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LOCAL STRUCTURAL STABILITY
OF C2 INTEGRABLE 1-FORMS

by Alcides LINS Neto

In this paper we define a class of C^r ^ 2) locally structu-
rally stable integrable i-forms with singularities. The main
idea is to consider integrable 1-forms on R" with singularities
such that the 2-jet of the form in the singularities satisfy a
« hyperbolicity condition )) to be defined in § 1. With this
condition we show in theorems A, B and E that the foliation
induced by the form in a neighborhood of the singularities is
topologically equivalent to a foliation induced by a hyperbolic
linear action of R""1 on R\ In theorem C we show that
the set of singularities of the form is a cell complex which is
stable if we impose transversality conditions. In theorem D
we show that the foliation induced by the form in a neighbor-
hood of the singularities is locally like a product of a singular
codimension one foliation in R3 by codimension three planes
in R\ In § 1 we give the definitions, state the results and give
some examples. In § 2 we prove the results.

I wish to thank specially A. S. Medeiros and C. Camacho
for helpful conversations and ideas.

1. Definitions and results.

1.1. General definitions.

Let M be a C30 manifold of dimension TZ. We shall
denote the set of C' /c-torms on M by A^'^M) and if
k = 1, A^^M) = A^M). A 1-form on M will be integrable
if co A do = 0. The set of integrable C7' 1-forms on M
will be denoted by ^(M). In A^M) we shall consider the

ll
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Whitney's C^ topology and in ^(M), the induced topology.
If a £ A^M) we set sing (a) = {p e M[ap = 0}. A point
p e sing (a) is called a singularity of a. Frobenius9 theorem
implies that co e -^(M) defines a codimension one foliation on
M-sing (o)), which will be denoted by ^'(co).

1.1.1. DEFINITION. — Let C O G ^ ( M ) , coe^M). We say
that o) and <o are topologically equivalent if there exists a
homeomorphism h: M -> M such that h (sing (co)) = sing (&)
and h sends leaves of ^(co) onto leaves of ^'(&). If p e M,
^ e M, (v<° 5ai/ ^Aa< co and & are locally equivalent at p and q^
if there exist neighborhoods U of p and V of q, such that
the restrictions co/U and co/V are topologically equivalent.

1.1.2. DEFINITION. — We say that co e ̂ (M) 15 structurally
stable if there exists a neighborhood u of co m -^(M) 5uc/i
^Aa^ /or a^ o e u, (o and <o are topologically equivalent. We
say that co is locally structurally stable at p e M if for each
neighborhood V of p, ^ere exists a neighborhood u o/* o
in -^(M), such that if co e u ^re exists p e V, 5uc/i t/ia^ G)
azzd 0 are locally equivalent at p and p.

1.2. Some known results.

Singularities of integrable 1-forms were considered by
Reeb in [1]. In his work Reeb showed that an integrable 1-

n
form with non degenerate linear part of the type ^ x^dx^

1=1
is locally equivalent to the linear part. Furthermore he showed
that in the case that the form is analytic it is sufficient that
the linear part be non degenerate, for the local equivalence.
Kupka in [2] considered this problem from the structural
stability point of view. In this paper he gave some necessary
conditions for C1 structural stability. In [3] Medeiros extends
the results of Reeb to the case in which the form is C1 and

n
the linear part of co is of the type ^ s^ dx^ (s^ = ± 1)

i=i
and the number of e^s with minus and plus sign is not two.
Furthermore he considered the case (Op = 0 but d(^p ^ 0
and in this case he showed that singular foliation induced by co
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is locally equivalent to the product of a singular codimension 1
foliation on R2 by codimension 2 planes in R'1 (see the
picture below).

Fig. 1.

In this paper we analyze the case in which the linear part
is zero but the two jet of the form in the singularity is not zero.

1.3. The results.

Let co e ^(V), where V is an open set of R71. If

jWp=0 and j\^\=q,

then q is a i-form with coefficients homogeneous of degree
n

two and q A dq == 0. Let Q(n) = {q £ ^(R^y = ^ ^ dx,,
1=1

where ^ is a homogeneous polynomial of degree two}. If
co e A^R3), we define rot (co) to be the unique vector field X
in R3 such that dco = i'x {dx^ A dx^ A dx^), where tor a
A'-form T] in R", ix{^l) is the (/c — l)-form such that
^(•y])(^ . . ., ,̂-1) = ^(X, pi^ . . ., p,_i). If ^ e Q(3) then
rot (y) is a linear vector field in R2.

1.3.1. DEFINITION. — Let q G Q(n), n ^ 3. W<3 ^ay ^a^ ^
15 simple if there exists a 3-plane TC <= R" 5ucA ^a^ rot (<7/^)
15 a hyperbolic sector field in TT, where ql^ is the restriction of
q to TC. If cj e ^(M) and jo G M is such that

Wp = q + ̂

where q is simple^ then we say that p is a simple point of co
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We shall see below in 2.2.2 that a simple point of co is
a singularity of co, therefore in this case we shall say that p
is a simple singularity of co. Observe that if n == 3, rot (o)
depends of a volume form on M, but the fact that p is a
hyperbolic singularity does not depend. If X^, Xg, ^3 are the
eigenvalues of the linear part of rot ((o) in p , then

Xi + Xa + \ = 0.

This is a consequence of the fact that rot ((o) preserves
volume.

1.3.2. PROPOSITION. — Let q e Q(7z), n ^ 3, be simple.
Then there exists a linear isomorphism A of R'1 such that
A.*(q) has one of the following forms:

i) A*(^) == ax^x^ dx^ + bx^ dx^ + cx^x^ dx^.
ii) A*(y) = [ax^ 4" bx^)x^ dx^ + (— bx^ + ax^x^ dx^

+ c(^ + |̂) 3̂
iii) A*(y) === [ax^ -\- bx^x^ dxj — bx-^x^ dx^ + c^ ̂ 3-

Case iii) occurs only when the eigenvalues of rot (^/^) are of
the form X, X, — 2X(X ^ 0), where T: <= R" 15 Zi/ce in 1.3.1.

1.3.3. Remark. — Let S = S(n) c: Q(n) be the set of
simple 1-forms in Q(n). Then S is open (but not dense) in
Q(n). We remark that if q e S, then it is not difficult to see
that the three canonical types i), ii) and iii) can be obtained
in the following way : Take two linear comutative vector fields
in R3, say X and Y. Let Z = X X Y, where X denotes

3 ^
the cross product in R3. If Z == V Z, —? we take

1=1 f fr^x,

q{Z) = S Z, dx,

It is not difficult to see that the map (X, Y) -> q{X X Y) e S
is surjective, therefore the singular foliation induced by
q e S can be obtained as a foliation induced by an action of
R"-1 in R" such that two of the generators are linear and
the others are constant.
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1.3.4. Remark. — We shall prove in § 2 that cases i) with a,
&, c + 0 and ii) with 6, c + 0 are locally stable. We remark
here that case iii) is not locally stable. In this case

q == (ax^ + bx^)x^ dx^ — bx^ dx^ + cx\ dx^
and

sing [q) = [x e R71]^ = x^ = 0 or x^ = x^ = 0}.

If s > 0, let q = q + a^g^ dx-^ + P'̂ 1 ̂ 3 where ac = |3a
and [ o c [ , | (B| < e. Then § G S and

sing (q) = {x\x^ = x^ == 0}

if (3c > 0 or sing (^) is the union of three codimension
2 subspaces if (Be < 0. Then case iii) is not locally stable.

1.3.5. DEFINITION. — Let q e S(n), n ^ 3. We 5ay that q
is hyperbolic if there exists an isomorphism A of R" such
that A*(gr) is of type i) (o/*1.3.2) w^A a, b, c ^ 0 or of type ii)
with b, c ^ 0. Let co £ ^(M), r ^ 2, M ^ 3. We say that
p e M is a hyperbolic singularity of co if J2^)? == q is
hyperbolic.

We have the following results :

1.3.6. THEOREM A. — Let o) e ^(M), dim (M) = 3. Suppose
that p e M is a hyperbolic singularity of co and that

/2(^)p = ?•

Then co and y are locally equivalent at p and 0 respectively.

1.3.7. COROLLARY B. — If p e M, dim (M) ==3, is a
hyperbolic singularity of G) e ^(M), ^ACM co ^5 locally struc-
turally stable at p.

1.3.8. Remark. — In [4] C. Camacho proves the local struc-
tural stability of hyperbolic actions of R2 on R3. We remark
that this result can be obtained « generically » in the C2

case as a corollary of theorem A and corollary B, by using the
construction of 1.3.3. Observe that if we apply the construction
of 1.3.3 to the vector fields X = (rci, x^ x^) and

Y == (^i, Ix^ 3^3)
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we obtain the 1-form o = x^ dx^ — 2x^ d^ + x^ dx^
which is not simple and not stable.

If S and M are manifolds we denote by ^(S, M) the
set of Ck embeddings of S in M with the (? Whitney's
topology.

1.3.9. THEOREM C. — Let o G ^'(M), dim (M) = n, r ^ 2,
n ^ 3. Suppose that o is simple in the points of sing (do).
TAm sing (do) c sing (o) and in fact ^(o)^ == 0 if

p e sing (do).

Furthermore sing (do) ^ a CY-1 codimension three embedded
submanifold of M. AW suppose that sing (do) intersects €)M
transversally and r ^ 3. /n ̂ 5 ca^e ^ere e^te a neighborhood
u o/' o m ^"(M) 5ucA ^a^ i/1 o e u <Ae^ sing (do) 15
diffeomorphic to sing (do) and ^ 15 possible to define a conti-
nuous map ^: u -> y-2 (sing (do), M) such that the image of
^(o) is sing (do).

We say that a 1-form on R" depends of p variables in a
open set U <= R^ if there exists a decomposition

R^ = RP x R"-^

P
such that o/U == ^ o, d^,, where o,: U -> R depends

1=1
only of the variables x^ . . ., Xp e RP, for ^ = 1, . . ., p.

1.3.10. THEOREM D. — Let o e ^(M), dim (M) = n ^ 4,
r ^ 4. Suppose that p is a simple singularity of o. Then
there exist open sets O e U c R ^ p e V < = = M and a (Y-3

diffeomorphism 9: (U, 0)-> (V, p) ^uc/i ^a( 9*(o) e ^(U)
and depends of three variables. In particular the foliation indu-
ced by o in V is equivalent to the product of a singular folia-
twn in R3 by a regular foliation of codimension three.

1.3.11. Remark. - Let o e ^(M), dim (M) ^ 4 , r ^ 4.
Suppose that o is hyperbolic in the points of sing (do).
It follows from theorems A, C and D that there exists a neigh-
borhood V of sing (do) such that sing (o) n V is a cell
complex with codimension 2 and 3 cells.
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1.3.12. COROLLARY E. — If p is a hyperbolic singularity
of o) e -[^(M), then co is locally structurally stable at p.

A global structural stability theorem for forms with singu-
larities of the type above can be found in [10].

1.4. Some problems.

There are some problems and questions which arise natu-
rally :

1. In which situation is the hyperbolicity condition neces-
sary for local structural stability?

2. Let co be the integrable 1-form in R71 defined by
71

co = ^ a î . . . ^_i x,^ . . . x,, dx,.
1=1

Is it locally stable for a dense set of a^?

3. Generalize the definitions and theorems for systems of
integrable 1-forms or for /c-forms.

4. Study /c-parameter families of integrable 1-forms.
In 1.3.4 we have an example of a 2-parameter family of
1-forms. Is it stable?

5. Does the space of germs in 0 of hyperbolic 1-forms
have a structure of a Banach manifold? Notice that Medeiros
has a proof that in the case d^Q + 0 the answer is yes.

1.5. Pictures.

Here we sketch the pictures of the foliations induced by the
forms i) and ii) of 1.3.2 in R3.

Case i. co = ax^ dx^ + bx^ dx^ + cx^ dx^ with

a, by c 1=- 0.

We have two cases : i.l) a, b, c have the same sign and i.2)
a, 6, c do not have the same sign. In the pictures below we
sketch the pictures of the intersection of the foliations with
a sphere. Some of these pictures can be found in [4].
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Fig. 2.1 (case i.l).

Fig. 2.2 (case i.2).
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Case ii.

= (a^i + bx^ dx^ + (— &^i + 0^2)^3 ^2 + ^(^ + 1̂) ^3
with &, c ^ 0. We have three cases : ii.l) a, c with the
same sign, ii.2) a > 0 > c or c > 0 > a , ii.3) a = 0. We

(0



Fig. 3.3 (case ii.3).

Fig. 3.4.
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remark that all these cases are topologically equivalents as
we shall see in the proof of corollary B. We sketch below some
typical leaves.

2. Proof of the results.

2.1. Proof of proposition 1.3.2.

First case : n = 3.

By definition we have dq = ̂ x(r) where

r = dx^ A dx^ A dx^ and X == rot {q)

is linear and trace (X) === 0. Let A be a linear transfor-
mation of R3. Then

d(A^) --= A* (dq) = A*(^(r)) = ̂ x)(A*r) = dot (A)^x)(r),
where A*(X) = A'^X.A). Let A be a linear isomorphism
of R3 such that det (A) = 1 and A*(X) is in Jordan's
canonical form, with respect to the canonical base of R3.
We have three possibilities :

a)

d(A.*q) = \x^ dx^ A dx^ + ^^ dx^ A dx^ + \^ dx-^ A dx^

where 7^ + ^2 4- \ = 0-

b)
d(A.*q) = {ax-^ + P^) dx^ A dx^ + (— P î + a^2) dx^ A dx^

— 2a^3 dx^ A ^2

^)

d(A.*q) = Xn;i d^ A dx^ + (̂ i + x^) ^3 A da;i
— 2x^3 dx^ A d^2-

Now suppose we have a). The other cases are analogous.
Let q = \^X^XQ dx^ — \x^x^ dx^. We have dq = d(A.*q), the-
refore A.*q = q + df, where f: R3 -> R is cubic. By the
integrability condition we must have dq A df = 0, or
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3 ^
^ ^i -2- == 0. As f is homogeneous of degree three, it is

1=1 ^i
not difficult to see that we have two possibilities.

a') \i + \j if i -^ /. In this case f= kx-^x^ and
A*(g) = ax^ dx^ -\- bx-^x^ dx^ + cx^x^ dx^

where a == Xg + ^5 b = k — Xi, c = k.

a"} \ = Xg == X, ^3 == — 2X. In this case
/* === ^(/c^i + Ix^x^ + mrcj)

and § == ^x^{x^ dx^ — x^ dx^). Observe that if B is any
linear transformation such that B(^, x^ x^) == (B^(^, x^)y
Bg^i, x^)y ^3), then B*(§) == det (B)y. Let B be such that
B*(/c^ + Ix^x^ + mrcj) == /c(^ + ^1) or kx^x^ or /c^. Then
we have B*A*y == B*^ + d(B*f) has one of the forms i),
ii) or iii).

Second case: n > 3.

It is sufficient to show that q can be reduced to a 1-form
depending of 3 variables. Let q e Q(7z) and TT <= R71 be
such that dim n == 3 and CO/TT is simple. Suppose that
(x^y x^ XQ, 0, . . ., 0) is the parametrization of TT. Let

n

q = ^ ?f ^19 ^(! ==z ^ ay ̂ i A d^,
i==l i<7

where a^ == — a^ == -^ — -^. By the integrability condi-
0 ̂  0 Xf

tion we have gr A dq = 0, and then dq /\ dq = 0 so that

(*) ay^ + oc^ + a,/̂ . == 0

Let X: R^-^R 3 and Y,: R--^ R3 (k = 4, . . . , n) be
defined by X = (033, 031,042) and Y/, == (ai^, 03^, 03^). Observe
that X and Y^ are linear and the condition (( qfr: is simple »
means that the matrix M === (bX^/^) ^. .^ is non singular.
Assertion: sing fc?y) == ker (X). Let M^ = (^OL^I^X,) . . .
By (*) we have X.Y^ = 0 and by differentiation

M% + M^X - 0,
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where M^ M[ are the transposes of M and M^.As ]VP is
non singular, Y^ = -- (1VP)-1 .M^.X and then

ker(Y,) => ker (X) (/c = 4, . . . , ^ ) .

Now it is sufficient to show that ker (oc^) ^ ker (X) if
/, k > 4. This is an immediate consequence of

^iz^jk + ai/c^./ + ^ij^k^ = 0

and ker (Y^) =^ ker (X) (/c == 4, . . . , n). By the assertion
sing {dq) is a codimension three sub-space of R71, transversal
to TC. Let fc = {[x^ . . ., ^)|^i = ^ = = ^ 3 = 0 } and A be
a isomorphism of R'1 such that

A(TT;) = TT and A(7c) = sing (rfy).

Assertion: A* (dgr) depends of three variables. Let
A* (^?) = S P^- ̂  A ,̂.

i<7

Then (3^ is linear and p^.(0, 0, 0, x^ . . ., a;J = 0. Let us
show that (B^. ==0 if / ^ 4 and 1 ^ i ^ n. As A* (dy)

is exact we have -PL/ + -^ + -r^ = 0 and taking k ^ 4,
()^ ^)^ 6rr, & )

we have J-lj = 0 therefore -ri/f == -l-^. In particular if
^ ^n ^ 0^.

/ ^ 4 and i ^ 3, -t-^ == 0, therefore ^ = 0 if /, /c ^ 4.

As ̂  = ̂  (/c ^ 4)1, we have JB, = ̂ ,, where
0 OC, 0 t̂ C,

P; - 5 P^- ̂ •
1=1

By the condition A* {dq) A A* {dq) = 0 we have

P A df, = 0,

where P = ^ (By d^ A dx^ which implies that JB .̂ = 0
l^Kj'^3

if / ^ 4. Therefore A* (dgr) depends of three variables
(^i? ^25 ^a)-

We have to show now that A*(y) depends only of the
variables x^ x^, x^. As A* {dq) depends only of x^ x^ ^3,
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there exists an integrable 1-form ~q e Q(zz) depending only
of the variables x^y x^ x^ such that dq = A* (dq) (take
q = A^qfn). We have A.*q = q -(- df, where f is homo-
geneous of degree three. By the integrability condition we
have d f / \ d q = 0, or

^+^+^=0-
If i, / < 3 and k ^ 4, we have P.. —/- = 0, where jBy 7^ 0,

<)/* e)lr/c

which implies that —L == 0 for k ^ 4.b^,

2.1.1. .Remark. — Observe that in the above proof we use
only that dqfn is hyperbolic and the relation dq A dq = 0
to show that there exists a linear isomorphism A of R"
such that A* {dq) depends of three variables.

2,2. Proof of Theorem A.

As the theorem is local we shall consider M = R3 and
p == 0. We need some lemmas.

2.2.1. LEMMA. — Let co e ^(M") and suppose that the
interior of sing (dco) is empty. Let 'K. be a sector field in M
such that i^ (do) = 0. Then ix{^) = 0 and the Lie derivative
Lx(<o) = 0. In particular if p e M and y is the orbit of X
by p then y c: ^g (^(x))? T c: ^g ((0) or Y c: L, i/*

p e sing (dco), sing (co)

or L respectively^ where L LS the leaf of ^'(0)) fcy p, i/*
D ^ sing (co). If n == 3 M == R3 and X = rot (co) (/I^TZ

^x (do) =::== 0.

Proof. — Let p e M — sing (dco). Then

0 = (ix(^ A dco))p == ^p(X(p)). do)^ - cop A {ix (dco))p
= (op(x(p)) ^p-

But d^p ^ 0, then (^x^))? :::= 0. As the interior of sing (do)



LOCAL STRUCTURAL STABILITY 211

is empty, i'x(^) = 0 in M. We have

Lx(co) = ix (^) + (^(ix(o))),

therefore Lx((o) = 0. Now suppose p f sing (co). By the
condition ix{^) == 0, the orbit y °f X by p is contained
in the leaf by p. Now suppose p G sing (co) and let X^ be
the local flow of X. By the condition Lx(co) == 0, we have

, (X?co)^o = 0, therefore co^) == cox,(p)(DX^p) .^) ==0 if

p e TMp, so that the trajectory of X by p is contained in
sing (co). The proof for p e sing (dco) is analogous. If n = 3,
M = R3, then rot (co) is the unique vector field X in R3

such that ix {dx^ A dx^ A dx^) = dm and of course

ix (^t)) == 0.

2.2.2. LEMMA. — Let o) e ̂ (R3) one? suppose that p G R3

15 a simple point of G). Le^ X = rot co a/zd Wp fee ^Ae stable
or unstable manifold of X m p. TAen /l(^)p == 0 and Wp
is the union of leases of ^(co) and singularities of co. Further-
more if dim (Wp) == 1, (Aen Wp ^ sing fo).

Proof. — Suppose Wp == W^ the stable manifold of X
(the other case is analogous). Let q e W^ and ^ e T^(W^).
If X( is the flow of X, we have

^pM = <°X^)(DX^).P), ( e [0, co).

But v e T^(W^) therefore l imDX((g) .^=0 , which implies
<^^0

that co^(^) == 0. This proves that W^ and W^ are the union
of leaves and singularities of co. Since

T,(W5,) C T,(W^) = T,(R3), then o, = 0.

Let us show that /^(co)? == 0. We can suppose p = 0 and
y2^)^ = df -\- q where f and the coefficients of q are qua-
dratic. The integrability condition implies that

0 = /^(co A du)o = df A d?,

or ai —/- 4- ^2 —'- + a3 —/- = 0, where a^, ag, 03 are the
( î ^^3 ^^3
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components of rot {q), which is linear hyperbolic. Let A be
the jacobian matrix of rot {q) and B be the jacobian matrix
of grad (/•) = (6/ya^, &/y^ E )̂. By the above relation we
have AB + BA == 0, where B is symmetric and A is
non-singular and has trace zero. This implies that B = 0
therefore df = 0 and /^((o),, = 0. '

It remains to show that if dim (W^) = 1 then

Wp c: sing (to).

Le^ q ̂ v^6 T?(R3) ~ T9W- we must show th^",(^) = 0. We have for

( > 0, |(o^)| = |(o^(DX,(y).p)| ^ ||(o^J l|DX^).^j|.

Let Xj, Xg, Xg be the eigenvalues of rot {q) and p, = Re (X.).

We have f ?. = 0 and ^ ^ 0, i = 1, 2, 3, therefore we
i=I

can suppose that ft, < 0, (3i, ̂  > 0 and

"^{Pi, Pa} = p < jpgl.

Let 2|p3| - p > 3e, s > 0. Then using Gronwall's inequa-
lity (cf. [9], pg. 243, thms. 6.1 and 6.2) and /i((o). = 0 we
have

1|X^)|| < C^-dPal-)', 1(^^(1 ^ C^e-W^V

and ||DX^).pB < C^)', therefore

K(P)| < Ce<-21^^+F+3^ = Ce-01', a > 0,

which implies that <>>,(?) = 0.

2.2.3. Remark. - Let p = 0 be a simple singularity of ^
and Sj=^eR3| 11^1. =p2}. ^ 52, we take coordinates
a;, = pu., where u == (u^, ^, Mg) e S^. Define the « inter-
section » of w with S^ as the cross product

Yp(a;) = u X grad (co),,

where ""J^l ^g^ ((a)=("l^2,(03), 0^= 2 o).̂ .. Itis

obvious that Yp is tangent to both ^(<o) and Sj 'and Y (a;)=0
iff a; e sing (<o) n Sp2, or S2 is tangent to the leaf of ^(<o)
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through x. By projection, we can consider Yp as a vector
field in S2. Now /^(co^ == 0, then co == q 4- R, where

y = j ^ ̂  e Q(3), R = I; R, dx, and lim Rl^ = 0. There-

fore 'Yp == u X grad (co) ^p^Zo + Rp) =^ p^p where

Zo(u) == (U2^(u) — U3?2(^)? l̂(^) — ^1?3(^),

^1?2(^) — U^(U))

and R(u)==^-uX(Ri(pu), R2(pu), R3(pu)), u e S2 We
P2

call Zp the « blowing up » of the intersection. Now let ^(S^)
be the Banach space of C1 vector fields in S^ with the uni-
form O-topology.

Assertion. — lim Zp == Zo in the C1 topology.
9->0

Proof. — It is sufficient to show that

l im^R,(pu)-0
p->o P

and

l i m ^ f - ^ R ^ - O , i ^ i , / ^ 3 .
p^o ou/ \ P

The first is only a consequence of the fact that /^(co^ = 0.

For the second we have — (— R,(pu)) = — —'(pu) and as
b^\p2 l v l / / p bXj v /

1 ?^R
co is C2 we have l im———'(p^) ===0, uniformly in u.

p^o p ^/l / •7

2.2.4. Remark. — Suppose now that 0 is a hyperbolic
singularity of co. By 2.2.2 we can suppose that

JW. = q e Q(3)

and by proposition 1.3.2 that q has one of the two forms i)
or.ii) of 1.3.2. Let us analyze Zo in these two cases.

Case i : q === ax^ dx^ + bx^ dx^ + cx^ dx^ a, 6, c + 0.
In this case Zo = (^(6uj — cuj), Ua(cu2 — ao-j), u^{ax\ — bxff}
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and we have two sub-cases :
i') a, &, c have the same sign.
\"} a, 6, c do not have the same sign.

Case i') : We can suppose a, by c > 0. In this case Zo
has 14 singularities : 8 centers, corresponding to tangencies
of ^{q) with S^ and 6 sadles corresponding sing (q) n S^.
The phase space is like in picture 2.1. In this case Zo is not
structurally stable.

Case i") : We can suppose b > c > 0 > a. In this case Zo
has 6 hyperbolic singularities corresponding to sing [q) n S^.
These singularities are 2 sadles, 2 sinks and 2 sources. In
fact it is not difficult to see that Zo, in this case, is a Morse-
Smale vector field in S^ (cf. [5]) and its phase space is like
in picture 2.2.

Case ii) :

q = [ax-^ + bx^)x^ dx^ + (— bx-^ + ^2)^3 dx^ + c{x^ + rcj) dx^
where &, c 7^ 0. In this case

Zo = (uj(au2 — bu-^) — cu^(u[ + uj),
u|(— aui — feug) + cu2(u^ + uj), &U3(1 — uj))

and it is not difficult to see that the non-wandering set of Zo
is the union of two hyperbolic singularities (which are sinks
or sources) and one hyperbolic closed trajectory. The phase
portrait of Zo is like in pictures 3.4. Observe that Zo is
Morse-Smale in all cases. By 2.2.3 and 2.2.4 we can conclude
the following facts :

1) If p is small, then Zo and Zp have the same number
of singularities. This fact implies that the restrictions co/S^
and ql^ have the same number of singularities. Furthermore
^(co) and ^{q) have the same number of tangencies with S^
and sing (co) r\ S^, sing (y) n S^ have the same number of
points.

2) For cases i") and ii) Zo is topologically equivalent to Zp,
if p is small, which means that the restrictions of co and q
to S^ are topologically equivalent.

Now let GO e ^(R3) and 0 be a hyperbolic singularity of o.
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Let /^(c^o = q e Q(3), X = rot (co), L = rot (gr). Suppose
that dim Wo(L) = 2 and W^(L) = {a; e R3]^ = 0}. Let
Up,g be the cilinder {^ e S^| |̂ | ^ s} and Up,g(X), Up,g(L)
be the saturated sets of Up g by X and L restricted to
Bp= { ^ G R 3 ] ||̂ || ^ p}.

2.2.5. LEMMA. — There exist po, ^o > 0 such that:
a) X and L are transversal to Uo = LL ̂  and

Uo(X) u W^(X), Uo(L) u W,»(L)

contain neighborhood Vx and VL o/* t^e origin, where Vx,
VL ^ Uo.

b) The restrictions of co and q to Uo are topologically
equivalent.

c) J/* Z 15 a tea/* o/* ^Ae restriction of <o (o Vx, ^CTZ I n Uo
/ia5 oyz^y one connected component. The same is true for the
leaves of q.

Proof. — From the theory of invariant manifolds (cf. [8]),
if p is small, the intersection of the stable manifold of X
at 0 with Up g is a closed curve and X restricted to

Wo(X) n Up,,

is transversal to Up g. If we take s small enough then X
is transversal to Uo g and the same is true for L. By the
X-lemma (cf. [5])/'if Uo = Up,g then Up,g(X) u W^(X)
contains a neighborhood of the origin Vx ^ Uo. Let us prove
b). As the restriction of G) and q to S^ are topologically
equivalent to Zp and Zo respectively, it is enough to show
that Zo and Zp are topologically equivalent in a neighbor-
hood U§ = Ui § of {^3 == 0} in S^. In cases i") and ii),
it is obvious, since Zo and Zp are Morse-Smale and are trans-
versal to <^U§ if 8 and p are small (cf. [6]). Let us consider
case i7). In this case Zp is not transversal to OU§, but Zo
has eight tangencies with ()Ug, which are generic, therefore
if p is small, Zp has eight tangencies too. As W^(X) n Uo g
is a closed curve C, and Zo must have four sadle points in
U§, this sadles must lie in C and C-{sadles} has four compo-
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nents which are sadle connections. The phase space of Zp
in U§ is like in the picture below

Fig. 4.

Using a known argument of arc length it is possible to cons-
truct a topological equivalence between ZQ and Zo in U§
(cf. [6] and [7]).

Let us prove c). It is sufficient to show that the intersection
of any leaf of ^'(co/Vx) with S^ has only one connected
component, because Zp is transversal to &U§ in cases i")
and ii) and in case i') the tangencies of Zp with <)U§ are
generic (of the type y = x2). Consider X = rot (co),
L == rot {q). It is not difficult to see that if p is small then
the set of tangencies of X with S2 is the union of two closed
disjoint curves yi(p) and y2(p) . Let 8(p) = Wo(X) n S^
and {pi (p) , p2(p)} = W^(X) n S^. Then it is not difficult to
see that Sp2 - [{pi(p) , p^p)} u yi(p) u y 2 ( p ) u S(p) ] is the
union of four cilindric regions A^, B,, i = 1, 2, as in the
picture below.



217LOCAL STRUCTURAL STABILITY

Fig. 5.

By a know construction we can define two Poincare trans-
formations fi: Ai -> B^, i = 1, 2, so that if q e A^, f^q)
is the first point of the positive trajectory of X by q in B^.
In fact fi can be extended to y ^ ( p ) U A^ = A^ by setting
fi{q) = q if g e Y i ( p ) . Now, let Z be a leaf of co restricted
to the interior region V bounded by S|. Let C be a compo-
nent of I n Sj such that C n Ai ^ 0. Then the projection
of C in S^ is a trajectory of Zp, which implies that

C n vi (p) ^ 0,

is small. Let Cx == f_J ?/i(?)? where ^/i(^) is the
^eAinc1 -̂ All |V-<

segment of the orbit of X between q and f^{q) (inside S^).
Then Cx c: ? (because ix(^) = 0) and it is open and closed
in I (because X has no singularities in Z), therefore Cx = I '
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If C n Y i (p ) . is just one point (cases i' and ii) then

I n Sj = Cx n Sj = C.
If C n Yi (p ) contains two points, say q^ and q^ then the

image of the segment of C between q^ and q^ q^q^ by
/i is a curve with ^ and ^ as end points, therefore C is
a closed curve and we have I n S§ = Cx n S2 = C.

Observe that the above argument shows that in case i')
the phase portrait of Zp is like in the picture 2.1, if p is
small.

2.2.6. End of the proof. — Let 0 G R3 be a hyperbolic singu-
larity of Q), /2(^)o = q, X=ro t ( co ) , L == rot (y). We can
suppose that q has one of the forms i) or ii) of 1.3.2 and that
W,(L) = {x G R3]^ = 0}, W^(L) = {x G R3]^ = x, = 0}. Let
f(x^ x^ x^) = x\ + xi — .4 Then it is not difficult to see
that the non-singular trajectories of L are transversal to
the surfaces ^(c), c G R, and the same is true for X in a
small neighborhood of the origin. We shall define a topolo-
gical equivalence h between co and q in a neighborhood V
of the origin, such that f o h{x) == f(x) for every x G V.
Observe that W^(X) and W^(L) intersect each /l-l(c)(c ^ 0)
in a unique point. Let Ap,, = {x e R2\f{x) = p2, |^[ ^ s}.
By lemma 2.2.5 if p and s are small we have :

a) X and L are transversal to A == Ac g and the sets
A(X) u W^(X), A(L) u W^(L) contain neighborhood Vx
and VL of the origin.

b) The restriction of co and q to A are topologically
equivalent.

c) If I is a leaf of the restriction of co to Vx, then I n A
has only one connected component.

Let h: A -> A be a topological equivalence between (O/A
and gr/A. We want to extend h to h: Vx -> VL. If p e Vx
we have two possibilities : p G W^(X) or the negative trajec-
tory 0-(X, p) of p in Vx intersects A in a unique point
p\ If p G W^(X) we define h(p) to be the unique point of
W^(L) such that f{h(p)} = f(p). If p ^ W^(X), let

p = 0-(X, p) n A.
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We define h(p) to be the unique point of the positive trajec-
tory 0+(L, Ji{p')) (of J z { p ' ) by L) such that

fWp)) == f{p).
It is not difficult to see that if h is continuous then it is
a local equivalence between co and q. The continuity of h
in Vx — W^(X) is obvious. Let us show that h is continuous
in Wo"(X) n Vx. Let p, -> p e W^(X) as ^ -^ oo. Then
/*(Pn) -> A?) anc^ ^e s^q^^e pn = 0~~(X, pj n A has
its acumulation points in W^(X) n A, therefore the sequence
h(pn) acumulates in Wg(L) n A which implies that

0+(L, Hp'^)) n f-^f{p,))
accumulates in W^(L) n /^(/"(p)) = h(p), therefore

lim A(p,) == h(p)
7l>oo

and h is continuous.

2.3. Proof of Corollary B.
Let p be a hyperbolic singularity of o e ^(M3), r ^ 2,

and /^(^p == ? e Q(3)- Taking a parametrization of a
neighborhood of p, we can suppose p = 0, co e ^(R3). As
rot (g) is hyperbolic, there exist neighborhoods jl ^ Q(3) of
q such that if y e p then q is hyperbolic. As q is hyperbolic
we can take pi in such a way that q e pi is topologically
equivalent to q. Now it is sufficient to show that given
a neighborhood V of 0, there exists a neighborhood [L of
co in ^(R)3 such that if o5 e pi, there exists p e V such
that y1^)^ = 0 and /^(co^e p. This is an immediate
consequence of the fact that 0 is a hyperbolic singularity
of rot (o) and of lemma 2.2.2.

2.4. Proof of Theorem C.

Let us show that sing (dco) ^ sing (co) and sing (dco)
is a C7'"1 codimension three submanifold of M. By lemma
2.2.2 we can suppose dim (M) ^ 4. Taking a parametrization
of a neighborhood of p we can suppose that co G Q^R"),
p == 0. Let R" = R3 X R""3 be a decomposition of Rn

such that (o/R3 X 0 is simple. Let (r^i, x^ ^3, 0, . . ., 0) be
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the coordinates of R3 x 0 and (0, 0, 0, x,, . . ., ̂ ) be the
coordinates of 0 X R"-3. Then we have

da = ^ Qy dx, A dx,.
l^KJ^n

As <o/R3 x 0 is simple, the map ^ = (Q,g, Q^, D^) :R" -^ R»
has rank three at 0 and in fact the « Jacobian » matrix
i / \ __ b^

= ̂ i, -&>, •%) ls non ^^ar at 0. Let k > 4 and
+& = (^i;« Hit, U»fr). By the integrability condition we have
do A dw = 0 so that the scalar product ^.^ = 0 Taking
partial derivatives with respect to (x,, x,, x,) we have

A'.^+A^ =0,
-I * ^^/r

wnere A, == ̂ ^ ^^ and A', A[ are the transposes of A

and AA. As A is non-singular in a neighborhood V of 0
in V _we have ^ == (A')-^^, so that sing (<^) c= sing (A,/
^low it is sufficient to show that sing (A) c sins f0 ) if
i, J ^ 4 (this implies " ' v/

sing (rfco/V) = sing (^) = {a- e V|<Ka;) = 0}).

Let p e sing (<^). By the integrability condition we have

( * ) Qi^v + ̂ ij + 0;i Q^ = 0.

As A is non-singular in V, there exists 1 < I ^ 3 such
that "&^2 ^p^ ^ °' Taking the partial derivative of (* )
with respect to x, at p and using the fact that

"I.CP) = ̂ 2.(p) == ^{p) == Q,/p) = ̂ (p) = o
we have Oy(p) = 0.

Let us show that /i(co), =0 if p e sing (rfo>). We can
suppose p = 0. As sing (^) <= sing (co) we have co, = 0
so that _. = Z + q + R where ^ is linear, y is quadratic
and !™ T-rfa == °- we want to show ̂ at ^ = 0 . Asx'^v l)*-^

0 e sing (dco), dl == 0 and Z = df

where /• is of degre 2. By the integrability condition we have
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df A dq = 0 and dq /\ dq == 0. By remark 2.1.1 we can
suppose that dq depends of three variables. The equation

df A dq = 0 implies -/- a -^ + —/- a^ + — /- a,, = 0 where
^ ' ^Xj bXk

dq == ^ a^ rf^ A rf^
1^K^3

and a,, ==0 if i ^ 4. If 1 ̂  / < k ^ 3, i ^ 4, we have¥— a^ ̂  0, therefore -L = 0 if i ^ 4. This implies that /*
^ ^Xi '
depends only of the variables (0:1, x^ ^3). By lemma 2.2.2
we have df •== 0, therefore I = 0.

Let us show the existence of [L c= ^'(M) and

^ : (i-> ^r-2 (sing (dco), M).

Let V be a tubular neighborhood of sing (dco) and

n : V —> sing (dco)

the projection, which we can suppose to be C^"1 and

Tc-1^) c: ()M if ^ e ()M n sing (Jco).

The fibers rc"1^) are C7'"1 embedded 3-disks. We can consi-
der for each x e sing (dco) and each & e A1'^(M) the C^2

2-form d&l'n:'1^), which intersects transversally the zero
section of A2'7'"^"1^)), it co is near co in the 0^' topology
{r ^ 3). As we are considering A^^M) endowed with Whit-
ney's topology, it is sufficient to show that for each
x e sing (rfco) there exist neighborhoods U^. of x in sing (rfco)
and ^ of (o in Al'r(7;-l(U^)) such that if d> e ̂  n ^^M)
then

1) If a;' G LLp then d&|'K~l(xf) has one and only one singu-
larity in TT:-1^') n V = -n;-1^').

2) The projection n : sing (^<b) n TT-^UJ -> U^ is a C7'-1

diffeomorphism.
3) There exist a continuous map

^ : ̂  n ^(M) -> ^(U,, Tr-i(UJ),

such that the image of ^(o) is sing (du) n ^^(Ua;).
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To see 1, 2, 3 above, let K <= sing (rfco) be a compact
neighborhood of x. Let f: D3 X K -> TT-^K) be a C'-1

diffeomorphism such that /'(O, x) = x and

TT o ^(y, ^) = x, x e K, y e D3.

The map /'* : A^TT-^K)) -^ A^-^D3 X K) is continuous,
therefore we can suppose that TT-^K) == D3 X K,

TT : D3 X K -> K

is n(y, x) = x, co e A1'7-^3 X K) and 0 X K = sing (rfco).
Define

9 : D3 X K X A^-^D3 X K) -> A2(D3)

by 9(27, ^, &) = d^y^j^-l{x) == d&^JT)3 X x. Then 9
is C^2 and the partial derivative of 9 in a point (0, x, co)
in the direction of D3 is ()i<p(0, x^ (x)) : y e R3 -> Ly, where L
is the linear part of do/D3 X x at 0. But y -> Ly is non-
singular because 0 is a simple singularity of rfco/D3 X x.
By the implicit function theorem there exist neighborhood LLp
of x in sing (dco) == 0 X K and ^ of co in A^-^D3 X K)
and an unique C^"2 map ^ : U^. X ^ -> Tr-^U^) such that
^ { x ' y o) is the unique singularity of ^(o/Tc""1^') which is^
hyperbolic. Now if co G ^(D3 X K) n (JL^., by the first part
of the theorem, ^ [ x ' , <5) e sing (dd>) and

sing(rfd)/7i:-i(U,))=^(U,,(o),

therefore n: sing (dco/TT-^UJ) -> U^. is a C^2 diffeomor-
phism and TT"1 : U^. -> sing (do) n ^^(U^) is ^(rc) == ^(a;, o).
If we define ^ : [i, n ^(M) -> ^-^U,, TT-^UJ) by

^(co)(^) = ^(^, &)

then ^ is continuous and ^(<o)(Ua.) == sing (dco) 0 ^^(Ua.).

2.5. Proof of Theorem D.

Taking local coordinates in M and using proposition 1.3.2
we can suppose that co e Q'^R71), p = 0 and /^(co^ = q
depends of the three variables x^ x^ x^ only. Let co = q + R

D
where Urn—— = 0. We need one lemma.

^o \\X 2
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2.5.1. LEMMA. — Let (o = q 4- R &e 05 above. Let
R71 == R^-i x R

be a canonical decomposition of R"""1, where R"~1 is generated by
the elements [x^ 0), re === (a^, . . ., r^_i) OMC? R &?/ </ie elements

n n—1

(0, . . . , 0, rcj. If co = ^ (o,^, ^ & == ^ (o^, 0) dXi

considered as an integrable 1-form in R""1. Then there exist neigh-
borhoods 0 e U c R71 and 0 e U7 <= R""1, a real number
e > 0 and a CY""3 diffeomorphism f: U' X (— s, s) -> U
such that /**(o)) == o and /'/U' X 0 is the identity.

Lemma 2.5.1 implies theorem D, because o> depends of
n — 1 variables {n ^ 4), o is C7' and /^(c^o == /^(^^ := 9-

Proof. — We shall construct a C^3 vector field X in a
neighborhood V of 0 satisfying X(^) ^ 0 if ^ G V,

lx (dco) == 0

and X(0) = (0, . . ., 0, 1) e 0 X R. By lemma 2.2.1 we have
^(co) = 0 and Lx(co) = 0 and the trajectories of X are
contained in the leaves of ^'(co), in sing (<o) or in sing (dco).
Let X^(rc) be the local flow induced by X. If r ^ 4, by
the inverse function theorem, there exist a neighborhood
0 e U' <= R"-1 and e > 0 such that the map

f: U' X (- £, s) -^R"

defined by f{x, t) == X^) is a C^3 diffeomorphism of
U' X (— s, s) onto /'(U' X (— s, s)) == U. Now it is not
difficult to see that f*{<^) = ̂  and /*/U' X 0 = identity.

Let us construct X. Suppose X = (A^ Ag, A3, 0, . . ., 0, 1).
The condition i^ (dco) == 0 is equivalent to

(*) AiQ,, + AA, + A3^, + Q,, = 0, / - 1, . . ., n,
where dco = ^ fly 6?^ A ^••

14$ i < j ̂  n

Assertion. — The two conditions

(*"') - AA, + AsQ^ = ̂
Ai^^ - A3Qa3 = Qg,

imply the conditions ('") in a neighborhood of 0.

-i
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Proof. — Let sing (Q^.) == [x\ ̂ ij{x) = 0}. By the proof
of theorem C, there exists a neighborhood V of 0 such that

the matrix (——i-1) is non singular in V and
\ ^^/C/KK^Si^/c^

sing (d<o) n V = {x e V| Q.^{x} == 0,i (x) == £l^{x) = 0}.

This implies in particular that the interior of V n sing (t^y)
is empty, 1 ̂  i < j ^ 3. By the integrability condition
rfco A d(^ = 0 and ^23 ̂ in + ^31^2. + ^32^ = 0. Substi-
tuting (**) in the above relation we have

Q^(^3n - AiD^ - A^) = 0,

therefore Ai^ 4- Ag^ + Q^ == 0 in V, which is (*)
for / = 3. Applying dco A dc^ = 0 against, we have

t̂ , + ̂ An + ^12^1. === 0

and substituting (**) we have

QÎ , -- A^i, - A .̂) + (^23^1, + a31"2,)A3 = 0

or
Q^(^, - A^i, - A^2, - A3 0,,) = 0

which implies A^Q^ 4- AgQg^ + A3Q3^ + 0.^ = 0 in V and
the assertion is proved.

Let us show now that (**) is satisfied for some Ai'5 of
class C7'-3. Let 2' = sing (0^) n sing (i^g) n V. Then
S' c: sing (tiij n V, because if p £ S' we have

"23(p)^ln(p) - 0,

by the relation dco A dc^ == 0 (If ^23 (?) = 0 then

p e sing (dco) n V and ^in(p) = 0).

As S' <== sing (t^i^) n V, by the implicit function theorem
we have Q^ = — AgO^ + ^3^31 where Ag and A3 are
C7'-2. Let f = A^ + A3 033. By th^ relations

^ = - A,^ + A3^

and ^23 ̂ in + ^31 °-2n + °i2 °3n = 0 we have

^31/l+ Oi2(^3n - ^2^23) -O,



LOCAL STRUCTURAL STABILITY 225

so that sing (^12) n V ^ sing (/*) n V. By the implicit
function theorem there exists A]^ of class C^3 such that
f = Alil^, which implies that Qgn =:= ^1^12 — ^3^23 ^d
we have (**).
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