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ON THE THEOREM OF IVASEV-MUSATOV I

by T.W. KORNER

1. Introduction.

00

If JLI is a measure on the circle T = R/27rZ and V I A (n) |2 conver-
—— 00

ges, then fi must be an L2 function and so have for support a set of
Lebesgue measure greater than zero.

00

If S 1^ (^) I2 diverges, can we always find a measure jn ^ 0 with
n=i

support of Lebesgue measure zero such that 10 (\n |) | > \ii(n) \[n^Q}c)

Standard results on measures with fji(n) = 0 except when \n\ = 3m

[m > 1] show that the answer is no ([5] Vol. I., p. 202). However, in
a series of remarkable papers ([I], [2], [3]) Ivasev-Musatov obtained the
following result.

THEOREM I . I 7 . — // (f>(n) is a decreasing positive sequence such
00

that ^ (0(^))2 diverges and if the behaviour of <f)(n) is sufficiently
n=i

regular, then \^e can find a positive measure jn ̂  0 with support of
Lebesgue measure zero yet with

\fi(n)\ = 0 ( 0 ( 1 ^ 1 ) ) as \n\ -^ <^>

More precisely, he proved the following theorem (The reader may
check that our statement is equivalent to that of Theorem 1 of [3]) :

THEOREM 1.1. — Suppose (f>(n) is a decreasing positive sequence
such that

00

1) S (^(^))2 diverges
n=l
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2) n((j)(n))1 -^ 0 as n -> oo

3) n1^^^))2 -^ oo a.y ^2 -^ oo /or all e > 0

4) H^ can find an m such that ^^(n) is an increasing se-
quence.

Then we can find a positive measure jn with support of Lebesgue
measure 0 yet with

yi(n) == 0(0(M)) as \n\ -^ oo .

Although this theorem is deservedly famous, the proof has a repu-
tation for difficulty which has deterred many people from trying to
understand it.

In this paper I shall try to simplify and rewrite the proof in the
(mathematical) language of Kahane and Salem [4]. I hope that the ap-
proach that I have adopted will be found easier and more transparent
but, even if this hope is groundless, the existence of two accounts must
be helpful.

It turns out that the result we prove is rather stronger and simpler
than the original one of Ivasev-Musatov.

THEOREM 1.2. — Suppose (t>(.n) is a positive sequence such that

(A) f (0(^))2 diverges
n=l

(B) There exists a K > 1 such that for all n > 1 we have

K~ l 0 (n) < 0 (r) < K0 (n) whenever n < r < 2n

(C) n(j>(n) -> oo as n -> °°.

Then we can find a positive measure IJL i=- 0 with support E of Lebesgue
measure zero yet with

\ii(n)\ = 0(0(|/2|)) as | ^ | - > o o .

By making various modifications, it is possible to weaken condi-
tion (C). However, I want to give the proof in its simplest form, and so
I shall defer discussion of this to a second paper. (For example, it can
be shown that if 0 (n) is decreasing, then condition (C) can be dropped
altogether).



ON THE THEOREM OF IVASIEV-MUSATOV. I 99

The reputation for difficulty of the original proof of Ivasev-
Musatov of which this is an adaptation, is also the reason why I give my
argument in a more detailed and leisurely manner than is customary.

Before starting on the argument proper, we make two conven-
tions. Note first that if <f)(n) > 0 has properties (A), (B) and (C), so
does min (1 ,0(n)). Thus, without loss of generality, we may suppose
for the rest of the paper that (f)(n) is a fixed positive sequence having
properties (A), (B), (C) and

(D) 0(>2)< 1 for all n > 1.

We shall write |E | for the Lebesgue measure of a closed set E.

2. The standard part of the construction.

In this Section we show that the construction of JLI is quite easy
once we have the following lemma.

L E M M A 2.1. - Given e, r] > 0 we can find an /<E C(T) such
that

i) / (0>0 for all r G T
ii) | supp /1 < T?

iii) ——ff(t)dt= 1
^7T "^

iv) I/O-) | < e(f> ( I /-I) for all r + 0
v) / is infinitely differentiable.

We start by proving the following consequence of Lemma 2.1 :

LEMMA 2.2. — We can find a sequence of functions

gi, gz, 83, • • • , ̂  C (T)
such that

(!)„ g^(t)>0 for all / G T

(2),, |supp^|<2-"

(3)« 2+2-n>^fg^(t)dt>2-l-2-
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Wn \8n 0-)1< (1 -2~")(f>(\r\) for all r ^ O
(5)» g^ is infinitely differentiable and, when n > 2,
(6),, supp^ Csupp^,_i.

Proof. - We construct g,. g ^ , g y , . . . inductively. The existence
of a suitable g^ follows directly from Lemma 2.1 on setting a
6 = 7 , = 1/2.

Now suppose ̂  has been constructed. Since g^ is infinitely dif-
ferentiable, it follows that li« (r)| < A/--2 for all r ̂  0 and some
constant A. Choose/as in Lemma 2.1 with T? == 2-"-l and e > 0 to
be determined. We claim that, provided only that e is small enough,
8n+i = f8n will satisfy condition (1 )„+1 to (6),,., i

Indeed, conditions (1),,^, (2)^,, (5)^,, (6)^, are trivial
consequences of (!)„ and (i), (ii), (5\ and (v). and the relation
supp^+i Csupp/n supp^ respectively. To prove (3),,+i and
(4)n+1 we note first that

1^+1 (r) - gn (r) | = | (^/)"(/•) - ̂  (r)/(0) |

S ^n (>")/(/• -771) |«
m ̂  /'

I li»(7n)||/(7--7n)|
M -A ».w i= r

S 1^(W)||/(7--7M)|
lm|<r/2

+ Z li«(w)| |/(7--m)|
lw|>/'/2 m^r

<6 Z 1^(^)1 |0([^-m|)|
lw|<r/2

+e Z l^(w)10( l^-m[) .
lw| >/-/2 w^r

If r = 0 we observe that, by condition (D), (j>(\r — m\) < 1 for
m ̂  r and so
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^- / 8n^ (t) dt - -^ f g, (f) dt = lî i (0) - Sn (0) I

<e ^ lg«(w)|
2^ "+1 27^

->/1
w^O

<eA ^ m-2

w^O

< lOeA

so, provided only that e<2 - " - l /10A, condition (3)^+i follows
from (3)^.

I f r ^ O , we also use condition (B) to tell us that

( ^ ( l ^ - m l X K ^ d d )

for all \m \ < r / 2 and thus

li^i(^)-i^)l<^K0(k|) ^ lijm)|+e ^ |i,(m)|
\m\<r/2 \m\>r/2

<6K0(|r|) ^ lijm)| + 6 A ^ m
—°° |m|>r/2

<eK0( | r | ) (10A + 2) + lOeAkr 1

<e0(|r | )((10A + 2)K + 10A sup (k(t>(k))~1)
k=l—

so, taking e < 2-"-1/((10A + 2) K + 10A sup (^0W)~1), we can
k>l

make condition (4)^+^ follow from (4)^. The induction can now be
restarted.

D

Remark. — Note that condition (A) was not used in the argu-
ment above and that, by tightening the inequalities, we could have
used very much weaker conditions than (B) and (C). The key to the
proof does not lie in this Section.

Using Lemma 2.2. it is easy to prove Theorem 1.2.

Proof of Theorem 1.2. - Let d^ (t) == f^ (r) — so that ^ is a
27T

measure on T. By (3)^, HjLiJI < 2 and so the sequence ̂  must have a
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a weak * limit point p.. (In fact it is easy to see without appealing
to general theorems but with a little extra work that the {JL^ cons-
tructed in the proof of Lemma 2.2 actually have a weak * limit jn).

By (1)^, ^ ^M^T) for all n > 1, so jnEM^T). By (6)^,
supp p. C supp 11^ for all m > 1 so that, using (2)^ we have

isupp^xl < 2"^

for all m > 1. Thus supp p. has Lebesgue measure 0. By (4)^,

1/W < 0 ( 1 ^ 1 )

for all n > 1 and so |^(r)| < 0(H) for all r ^ 0. Finally, by (3)^,
JL^(O) > 2~1 for all n > 1 so that j£i(0) > 2~ 1 and jn is a non zeron
measure.

3. Van der Corpufs lemma.

It is my opinion that in order to understand the original or the
present proof of the theorem of Ivasev-Musatov, it is necessary not
merely to know but also to understand the lemma of Van der Corput.

If the reader is clear in his own mind how this lemma works
he should skip at once to the next Section, pausing only to convince
himself of the truth of Lemma 3.3 (the constant 7T/2 is not essential
and can be replaced by any other). If not, we shall give a leisurely
account which should be compared with the standard, much faster,
proof in e.g. ([5] Vol. L, p. 197).

L E M M A 3.1. - (i) (Dinchlet.) If ^ > ^ > ̂  . . . > ^ > 0,

then 0 < ^ (- l ) t r < t Q .
r=0

- (\i)Ifn > m and ̂  > ̂  > • . • > ̂  > 0, then

n m —I
^ /, e\p(irTr/m) < V /,.
f=0 f=0
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Proof. - (i) /o > ^o - (^2 - ̂ ) - (^4 - ^s) - • • •

= f (- 1U
r=0

> (^0 - ^l) + (^2 - ̂ )+ ' "

> 0.
n m-\

(ii) ^ ^ exp (ir7r/m) < ^ ^ ^+<?m ex? 0' (^ + ^y^)7r)
"-" A-=0 0<A:+gw<M

w-1

= S 1; (-1)^k +qm
fc=0 I 0<k+qm<n

m -1

< 1: t,
k=0

using (i).

LEMMA 3.2. <F^ der Corput). - (i) // h : [a, ^] -^ R /z^
increasing derivative h' and there exists a\> 0 such that h\u) > \
forallu G (a, b)[orh'(u) < - \forallu E (a, b)] then

ir exp Q'/z (^)) rf^

Proo/ - We do the case h1\u) > \. Choose an m and let ^ be

the time spent by h between the values h (a) + —and A (a) + ——— 71-.
^M 1^1m m

r + 1
(More formally, let t, = h~1 ( a + ——— 71} - h-1 ( a + rn-}

\ m l \ m I

when b > a + ——— TT , ^ = Z? - /z~ 1 (a + ——^ when
m " \ m )

n + l ^ . ^ n7r
a + ———— TT > 6 > a + ——

m m

and ^ = 0 otherwise). Then, since h'(u) is increasing, it follows that
to ^ r! ^ ^2 ^ ' * ' an(! so by Lemma 3.1. (ii)
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m-l
[V t, exp (ir7T/m) < ^ t,
' r=0

But since h'(u) > X, ^ < X ~ 1 7r/m, so

| ̂  ^ exp (ir7T/m) < 7rX~ 1

Letting m -> °° this gives

r/•6J exp (ih(u))du
"a

TT
< -

L E M M A 3.2. <P^2 derCorput). — (ii) ///z ; [^, b] -^ R ^ twice
differentiable and there exists a jn > 0 ^c/z that h"\u) > JLI for all
u G (a, 6), ^/ze/2

| y^ / T T X172

J exp(ih(u))du < 4 (-1

Pwo/ - For each K > 0 we can split ( a , b) into 3 (possibly
empty) intervals ^ , 1̂  , 13 such that h ' ( u ) < — K for u G 1^,
- K < / / ( ^ ) < K for ^ G I ^ and /z'(^) > K for ^ E I^. Since
h'^u) > 11 it follows that l^ I < 2KjLT1 , so that

\f exp(ih(u))du < I I ^ I
2K
AI

whilst, by Lemma 3.2. (i), exp(ih(u))du < — for / = 1
K.

/•& 27T 2K
or 3. Thus / exp (ih (u))du < —— + —— and, setting

^a K ^

K = T T 1 / 2 / . - 1 / 2 ,

we have the stated result.
D

In exactly the same spirit we prove the following lemma.

LEMMA 3.3. - If h : (0,27r) -» T has increasing derivative
h9 and there exists a \ > 0 such that h'\u) > \ for all u G (0 , 27r),
then, for each interval I in T,
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11/r1 (l)| - |l 11 <
2X

105

Proof. — We may suppose 111 ¥= 0 , 1v. Write CI for the com-
plement T\I of I. Suppose 0 £ h~l (I). Then we can find

0 = /Q < SQ < t^ < S^ < ^ < • • •

such that /;(/) £ I for t, < t < Sj, h(t) > I for s,. < / < t ^ ^ . Since

h' is increasing -1 ^0 ^ ^1____^1 ^ '2 ^l ^ S1 ^1 -^ .1———— ^ ———— ^ ———— i^ ———— ^ • • • and
ICII HI ICI I

t, - Sn , f, - 5n ^1 | ^ ~ ^ _^2_so >
ICI I

whence
I C I I H I ICI I HI

t! - ̂ '0___^0 + t, - ^n 5 1 - t! | ^ - •y!

ICI I I I I
In other words,

ICII ICI I H I

?i - 5o . l/r'(l)| , I/;- '(Cl) | •O___^0+
ICII ICII H I H I

ti — 5n ?,> — S,0 "0But A'(u) > \ for all M G (0 , lit), so X >-1
ICI I ' |I|

I/;-1 (1)1 l/r^CDl

and

H I ICII

Since the formula is symmetric in I and CI, it also holds when 0 ^ 1
(i.e. when 0 £ CI).

Multiplying up, we obtain (since |CI| = 2ir — |I|)

l/r 'd)! l/r^CDl
H A - ' d ) ! - 1111 = (2ir)-1 HI |CI|

ICI IH I

< (2ir)-1 III (2ir - HI)

7T

îi
as stated.
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4. A Simple function with small Fourier transform.

How are we going to construct the function / of Lemma 2.1. ?
The answer is suprisingly simple.

Let g be a smooth positive function of small support. Then, if
h is any smooth function with sufficiently enormous acceleration,
g o h(t) = g (h (0) will (apart from a few technical details) be a sui-
table /. Properties (i), (ii), (iii) are (subject to slight technical changes)
inherited by / = g ° h form g . Property (v) is inherited by / from
g and h. Finally property (iv) is inherited from h.

How are we going to prove this last statement ? Observe that

g(f) == S o-q ex? 0^0 where \a^ \ -> 0 quite fast. Thus
g==-oo

f(t) - g o h(t) == ^ a^(t\
qr=—oo

00

where hq (t) = exp(iqh(t)), and so f(n) = ^ a^h^(n). If we
<7=~°°

can show that h (n) -> 0 very rapidly, it will follow that/(^) -^ 0
very rapidly and so property (iv) holds. (It has been pointed out to
me that this procedure is reminiscent of that employed by Wiener
and Wintner in their original work on this subject ([5] Vol. II., p. 146).)

In Lemma 4.2 we show that the h^ (n) can indeed be made small
under hypotheses very closely related to conditions (A), (B) and (C).
To indicate how closely, we make the following trivial observations.

L E M M A 4.1. — (i) Suppose ^ : [1 , °°) -> R is a positive func-
tion. Suppose that for some L > 1 we have L~l ^ (s) < V/ (t) for
all 1 < s < t < 2s. Then we can find an integer m > 1 such that
^ V/ (s) < L^ V/ (0 for all t > s > 1.

— (ii) // t ^ (t) -> °° as t -> °° then we can find a IQ such that,
ift>tQ and t > s > 1, then ^ (s) > t~1.

Proof. — Obvious.

L E M M A 4.2. — Suppose ^ : [1 , °°) -> R is a positive function
such that
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(a) P (^(O)2^ = 27r for some v > u > 4
^M

(b) TTz^r^ exist an L > 1 and an integer m > 1 .wcA rta^

L-1^) <; ^0) < L^/(5)

/o^- a// 1 < 5 < t < 25 a^rf s171 ^ (s) < L^ V/ 0) for all t > s> \.

(c)i t^(t)> 1 /o^// ^ > 1̂

(c^ ^ (0 > i^-1 for all 1 < r < u .

Write ^(s) = F (^ (t))2 dt
"u

h(x)^ r^-^Wdyj o

and hq (x) = exp (iqh (x)) [0 ^ x < 27r] .

Then \\(n)\ < lOTrL 2 \q\m ^(\n\) for all n , q ^ 0

and |^(0)| < ITT/U for all q ^ 0 .

Proof. — We wish to bound

\h^n)\ = ^f^expi (q f^-i(y)dy - nx) dx .

Since \h_q(n)\ = \hy(—n)\ we may suppose q > 1. If n ^ — 1 or
0 < n ^ u/2, the estimation is very simple.

CASE 1, n ^ - 7. Then, by (c), and (c)., ————^ ^(1^1) . Since
u + \n\

^~1 is increasing, so is q^~1 (x) — n. Moreover, for 0 < x < 2?r ,

-d-^ f^-1^) dy - nx} = ^-10c) - n = ^^-^O) - n
Ac V ^0 /

= qu + \n\ .

Thus, by Van der Corput's Lemma (Lemma 3.2 (i))

\h.(n)\ <——T—— ^Ti^(n) < 107TL2 Iq r r ^ (1^1) .9 qu + \n\
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CASE 2, 0 < n < î /2. We have

(^ ^ ^ 1^)^ - /z^) - q^~\x) - n> q^~\Q) - n£-(^ r

~= qu — n > 1^/2 .
Thus, using Lemma 3.2 (i),

27T
1/2^)1 ^ —— ^ 27T^(M) ^ lOTI-L^r V / ( | / 2 | )

if ^ ^ 0, and 1/^(0) | < -z •
u

The remaining case requires a little more work. The basis of
the calculation may become clearer if the reader concentrates on
the estimation when q = 1 and F, G, H ^ 0.

CASE 3, n > u / 2 . Note that In > u and so, using (b) and (c^ ,

2LV/(^) > 2\^(2n) > 2 (2A?)- 1 = ^- !.
We have

/^^) '= /F + X +^ exp' (^ /o'^'1^^^ -nx) dx

where F = { 0 < x < 27T : ^"^x) < ^/2^}
G = { 0 ^ x < 27T : n/2q ^ ^~ l(^) ^ 2/2/^}
H - { 0 ^ x < 27r : 2^/^ < ^ ~ ' ( x ) }

are (possibly empty) intervals.

The estimation of the integrals over F and H follows the pattern
above.

d / (^d x ^ Jo- (<? j ^ ^ l (y) dy - nx) = q^-1 (x) - n

is an increasing function bounded, above by q(n/2q) - n •= - n / 2
on F. Thus by Van der Corput's Lemma (Lemma 3.2 (i))

| j^ exp i ( q j ^~\y)dy - nx)dx < —7r •
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Similarly
d

~dx
(q / x ^ \y)dy - nx) = q^~\x) -

is an increasing function bounded below by q(2n/q) — n •= n on
H and so

f expi(q F ^~1 (y) dy — nx\ dx
I^H V Jo )

To estimate the integral over G when G ^ 0, we use the second
version of Van der Corput's Lemma (Lemma 3.2 (ii)). We have, for
all x E G,

dl I ^ i \ d
^V^Jo ^ ^dy-nx)^ q^^-\x)-n)

(V/^-1^)))2

> q (sup ^^-l(t)))-2

t<EG

> q ( sup V/ (5))~2

n/2q<s<: 2n/q

> q (L ̂  (n/<?))-2

> ^(L2^'"^^))-2.

(The last two inequalities use (b). Note that n/q > 1, since G ^ 0.)
Thus, by Lemma 3.2 (ii),

^ exp !• (q fx^~l(y)dy - nx\ dx < 47r l /2 L2 ̂ "-l/2 i//(n) .IX
Collecting terms and using the fact stated above that

^(n) > (2L)-1/!-1,
we see that

IV")!^21 + 4^^1 / 2L2^" l- l /2^(n) + w

M n

< 6Lir^(n) + 4 7r1 /2 L2 (?'" -l /2 ^(w)

^ 107rL2 Iqf" ^(|M|).
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Remark. — The definition of h and the argument giving a bound
on \hq (n)\ are, to all intents and purposes, due to Ivasev-Musatov. Our
h corresponds to his / (p. 108 of the English translation of [2]) and
our interval G to his interval A (p. 119 ibid.).

At first sight it looks as though h has been pulled out of a hat,
but, once the form of the argument has been grasped, it is possible to
see why h was chosen. Let us give a heuristic argument. We want

/» d
\ exp(i(h(t) - \t))dt to be small. If — (h(t) - \t) is large,

dt
then the first form of Van der Corpufs lemma deals with the problem.
Hence we only have to worry when h\t) is close to X. We then want
the acceleration

——(A(0 - \t) = h'^t)

to be as large as . . Simplifying slightly, we want
(W (A))

h'^t) = ——1——, -(^(h(t)))2

where h ' ( t ) = X, i.e. we want to solve h"(t) = —————; . Multi-
(^O)))2

plying up, we have h" (t) (^ (h (t)))2 = 1 and integrating gives
rh'(x)

j^ ^Wfdt = x

i.e. h ' ( x ) = ^~ l(x). The idea is simple, but one can only admire the
mathematical clearheadedness of the man who found it.

Looking at the proof of Lemma 3.2 (ii) one might ask whether
a better choice of G could be found. But to improve our estimates
over F and H we would need to take G larger, and if we did this we
would no longer know that the acceleration (^ (^-1 (x)))~2 was
close to (^OO)""2 onG.
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5. Conclusion of the construction.

It is easy to find an infinitely differentiable positive function
0o : [1 ,°°) -> R such that 0o(r) = 0(r) and 0^00 lies between
00-) and 00- + 1) whenever r ^ y ^ r + \ [ r > \ integral]. Trivial
estimates then show that (setting L = 2 K2 , say)

(A/ ^ (0o (t))2 dt diverges

(B)' L-1 0o (s) ̂  0o (r) < L0o(5) for all 1 < s <; t < 2s

(C)' t 0o (0 -> 0 as r -> oo.

By Lemma 4.1 (i) we can find an integer m > 1 such that

(B)'i 5^00(5) ^ L^ 0o (t) for all ! < 5 < r .

In the next lemma we shall take 0o , L and m as fixed once and for
all.

LEMMA 5.1. — Given 7 > 0 and X > 1 we can find a continuous
function h : [0 ,27r] -> R ^c/z rft^

i) h is infinitely differentiable on (0 , 27r)
ii) h(0) = 0, h(l7r) = 2p7r for some p G Z

iii) A'(r) > X /or a// r E (0 , 27r)
iv) Writing hq(t) = exp(l^/z(0) [0 < t ^ 27r] we have

\hq(n)\ < 71^1^ 0 (1^1) foralln,q + 0 and

v) 1^(0)1 < 7 /o^-a// <7 < 0.

Proof. - Set Co = min ((lOOTr)-1 , 7(207rL2)-1). As in Lemma
4.1. (ii) We can find a u such that

(c)'! ^o^oW > 1 for all t >u

(^ eQ^)>u~l forall l ^ r ^ M

and (e) 27rM- 1 < 7 , X ^ u.
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Let ^(s) = F (a0o(0)2 ̂
"M

w(a) = f^ ^OO^
^o

Now w is a continuous function of a and, since 0 < ^o^o^) ^
(100 7r)~ l , w (2 60) — w (^o) > 2 TT. Thus we can find an 2 e^ > e > e^
such that w(e) = 2p7T for some integer p .
Thus we can find an 2eo > e > e^ such that w(e) == 2p7r for some
integer p.

Set ^ (0 = e<j>Q (t) and take i^ to be the solution of

/Jo^oW)2^ = 27T
/l oo

(such a solution exists since J (0o (^))2 A diverges). The function ^
satisfies all the conditions of Lemma 4.2 and so, defining h just as in
that lemma, we have

iv) \h^(n)\ < e 107rL2 I ^ F ^od^D ^ 7 l ^ l w 0 o ( I ^ D
= 7 l^ r 0(1^1)

for all n, q ^ 0, whilst (using (e))

v) 1^(0)1 < 27ru~1 ^ 7 torall ^ = ^ 0 .

The truth of condition iii) is an immediate consequence of the defi-
nition and the fact that w(e) = 2 RTF . Again, it follows from the defi-
nition that h is differentiable on (0 , 2 TT) with

iii) h\t) > ̂ -10) > u > \ for all t C (0 , 27r) .

Finally, since V/ is infinitely differentiable on (0 ,27r ) , so is ^-1

(observe that f^-^)-^-^)-
0

We have now got the estimates which will enable us to carry
through the program outlined at the begining of Section 4, prove
Lemma 2.1 and so complete the proof of Theorem 1.2.

Proof of Lemma 2.1. — Note first that it suffices to prove Lem-
ma 2.1 with iii) replaced by
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iii)' -^^ f(t)dt> 1/2

and that, without loss of generality, we may suppose 0 < 17, e < 1.
Choose a g e= C (T) such that

1) g is infinitely differentiable
2) g ( t ) > 0 for all t <S T

3) supp g C [TT — 77/4, TT + 7?/4]

4) — — f g ( t ) d t = 1 .
^ TT ^T27T ^T

Since g is infinitely differentiable, it follows on integrating by parts
m + 2 times, that

5) |̂ )| < A l^l^-2 [q + 0]

for some constant A > 1 depending ong alone.
Set 7 = eA^/ lOO and X == Tr^"1 and construct h as in Lemma

5.1. We claim that f(t) = g(h(t)) [t € T] defines a continuous func-
tion / satisfying the conclusion of Lemma 2.1. with iii) replaced by
iii)'. (Note that condition ii) of Lemma 5.1 is needed to make the
definition of/(0) unambiguous.)

Condition i) of the lemma follows from (2). Since g is infinitely
differentiable everywhere and h is infinitely differentiable on T \ { 0 }
it follows that / is infinitely differentiable except possibly at 0. But,
by condition ii) of Lemma 5.1, h (0) = 0 and by (3) g is constant
in an open interval containing 0, so / is infinitely differentiable at 0
also, and condition v) is thus verified.

To prove condition ii), we note that

supp / C {x : h(x) G [TT - 7?/4, T? + 7?/4]}

= h~1 ([7T - 7?/4, 7? + 7?/4])

and that by Lemma 3.3 and condition iii) of Lemma 5.1

\\h~1 ([TT - 7?/4, TT + 7?/4])1 - r?/2| ^ 7r/(2X) = 7?/2

so \h~1 ([17 — 7?/4, TT + i?/4])| ^ 17 and Isupp f\ < i? as required.
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Next we observe that, since g E A(T), we have

6) gO) = ^ g ( q ) e x p i q t
q,=-oo

and
7) /(O = 1 + ^ i(^)exp(^/z0)) ,

<7^0

the convergence being uniform. Thus, in the notation of Lemma 5.1,

8) f(r) = ^ g(q)h^r) [r ^ 0]
q^O

1
8)' —/, f ( t ) d t = 1 + S l ^ ( ^ ) ^ ( 0 ) .

27r ^T ^^0

From 8), 5) and condition iv) of Lemma 5.1 we obtain

1/^)1 ^ S 1^(^)1 \^(r)\
q^O

^ A T S i^r^d'-i)
(7=^0

^ €0(|^|) [ r ^ 0]

so condition iv) holds. Similarly 8)', 5) and condition v) of Lemma
5.1 give

1 /*
^j^ f(t)dt > 1 - S \g(q)\ 1^(0)1

ftr ' qr <7^02?r "T

> 1 - 7A ^ \q\-^
q^O

> 1/2
so condition iii)' holds.

D

The proof of our theorem is complete.



ON THE THEOREM OF IVASIEV-MUSATOV. I 115

BIBLIOGRAPHIE

[1] O.S. I V A S E V - M U S A T O V , On the Fourier-Stieljes coefficients of
singular functions, Dokl. Akad. Nauk SSSR (N.S.), 82
(1952), 9-11. (Russian)

[2] O.S. I V A S E V - M U S A T O V , On Fourier-Stieljes coefficients of singular
functions, Izv. Akad. Nauk SSSR., Ser. Mat., 20 (1956),
179-196. (Russian). English translation in Amer. Math. Soc.
Translations, Series 2, 10 (1958), 107-124.

[3] O.S. IVASEV-MUSATOV, On the coefficients of trigonometric
nul series, Izv. Akad. Nauk SSSR., Ser. Nat., 21 (1957),
559-578. (Russian). English translation in Amer. Math. Soc.
Translations, Series 2, 14 (1960), 289-310.

[4] J.-P. K A H A N E and R. SALEM, Ensembles Parfaits et Series Trigo-
nometriques, Hermann Paris (1963).

[5] A. Z Y G M U N D , Trigonometric Series, Vols. I. & II., Cambridge
(1959).

Manuscrit re^u Ie 14 avril 1976
Propose par J.P. Kahane.

T .W.KORNER,
Department of Mathematics

Trinity Hall
Cambridge (Gde Bretagne).


