
G (i.e. G/H admits a finite invariant measure) and supp v is discrete. Thus
([19] Gadal, p. 407), n(1G,v*) = n(ly,%). Any = in supp v is CCR.
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Remark. — In particular, if H is openin G ie. G/H is discrete, then
G/H is finite. See also footnote (!) in introduction.

Proof. — Ig is weakly contained in v which by our theorem 1
necessarily contains I as a direct summand. Hence, by proposition 3in S.
Gaal [9], p. 406, G/H admits a finite invariant measure. The result on the
multiplicities n of 1(1y) in v*(x) follows from Gaal [9], p. 407.

We use next our main theorem to the regular representation p of any
locally compact group. VN, (G) is denoted by VN(G) in Eymard [7].

THEOREM 3. — Let G be any locally group such that
M, (C¥(G)) = VN, (G), where p denotes the left regular representation.
Then G is compact.

Proof. — Let G, be any open c-compactsubgroup of G. If ue B, (G)
(p, is the left regular representation of G,) let u extend u to all of G by
u(x) =0 if xeG ~G,. Then ue B,(G) (see Eymard [7], 2.31, p. 205).
Also, P,(G)lg, = {ulg,s ueP (G)} = P, (Gy). ([7], 2.31, p. 205).

We claim that (G,),, the reduced dual of G, is discrete. It is enough to
prove that MDI(C;l(Gl)) = VN(G,). By [7], (3.21)2° p. 215, thoe map
v - vlg, from A(G) onto A(G,) has as its transpose amap T — T from
VN(G,) to VN(G) which is an isomorphism of W*-algebras onto VNg,
(the w*-subalgebra of VN(G) generated by {p(y);y€G,}) which maps
C,,(Gy) into C¥(G). Let TeVN(G,)), (I)eCf,l(Gl). Thel;l
(T<I>)°="i'(i>eC’;(G) by the assumption of our theorem. Note that T—»T
is one to one since u—ulg is onto. We show that T® e C;‘I(G,). If
AeVN(G) let Alg e VN(G,) be defined for veA(G,) by
<Alg,v) = {A,v), asin[7] 3.21,1° If ¢ € VN(G,) then \'illc1 = . Since
if ueA(G,) then

Wlgpuy = A uy = Qhtlg,> = by

It follows that T® = [(T®)°]|;, where (T®)°e C(G). But by [7], 3.21,
1° (T(I))"[Gl € C;‘I(Gl). Thus T® € C;"I(Gl) for each T € VN(G,).

Hence VN(G,) =Mpl(C;"l(G1)). Our previous theorem implies that
supp p, is discrete. We use now thm. 7.6, p. 33 of S. P. Wang [17] and get
that G, is compact.

Since any o-compact subgroup G, of G iscompactitfollowsthat G is
compact.
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Applications to the quasiregular representation.

Notations. — H will always be a closed subgroup of the locally compact
group G. We denote by my the quasiregular representation of G on
L*(G/H,\) where A is a quasi invariant measure on G/H (for definition
see Eymard [8], p. 27) and G/H = {x = xH;xeG}.

ProrosiTION 4. — Let H be a closed subgroup of G such that the coset
space G/H is compact. Then M,(H(C,’{‘H)=VN,[H (Infact C, isevenan ideal
in its second dual).

Proof. — As known [8], p. 27, my is the representation of G induced by
I the trivial one dimensional representation of H on C (which is certainly
CCR). Hence, if G 1is second countable, then my is CCR by I
Schochetman [14] thm. 4.1, p. 482.1.e. my(f) iscompactforall f in L'(G).
Schochetman’s result has been generalized to arbitrary G by J.M.G. Fell in

[21], p. 57. Consequently Cy, contains only compact operators for arbitrary
G.

Let A = Cy . Then by Berglund thm. 5.5, p. 25, A is an ideal in its
second dual A”. Let m, be the identity representation of A, my(a) = a for
all a e A where a is an operator on L*G/H). Then m, is faithful and
hence lifts to a faithful representation again denoted by m, of

A” = M(A) = {beA”; bA + Ab < A}

into VN, (see Ackeman Pedersen Tomiyama [1] prop. 2.4, attributed
there to M. C. Flanders in his Tulane Univ. 1968 thesis) and furthermore
noM(A) is the idealiser of A in VN, ie.exactly our M, (C} ). Note also
that by the same prop. 2.4, n, lifted to M(A) is just the restriction of the
normal extension from A to A” as in Dixmier [6] 12.1.5. Hence
A" = VN, ie.

M, (C¥)=1,M(A) = my(A") = VN,

which finishes the proof.

Remark. — The following know fact has been shown above : If 1 is a
representation of the dual C*-algebra A (i.e. A is an ideal in A”) on the
Hilbert space H, and VN, is the W*-algebra generated by t(A) then
M, [t(A)] = VN..
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Our main goal in what follows is to get some converse to the above
proposition.

Our main theorem yields immediately the following.

THEOREM 5. — Let G be o-compact, H = G a closed subgroup and my
the quasiregular represenfation. If M, (C;)= VN, then(l) supp my isa
discrete closed subset of G (and A, = B, for any v weakly contained in my)
(2) for some cardinal c, cmy is equivalent to c{X @ m;n esupp o} and (3)
any vesupp ny is CCR.

Remarks. — We hoped to find in the literature a result stating the
following :

(*) Let G be o-compact HcG a closed subgroup. If suppmy, is
discrete then the coset space G/H is compact.

(*) Would generalize the well known result of L. Baggett [20],
A. I Shtern and S. P. Wang [17], p. 33, that if G is-o-compact H = {e}
(thus my = p is the regular representation) and supp p is discrete then G
is compact. We could neither find such a result in the literature, nor prove it
ourselves. Clearly, our main theorem together with (*) would imply thatif H
isaclosed subgroup of the c-compact G and M, (Cy)= VN, then G/H
is compact.

We still will be able to prove this assertion in many cases.

G/H is said to be an amenable coset space, if the identity representation
I is weakly contained in the quasiregular representation my. We follow
Eymard [8] in notations and results regarding my. Many equivalent
conditions as well as many examples of amenable coset spaces G/H are given
in Eymard [8]. In particular, if G is an amenable group then G/H is a
amenable coset space for any H. In quite a few interesting cases, G and
H = G are not amenable while G/H is an amenable coset space. For
example if G = SL(2R), H = SL(2,Z) then G/H is an amenable coset
space even though none of G or H are amenable groups. Furthermore, if
G/H is compact then it is not necessarily an amenable coset space.

THEOREM 6. — Let G be c-compact and H < G a closed subgroup such
that the quasiregular representation weakly contains a finite dimensional
nonzero representation.

If M, (C})=VN, then G/H admits a finite invariant measure and the
support of my is discrete. In addition any m in supp m, is CCR.
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Proof. — Assume that a is a non zero representation of G on the Hilbert
space H, with dimH, =n, 0 <n < o0. Let v(x) = <a(x)§, n > E,
neH, be such that v(x,) # 0 at some x,. Then v(x) is a bounded
continuous almost periodic function on G (AP(G)) and M(Jv]) > 0 where
M is the unique invariant mean on the continuous weakly almost periodic
functions on G (denoted WAP(G). Note that [v] is defined by
[vl(x) = |v(x)] for all x). This is due to the direct sum decomposition
WAP(G) = AP(G) @ W,(G) where W (G)={fe WAP(G); M(f])=0}
see Burckel [5], pp. 29-30. Clearly ve B,<=B, =A, (by our theo-
rem 1). Apply now the majorisation principle of Hertz as given in
Arsac [3], p. 54 (take o = I,). Then there is some u € A,, such that
llull < |jv]l (in B(G) norm) but |v(x)| < u(x) for each x in G. Hence
M(u) = d # 0 and by Dixmier [6], 13.11.6, p. 274 the constant d = M(u)
function belongs to the uniform closure of Co{l.u;xeG} where
(Lu)(y) = u(xy) and Co denotes convex hull. Clearly, by M. Walter [15],
p. 33, LueB, . Also,forany we Co{lu;x e G}w| < [lv]| see[7], p. 186.
Let wye Co{lu;xe G} be a net such that wy(x) = d > 0 uniformly in
x € G. Thenasubnet wp, will converge w* andafortiori o(B, , LY(G)) to

some wy€B, (which is the dual of Cf). If feCgy(G) then
fwﬁv fdx — |wyfdx. Thus J(WO —d)f dx =0 for each f e Cy,(G).

This shows that wy, = d a.e. (G is o-compact). Since w, is continuous
wo=d >0 everywhere. Thus 1€ B, and I; is weakly contained in my.
Apply now theorem 2 and the fact that ny; isinfact I induced to G. Thus
H has finite covolume in G and supp my is discrete.

CoOROLLARY 1. — Let G be o-compact H a closed subgroup be such that
Ty weakly contains a finite dimensional # Q0 representation. If
M, (Cr)=VN, . Then G/H is compact and admits a finite invariant
measure at least in the following cases :

1. H is compact.

2. H is a semidirect summand.

3. H isopenin G (i.e. G/H isdiscrete) (?). In particular if G is discrete.
4. G isconnectedand H = Zg(A) = {x € G;ox=x foralla € A} where

A is any set of continuous automorphisms of G.

(®) Any n in supp m, is CCR and since G is discrete m is finite dimensional.
The requirement that my weakly contains a finite dimensional rep. is superflous.
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4. Itisenoughin4that G isonly o-compact H = Z5(A) and F(G/G,)
is open in G/G, (where G, is the connected component of e and
F(K) = {x € K; x has relatively compact conjuacy class in K}.

Proof. — 1. A, = B, by our theorem 1 and 1€ B,, by theorem 6.
Thus 1 €A, . However A, < A(G) by Arsac[3], p. 83, proposition. Since
1 € A(G) < C,(G) it follows that G is compact.

2. G = HN and H x N — HN defined by (h, n) —» hn isa homeomor-
phism. Also H NN ={ and N is normal in G. Thus
N =N/N H - G/H and H = H/N n N - G/N (canonical maps) are
homeomorphisms. By prop. 44 of S. P. Wang [18], p. 413, H has finite
invariant covolume in G (which holds by our theorem 6 above)
iff {e} = N n H has finite covolume in N. This just means that the Haar
measure A on the group N satisfies A(N) < co. Thus N has to be a
compact group (as well known) and since N and G/H are homeomorphic,
G/H is compact.

3. G/H is discrete and admits a finite invariant measure by our theorem.
Thus G/H is finite.

4 and 4. Our theorem 6 implies that H = Z5(A) has finite invariant
covolumein G. We apply now Corollary 5.7, p. 416 of S. P. Wang [18] and
get that G/H is compact. Note that a slightly better result than 4 can be
obtained, by using thm. 5.6., p. 416 of S. P. Wang [18].

COROLLARY 2. — Let G be o-compact H a closed subgroup be such that
ny weakly contains a # 0  finite dimensional representation. If
M, (Cr)=VN,,, then G/H is compact and admits a finite invariant measure
at least in the following cases :

1. G is a connected Lie group and H is a connected subgroup.
2. G is a solvable Lie group and H any closed subgroup.

3. G is any Lie group and H = Z5(A) where A is any set of continuous
automorphisms of G.

4. G isaLie group all whose connected semisimple subgroups are compact
and H any closed subgroup.

Proof. — In any case H has finite covolume in G by our theorem 6. We
use now some deep results of G. D. Mostow which state that if G is a
connected [or solvable] Lie groupand H isany connected [arbitrary] closed
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subgroup such that H has finite covolume in G then G/H is compact (see
[19], p. 317 and [16], p. 392 or Mostow [11]). To prove (3) use S. P. Wang’s
thm. 3.6 on p. 319 of [19] which states that H = Z5(A) has finite covolume
in G if and only if G/H is compact.

To prove 4 note that by theorem 2.1 of S. P. Wang [19], p. 315 any closed
subgroup H of such G for which G/H has finite invariant volume
necessarily satisfies that G/H is compact.

CoroLLARY 3. — Let G be o-compact H a closed subgroup be such that

ny  weakly contains a # 0 finite dimensional representation and
M, (Cr)=VN,, .

If G isaLiegroup H any closed subgroup then G/H, is compact and has
a finite invariant measure, where H, = Zs(Zs(H)).

Note. — Zs(K) = {x € G;xk=kx for all k in K}.

Proof. — Our theorem 6 implies that G/H has a finite invariant measure
Thus by Wang [19] Cor. 3.7 G/H,; is compact. But H < H,. Thus by
Mostow [11] lemma 2.5 G/H, admits a finite invariant measure.

The reader will notice that in all above corollaries 1,2and 3, G and H
were so chosen that the assertion G/H admits a finite invariant measure (i.e.
I is an isolated point of supp my) implied that G/H is in fact compact.

Our theorem 6 implies however more that this fact, namely it implies that

supp my is discreteand G/H admits a finite invariant measure, and any 7 in
supp ny is CCR.

We expect in fact that the following statement (weaker than the statement
(*) after theorem 5) to be true :

(**) Let G be o-compact, H a closed subgroup be such that G/H
admits a finite invariant measure. If supp my is discrete then G/H is
compact. The truth of (**) would imply an improved version of theorem 6
namely.

Assertion 6. — Let G be o-compact H a closed subgroup such that my
weakly contains a finite dimensional nonzero representation.

If M, (C¥)= VN, then G/H is compact and admits a finite invariant
measure. (Theorem 6 only asserts that supp my isdiscrete and G/H admitsa
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finite invariant measure). One notes that Assertion 6' would make corollaries
1, 2, 3 superfluous.

We pose hereby, statements (*) or at least (**) as open questions.
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