Annales de l'institut Fourier

RICHARD LASCAR

Propagation des singularités des solutions d'équations pseudo-différentielles quasi-homogènes

Annales de l'institut Fourier, tome 27, nº 2 (1977), p. 79-123

http://www.numdam.org/item?id=AIF 1977 27 2 79 0>

© Annales de l'institut Fourier, 1977, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

PROPAGATION DES SINGULARITÉS DES SOLUTIONS D'ÉQUATIONS PSEUDO-DIFFÉRENTIELLES QUASI HOMOGÈNES

par Richard LASCAR

INTRODUCTION

L'objet du présent travail est l'étude de la propagation des singularités des solutions de certaines équations pseudo-différentielles à caractéristiques multiples via des hypothèses de quasi-homogénéité sur les symboles.

La propagation des singularités des solutions de l'équation de Schrödinger $\frac{1}{i} \frac{\delta}{\delta x_n} - \sum_{j=1}^{n-1} \frac{\delta^2}{\delta x_j^2}$ (voir Hörmander [12]) nous a servi de modèle.

Nous prouvons la propagation des singularités par une estimation de type Carleman (voir Unterberger [16] et Duistermaat [5]).

Dans les sections § 1, 2 et 3 nous procédons à quelques constructions préliminaires.

Dans § 4 et 5 nous prouvons des résultats de propagation de singularités.

Dans § 6 nous construisons des distributions singulières (voir Boutet de Monvel [4]).

Enfin dans § 7 nous appliquons ces résultats à l'étude d'une classe d'opérateurs pseudo-différentiels à caractéristiques multiples.

1. PRÉLIMINAIRES L'ENSEMBLE DES SYMBOLES S_hik

Nous donnons ici, une construction, assez classique, de classes de symboles d'ordre variable « à croissance non isotrope à l'infini » pour les preuves nous renvoyons à [14] et [15].

Soit donc $M = (\mu_1, \ldots, \mu_N)$ un N-uple de nombres $\mu_i > 0$; nous noterons :

(1.1)
$$\mu = \inf_{i} \mu_{i}, \quad \mu + \delta = \inf_{i} \{\mu_{i} > \mu\},$$

$$\nu = \sup_{i} \mu_{i}, \quad \delta_{1} = \inf_{i} (\mu, \delta)$$

Soit $X \subseteq \mathbb{R}^n$ une partie ouverte, on fait opérer \mathbb{R}_+ sur $X \times \mathbb{R}^N$ par les dilatations H_t^M :

(1.2)
$$\begin{array}{ccc} t > 0, & (x, \, \xi) \in \mathbf{X} \times \mathbf{R}^{\mathbf{N}}, \\ \mathbf{H}_{t}^{\mathbf{M}}(x, \, \xi) = (x, \, t^{\mu_{1}} \, \xi_{1}, \, \ldots, \, t^{\mu_{N}} \, \xi_{N}) \end{array}$$

Une partie $\Gamma \subseteq X \times (\mathbb{R}^{\mathbb{N}} \setminus 0)$, ouverte, est dite un M-cône anisotrope si elle est stable par les transformations $H_t^{\mathbb{M}}$, t > 0.

Donnons les définitions suivantes:

Définition 1.1. — Une fonction. — $f \in C^{\infty}(\Gamma)$ est dite M-quasi homogène de degré m si:

$$f_t = f \circ \mathbf{H}_t^{\mathbf{M}} = t^m f, \qquad t > 0$$

Un champ de vecteur Y est dit M-quasi homogène de degré 0 si:

$$\forall f \in C^{\infty}(\Gamma), \qquad t > 0 \quad (Yf) \circ H_{t}^{M} = Y(f \circ H_{t}^{M})$$

Pour décrire le comportement à l'infini d'un symbole Mquasi homogène introduisons la définition suivante:

Définition 1.2. — Soit Γ un M-cône, f et g 2 fonctions positives dans Γ . On dira que g domine f et on écrira $f \lesssim g$ si pour tout M-sous-cône Γ' de Γ , à base compacte, il existe Γ et Γ' de Γ et Γ' et Γ et Γ' et Γ et Γ' et Γ et Γ

$$f \leqslant Cg \quad pour \quad |\xi| > C' \quad et \quad (x, \xi) \in \Gamma'.$$

Quand $f \lesssim g$ et $g \lesssim f$ on écrira $f \approx g$ (f et g « équivalentes » à l'infini).

Notons [ξ] le prolongement quasi homogène de la fonction égale à 1 sur la sphère unité S_{N-1} : $\sum_{j=1}^{N} \xi_{j}^{2} = 1$, il est donné par l'équation implicite:

(1.3)
$$\xi \neq 0, \qquad \sum_{n=1}^{N} \frac{\xi_{j}^{2}}{[\xi]^{2\mu_{j}}} = 1$$

De plus il existe un nombre d > 0 tel que $[\xi]^d$ est sousadditive et on a:

$$|\xi|^{1/\gamma} \leqslant [\xi] \leqslant |\xi|^{1/\mu}$$

Si λ est une fonction quasi homogène, strictement positive on a

$$\lambda \approx [\xi]$$

et si f est quasi homogène de degré m dans Γ on a

$$|f| \lesssim [\xi]^m$$

Ces considérations motivent la définition:

Définition 1.3. — Soit m un réel, on désignera par $S_{\mathtt{M}}^{\mathtt{m}}(\Gamma)$ l'ensemble des fonctions $a(x,\xi)$ de $C^{\infty}(\Gamma)$ vérifiant: Pour tous champs de vecteurs X_1,\ldots,X_p , C^{∞} M quasi homogènes de degré 0 dans Γ on a:

$$|X_1, \ldots, X_p a| \lesssim (1 + [\xi])^m$$

La classe $S_M^m(\Gamma)$ ne dépend pas du choix de la fonction $[\xi]$ mais seulement de sa classe d'équivalence modulo \approx . Indiquons

Proposition 1.1. — Soit $a \in C^{\infty}(\Gamma)$, a est dans $S_{\mathbf{M}}^{m}(\Gamma)$ si, et seulement si: Pour tout α n — multi-indice, et β N — multi-indice on a:

$$(1.5) \qquad |(iD_x)^{\alpha}(iD_{\xi})^{\beta}a(x,\,\xi)| \lesssim (1+\lceil\xi\rceil)^{m-\beta.\,M}$$

οù

$$\beta . M = \sum_{j=1}^{N} \beta_j \mu_j.$$

Proposition 1.2.:

- On a les inclusions $S_{\nu/\mu,0}^{\inf(m/\mu_j)} \subset S_{M}^m(\Gamma) \subset S_{\mu/\nu,0}^{\sup(m/\mu_j)}$ avec la notation des classes $S_{\varepsilon,\delta}^m$ (Hörmander [9]).
 - -Si $a \in S_{\mathbf{M}}^{m_1}(\Gamma)$ et $b \in S_{\mathbf{M}}^{m_2}(\Gamma)$ alors:

$$ab \in \mathcal{S}^{m_1+m_2}_{\mathbf{M}}(\Gamma) \qquad et \qquad \mathcal{D}^{\alpha}_{x}\mathcal{D}^{\beta}_{\xi}a \in \mathcal{S}^{m_1-\beta,\,\mathbf{M}}_{\mathbf{M}}(\Gamma).$$

Introduisons maintenant des symboles d'ordre variable.

Définition 1.4. — Soit k un réel, et $\rho(x, \xi)$ une fonction réelle, quasi homogène de degré 0 dans Γ . Désignons par $S^{\varepsilon,k}_{M}(X)$ l'ensemble des symboles $a(x, \xi)$ de $C^{\infty}(\Gamma)$ vérifiant: Pour tous champs de vecteurs X_1, \ldots, X_p quasi homogènes de degré 0 dans Γ

$$|X_1, \ldots, X_p a| \lesssim (1 + [\xi])^{\beta(x,\xi)} (\text{Log } (1 + [\xi]))^{k+p}$$

Notons $\Lambda^{\xi,k}$ la fonction $(1+[\xi])^{\xi(x,\xi)} (\text{Log } (1+[\xi]))^k$.

Proposition 1.3. — $\Lambda^{\rho,k}$ est dans $S_{M}^{\rho,k}$. On a en effet

$$\begin{split} [\xi]^{\mu_j} \frac{\eth}{\eth \xi_j} \, \Lambda^{\varrho,\, k} &= \left([\xi]^{\mu_j} \frac{\eth \varrho}{\eth \xi_j} \operatorname{Log} \left[1 + [\xi] \right) \right. \\ &\quad + (1 + [\xi])^{-1} [\xi]^{\mu_j - 1} \, \frac{\eth}{\eth \xi_j} \, [\xi]) \Lambda^{\varrho,\, k} \\ &\quad + k \Lambda^{\varrho,\, k - 1} (1 + [\xi])^{-1} [\xi]^{-\mu_j} \, \frac{\eth}{\eth \xi_i} \, [\xi] \end{split}$$

et

$$rac{\eth}{\eth x_j}\,\Lambda^{arphi,\,k}=rac{\eth_{\,arphi}}{\eth x_j}\,\Lambda^{arphi,\,k+1}$$

Par suite si X est un champ de vecteurs quasi homogène de degré 0:

$$\mathrm{X}\Lambda^{arphi,\,k} = \sum\limits_{-1}^{+1} \, a_j \Lambda^{arphi,\,k+j} \quad o\dot{u} \,\, \mathit{les} \quad a_j \in \mathrm{S}^0_{\mathtt{M}}(\Gamma)$$

et par induction si X_1, \ldots, X_p sont quasi homogènes de degré 0

$$X_1, \ldots, X_p \Lambda^{\varrho, k} = \sum_{j=0}^{p} \alpha_j \Lambda^{\varrho, k+j}$$

où les $\alpha_j \in S_M^0(\Gamma)$, d'où l'estimation

$$|X_1, \ldots, X_p \Lambda^{\rho, k}| \lesssim \Lambda^{\rho, k+p}$$

propagation des singularités des solutions d'équations 83

Proposition 1.4.:

 $-a \in S_{\mathbf{M}}^{\rho,k}(\Gamma)$ si, et seulement si, a vérifie une estimation:

$$|\,(i{\rm D}_{x})^{\alpha}(i{\rm D}_{\xi})^{\beta}a(x,\,\xi)|\,\,\lesssim\,\,(1\,+\,[\xi\,])^{\rho-\beta,\,{\rm M}}\,\,({\rm Log}\,\,(1\,+\,[\xi\,]))^{k+|\,\alpha\,|+|\,\beta\,|}.$$

— $Si \ a \in S_{\mathbf{M}}^{\mathfrak{s}, k}(\Gamma), \ b \in S_{\mathbf{M}}^{\mathfrak{s}, l} \ alors:$

$$ab \in \mathcal{S}^{\varsigma+\sigma,\,k+l}_{\mathbf{M}}(\Gamma) \quad et \quad \mathcal{D}^{\alpha}_{x}\mathcal{D}^{\beta}_{\xi}a \in \mathcal{S}^{\varsigma-\beta,\,\mathbf{M},\,k+|\,\alpha|+|\,\beta|}_{\mathbf{M}}.$$

Proposition 1.5.:

 $-Si \ \rho < \sigma \ dans \ \Gamma \ ou \ \rho \leqslant \sigma \ et \ k \leqslant l \ on \ a:$

$$S_{\mathbf{M}}^{\sigma,\,k} \subset S_{\mathbf{M}}^{\sigma,\,l}$$

— Si $\rho \leq r(r \in \mathbf{R})$ dans Γ , si $k_+ = \sup(0, k)$, et si l'on désigne par ϵ un nombre positif on a:

$$S_{\mathbf{M}}^{\varsigma, k}(\Gamma) \subset S_{\mu/\nu - \varepsilon, \varepsilon}^{\sup(r/\mu_j) + \varepsilon k_+}$$

(avec la notation de Hörmander [10]).

Indiquons maintenant une propriété d'invariance par difféomorphismes des classes $S_{\mathbf{M}}^{\varepsilon,k}(\Gamma)$.

Proposition 1.6. — Soit

$$\Gamma_1 \subset X \times (\mathbf{R}^{\mathsf{M}} \setminus 0) (\text{resp } \Gamma_2 \subset Y \times (\mathbf{R}^{\mathsf{N}} \setminus 0))$$

un M_1 (resp M_2) quasi-cône et ρ une fonction de $C^\infty(\Gamma_2)$ M_2 -homogène de degré 0.

Si $\psi: \Gamma_1 \rightarrow \Gamma_2$ est une application \mathbb{C}^{∞} commutant aux dilatations

(i.e.
$$\psi \mathbf{H}_{\iota}^{\mathbf{M}_{1}} = \mathbf{H}_{\iota}^{\mathbf{M}_{2}} \circ \psi$$
)

alors si

$$a \in \mathcal{S}^{\mathfrak{o},\,k}_{\mathbf{M_2}}(\Gamma_2), \qquad a \circ \psi \in \mathcal{S}^{\mathfrak{o} \circ \psi,\,k}_{\mathbf{M_1}}(\Gamma_1)$$

Ceci permet de définir une classe $S_M^{\epsilon,\,k}(T^*X \setminus 0)$, quand X est une variété bien décomposée en un produit compatible avec les poids du N-uple M, que l'on qualifiera de « M variété ».

2. LES OPÉRATEURS ASSOCIÉS AUX CLASSES DE SYMBOLE S_M, k

Dans cette section nous construisons une classe d'opérateurs, pseudo-différentiels associés aux symboles $S_{M}^{\varepsilon, k}$ pour lesquels nous donnons un calcul symbolique.

L'étude du crochet de deux de ces opérateurs montre le rôle que joue un crochet de Poisson « partiel » ne faisant intervenir que les variables associées au poids d'homogénéité le plus faible, qui conditionnera le reste de cette étude.

Définition 2.1. — Soit $\rho(x, \xi)$ réelle et bornée, \mathbb{C}^{∞} et M-homogène de degré 0 sur $X \times (\mathbb{R}^n \setminus 0)$. Désignons par $\operatorname{OPS}_{M}^{\varepsilon,k}(X)$ l'ensemble des opérateurs pseudo différentiels associés aux symboles de $\operatorname{S}_{M}^{\varepsilon,k}(X \times \mathbb{R}^n \setminus 0)$.

Pour conduire l'étude de ces opérateurs introduisons:

DÉFINITION 2.2. — Soit $\rho_1(x, y, \xi)$ réelle, bornée, C^{∞} et M-homogène de degré 0 sur $X \times X \times (\mathbf{R}^n \setminus 0)$. Désignons par $\mathrm{OP}\mathscr{S}^{(1,n)}_{M}(X)$ l'ensemble des opérateurs $A: C^{\infty}_{0}(X) \to C^{\infty}(X)$ de la forme

$$\begin{array}{lll} \mathrm{A} u(x) &=& (2\pi)^{-n} \iint a(x,\ y,\ \xi) e^{i\xi(x-y)} u(y)\ dy\ d\xi \ +\ \mathrm{R} u,\ u \in \mathrm{C}^\infty_0(\mathrm{X}) \\ o\dot{u} & a(x,\ y,\ \xi) \in \mathrm{S}^{\rho,\,k}_{\mathrm{M}}(\mathrm{X} \times \mathrm{X} \times (\mathbf{R}^n \backslash 0)) \quad \textit{et} \quad o\dot{u} \quad \mathrm{R} \quad \textit{est} \quad \textit{un} \\ op\acute{e}rateur\ r\acute{e}gularisant. \end{array}$$

Proposition 2.1. — Soit $A \in OP\mathscr{S}_{M}^{\epsilon_{1}, k}$ on peut lui associer une fonction $\sigma_{A}(x, \xi)$ telle que:

(2.1)
$$Au(x) = (2\pi)^{-n} \int \sigma_{A}(x, \xi) e^{i\xi \cdot x} \hat{u}(\xi) d\xi + Ru.$$

De plus si $\rho = \rho_{1}|_{x=y}$ (i.e. $\rho(x, \xi) = \rho_{1}(x, x, \xi)$) on a:

$$(2.1)' \quad \sigma_{A} - (2\pi)^{-n} \sum_{0 \leq |\alpha| < l} 1/\alpha \, ! (iD_{\xi})^{\alpha} D_{y}^{\alpha} a(x, y, \xi)|_{y=x}$$
 $\in S_{M}^{\epsilon - \mu l, k+2l}(X \times (\mathbf{R}^{n} \setminus 0))$

pour tout entier l.

On peut se limiter au cas où a est proprement supporté. Il suffit en fait de démontrer la proposition dans le cas où ρ_1

propagation des singularités des solutions d'équations 85 est constante, en effet supposons ce résultat établi et écrivons :

$$\begin{array}{l} \sigma_{\mathbf{A}}(x,\,\xi) - \sum\limits_{\mathbf{0} \,\leqslant\, \mid\,\alpha\mid\,<\, l} 1/\alpha\,! (i\mathbf{D}_{\xi}^{\alpha}) \mathbf{D}_{\mathbf{y}}^{\alpha} a(x,\,y,\,\xi)|_{\mathbf{y} = x} \\ = \left(\sigma_{\mathbf{A}} - \sum\limits_{\mathbf{0} \,\leqslant\, \mid\,\alpha\mid\,<\,\mathbf{M}_{\mathbf{1}}}\right) - \sum\limits_{l\,\leqslant\,\mid\,\alpha\mid\,<\,\mathbf{M}_{\mathbf{1}}} = r_{\mathbf{I}} + r_{\mathbf{II}} \end{array}$$

Il est clair que $r_{\text{II}} \in S_{\text{M}}^{\rho-\mu l, k+2l}$.

Soient donc m et m' réels tels que

$$m' < \inf \rho_1 \leq \sup \rho_1 < m$$
.

Alors $r_1 \in S_M^{m-\mu M_1, k+2M_1}$ et si l'on choisit $M_1 > 1/\mu(m-m')$, on a $r_1 \in S_M^{p-\mu, k+2l}$, d'où le résultat.

Supposons donc $\rho_1 = m$; $\sigma_A(x, \eta)$ est donné (cf. Hörmander [9]) par

$$\sigma_{\mathtt{A}}(x,\ \eta) = \iint b(x,\ y,\ \eta) e^{-\mathrm{i} y \theta}\ dy\ d\theta$$

οù

$$b(x, y, \eta) = a(x, x + y, \eta)$$

et si

$$\hat{b}(x,\, heta,\,\eta)=\int b(x,\,y,\,\eta)e^{-i heta heta}\,dy$$

on a

$$\sigma_{\mathbf{A}}(x, \, \eta) = \int \hat{b}(x, \, \theta, \, \eta \, + \, \theta) \, d\theta$$

et d'après la formule de Taylor on a :

$$r = \sigma_{\mathbf{A}}(x, \, \boldsymbol{\eta}) - \sum_{\mathbf{0} \leqslant |\alpha| < l} 1/\alpha \, !(\mathbf{D}_{\mathbf{y}})^{\alpha} (i\mathbf{D}_{\boldsymbol{\eta}})^{\alpha} \hat{\boldsymbol{b}}(x, \, \boldsymbol{y}, \, \boldsymbol{\eta})_{|\boldsymbol{y} = \boldsymbol{0}}$$

$$= \iint_{\mathbf{0}}^{1} \underbrace{(1 - t)}_{l!} \, \sum_{|\alpha| = l} \theta^{\alpha} (i\mathbf{D}_{\boldsymbol{\eta}})^{\alpha} \hat{\boldsymbol{b}}(x, \, \boldsymbol{\theta}, \, \boldsymbol{\eta} + t\boldsymbol{\theta}) \, d\boldsymbol{\theta} \, dt$$

or pour $x \in K \subseteq X$; on a donc des estimations pour tout entier ν :

$$|D_x^{\alpha}D_{\eta}^{\beta}\hat{b}(x,\,\theta,\,\eta)| \leq C(1+|\theta|)^{-\gamma}(1+[\eta])^{m-\beta.\,\mathbf{M}}$$

 \mathbf{et}

$$(1+\lceil \eta+t\theta \rceil)^{m-\beta,\,\mathbf{M}}\leqslant C(1+\lceil \eta \rceil)^{m-\beta,\,\mathbf{M}}(1+\lceil t\theta \rceil)^{|m-\beta,\,\mathbf{M}|}$$

Prenant v assez grand on a donc:

$$|r| \leq C(1 + [\eta])^{m-\mu l}$$
 c.q.f.d.

Donnons une notion de symbole principal qui fournira un calcul symbolique relativement simple:

Définition 2.3. — Soit $A \in OPS_{M}^{\rho, k}(X)$ de symbole a; la classe de a modulo $S_{M}^{\rho-\mu, k+2}(X)$, notée $\sigma(A)$, sera appelée symbole principal de A.

[Il est clair que $\sigma(A)$ ne dépend pas du choix du symbole a de A.]

Proposition 2.2. — 1) A est dans $OPS_{\mathbf{M}}^{\varepsilon,k}$, de symbole a, l'opérateur adjoint A^* est dans $OPS_{\mathbf{M}}^{\varepsilon,k}(X)$ et son symbole a^* vérifie:

$$\forall l \ entier \ a^* - \sum_{\alpha \leq |l| < l} 1/\alpha \,! i(D_{\xi})^{\alpha} (D_x)^{\alpha} a \in S_{M}^{\varepsilon - \mu l, k+2l}$$

et:

$$\sigma(A^{\textstyle *}) = \overline{\sigma(A)}$$

2) Si A (resp B) est un opérateur propre de

$$OPS_{\mathbf{M}}^{\sigma, k} (\mathbf{resp} \ OPS_{\mathbf{M}}^{\sigma, l})$$

alors $B \circ A$ est dans $OPS^{\mathfrak{o}+\sigma,\, k+l}_{\mathtt{M}}$ et son symbole $c(x,\ \xi)$ vérifie :

$$c \sim \sum_{\alpha} \frac{1}{\alpha!} (i D_{\xi})^{\alpha} b(D_{x})^{\alpha} a$$

plus précisément

$$c - \sum_{0 \le |\alpha| \le r} \frac{1}{\alpha!} (i \mathcal{D}_{\xi})^{\alpha} b(\mathcal{D}_{x})^{\alpha} a \in \mathcal{S}_{\mathbf{M}}^{\mathfrak{o}_{+} \sigma - \mu r, \, k+l+2r}$$

pour tout entier $r \ge 0$, et

$$\sigma(B \circ A) = \sigma(B)\sigma(A).$$

Ceci est une conséquence de la proposition 2.1.

Remarques. — 1) Nous pouvons maintenant étudier le crochet [A, B] = AB - BA de deux opérateurs, [A, B] est dans $OPS_{k}^{\ell+\sigma-\mu, k+l+2}$ et on vérifie que si l'on pose

$$\delta_1=\inf\left(\mu,\,\delta\right)$$

(où rappelons-le, $\mu = \inf (\mu_j)$ et $\mu + \delta = \inf (\mu_j > \mu)$)

$$\sigma([\mathbf{A},\!\mathbf{B}\,]) = \frac{1}{i} \sum_{\mu_j = \mu} \frac{\delta \, \sigma(\mathbf{A})}{\delta \, \xi_j} \, \frac{\delta \, \sigma(\mathbf{B})}{\delta \, x_j} = \frac{\delta \, \sigma(\mathbf{A})}{\delta \, x_j} \, \frac{\delta \, \sigma(\mathbf{B})}{\delta \, \xi_j} \, \in \, \mathbf{S}_{\mathbf{M}}^{\varepsilon_+ \sigma_- \mu_- \varepsilon_{\mathbf{i}}, \, k_+ l_+ \mathbf{4}}$$

en particulier si $\delta \geqslant \mu$, $\sigma([AB]) = \frac{1}{i} \{ \sigma(A), \ \sigma(B) \}_{M}$ avec:

$$\mathbf{p},\,q\in\mathbf{C}^{\infty}(\mathbf{T^*X}\diagdown\mathbf{0}),\quad\{p,\,q\}_{\mathbf{M}}=\sum_{\mu_{i}=\mu}\frac{\mathrm{d}\,p}{\mathrm{d}\,\xi_{j}}\frac{\mathrm{d}\,q}{\mathrm{d}\,x_{j}}-\frac{\mathrm{d}\,p}{\mathrm{d}\,x_{j}}\frac{\mathrm{d}\,q}{\mathrm{d}\,\xi_{j}},$$

dans tous les cas la partie « prépondérante à l'infini » de $\sigma([A, B])$ est $\frac{1}{i} \{ \sigma(A), \sigma(B) \}_{M}$.

2) Tout ce qui a été défini, ou montré, plus haut concernant les classes d'opérateurs $\operatorname{OPS}_{M}^{c,k}(X)$, peut être transposé dans le cas d'opérateurs d'ordre fixe $m \in \mathbf{R}$, de classes analogues $\operatorname{OPS}_{M}^{m}(X)$. (La règle est de faire $\rho = m = \operatorname{cte}$ et d'« oublier » l'autre indice.)

Définissons également des opérateurs à symbole M-homogène:

Définition 2.4. — Classe $OPS_{M-homogène}$, on dira que $A \in OPS_M^m$ a un symbole M-homogène s'il existe $a_0(x, \xi)$ quasi homogène de degré m sur $X \times R^n - 0$ vérifiant:

$$\sigma(A) - \zeta a_0 \in S_M^{m-\mu}(X \times R^n - 0),$$

pour une fonction $\zeta(\xi)$ telle que $1-\zeta\in C_0^{\infty}$.

[Il est clair que a_0 ne dépend ni de ζ , ni du choix de $\sigma(A)$.] Enfin précisons que l'on peut définir une classe

$$\mathrm{OPS}^{\varsigma,\, \imath}_M(T^*X\diagdown O)$$

quand X est une M-variété.

3. UN FRONT D'ONDE ET DES ESPACES DE SOBOLEV ANISOTROPES

Dans ce paragraphe nous référons à Hörmander [10]:

Définition 3.1 M-cône caractéristique. — Soit $A \in OPS_{\mathbf{M}}^{\rho,k}(X)$ et $a(x, \xi)$ un symbole principal de A on désignera par ensemble

caractéristique de A $\operatorname{car}_{\mathbf{M}} \mathbf{A} = \{(x, \xi) \in \mathbf{T}^*\mathbf{X} - 0 \text{ tel que } | \liminf_{t \to \infty} |t^{-\xi(x,\xi)} (\operatorname{Log} (1+t))^{-k} a(x, t^{\mathbf{M}}.\xi)| = 0\}.$

 $\operatorname{car}_{\mathsf{M}} A$ est une partie M-conique de $T^*X - 0$, fermée, ne dépendant pas du choix du symbole principal de A (et bien définie si X est une M-variété).

Si $A \in OPS_{M-homogene}^m(X)$ a pour symbole principal M-homogène a_0 , alors $car_M A = a_0^{-1}(0)$.

Définition 3.2. — Tout $A \in OPS_M^{\rho, k}(X)$ tel que $car_M A = \emptyset$ sera dit M-elliptique.

Utilisant le calcul symbolique construit dans la partie § 2 on peut construire des parametrix pour les opérateurs Melliptiques.

Proposition 3.1. — Tout A de $OPS_{\mathbf{M}}^{\varepsilon, k}(X)$ M-elliptique, propre, admet une paramétrix, propre, dans $OPS_{\mathbf{M}}^{-\varepsilon, -k}(X)$: i.e. $\exists B \in OPS_{\mathbf{M}}^{-\varepsilon, -k}(X)$ propre, tel que $AB-I \sim 0$ (et

$$BA - I \sim 0$$
).

COROLLAIRE. - Soit A-M-elliptique.

$$\forall u \in \mathscr{E}'(X) \text{ sing sup } Au = \text{sing sup } u.$$

Nous sommes amenés à introduire une notion de front d'onde adaptée aux opérateurs quasi homogènes.

Définition 3.3. — Soit $u \in \mathcal{D}'(X)$ on pose

$$\mathrm{WF}_{\mathtt{M}}(u) = \bigcap_{\mathtt{A}u \in \mathtt{G}^{\infty}} \mathrm{car}_{\mathtt{M}}(\mathtt{A}), \, \mathtt{A} \in \mathrm{OPS}^{\mathtt{O}}_{\mathtt{M}}(\mathtt{X})$$

(propre).

Nous laissons au lecteur la vérification des propriétés suivantes qui résultent de l'inversion locale des opérateurs quasi homogènes elliptiques.

Proposition 3.2. — $WF_{\mathbf{M}}(u)$ est M-cône fermé dont la projection est égale à sing sup u.

Proposition 3.3:

$$A \in OPS_{M}^{m}(X) \quad WF_{M}(Au) \subseteq WF_{M}(u) \subseteq WF_{M}(Au) \cup car_{M} A.$$

Pour étudier plus précisément la « régularité » définissons des espaces de Sobolev appropriés :

Définition 3.4. — Désignons par

$$H_{\mathbf{M}}^{\varrho, k}(\mathbf{X}) = \{u \in \mathscr{D}'(\mathbf{X}) | \exists \mathbf{A} \in \mathrm{OPS}_{\mathbf{M}}^{\varrho, k}(\mathbf{X}),$$

M-elliptique, propre, tel que $Au \in L^2_{loc}(X)$.

(Nous supposerons que X a été muni d'une densité de sorte que l'espace $L^2_{loc}(X)$ est défini.)

Les opérateurs de $\operatorname{OPS}^{\sigma,\ell}_M$ opèrent dans les « espaces de Sobolev d'ordre variable » $H^{\epsilon,\,k}_M(X)$:

Proposition 3.4. — Tout $A \in OPS_M^{0,0}(X)$, propre, est continu $L^2_{loc} \to L^2_{loc}$. Utilisant la proposition 1.5 (2e partie) l'inclusion

$$S^{0,\,0}_{M}(X\times (\boldsymbol{R}^{\,n}\!\!\searrow\!\!0))\,\subset\, S^{0}_{\mu/\nu-\epsilon,\,\epsilon}(X\times (\boldsymbol{R}^{\,n}\!\!\searrow\!\!0))$$

pour $0 < \epsilon < 1/2 \,\mu/\nu$ prouve notre assertion. Indiquons cependant un lemme dont on déduirait facilement la continuité L² des opérateurs de OPS_M^0 , et qui nous sera utile plus loin.

Proposition 3.4'. — Soit $A \in OPS_M^{\epsilon,k}$ auto-adjoint $(A^* = A)$ dont le symbole principal $\sigma(A)$ est « essentiellement positif » au sens : $Re(\sigma(A)) \gtrsim \Lambda^{\epsilon,k}$, alors on peut construire un opérateur B, M-elliptique de $OPS_M^{\epsilon/2,k/2}$ (propre si A l'est) tel que :

A ~ B*B.

Notons que l'hypothèse $A^* = A$ entraîne que

Im
$$\sigma(A) \in S_{\mathbf{M}}^{\rho-\mu,\,\mathbf{2}+k}$$
,

puis désignons par B_0 un opérateur de $OPS_M^{\varepsilon/2. k/2}$, de symbole réel b_0 tel que pour $x \in K \subset X$ et $[\xi]$ assez grand on ait $|b_0|^2 - \text{Re } \sigma(A) = 0$ (voir proposition 3.1).

 $A - B_0^* B_0$ est, par suite, dans $OPS_M^{\epsilon - \mu, k+2}$.

Puis construisons des suites d'opérateurs

$$(B_{\it j}) \ et \ (R_{\it j}) \ de \ OPS^{\epsilon/2-\mu\it j,\,k/2+2\it j}_{\it M}$$

et respectivement $OPS_{M}^{r-\mu j, k+2j}$ telles que:

$$R_j = A - (B_0 + \cdots + B_{j-1})^* (B_0 + \cdots + B_{j-1}).$$

Si B_0, \ldots, B_{j-1} sont construits, R_j est donné auto-adjoint et son symbole r_j est la somme d'un symbole réel de $S_M^{\rho-\mu j,\,k+2j}$ et d'un symbole de $S_M^{\rho-(j+1)\mu,\,k+2j+2}$. Si B_j est un opérateur de $OPS_M^{\rho/2-j\mu,2j}$ de symbole b_j égal (pour $[\xi]$ assez grand) à $-\frac{r_j}{2b_0}$ alors

$$R_{j+1} = R_j + B_j^*(B_0 + \dots + B_{j-1}) + (B_0 + \dots + B_{j-1})B_j^*$$
 a pour symbole modulo $S_M^{\varrho - (j+1)\mu, \, k+2j+2}$

$$r_i + \overline{b}_i b_0 + b_0 b_i$$
 soit $r_i - \operatorname{Re}(r_i)$

qui est d'ordre $S_{M}^{\rho-(j+1)\mu,\,k+2j+2}$ en vertu d'une remarque faite plus haut, et enfin il est clair que l'on peut construire $B \sim \sum_{0}^{\infty} B_{j}$ qui répond à la question.

La définition et la proposition qui suivent précisent le comportement des opérateurs de $OPS_M^{\rho,k}$ dans ces espaces.

Définition 3.5. —
$$u$$
 est $H_{M}^{\rho, k}$ en $(x_0, \xi_0) \in T^*X \setminus 0$ si $u = u_1 + u_2$ $u_1 \in H_{M}^{\rho, k}(X)$ et $(x_0, \xi_0) \notin WF_{M}(u)$.

Proposition 3.5. — Soient Γ une partie M-conique de $T^*X\setminus 0$, ρ , σ , τ 3 fonctions, réelles, bornées M-homogènes de degré 0 sur $T^*X\setminus 0$, k, j, $l \in \mathbb{R}$, telles que

$$\inf_{\Gamma} \left(\rho - \sigma - \tau \right) > 0 \qquad ou \qquad \rho - \sigma - \tau \geqslant 0$$

dans Γ et $k-j-l\geqslant 0$ alors si $u\in \mathscr{D}'(X)$ est $H^{\varepsilon,\,k}_{M}$ dans Γ et si $A\in \mathrm{OPS}^{\sigma,\,j}_{M}(X)$, propre, Au est $H^{\varepsilon,\,l}_{M}$ dans Γ .

(Nous laissons la preuve aux soins du lecteur.) Il en résulte :

Corollaire. —
$$H_{\mathbf{M}}^{\rho,k} \subset H_{\mathbf{M}}^{\tau,l}$$
 si $\inf(\rho - \tau) > 0$ ou $\rho - \tau \geqslant 0$ et $k - l \geqslant 0$.

Indiquons, enfin, une description utile en image Fourier du front d'onde anisotrope:

Proposition 3.6. — Soit $u \in \mathcal{D}'(X)$ et (x_0, ξ_0) un point de $T^*X \setminus 0$.

 $(x_0,\ \xi_0)\notin WF_M(u)$ si, et seulement si, il existe $\nu\in \mathscr{E}'(X)$ telle que :

v=u dans un voisinage de x_0 et $\hat{v}(\xi)$ est à décroissance rapide dans un voisinage M-conique de ξ_0 .

Il suffit de prendre les opérateurs A de la définition 3.3 de la forme : $A(x, D) = b(\xi)a(x)$ où $b(\xi)$ est M-homogène de degré 0

$$a(x_0) \neq 0$$
 et $b(\xi_0) \neq 0$

et de poser v = au.

Nous verrons plus loin comment ce front d'onde apparaît pour les problèmes que nous avons à traiter comme un raffinement du front d'onde usuel.

4. PROPAGATION DES SINGULARITÉS: CAS RÉEL

Nous allons montrer pour des opérateurs à partie principale quasi homogène réelle un théorème de propagation des singularités analogue au cas classique du « type principal réel » (cf. Duistermaat-Hörmander [6], section 3.2).

(cf. Duistermaat-Hormanuer [0], section 0.2.

L'opérateur de Schrödinger $S = -\frac{1}{i} \frac{\delta}{\delta x_n} + \sum_{l=1}^{n-1} \left(\frac{\delta}{\delta x_l}\right)^2$ est un opérateur quasi homogène de degré 2 si l'on attribue à ξ_n le poids 2 et aux ξ_i $1 \le i \le n-1$ le poids 1; rappelons à son propos la propriété suivante.

Si $f \in \mathcal{D}'(X)$, Sf $\in \mathbb{C}^{\infty}$ alors sing sup f est une réunion de droites contenues dans les hyperplans $x_1 = \text{cte}$.

Nous allons commencer par définir les courbes sur lesquelles se propageront les singularités.

Préliminaires.

Soit X un ouvert de \mathbb{R}^n , $p_m(x, \xi)$ une fonction \mathbb{C}^{∞} sur $T^*X \setminus 0$, quasi homogène de degré m, P(x, D) un opérateur pseudo-différentiel de $\operatorname{OPS}_{\mathbb{M}}^m(X)$ de symbole principal $p_m(x, \xi)$.

Nous dirons que P(x, D) est un opérateur quasi homogène à caractéristiques simples si :

$$(4.1) d_{\mathbf{M}} p_{m}(x, \xi) \neq 0 \text{si} (x, \xi) \in \mathbf{T}^{*} \mathbf{X} \setminus \mathbf{0}$$

et

$$p_{m}(x,\,\xi)=0$$

où $d_{\rm M}p_m$ désigne la 1-forme :

(4.2)
$$d_{\mathbf{M}}p_{m} = \sum_{\mu_{j}=\mu} \frac{\delta p_{m}}{\delta \xi_{j}} d\xi_{j} + \frac{\delta p_{m}}{\delta x_{j}} dx_{j}$$

Désignant par σ_X la 2-forme canonique sur $T^*X \setminus 0$, introduisons le champ de vecteurs $H_{P_m}^M$:

(4.3)
$$\sigma_{\mathbf{X}}(t, \mathbf{H}_{\mathbf{P}_{m}}^{\mathbf{M}}) = \langle t, d_{\mathbf{M}} p \rangle, \quad t \in \mathbf{T}(\mathbf{T}^{*}\mathbf{X} \setminus 0)$$

Nous noterons comme dans § 2:

$$(4.4) \quad \mathbf{H}_{p_{m}}^{\mathbf{M}}(q) = \{p_{m}, q\}_{\mathbf{M}} \\ = \sum_{\mu_{j} = \mu} \frac{\partial p_{m}}{\partial \xi_{j}} \frac{\partial q}{\partial x_{j}} - \frac{\partial p_{m}}{\partial x_{j}} \frac{\partial q}{\partial \xi_{j}} \cdot q \in \mathbf{C}^{\infty}(\mathbf{T}^{*}\mathbf{X} \setminus 0),$$

Nous poserons la définition suivante:

Définition 4.1. — Une courbe intégrale du champ $H_{p_m}^M$ (défini en 4.3) sera dite M-bande bicaractéristique de P(x, D), nulle si elle est, de plus, contenue dans $car_M P = p_m^{-1}(0)$; sa projection sur X, M-courbe bicaractéristique.

Remarquons, enfin, que p_m reste constant sur les bicaractéristiques définies plus haut, dont l'existence locale est assurée si l'on suppose p_m à valeurs réelles.

Pour fixer les idées donnons l'exemple suivant:

(Exemples 4.1.1) Considérons sur $\mathbf{R}^p \times \mathbf{X}$ l'opérateur:

(4.5)
$$P(x, t, D_x, D_t) = -b(t, D_t) + A(x, D_x)$$

Dans (4.5) on a noté par A(x, D) (resp $b(t, D_t)$) un opérateur, elliptique, positif de degré 2 (resp 1) sur X (resp \mathbb{R}^p); attribuant à t le poids 2 et à x le poids 1 l'opérateur P est quasi homogène de degré 2, réel, à caractéristiques simples; et les bicaractéristiques, quasi homogènes sont des

géodésiques de la métrique définie sur X par la forme :

$$\gamma_{\mathtt{A}} = \sum\limits_{\mathbf{i},j} \; a_{\mathbf{i}\mathbf{j}}(x) \; du^{\mathbf{i}} \; du^{\mathbf{j}}$$

si l'on a posé

$$A(x, \xi) = \sum_{i,j} a_{ij}(x) \xi^i \xi^j$$

contenues dans des hyperplans t = cte.

Indiquons que si X est une M-variété le champ de vecteurs $H_{p_m}^{M}$ est bien défini par ses coordonnées locales.

Nous pouvons alors énoncer le théorème.

Théorème 4.1 (Propagation des singularités). — Soit P(x, D) un opérateur, propre, de $OPS_{\mathbf{M}}^{m}(X)$ de symbole quasi homogène p_{m} réel à caractéristiques simples.

Soit $u \in \mathcal{D}'(X)$ et Pu = f. Alors:

$$WF_{M}(u) \backslash WF_{M}(f)$$

est contenu dans $p_m^{-1}(0)$ et est stable par le germe du groupe de transformations de générateur infinitésimal $H_{p_m}^{\mathbf{M}}$.

Nous allons prouver, en fait, l'énoncé plus précis. (Propagation de la régularité dans les H^s quasi homogènes):

Théorème 4.1'. — Soit I un intervalle ouvert de \mathbf{R} , contenant 0 et $t \to \gamma(t)$: I $\to T^*X \setminus 0$ une M-bande bicaractéristique, nulle, de P, et σ un réel.

Si $u \in \mathscr{D}'(X)$ est telle que: Pu est H^s_M dans $\gamma(I)$ et u est $H^{s+m-\mu}_M$ en $\gamma(0)$ pour tout $s < \sigma$ alors u est $H^{s+m-\mu}_M$ dans $\gamma(I)$ pour tout $s < \sigma$.

On se ramène d'abord au cas où I est relativement compact et $u \in \mathscr{E}'(X)$. Il suffit en fait de montrer que si : pour tout $s < \sigma$.

Pu est H_M^s dans $\gamma(I)$ et u est $H_M^{s+m-\delta_i}$ dans $\gamma(I)$ alors si u est $H_M^{s+m-\mu}$ en $\gamma(0)$, u est $H_M^{s+m-\mu}$ dans $\gamma(I)$ pour tout $s < \sigma$. Écartons d'abord le cas où le champ hamiltonien partiel $H_{p_m}^M$ de P a en $\gamma(0) = (x_0, \, \xi_0)$ la direction de l'axe du cône anisotrope $\delta = \sum_j \mu_j \xi_j \frac{\delta}{\delta \xi_j}$ auquel cas $\xi_0^j = 0$ pour $\mu_j \neq \mu$ et la M-bicaractéristique passant par $\gamma(0)$ est réduite à la demi-droite $(x_0, \, \lambda \xi_0)\lambda > 0$ qui est l'ensemble

conique anisotrope engendré par (x_0, ξ_0) et la proposition est alors triviale.

Nous ferons la démonstration en 3 étapes.

1re étape.

Il s'agit d'abord de « localiser » le problème. Multipliant P par un opérateur quasi homogène elliptique positif d'ordre convenable (ce qui ne change pas les bicaractéristiques définies en 4.1), nous pouvons supposer que $\mu=m$, puis considérant un recouvrement ouvert de I nous pouvons supposer que si V désigne un voisinage quasi conique, assez petit, de $\gamma(0)$ sur une hypersurface S quasi conique transversale en $\gamma(0)$ à $\gamma(I)$ le flot hamiltonien partiel:

$$\Phi: I \times V \to T^*X \setminus 0$$

(qui à $(t, m) \in I \times V$ associe le point de paramètre t sur la M-bicaractéristique qui part en m à t=0) est un difféomorphisme.

Par hypothèse il existe un voisinage W_0 , quasi conique, de $\gamma(0)$ tel que:

$$(4.6) WF_{\mathbf{M}}^{s+m-\mu}(u) \cap W_{\mathbf{0}} = \emptyset$$

Posons $I =]-T', T[\ (T' > 0)$ et prenons T' et V assez petits pour que:

$$\Phi(]\!-T',\,T'[,\,V)\,\subset\,W_0$$

et soit $~I_0=~]-~T_0',~T_0[~$ un sous-intervalle $~(\overline{I}_0\subseteq I)~$ de ~I et posons :

(4.7)
$$\Gamma = \Phi(I, V), \Gamma_0 = \Phi(I_0, V)$$

et

$$\Lambda = \Gamma - (\Gamma_0 \cup W_0)$$

Il est clair que $\Lambda \subseteq \Phi(]T_0, T[, V)$.

Lemme 1. — Avec les notations de (4.6) et (4.7).

On peut trouver un opérateur B de $OPS^0_{\mathtt{M}}(X)$ de degré — ∞ hors de Γ tel que :

- 1) $\operatorname{car}_{\mathtt{M}} B \cap \Gamma_{\mathtt{0}} = \emptyset$ et [P,B] est de degré $-\infty$ dans $\Gamma_{\mathtt{0}}.$
- 2) $Si \quad \varphi = Bu, \quad \varphi \in H^{s-\delta_1} \quad et \quad WF_M^s(P\varphi) \subset \Lambda.$

Construisons d'abord un opérateur B_0 de $OPS_M^0(X)$ de symbole b_0 quasi homogène de degré 0 vérifiant:

supp
$$b_0 \subset \Gamma$$
, $b_0(\gamma(0)) = 1$

 \mathbf{et}

$$H_{p_m}^{M}(b_0) = 0$$
 dans Γ_0

[prendre par exemple $b_0(\Phi(t, m)) = \tilde{b}(m)\chi(t)$ où \tilde{b} est une fonction quasi homogène de degré 0 à support dans V et $\chi \in C_0^{\infty}(I)$ $\chi \equiv 1$ sur I_0).

D'après la remarque de la section 2, $[P, B_0]$ est d'ordre $-\delta_1(\delta_1 > 0)$ dans Γ_0 .

Cette construction est, en fait, suffisante; mais pour aller plus loin supposons que le symbole de P est une somme asymptotique de fonctions quasi homogènes:

$$p \sim \sum_{j=0}^{n} p_{m-\mu j}$$
 $(p_{m-\mu j}$ quasi homogène de degré $m-\mu j$).

Construisons une suite $(B_j)_{j\geqslant 0}$ d'opérateurs de degré $m_j \downarrow -\infty$ à supports dans Γ et tels que $[P, B_0 + \cdots + B_{j-1}]$ soit de degré m_j dans Γ_0 . Supposons, B_0, \ldots, B_{j-1} construits, le symbole de $[P, B_0 + \cdots + B_{j-1}]$ est une somme asymptotique de fonction quasi homogènes

$$[P, B_0 + \cdots + B_{j-1}] = r_{m_i} + r'_{m'_i} + \cdots$$

construisons alors une fonction quasi homogène b_j de degré m_i , à support dans Γ et vérifiant:

$$H_{p_m}^M(b_j) = -r_{m_j}$$
 dans Γ_0 .

par suite $[P, B_j]$ a pour symbole $-r_{m_j}$ dans Γ_0 modulo $S_M^{m_j-\delta_i}$ et $[P, B_0+\cdots+B_{j-1}+B_j]$ est de degré

$$m_{j+1} \leq \inf (m_j - \delta_1, m'_j)$$

dans Γ_0 , et si l'on remarque que $m_j' \leqslant m_j - \delta_2$, $\delta_2 > 0$ ne dépendant que de M, il résulte que $m_j \downarrow -\infty$.

L'opérateur B ~ $\sum_{j=0}^{\infty}$ B_j répond aux exigences du premier point du lemme.

Posons $\varphi = Bu$, si V a été pris assez petit :

$$BPu \in \mathcal{H}_{M}^{s}$$
 et $v = Bu \in \mathcal{H}_{M}^{s+m-\mu-\delta_{1}}$

de plus Pv = BPu + [P, B]u est dans H_M^s dans $\Gamma_0 \cup \Gamma$, et u étant $H_M^{s+m-\mu}$ dans W_0 il vient:

$$WF_{\mathbf{M}}^{s}(P_{\mathbf{P}}) \subseteq \Gamma - (\Gamma_{\mathbf{0}} \cup W_{\mathbf{0}}) = \Lambda.$$

Soit r tel que $P \rho \in H_{M}^{r}(X)$ $(r \leq s - \mu)$ fixons un point $m_1 = \gamma(t_1) \ 0 < t_1 < T_0$, de $\gamma(I_0)$ et construisons une fonction $\rho \ de \ C^{\infty}(\Gamma) \ quasi homogène de degré 0 telle que :$

(a) $\rho < s$ dans $\Gamma \rho \geqslant s - \alpha$ dans un voisinage de m_1 ($\alpha > 0$ arbitraire) et $\rho < r$ dans Λ .

(b) $H_{p_m}^{M^2} \rho > 0$ quand $H_{p_m}^{M} \rho = 0$.

(Prendre par exemple p décroissante sur les bicaractéristiques.)

De la conséquence suivante, de la proposition 3.5:

Si $w \in \mathscr{E}'(X)$ est H_M^s en $m \in T^*X \setminus 0$ et si $\rho < s$ dans un voisinage de m alors $\forall k \ \omega$ est $H_{M}^{\rho, k}$ en m, il résulte que Po est H_M^{ρ} dans Γ .

Pour montrer le théorème il nous suffit d'établir que v est dans $H_{\rm M}^{\rho+m-\mu}$, d'où l'on déduira que u est $\bar{H}_{\rm M}^{\rho+m-\mu}$ en m_1 , la construction précédente pouvant être répétée pour tout point m_1 de $\gamma(I)$ on déduira u est $H_M^{s+m-\mu}$ dans $\gamma(I)$.

Pour cela nous allons établir une estimation a priori sur Po dans l'espace H_{M}^{ρ} , où ρ est le poids introduit plus haut.

Nous introduirons, avec les notations du § 3, un opérateur propre Λ_1^{ρ} équivalent à l'opérateur Λ^{ρ} , de symbole

$$(1 + [\xi])^{f(x,\xi)}$$
 pour $([\xi] \ge 1)$.

Et prouvons:

Lemme 2. — Soit L un opérateur pseudo-différentiel, propre, vérifiant:

$$L\Lambda_1^{\rho} \sim \Lambda_1^{\rho}P$$

Alors $Q = L^*L - LL^*$ est de la forme:

$$Q = OP(2H_{p_m}^{M^{\bullet}}(\rho) \operatorname{Log} (1 + \lceil \xi \rceil)) + R_{2(m-\mu)}$$

avec

$$R_{2(m-\mu)} \in OPS_{M}^{2(m-\mu)}(X)$$

Désignons par H un opérateur pseudo-différentiel propre de symbole $\bar{H}_{p_m}^{M}(\rho)$, $H \in OPS_{M}^{m-\mu}(X)$ et par B_1 un opérateur pseudo-différentiel propre de symbole: Log $(1 + [\xi])$,

 $B_1 \in OPS^{0,1}_{\mathbf{M}}(X)$.

Montrons d'abord que l'on peut écrire L sous la forme:

$$L = P_m + iHB_1 + R_{m-\mu} \quad R_{m-\mu} \in OPS_M^{m-\mu}(X)$$

en effet $\Lambda_i^{\rho} P_m - P_m \Lambda_i^{\rho}$ a pour symbole

$$\frac{1}{i} \sum_{\mu_j = \mu} \frac{\delta}{\delta \xi_j} \Lambda_1^{\rho} \frac{\delta}{\delta x_j} P_m - \frac{\delta}{\delta x_j} \Lambda^{\rho} \frac{\delta}{\delta \xi_j} P_m \quad \text{modulo} \quad S_M^{\rho - \mu + m - \delta_i, 1}$$
(cf. prop. 1.3) et:

$$\frac{\mathrm{d}}{\mathrm{d}\xi_{j}}(\Lambda^{\mathrm{p}}) = \frac{\mathrm{d}\mathrm{p}}{\mathrm{d}\xi_{j}}(1+[\xi])^{\mathrm{p}} \ \mathrm{Log} \ (1+[\xi]) + (1+[\xi])^{\mathrm{p}} r_{-\mu}$$

οù

$$r_{-\mu} \in S_{\mathbf{M}}^{-\mu}(\mathbf{X})$$

et donc:

$$\Lambda_1^{\varrho} \mathbf{P}_m - \mathbf{P}_m \Lambda_1^{\varrho}$$

a pour symbole

$$-i\{p_m, \rho\}_{\mathbf{M}}(1+[\xi])^{\rho} \operatorname{Log}(1+[\xi])) + (1+[\xi])^{\rho} r_{m-\mu}, r_{m-\mu} \in S_{\mathbf{M}}^{m-\mu}(\mathbf{X})$$
 par suite

$$\Lambda_1^{\rho} P_m - P_m \Lambda_1^{\rho} = -i H B_1 \Lambda_1^{\rho} + R_{m-\mu} \Lambda_1^{\rho} \text{ et } \Lambda_1^{\rho} P - P \Lambda_1^{\rho}$$

peut s'écrire sous la même forme.

Or

$$(L - P)\Lambda_1^{\rho} \sim \Lambda_1^{\rho}P - P\Lambda_1^{\rho} = -iHB\Lambda_1^{\rho} + R_{m-\mu}\Lambda_1^{\rho}$$

par suite

$$L = P_m + iHB_1 + R_{m-\mu}$$

$$K = HB_1$$

Posons

$$K = HB_1$$

$$Q = L^*L - LL^* = [P_m^*, P_m] + i([P_m^*, K] + [K^*, P_m]) + R_{2(m-\mu)}$$

= $2i[P_m, K] + R_{2(m-\mu)}$

 \mathbf{or}

$$P_m B_1 = B_1 P_m + R_{m-\mu}$$
 et $[P_m, K] = [P_m, H] + R_{2(m-\mu)}$.

 $[P_m, H]$ a pour symbole $\frac{1}{i} \{p_m, \{p_m, \rho\}_M\}_M + r'$ avec $r' \in S_M^{2(m-\mu)-\delta}$ enfin puisque $[P_m, K] = [P_m, H]B_1 + R_{2(m-\mu)}$ il en résulte que Q a la forme annoncée dans l'énoncé du lemme.

Nous utilisons également le lemme suivant :

Lemme 3. — Si L est l'opérateur introduit dans le lemme 2, ρ une fonction M-homogène de degré 0, de $C^{\infty}(\Gamma)$ telle que:

$$H_{p_m}^{M}(\rho) = 0 \Longrightarrow H_{p_m}^{M}(\rho) > 0$$

— Si C est un opérateur de $OPS^0_M(X)$, propre, de degré — ∞ hors de Γ .

Il existe C' > 0 telle que

$$\forall \nu \in \mathscr{E}' \ \cap \ H^{\it m}_{\rm M}({\rm X}) \quad \| \, {\rm C} \nu \|_{\it m-\mu,1/2}^{\, 2} \, \leqslant \, {\rm C}'(\| \, {\rm L} {\rm C} \nu \|^{2} \, + \, \| \, \nu \|_{\it -N}^{2})$$

(Nous utilisons ici une définition plus restrictive de

$$\mathrm{H}_\mathrm{M}^{\varrho,\,\mathtt{k}}\,\cap\,\mathscr{E}'=\{u\in\mathscr{E}'\big|\,\Lambda_1^{\varrho,\,\mathtt{k}}u\in\mathrm{L}^{\mathtt{2}}\}$$

muni de la norme $\|\Lambda_1^{s,k}u\|_{\mathbf{L}^2} = \|u\|_{s,k}$.)

Par compacité il est clair qu'il existe $\tau > 0$ tel que si $Q_{\mathbf{i}}$ désigne l'opérateur :

$$Q_1 = \tau(HB_1^{1/2})^*(HB_1^{1/2}) + L^*L - LL^*$$

on ait:

$$\operatorname{Re} \left(\sigma(Q_1) \right) \gtrsim \Lambda^{2(m-\mu),1} \quad dans \ \Gamma.$$

Nous pouvons prendre la « racine carrée de Q_1 »: si Q_1' est un opérateur auto-adjoint tel que :

$$Q_1' \sim Q_1$$
 dans Γ et $\text{Re}(\sigma(Q_1')) \gtrsim \Lambda^{2(m-\mu),1}$

en appliquant la proposition 3.4' on déduit qu'il existe

$$M \in \mathrm{OPS}^{m-\mu,1/2}_{\mathbf{M}}(X)$$

tel que:

 $Q_1' \sim M^*M$ et par conséquent $C^*QC \sim C^*M^*MC$.

D'où l'on déduit pour $\varrho \in \mathscr{E}'(X) \cap H_{\mathbf{M}}^m(X)$:

$$\begin{split} (\mathbf{C^*M^*MC} \rho, \, \rho) &= (\mathbf{C^*L^*L} - \mathbf{LL^*C} \rho, \, \rho) \\ &+ \tau((\mathbf{HB_1^{1/2}})^*(\mathbf{HB_1^{1/2}}) \rho, \, \rho) + (\mathbf{R_{-m}} \rho, \, \rho). \end{split}$$

Et donc il existe C' > 0 telle que:

$$\|C\rho\|_{m-\mu,1/2}^2 \leq C'(\|LC\rho\|^2 + \|HB_1^{1/2}\rho\|^2 + \|\rho\|_{-N}^2)$$

De plus remarquons que $\forall \epsilon > 0$ $\exists C''_{\epsilon}$ tel que:

$$\|\mathbf{B}_{\mathbf{1}}^{1/2}u\|^2 \leq \varepsilon \|\mathbf{B}_{\mathbf{1}}u\|^2 + \mathbf{C}_{\varepsilon}''\|u\|^2$$

en outre

$$HB_1^{1/2} = B_1^{1/2}H + R_{m-2\mu,1/2}$$
 et $HB_1 = B_1H + R_{m-2\mu}$

par suite

$$\|HB_1^{1/2}\rho\|^2 \, \leqslant \, \|B_1^{1/2}H\rho\|^2 \, + \, C''\|\rho\|_{m-u}^2$$

et enfin

$$\|B_1^{1/2}H\rho\|^2 \leqslant \epsilon \|HB_1\rho\|^2 + C_\epsilon'' \|\rho\|_{m-\mu}^2$$

 \mathbf{or}

$$\| \operatorname{L} \varphi \|^2 \, \geq \, \operatorname{C}_1 \| \operatorname{HB}_1 \varphi \|^2 \, - \, \operatorname{C}_1 \| \varphi \|_{m-\mu,\, 1/2}^2$$

par suite si l'on choisit

$$C'\epsilon < 1/2$$

on a

$$\| \varphi \|_{m-\mu, 1/2}^2 \le C_1' (\| L \varphi \|^2 + \| \varphi \|_{m-\mu}^2)$$

 \mathbf{or}

$$\|\varphi\|_{m-\mu}^2 \leqslant \eta \|\varphi\|_{m-\mu,1/2}^2 + C_{\eta} \|\varphi\|_{-N}^2 \quad \eta > 0 \text{ arbitraire}$$

D'où l'estimation annoncée.

3e étape.

Pour achever la preuve du théorème il nous faut régulariser la distribution φ construite dans la première étape.

Pour cela construisons d'abord A un opérateur d'ordre 0 tel que:

$$H_{p_m}^M(a) = 0$$
 dans Γ_0 , $a(\gamma(0)) \neq 0$ et supp $a \subset \Gamma$,

Puis $a_1 \in C^{\infty}(\Gamma)$ M-homogène de degré μ vérifiant :

$$a_1 \neq 0$$
 dans Γ , et $H_{p_n}^M(a_1) = 0$

Et désignons par A_{ε} l'opérateur de symbole $a_{\varepsilon} = \frac{a}{1 + \varepsilon^2 a_1^2}$. On a $A_{\varepsilon} \in \text{OPS}_{M}^{-2\mu}$ supp $A_{\varepsilon} = \text{supp A}$ et $H_{p_m}^{M}(a_{\varepsilon}) = 0$ dans Γ_0 .

De plus les a_{ε} forment une partie bornée de $S_{\mathtt{M}}^{\mathsf{o}}(X)$ et $A_{\varepsilon} \nu \to A \nu$ pour la topologie faible.

Posons $W_{\varepsilon}=\Lambda_1^{\rho}A_{\varepsilon}\rho$ et désignons par C un opérateur d'ordre 0 vérifiant supp $C\subset \Gamma$

$$C \equiv I \quad \text{sur} \quad \text{supp } A.$$

En appliquant les lemmes 2 et 3 aux distributions W_{ϵ} on a avec une constante indépendante de ϵ :

$$\|CW_{\epsilon}\|_{m-\mu, 1/2} \le cte (\|LCW_{\epsilon}\| + \|W_{\epsilon}\|_{-N})$$

Or

$$\Lambda_{\mathbf{1}}^{\rho} A_{\epsilon} \nu = C W_{\epsilon} - (C - 1) \Lambda_{\mathbf{1}}^{\rho} A_{\epsilon} \nu$$

 \mathbf{et}

$$LCW_\epsilon = \Lambda_1^\rho P \Lambda_\epsilon \rho + R_{-\omega} A_\epsilon \rho + L(C-1) \Lambda_1^\rho A_\epsilon \rho$$

Les opérateurs $(C-1)\Lambda_1^\rho$ et $L(C-1)\Lambda_1^\rho$ sont d'ordre $-\infty$ sur les supports M-coniques des opérateurs A_ϵ qui forment, en outre, un ensemble borné d'opérateurs; de sorte que :

$$\|L(C-1)\Lambda_1^{\rho}A_{\epsilon}\nu\| \le cte \|\nu\|_{-N}$$

et

$$\|(C\,-\,1)\Lambda_1^\rho A_\epsilon \rho\|_{\mathit{m}-\mu,\,1/2}\,\leqslant\,\,cte\,\|\rho\|_{\,-N}$$

 $\text{finalement} \quad \|\Lambda_1^\rho A_\epsilon \rho\|_{m-\mu,\,1/2} \,\leqslant\, \, \text{cte} \,\, (\|\Lambda_1^\rho P A_\epsilon \rho\| \,+\, \|\rho\|_{-N}).$

Pour terminer il suffit d'établir que les $\|\Lambda_1^{\rho} P A_{\epsilon} \rho\|$ sont bornés; on déduira alors qu'une sous-suite de $A_{\epsilon} \rho$ a une limite dans $H_m^{\rho+m-\mu,1/2}$ limite qui est nécessairement $A \rho$ par suite de la convergence dans $\mathscr{D}'(X)$.

Écrivant

$$\Lambda_1^{\rho} P A_{\epsilon} \rho = \Lambda_1^{\rho} A_{\epsilon} P \rho + \Lambda_1^{\rho} [P, A_{\epsilon}] \rho$$

on note d'abord

$$\|\Lambda_{1}^{\rho}PA_{\varepsilon}\rho\| \leq \|A_{\varepsilon}\Lambda_{1}^{\rho}\rho\rho\| + \|\lceil\Lambda_{1}^{\rho}, A_{\varepsilon}\rceil P\rho\|$$

inégalité dans laquelle le premier terme est borné car

$$\Lambda_{1}^{\rho}P\varrho\in L^{2}(P\varrho\in H_{M}^{\rho})\,;$$

les $\left[\Lambda_1^{\rho}A_{\epsilon}\right]$ forment un système borné d'opérateurs de

$$OPS_{\mathbf{M}}^{s-\mu} \ (\Lambda_{1}^{\rho} \in OPS_{\mathbf{M}}^{s} \ car \ \rho < s)$$

or $P_{\ell} \in H_{M}^{s-\mu}$ et donc les normes $\|[\Lambda_{1}^{\rho}, A_{\epsilon}]P_{\ell}\|$ sont bornées. Reste à voir le terme $\Lambda_{1}^{\rho}[P, A_{\epsilon}]_{\ell}$.

Écrivons $[P, A_{\varepsilon}] = R_{\varepsilon} + S_{\varepsilon}$ avec R_{ε} de symbole $H_{p_m}^{\mathsf{M}}(a_{\varepsilon})$

propagation des singularités des solutions d'équations 101 et S_{ϵ} décrivant un ensemble borné d'opérateurs de $OPS_{M}^{m-\mu-\delta_{4}}$.

$$\Lambda_1^{\rho}S_{\epsilon}$$
 décrit un borné de $OPS_M^{s+m-\mu-\delta_1}$,

et par hypothèse $\nu \in H_M^{s+m-\mu-\delta_4}$ par suite les $\|\Lambda_1^\rho S_\epsilon \nu\|$ sont bornés.

Puis écrivons $\Lambda_1^{\rho}R_{\epsilon}\rho = T_{\epsilon}\rho + U_{\epsilon}\rho$ où T_{ϵ} a pour symbole $\Lambda_1^{\rho}H_{\rho}^{M}(a_{\epsilon})$ et U_{ϵ} décrivant un borné de

$$\mathrm{OPS}_{\mathtt{M}}^{s+m-\mu-\mu} \subset \mathrm{OPS}_{\mathtt{M}}^{s+m-2\mu}$$

et par conséquent les $\|U_{\epsilon}\rho\|$ restent bornés.

Enfin le symbole de T_{ε} est nul dans Γ_0 et d'ordre

$$\leq r + m - \mu \leq s + m - 2\mu$$

dans Λ par suite les $||T_{\epsilon}\rho||$ sont bornées.

Il résulte donc que $\Lambda_1^{\rho}A_{\nu}$ est dans $H_{M}^{m-\mu,1/2}$ et que ν est $H_{M}^{s+m-\mu-\alpha}$ en m_1 pour $s < \sigma$ et $\alpha > 0$ arbitraire, par suite ν est $H_{M}^{s+m-\mu}$ en m_1 pour tout $s < \sigma$.

c.q.f.d.

5. PROPAGATION DES SINGULARITÉS: CAS COMPLEXE

Soit X un ouvert de \mathbf{R}^n ou une M-variété et P(x, D) un opérateur pseudo-différentiel propre, de $OPS_{\mathbf{M}}^m(X)$ dont le symbole quasi homogène $P_m(x, \xi)$ n'est pas nécessairement réel.

Nous allons donner d'abord un résultat de propagation des singularités dans le cas où la variété caractéristique de P est « quasi » involutive, où encore quand P commute assez bien avec son opérateur adjoint; analogue à [6] section 7.

1. Cas « quasi » involutif.

Nous ferons alors les hypothèses:

 $-\delta \geqslant \mu \ \text{et} \ \{P_{\text{m}}, \ \overline{P}_{\text{m}}\}_{\text{M}} = 0 \ \text{quand} \ P_{\text{m}} = 0.$

— Les champs de vecteurs $H^{M}_{\mathrm{ReP}_m}$, $H^{M}_{\mathrm{ImP}_m}$ et δ l'axe du cône anisotrope $\delta = \sum \mu_j \xi_j \frac{\delta}{\delta \xi_j}$ sont linéairement indépendants quand $P_m = 0$.

Il en résulte que pour une fonction $\lambda \in \mathbb{C}^{\infty}$ on a:

$$\{\operatorname{Re} P_m, \operatorname{Im} P_m\}_{\mathtt{M}} = \frac{\lambda - \overline{\lambda}}{-2i} \operatorname{Re} P_m + \frac{\lambda + \overline{\lambda}}{-2} \operatorname{Im} P_m$$

par suite dans $P_m^{-1}(0)$ la condition d'intégrabilité de Frobenius est vérifiée :

$$[H_{\text{ReP}_m}^{\text{M}}, H_{\text{ImP}_m}^{\text{M}}] = \frac{\lambda - \overline{\lambda}}{-2i} H_{\text{ReP}_m}^{\text{M}} + \frac{\lambda + \overline{\lambda}}{-2} H_{\text{ImP}_m}^{\text{M}}$$

(5.1) peut également s'écrire :

$$(5.2) \quad [H_{P_m}^M, H_{\overline{P}_m}^M] = \lambda H_{P_m}^M - \overline{\lambda} H_{\overline{P}_m}^M \quad \text{quand} \quad P_m = 0$$

Dans la variété $P_m^{-1}(0)$ (de codimension 2) on peut définir des deux feuilles tangentes aux champs H_{tel}^{Mm} et $H_{\text{imP}_m}^{Mm}$; ceux-ci induisent sur les feuilles une structure analytique (cf. [6]).

Les deux feuilles ainsi construites seront dites deux feuilles M-bicaractéristiques;

Nous serons amenés à considérer des fonctions φ sous-harmoniques dans les feuilles, c'est-à-dire des fonctions dont les restrictions aux feuilles sont sous-harmoniques pour les structures analytiques considérées plus haut, ou encore qui vérifient, dans les feuilles, $(H_{P_m}^M + \lambda)H_{P_m}^M \varphi \geqslant 0$.

Sous ces conditions nous pouvons énoncer:

Théorème 5.1. — Soit $u \in \mathcal{D}'(X)$ Pu = f, $WF_{M}(u) \setminus WF_{M}(f)$ est contenu dans $P_{m}^{-1}(0)$ et est une réunion de M-feuilles bicaractéristiques.

La preuve de ce théorème présente de nombreuses similitudes avec celle du cas réel (section 4), les propriétés de « convexité » des poids que nous avons construits sont remplacées par une condition de sous-harmonicité.

Soit donc I un intervalle ouvert de **R** contenant 0 et $\gamma: J = I \times I \to T^*X \setminus 0$ une 2 feuille bicaractéristique, nous allons prouver que si Pu est H^s_M dans $\gamma(J)$, u est $H^{s+m-2\mu}_M$ dans $\gamma(J)$ et u est $H^{s+m-\mu}_M$ en $\gamma(0, 0) = (x_0, \xi_0)$ pour tout $s < \sigma$ alors u est $H^{s+m-\mu}_M$ dans $\gamma(J)$ pour tout $s < \sigma$.

Nous allons d'abord nous ramener au cas où le crochet

 $\{P_m, \overline{P}_m\}_M$ est nul non seulement dans $P_m^{-1}(0)$ mais encore dans tout un voisinage de (x_0, ξ_0) dans $T^*X \setminus 0$, par le lemme suivant :

Lemme 1. — Soit (x_0, ξ_0) un point de $P_m^{-1}(0)$ on peut trouver une fonction $e(x,\xi)$ quasi homogène de degré μ — m telle que:

 $e(x_0, \, \xi_0) \neq 0$ et $\{eP_m, \, \overline{e}\overline{P}_m\}_M = 0$

dans un voisinage de (x_0, ξ_0) .

La preuve de ce lemme est analogue à celle du lemme 7.2.3 de [6].

Nous pouvons alors introduire le 2 feuilletage M-bicaractéristique:

 $\Phi: J \times V \to T^*X \setminus 0$, V désignant un voisinage de $m_0 = (x_0, \xi_0)$ assez petit, sur une variété quasi conique de codimension 2 transversale en m_0 à la 2-feuille $\gamma(J)$.

Désignons encore par W_0 un voisinage quasi conique de (x_0, ξ_0) tel que $W_0 \cap WF_M^{s+m-\mu}(u) = \emptyset$, par I_0 un sousintervalle de I,

$$J_0 = I_0 \times I_0, \quad \Gamma = \Phi(J \times V), \quad \Gamma_0 = \Phi(J_0 \times V).$$

Construisons encore un opérateur B de $OPS^0_M(X)$ tel que : supp $B\subseteq \Gamma,\ [P,\ B]$ degré — ∞ dans Γ_0 et

$$\gamma(J_0) \cap \operatorname{car}_M B = \emptyset;$$

et posons o = Bu.

$$WF_{M}^{s}(Pv) \subseteq \Lambda = \Gamma - (\Gamma_{0} \cup W_{0}) \text{ posons } \Lambda = \Phi(K \times V)$$

Fixons un point m_1 dans $\gamma(J_0)$ et construisons $\rho \in C^{\infty}(\Gamma)$ quasi homogène de degré 0 telle que :

$$\begin{cases} a) \ \rho < s \ \text{dans} \ \Gamma \ \rho \geqslant s - \alpha \ (\alpha > 0 \ \text{arbitraire}) \ \text{en} \ m_1 \\ \text{et} \ \rho < s - \mu \ \text{dans} \ \Lambda. \\ b) \ H^{\text{M}}_{P_m} H^{\text{M}}_{P_m} \rho > 0 \ \text{quand} \ H^{\text{M}}_{P_m} \rho = 0. \end{cases}$$

Si l'on désigne par \hat{K} la réunion de K et des composantes connexes non bornées de $\int_{\mathbf{C}} K$ et $m_1 = \Phi(z_1, m_0) \ z_1 \in J_0$, nous remarquons que $z_1 \notin K = \hat{K}$ (par suite du choix de I_0) et par le théorème de Rünge il existe une fonction $\mathfrak{F}_1(z)$ sous-

harmonique dans un voisinage de J telle que:

$$\sup \, \widetilde{\rho}_1 \, > \, \widetilde{\rho}_1(z_1) \, > \, \sup_{\kappa} \, \widetilde{\rho}_1.$$

Et pour une fonction ψ réelle, croissante, convenablement choisie $\tilde{\rho} = \psi \circ \tilde{\rho}_1$ vérifie :

$$s > \sup \tilde{\rho} > \tilde{\rho}(z_1) = s - \alpha > s - \mu > \sup_{\kappa} \tilde{\rho}$$

et si l'on pose $\rho(m)=\tilde{\rho}(z)$ si $m=\Phi(z,\nu)$ ρ vérifie les conditions a) et b) ci-dessus.

On a donc $P \rho \in H_M^{\rho}$ et nous allons établir $\rho \in H_M^{\rho+m-\mu}$ par le même procédé que celui utilisé dans la section 4 dont le lemme 2 devient :

Lemme 2. — Soit L un opérateur propre vérifiant

$$L\Lambda_1^{\rho} \sim \Lambda_1^{\rho}P$$

 $Q = L^*L - LL^*$ est de la forme

$$\mathrm{Q} = \mathrm{O} \mathit{p}((\mathrm{H}^{\mathtt{M}^{\bullet}}_{\mathrm{ReP}_{\mathit{m}}} + \, \mathrm{H}^{\mathtt{M}^{\bullet}}_{\mathrm{ImP}} \,) \, \rho \, \, \mathrm{Log} \, (1 + \, [\xi])) \, + \, \mathrm{R}_{2(\mathit{m} - \mu)}$$

avec $R_{2(m-\mu)} \in OPS_M^{2(m-\mu)}(X)$.

L est encore de la forme $L = P_m + iHB_1 + R_{m-\mu}$ et

$$Q = L^*L - LL^* = [P_m^*P_m] + i([P_m^*K] - [K^*P_m]) + R_{2(m-\mu)}$$

or $\{P_m^*, P_m\} - Op\{\overline{P}_m, P_m\}_M + R_{2m-\mu-\delta} = R_{2(m-\mu)}$ car $\delta \ge u$ et $\{P_m, \overline{P}_m\}_M = 0$ les termes $[P_m^*, K]$ et $[K^*, P_m]$ conduisant à $H_{\text{ReP}_m}^{M^*} \rho$ et $H_{\text{ImP}}^{M^*} \rho$.

La démonstration se termine comme dans la section 4.

2. Quelques extensions possibles.

Nous allons considérer, à la suite de [5], des opérateurs P jouissant de la propriété suivante :

(5.3)
$$\left\{\frac{1}{i}\,\overline{P}_{m},\,P_{m}\right\}_{M} \geq \lambda P_{m} + \overline{\lambda}\overline{P}_{m}$$

pour une fonction λ C^{*} et quasi-homogène de degré $m-\mu$. (5.3) correspond à une généralisation des opérateurs principalement normés.

Le théorème 0.1 de [5] tient pour des opérateurs quasi homogènes; nous en redonnons ici l'énoncé:

Тне́овѐме 5.2. — Si $P \in OPS_{\mathbf{M}}^{m}(\mathbf{X})$ vérifie:

1)
$$\left\{\frac{1}{i} \overline{P}_{m}, P_{m}\right\}_{M} \ge \lambda P_{m} + \overline{\lambda} P_{m}$$

- 2) Pour tout (x, ξ) de $T^*X \setminus 0$ P est hypoelliptique en (x, ξ) avec perte de μ dérivées ou (x, ξ) est sur une bicaractéristique de P.
- 3) Aucune bicaractéristique complète ne reste au-dessus du compact K de X.

Alors $\forall s \in \mathbf{R}$ on a:

$$u \in \mathscr{E}'_{\mathbf{K}}(\mathbf{X}) \quad \mathbf{P}u = f \quad \mathbf{S}^*_{f} \geqslant s \Longrightarrow \mathbf{S}^*_{u} \geqslant s + m - \mu.$$

où l'on a noté S_u^* la fonction quasi homogène de degré 0 $S_u^*(x, \xi) = \sup \{t \in \mathbf{R} | u \text{ est } H_{\mathbf{M}}^t \text{ en } (x, \xi)\}$. Le point essentiel de la démonstration est le résultat suivant :

Lemme 5.2. — Soit $\rho \in C^{\infty}(T^*(X) \setminus 0)$ quasi homogène de degré 0 vérifiant: $\operatorname{Re}\left(H^{\mathrm{M}}_{P_m} + \frac{1}{i}\lambda\right)H^{\mathrm{M}}_{P_m}\rho > 0$ dans un cône anisotrope Σ (5.4) et soit C un opérateur d'ordre 0, de degré $-\infty$ hors de Σ . Si L est un opérateur pseudo-différentiel propre vérifiant $L\Lambda_1^{\rho} \sim \Lambda_1^{\rho}P$ on a l'estimation microlocale,

$$(5.5) \quad \|\operatorname{Cu}\|_{m-\mu,1/2} \, \leqslant \, \operatorname{cte} \, (\|\operatorname{L} \operatorname{Cu}\| \, + \, \|u\|_{-\mathtt{N}}) \quad \forall u \in \mathscr{E}'_{\mathtt{K}} \, \cap \, H^m_{\mathtt{M}}(X)$$

[la fonction λ de (5.4) a été introduite en (5.3)].

Introduisons un opérateur M de $OPS_{M}^{m-\mu}$ de symbole λ ; et considérons l'opérateur:

$$Q = L*L - LL* - ML + L*M*.$$

Nous avons déjà calculé:

$$\begin{array}{c} L^*L - LL^* = [P^*, P] \\ + & \operatorname{Op} \; (2H^{\underline{M}}_{P_m} H^{\underline{M}}_P \; \rho \; Log \; (1 + [\xi])) + R_{2(m-\mu)} \\ et \end{array}$$

$$L = P + \mathit{i} H^{\text{M}}_{P_{\text{m}}} \rho \, \operatorname{Log} \left(1 + [\xi] \right) + \, R_{\text{m-}\mu}$$

de sorte que si l'on écrit

$$\label{eq:Q} \mathbf{Q} = \mathbf{L^*L} - \mathbf{LL^*} - \mathbf{M}(\mathbf{L} - \mathbf{P}) - (\mathbf{L^*} - \mathbf{P^*})\mathbf{M^*} - \mathbf{MP} - \mathbf{P^*M^*}$$
 il vient :

$$\begin{split} \mathbf{Q} &= \mathrm{Op}\left(2\mathrm{Re}\left[\left(\mathbf{H}_{\mathbf{P}_{m}}^{\mathbf{M}} + \frac{1}{i}\,\boldsymbol{\lambda}\right)\mathbf{H}_{\mathbf{P}_{m}}^{\mathbf{M}}\right]\boldsymbol{\rho}\;\mathrm{Log}\left(1 + \left[\boldsymbol{\xi}\right]\right)\right) \\ &+ \left[\mathbf{P^{*}},\,\mathbf{P}\right] - \mathbf{MP} - \mathbf{P^{*}M^{*}} + \mathbf{R}_{\mathbf{2}\left(m-\mu\right)} \end{split}$$

Calculant $(C^*QC u,u)$ et utilisant 5.3, 5.4 et l'inégalité de Lax-Nirenberg on a :

$$\begin{split} \| C u \|_{m-\mu,\,1/2}^2 \, \leqslant \, C'(\| L \; C u \|^2 \, + \, \| L \; C u \| \; \| u \|_{m-\mu}) \, + \, C'' \| C u \|_{m-\mu}^2 \end{split}$$
 ce qui fournit compte tenu de :

$$\|\rho\|_{m-\mu} \leqslant \varepsilon \|\rho\|_{m-\mu, 1/2} + C_{\varepsilon} \|\rho\|_{-N}$$

 $\label{eq:cubic_limit} \text{l'inégalité} \quad \|Cu\|_{m-\mu,\,1/2} \, \leqslant \, C'(\|L\ Cu\| \, + \, \|Cu\|_{-N}) \quad qui \ \text{est} \ (5.5).$

6. CONSTRUCTION D'UNE SOLUTION DE Pu ~ 0 SINGULIÈRE SUR UNE M-BICARACTÉRISTIQUE

Nous reprenons dans cette section les hypothèses de la section 4 (cas réel) ou de la section 5 (cas complexe); plus précisément dans le cas où le symbole de P est réel, nous ferons l'hypothèse suivante:

dans $\operatorname{Car}_{\mathbf{M}} \mathbf{P} = \mathbf{P}_{m}^{-1}(0)$ les champs de vecteurs $\mathbf{H}_{\mathbf{P}_{m}}^{\mathbf{M}}$ et $\mathbf{d} = \sum_{j=1}^{N} \mu_{j} \xi_{j} \frac{\mathbf{d}}{\mathbf{d} \xi_{j}}$ sont indépendants.

Notre but est de construire une distribution u telle que Pu soit C^{∞} dont le front d'onde anisotrope soit concentré audessus d'une M-bande (ou d'une M-feuille) bicaractéristique nulle de P(x, D).

Un théorème de L. Hörmander [11] appliqué à l'opérateur de Schrödinger

$$S = -\frac{1}{i} \frac{\delta}{\delta x_n} + \sum_{j=1}^{n-1} \frac{\delta^2}{\delta x_j^2}$$

établit le résultat suivant:

Étant donnée une droite Δ d'un plan $x_n =$ cte il existe

une distribution f telle que Sf est C^{∞} et $\operatorname{sing supp} f = \Delta$.

Nous allons étendre ce résultat par le théorème ci-dessous.

Le procédé que nous allons utiliser est inspiré de L. Boutet de Monvel [4].

Nous pouvons alors énoncer:

Théorème 6.1. — Soit γ une M-bande bicaractéristique (resp. M-2 feuille) nulle de P et (x_0, ξ_0) un point de γ .

Il existe un voisinage quasi conique V de (x_0, ξ_0) et une distribution f de $\mathscr{D}'(X)$ telle que:

Pf est
$$C^{\infty}$$
 dans V et $WF_{M}(f) \cap V = \gamma \cap V$.

Montrons d'abord le théorème dans le cas où M comporte 2 poids distincts. Nous supposerons que

$$X = Y \times T$$
 où $Y (resp T)$ est un ouvert de $\mathbf{R}^n (resp \mathbf{R}^p)$

ou une variété de dimension n (resp p).

Notons (x, t) l'élément générique de $Y \times T$, (x, t, ξ, τ) celui de $T^*Y \times T^*T$, 1 et l (l > 1) les poids distincts de M appliqués respectivement à ξ et τ de sorte que si P_m est la partie principale quasi homogène de P on a:

$$P_m(x, t, \lambda \xi, \lambda^l \tau) = \lambda^m P_m(x, t, \xi, \tau) \quad \lambda > 0.$$

Soit γ la M-bande (resp M 2 feuille) bicaractéristique et $(x_0, t_0, \xi_0, \tau_0)$ un point de γ ; rappellons que

$$\gamma \subset \{t=t_0, \tau=\tau_0\}.$$

Étudions d'abord le cas $\tau_0 \neq 0$, nous pouvons alors supposer, après un changement de variable convenable que $t_0 = 0$, $\tau_0 = (1, \ldots, 1)$.

Nous allons rechercher la distribution f du théorème 6.1 sous la forme:

(6.2)
$$\varphi = \langle \Phi(x, y), \zeta \rangle + \psi(t, \rho) + \chi(u, \rho)$$

Nous supposerons que les fonctions Φ , ψ , χ de (6.2) vérifient :

- $-\Phi$ est C^* sur $X \times X$ et $\forall x \Phi'_y$ est de rang n quand $\Phi = 0$.
- $-\psi ({\rm resp} \ \chi)$ est C^{∞} et homogène de degré $l ({\rm resp} \ 1)$ dans un ouvert conique disjoint de $\rho=0$.

De plus nous supposerons $\chi'_u \neq 0$.

— La fonction a de (6.1) est un symbole de $S^m(Y \times T, R^{n+p})$ nul hors d'un cône disjoint de $\rho = 0$, et hors d'un voisinage de $\zeta = \rho = 0$.

Remarque. — Les hypothèses ci-dessus ne sont pas les hypothèses minimales pour que 6.1 définisse une distribution convenable, cependant elles nous suffiront ici.

Donnons quelques résultats sur des opérateurs tels que (6.1).

LEMME 6.1. — L'opérateur A défini en (6.1) applique

$$C_0^\infty(X) \to C^\infty(X)$$

et admet un prolongement continu $\mathscr{E}'(X) \to \mathscr{D}'(X)$ vérifiant:

$$f \in \mathscr{E}'(X) \operatorname{WF}_{(1,0)}(Af) \subseteq \mathscr{C} \circ \operatorname{WF}(f)$$

où $\mathscr C$ est la relation quasi homogène sur $T^*X \times T^*X$:

$$\mathscr{C} = \{ (x, t, \xi, \tau, y, u, \eta, \theta) | \Phi = 0, \psi_{\ell}' = 0, \xi = \Phi_{x}', \eta = -\Phi_{y}', \tau = \psi_{t}', \theta = -\chi_{u}' \}.$$

La notation $WF_{(1,l)}$ désignant le front d'onde anisotrope d'une distribution de $\mathscr{D}'(X)$ relatif aux dilatations :

$$(x, t, \xi, \tau) \rightarrow (x, t, \lambda \xi, \lambda^l \tau) \lambda > 0.$$

Intégrant par parties dans (6.1) à l'aide de l'opérateur:

(6.1.1)
$$L = \frac{1}{|\varphi'_{1y}|^2 + |\varphi'_{1z}|^2} \sum_{j=1}^n \frac{\partial \varphi_1}{\partial y_j} \frac{\partial}{\partial y_j} + \frac{\partial \varphi_1}{\partial \zeta_j} \frac{\partial}{\partial \zeta_j} + \frac{1}{|\chi'_u|^2} \sum_{j=1}^p \frac{\partial \chi}{\partial u_j} \frac{\partial}{\partial u_j}$$

où on a posé

$$\varphi_1(x, y, \zeta) = \langle \Phi(x, y), \zeta \rangle.$$

 $L(e^{i \downarrow}) = 0$, $L(e^{i(\varphi_i + \chi)}) = e^{i(\varphi_i + \chi)}$ et L envoie S^m sur S^{m-1} .

Il en résulte que A opère de C_0^{∞} dans C^{∞} . Le noyau de distribution de l'opérateur A s'exprime par:

$$A(x, t, y, u) = \int e^{i\langle \Phi(x, y), \zeta \rangle + i\psi(t, \rho) + i\chi(u, \rho)} \ a(x, t, y, u, \zeta, \rho) \ d\zeta \ d\rho$$

 $\Lambda \in \mathcal{D}'(X \times X)$ nous allons déterminer son front d'ordre relatif aux dilatations :

$$(x, t, \xi, \tau, y, u, \eta, \theta) \rightarrow (x, t, \lambda \xi, \lambda^{l} \tau, y, u, \lambda \eta, \lambda \theta) \lambda > 0.$$

Nous le noterons $WF_{(1/11)}(A)$.

Pour cela étudions le comportement quand $\lambda \to +\infty$ de $S(\lambda) = \langle A, \rho e^{-i\lambda\xi \cdot x - i\lambda^l\tau \cdot t + i\lambda y \cdot \eta + i\lambda u \cdot \theta} \rangle$ où ρ est une fonction à support dans un voisinage assez petit d'un point $(\tilde{x}, \tilde{t}, \tilde{y}, \tilde{u})$ de $X \times X$, et si $S(\lambda)$ est à décroissance rapide c'est que $(\tilde{x}, \tilde{t}, \xi, \tau, \tilde{y}, \tilde{u}, \eta, \theta) \notin WF_{(1/11)}(A)$.

$$\begin{split} \mathrm{S}(\mathbf{\lambda}) &= \mathbf{\lambda}^{n+\rho} \int e^{i\lambda(\Phi(x,\mathbf{y})\zeta - \xi \cdot x + \mathbf{y} \cdot \eta) + i\lambda^l(\psi(t,\rho) - \tau) + i\lambda(\chi(u,\rho) - \theta)} \\ & a(x,\,t,\,y,\,u,\,\zeta,\,\rho) \,\, v(x,\,t,\,y,\,u) \,\, dx \,\, dt \,\, dy \,\, du \,\, d\zeta \,\, d\rho. \end{split}$$

Nous pouvons supposer, en intégrant par parties par (6.1.1), que $a \in S^{-N}$ N assez grand; de sorte que en intervertissant les intégrales de $S(\lambda)$ on se ramène à étudier des intégrales du type:

$$\sigma(\lambda) = \int e^{i\lambda^l(\frac{i}{\gamma}(t,\,\rho) - \tau) + i\lambda(\chi(u,\,\rho) - \theta)} \,a \, v \, \,dt \,\,du \,\,d\rho$$

dont les points critiques sont $\psi'_{\rho} = 0$, $\tau = \psi'_{t}$ et $\theta = -\chi'_{u}$; en effet si sur supp (νa) , $\psi'_{\rho} \neq 0$ on intègre par parties dans $\sigma(\lambda)$ par:

$$\mathrm{M} = rac{1}{|\psi_{eta}'|^2} \cdot \sum_{l=1}^p rac{\delta \psi}{\delta \,
ho_j} rac{\delta}{\delta \,
ho_j} \quad \mathrm{et} \quad \lambda^{-l} \mathrm{M}(e^{i \lambda^l \psi}) = e^{i \lambda^l \psi}$$

et en itérant K-fois M il vient $\sigma(\lambda) = O(\lambda^{K(1-l)})$ (l > 1); de même par une intégration en u, il apparaît que $\sigma(\lambda)$ à décroissance rapide si $\tau \neq \psi'_t$ ou $\theta \neq -\chi'_u$.

On se ramène également à des intégrales du type :

$$\sigma'(\lambda) = \int e^{\mathrm{i}\lambda(\Phi(x,y)\cdot\zeta-\xi\cdot x+y\cdot\eta)}\ a\ v\ dx\ dy\ d\zeta.$$

Les valeurs critiques dans $\sigma'(\lambda)$ sont, c'est un résultat classique, les points:

$$\{\Phi = 0, \xi = \Phi'_x, \eta = -\Phi'_y\}.$$

Il en résulte que:

$$WF'_{1111}(A) \subseteq \{(x, t, \xi, \tau, y, u, \eta, \theta) | \Phi = 0, \psi'_{\rho} = 0, \xi = \Phi'_{x}, \\ \eta = \Phi'_{y}, \tau = \psi'_{t}, \theta = -\chi'_{u}\}.$$

Par suite A peut se prolonger en un opérateur $\mathscr{E}' \to \mathscr{D}'$ et :

$$WF_{(1,l)}(Af) \subseteq WF_{1,111}(A) \circ WF(f).$$

ce qui achève la preuve du lemme.

Nous allons particulariser la formule (6.1) de la manière suivante :

Soit Γ un voisinage quasi conique de $(x_0, t_0, \xi_0, \tau_0)$ ne rencontrant aucun hyperplan $\tau_i = 0$, l'application

$$(x, t, \xi, \tau) \to (x, t, \xi, \tau^{1/l})$$

avec la notation:

$$\tau = (\tau_1, \ldots, \tau_p) \quad \tau^r = (\tau_1^r, \ldots, \tau_p^r) r \in \mathbf{R}_+.$$

applique Γ sur un cône $\tilde{\Gamma}$ de $T^*X \setminus 0$.

Soit $a(x, t, \xi, \tau)$ un symbole homogène de degré 0 nul hors de $\tilde{\Gamma}$ considérons:

$$(6.3) \quad {\rm A} f(x,\,t) \,=\, \int e^{i \zeta_{x} + t \tau^l} a(x,\,\,t,\,\,\xi,\,\,\tau) \hat{f}(\xi,\,\,\tau) \,\,d\xi \,\,d\tau \quad f \in {\rm C}^\infty_0({\rm X})$$

ayant noté si $t=(t_1, \ldots, t_p)$ $\tau=(\tau_1, \ldots, \tau_p)$ $t.\tau^l=\sum_{l=1}^p t_i\tau^l_i$, on a alors le résultat:

Lemme 6.2. — L'opérateur A défini en (6.3) opère de $\mathscr{E}'(X)$ dans $\mathscr{D}'(X)$ et

$$f \in \mathscr{E}'(X) \operatorname{WF}_{(1, D)}(Af) \subseteq \varphi(\operatorname{WF}(f) \cap \operatorname{supp} a)$$

οù φ est l'application:

$$\varphi: T^*X \setminus 0 \to T^*X \setminus 0 \quad \varphi(x, t, \xi, \tau) = (x, 0, \xi, \tau')$$

Du lemme 6.1 il vient $WF_{(1,l)}(Af) \subseteq \varphi(WF(f))$, l'opérateur A de (6.3) est déterminé par la phase :

$$\varphi = (x - y, \zeta) - t \rho^{\iota} - \rho . u.$$

De plus si a est nul dans un cône $\tilde{\Delta}$ et si Q est un opérateur propre de $OPS^o_M(X)$ de symbole q à support dans un

sous-cône anisotrope de $\,\Delta\,$ l'opérateur $\,$ QA $\,$ est régularisant. On calcule :

$$\mathrm{QA}f(x,\,t) = \int e^{i\zeta \cdot x + t \rho l} b(x,\,t,\,\zeta,\,\rho) \; \hat{f}(\zeta,\,\rho) \; d\xi \; d\rho$$

avec

 $b(x,\ t,\ \zeta,\ \rho)=\int \alpha(x,\ t,\ y,\ u,\ \zeta,\ \rho,\ \xi,\ \tau)e^{-i\xi\cdot y-i\tau\cdot u}\,dy\,du\,d\xi\,d\tau$ ayant posé

$$\alpha = q(x, t, \zeta + \zeta, \tau + \rho^l)a(x + y, u + t, \zeta, \rho)$$

 α est un symbole (1,1,1,1) quasi homogène de degré 0, nul à l'ordre ∞ sur y=u=0, $\theta=\tau=0$: il en résulte par le théorème de la phase stationnaire $b \in S^o$ et même b est à décroissance rapide, par suite QA est régularisant.

Nous n'utiliserons en fait que des opérateurs A (6.3) « elliptiques »:

Soit Γ_0 un voisinage quasi conique ou $(x_0, t_0, \xi_0, \tau_0)$ contenu dans Γ , nous supposerons que Γ_0 comme Γ est à base compacte, construisons un symbole $a(x, t, \theta, \tau)$ homogène tel que:

 $a \equiv 1$ dans $\tilde{\Gamma}_0$, supp $a \subseteq \tilde{\Gamma}$ et considérons l'opérateur F suivant :

(6.4)
$$Ff(x, t) = \int e^{i\zeta \cdot x + t \rho t} a(x, t, \zeta, \rho) \hat{f}(\zeta, \rho) d\zeta d\rho$$

On a alors la propriété:

Lemme 6.3. — L'opérateur F, (6.4) envoie $\mathscr{E}'(X) \to \mathscr{E}'(X)$ et :

- 1) Si $f \in \mathscr{E}'(X)$ est C^{∞} hors de $\tilde{\Gamma}_0 \operatorname{WF}_{(1)}(Ff) = \varphi(\operatorname{WF}(f))$.
- 2) Si Q est un opérateur de $OPS^{\bullet}_{M}(X)$ dont le symbole complet q est nul hors de Γ_{\bullet} et s'annule à l'ordre $k\geqslant 0$ sur t=0 alors :

$$\mathrm{QF}:\mathscr{E}'\ \cap\ \mathrm{H}^s\longmapsto \mathrm{H}^{s+k(1-1/l)}_{(1,\ l)}$$

La notation $H_{(1,l)}^{s'}$ désigne l'espace de Sobolev anisotrope construit en § 3.

Introduisons l'opération

(6.5)
$$F'f(x,t) = \int e^{i\xi \cdot x + t\tau^l} b(\tau) \, \hat{f}(\xi, \tau) \, d\xi \, d\tau$$

où $b(\tau)$ est une fonction homogène de degré 0, égale à 1 dans $\tilde{\Gamma}_0$ et nulle hors de $\Pr_{\tau} \tilde{\Gamma}$.

Il résulte du lemme 6.12 que si f est C^{∞} hors de $\tilde{\Gamma}_0$ $Ff = F'f \mod C^{\infty}$. $F' : \mathcal{S} \to \mathcal{S}$ et peut se prolonger en un opérateur $\mathcal{S}' \to \mathcal{S}'$ et il est facile de calculer :

(6.6)
$$\widehat{\mathbf{F}'f}(\xi, \ \tau) = \frac{1}{\prod\limits_{j=1}^{p} \tau_{j}^{1-1/l}} \widehat{f}(\xi, \ \tau^{1/l}) b(\tau^{1/l})$$

et de plus, en intégrant par parties, on a en $t \neq 0$ pour tout entier n:

(6.7)
$$\mathrm{F}'f(x,t) = t^{-n} \sum_{p \leqslant n} \int \mathrm{C}_p(\tau) \left(\frac{\mathrm{d}}{\mathrm{d}\tau}\right)^p \hat{f}(\xi,\tau) e^{i\xi \cdot x + t\tau^l} d\xi \ d\tau$$

où les C_p sont homogènes de degré $\leq -n(l-1)$, et sont nuls près de $\tau=0$.

De (6.7) il résulte que si $f \in \mathscr{E}'$, F'f est la somme d'une fonction de \mathscr{S} et d'une distribution de \mathscr{E}' (dont le support singulier est contenu dans t = 0).

Si un point $(x_1, 0, \xi_1, \tau_1)$ de Γ_0 n'est pas dans $\operatorname{WF}_{1:l}(F'f)$ alors (x_1, t, ξ_1, τ_1) n'appartient à $\operatorname{WF}_{(1:l)}(F'f)$ pour aucun t de \mathbf{R}^p , on peut alors trouver une fonction $\varphi(x)$ à support assez voisin de x_1 et une fonction $\chi(\xi, \tau)$ à support dans un voisinage quasi conique assez petit de (ξ_1, τ_1) tel que:

 $\chi(D_x, D_t)\varphi F'f \in \mathscr{S}$ qui s'écrit en vertu de (6.6),

$$F'(\chi(D_x, D_t^{1/l})\varphi f) \in \mathscr{S}$$

et donc

$$(x_1, t, \xi_1, \tau_1^{1/l}) \notin WF(f);$$

d'où le point 1 du lemme.

De 6.6 il résulte également que si Q est de degré $-\infty$ hors de Γ_0 QF envoie $\mathscr{E}' \cap H^s$ dans $H^s_{(1,\,l)}$, pour achever la preuve du lemme calculons :

$$\mathrm{QF}'f(x,\ t) = \int q(x,\ t,\ \xi,\ au')b(au)e^{i\xi\cdot + t au'}\hat{f}(\xi,\ au)\ d\xi\ d au$$

Si q est nul à un ordre $k \ge 1$ sur t = 0 on peut écrire $q = tq_1$, et sur supp b on peut intégrer par parties

$$te^{it au^l}=
ho(au)rac{\delta}{\delta au}\left(e^{it au^l}
ight)$$

propagation des singularités des solutions d'équations 113 où ρ est une fonction homogène de degré -l+1; d'où ${
m QF'}f(x,\,t)=\int \frac{\eth}{\eth \tau}\,(bq_1\,\rho \hat f)e^{i\xi\,.x+t\tau^l}\,d\xi\,d\tau$

$$=\int
ho \, bq_1 e^{i\xi \cdot x + t au^t} \widehat{tf}(\xi, \; au) \, + \, \int rac{\eth}{\eth au} \, (\,
ho \, q_1) b e^{i\xi \cdot x + t au^t}$$

Soit donc QF'f = Q'F'(tf) + Q''F'(f) où Q'(resp Q'') est un opérateur de $OPS_{\mathbf{M}}^{1/l-1}(\text{resp }OPS_{\mathbf{M}}^{-1}(X))$ dont le symbole est nul à l'ordre k-1 sur t=0; par itération on déduit $OF: \mathscr{E}' \cap H^s \to H_{s+k(1-1/l)}^{s+k(1-1/l)}$.

QF: $\mathscr{E}' \cap H^s \to H^{s+k(1-1/l)}_{(1l)}$. Si Γ_1 est un voisinage quasi conique de $(x_0, t_0, \xi_0, \tau_0)$ contenu dans Γ_0 et si p est le symbole de $P(x, t, D_x, D_l)$, désignons par P_α un symbole de $OPS^m_{(1l)}(X)$ nul hors de Γ_0 et égal à $\frac{\delta_p^\alpha}{\delta \tau^\alpha}(x, 0, \xi, \tau)$ dans Γ_1 , puis par \tilde{p}_α la fonction $\tilde{p}_\alpha(x, t, \xi, \tau) = \tilde{p}_\alpha(x, t, \xi, \tau^l)$, $\tilde{p}_\alpha \in S^m(X)$.

Si f est C^{∞} hors de $\tilde{\Gamma}_1$ on a $P_{\alpha}Ff = F\tilde{P}_{\alpha}f \mod C^{\infty}$, en effet il est facile de voir que $P_{\alpha}F' = F'\tilde{P}_{\alpha}$ où F' est défini en 6.3.

Pour tout entier N on peut écrire par la formule de Taylor:

$$P = \sum_{|\alpha| \le N} \frac{t^{\alpha}}{\alpha!} P_{\alpha} + t^{N} R_{N} + P_{N}'$$

avec $P'_{N} \sim 0$ dans Γ_{1} .

De la preuve du lemme 6.2 il est facile de déduire :

$$t_j Ff = FR_j f \mod C^{\infty}$$

par fC^{∞} hors $\tilde{\Gamma}_1$, R_j étant un opérateur de degré -l+1 < 0.

Puis construisons $Q \sim \sum_{|\alpha| \geq 0} \frac{R^{\alpha}}{\alpha !} \tilde{P}_{\alpha}$, Q est un opérateur de $OPS^{m}(X)$ dont le symbole principal est égal à $P_{m}(x, 0, \xi, \tau')$ dans $\tilde{\Gamma}_{1}$.

Si f est C^{∞} hors de $\tilde{\Gamma}_1$ écrivons

$$PFf - FQf = t^{n}R_{N}Ff + F\left(\sum_{|\alpha| > N} R^{\alpha} \frac{\tilde{P}_{\alpha}}{\alpha !}\right) f \mod C^{\infty}$$
 pour tout entier N.

On déduit par le lemme 6.2 que si $f \in H^s$

$$PFf - FQf \in \mathbf{H}^{s+N(1-1/l)}_{(1/l)}$$

pour tout entier N; et donc $PFf = FQf \mod C^{\infty}$ si f est C^{∞} hors de $\tilde{\Gamma}_1$.

Si P vérifie les hypothèses de la section 4 ou de la section 6, il est clair que l'on pourra appliquer à Q le théorème 6.2.1 ou 7.4.1 de J.-J. Duistermaat et L. Hörmander [6]; et notre théorème résultera du lemme 6.2 et de:

Si $\tilde{\gamma}$ est la bande (ou la 2 feuille) bicaractéristique de Q passant par $(x_0, t_0 = 0, \xi_0, \tau_0^{1/l})$ on a $\varphi(\tilde{\gamma}) = \gamma$.

Il reste à voir le cas $\tau_0 = 0, \, \xi_0 \neq 0$.

La proposition étant locale nous pouvons supposer que sur supp p on a $\xi \neq 0$.

Par la formule de Taylor nous écrivons :

$$p(x, t, \xi, \tau) = \sum_{0 \le |\alpha| \le N} \frac{\tau^{\alpha}}{\alpha !} \frac{\partial^{\alpha} p}{\partial \tau^{\alpha}} (x, t, \xi, 0) + R_{N}$$

avec

$$R_{N} = \sum_{|\alpha|=N} \int_{0}^{1} \frac{\tau^{\alpha}}{\alpha !} \frac{\partial^{\alpha} p}{\partial \tau^{\alpha}} (x, t, \xi, \theta \tau) d\theta$$

Si N est pris assez grand on a $R_N \in S^{m-lN}$ en effet:

$$|\alpha| = N, |D_x^{\lambda}D_{\xi}^{B}D_{\tau}^{\alpha+\gamma}p| \lesssim (1 + [\xi, \tau])^{m-|\beta|-l(N+|\gamma|)}$$

or sur supp p $[\xi, \tau] \ge |\xi| > c|\xi, \tau|$ et donc

$$|D_x^{\lambda}D_{\xi}^{\beta}D_{\tau}^{\gamma+\alpha}p| \lesssim (1+|\xi,\tau|)^{m-|\eta-|\gamma|}$$

On a également $\frac{\delta^{\alpha}p}{\delta\tau^{\alpha}} \in S^{m-l|\alpha|}$, par suite $P \in OPS^m$ et son symbole homogène est $P_m(x, t, \xi, 0)$.

Or par hypothèse

$$\mathrm{P}_{\mathbf{m}}(x_{\mathbf{0}},\,t_{\mathbf{0}},\,\xi_{\mathbf{0}},\,0) = 0 \quad \text{et} \quad \underset{x,\xi}{\mathrm{grad}} \; \mathrm{P}_{\mathbf{m}}(x_{\mathbf{0}},\,t_{\mathbf{0}},\,\xi_{\mathbf{0}},\,0) \,\neq\, 0$$

et donc $m_0 = (x_0, \tau_0, \xi_0, \tau_0 = 0)$ est un point caractéristique simple de P.

Si ψ est la projection sur $\tau = 0$ $\psi(x, t, \xi, \tau) = (x, t, \xi, 0)$, si $\tilde{\gamma}$ est la bande (ou la feuille) bicaractéristique passant par m_0 , on a $\psi(\tilde{\gamma}) = \gamma$.

Et le théorème résultera alors de :

$$f \in \mathscr{E}'(X)$$
 $WF(f) \subseteq \{\xi \neq 0\}$ alors $WF_{(1)}(f) = \psi(WF(f))$

Enfin quand M est formé de plus de deux poids distincts,

$$M = (\mu_1, \ldots, \mu_d, \mu_{d+1}) \quad \mu_1 < \cdots < \mu_{d+1}$$

on applique aux variables de poids μ_{d+1} le traitement des variables τ dans la méthode ci-dessus et on conclut par induction.

La preuve du théorème 6.1 permet en fait d'établir le résultat plus précis et plus global suivant :

Théorème 6.1'. — Soit I un intervalle ouvert, relativement compact de \mathbf{R} et $\gamma: I \to T^*X \setminus 0$ une M bande bicaractéristique de P qui reste injective après projection quasi conique, sur S^*X . Et soit s un réel. Il existe une distribution f de $\mathscr{D}'(X)$ telle que:

$$WF_{M}(f) \setminus \Gamma' = WF_{M}(f) \setminus \Gamma' = \Gamma \setminus \Gamma' \quad et \quad WF_{M}(Pf) \subseteq \Gamma',$$

où Γ est l'enveloppe quasi-conique de $\gamma(I)$ et Γ' ses points limites.

7. PROPAGATION DES SINGULARITÉS POUR UN OPÉRATEUR A CARACTÉRISTIQUE MULTIPLE SUR UN CONE INVOLUTIF

Les constructions précédentes ont eu, via des hypothèses « quasi homogènes », pour objectif l'étude d'équations pseudo-différentielles à caractéristiques multiples. Cependant des hypothèses de type quasi-homogénéité n'ont de valeurs que locales, ou globales si l'on se restreint à des variétés décomposées en produit « M-variété » de la section § 1.

Nous donnons ici une application « globale » des résultats des sections 4 et 6.

A la suite de L. Boutet de Monvel [3] (également Treves-Boutet de Monvel [2]), nous considérons des opérateurs à caractéristiques multiples dont le symbole p admet un développement asymptotique:

 $p \sim \sum_{j} p_{m-j}$ où p_{m-j} est homogène de degré m-j et s'annule au moins à l'ordre $(k-2j)_{+}$ sur un cône C^{∞} Σ de $T^{*}X \setminus 0$; et où p est elliptique hors de Σ .

Cette condition sur les termes p_{m-j} (qui excepté p_m n'ont pas de sens global) est invariante par transformations canoniques.

Nous supposerons ici que Σ est un cône involutif c'est-à-dire que si $u_1 = \cdots u_{\nu} = 0$ sont des équations homogènes de Σ on a

$$(7.1) \{u_i, u_j\} = 0 \text{sur} \Sigma(i, j = 1, ..., \nu).$$

(7.2) Nous supposerons de plus que les champs H_{u_i}, \ldots, H_{u_i} et $r \frac{\partial}{\partial r}$ le champ radial sont indépendants sur Σ .

La condition (7.1) implique que les champs H_{u_j} sont tangents à Σ et que les $[H_{u_j}, H_{u_k}] = H_{\{u_j, u_k\}}$ sont des combinaisons linéaires des H_{u_j} sur Σ , de sorte que Σ se trouve muni d'un feuilletage canonique, dont les feuilles sont les variétés intégrales des $H_{u_j}(j=1,\ldots,\nu)$.

Dans ces conditions il est possible d'associer à P une famille $\tilde{q}_j(j=0,\ldots, \lceil k/2 \rceil)$ de k-2j formes invariantes (par changements de coordonnées coniques) sur le fibré normal de Σ $N(\Sigma) = T(T^*X \setminus 0)/T(\Sigma)$.

Le cas k=2 est bien connu il s'agit de $\tilde{q}_0 = \frac{1}{2!}$ Hess' p_m , $\tilde{q}_1 = \sigma_2(P)$ respectivement le hessien transverse et le symbole sous-principal de P sur Σ , dans le cas général nous renvoyons à [8].

On détermine une fonction C^{∞} sur $N(\Sigma)$ en posant :

$$(7.3) \quad \tilde{q}(X) = \sum_{\mathbf{0} \leq j \leq \lceil k/2 \rceil} \tilde{q}_{j}(P)_{(x,\xi)}(X,\ldots,X), \\ X \in (N(\Sigma))_{(x,\xi)}(x,\xi) \in \Sigma.$$

La variété Σ étant involutive, on peut via la 2 forme symplectique canonique identifier $N(\Sigma)$ au fibré cotangent des feuilles sur lequel nous supposerons donc que la fonction \tilde{q} a été définie. Nous pouvons alors donner le théorème :

Théorème 7.1. — Les conditions suivantes sont équivalentes.

- (i) \tilde{q} ne prend pas la valeur 0.
- (ii) P est hypoelliptique avec perte de k/2 dérivées i.e.

$$f \in \mathscr{E}'(X) \ Pf \in H^s \Longrightarrow f \in H^{s+m-k/2}$$

Ce résultat généralise Boutet de Monvel [3], théorème 7.3; pour la partie (i) \Longrightarrow (ii) nous renvoyons à B. Helffer [8].

Nous allons donner un théorème de propagation des singularités contenant celui de L. Boutet de Monvel [4].

Définissons d'abord les courbes qui joueront le rôle des bicaractéristiques quand les caractéristiques sont simples.

Définition 7.1. — Quand \tilde{q} est réel et que

$$\tilde{q} = 0 \Longrightarrow H_{\tilde{q}} \neq 0$$

nous désignerons par bicaractéristiques de P la projection sur Σ d'une courbe intégrale de $H_{\tilde{\sigma}}$.

Nous pouvons alors donner le théorème suivant :

Théorème 7.2.

- (i) Soit une distribution f de $\mathscr{E}'(X)$ telle que Pf est C^{∞} dans un ouvert conique U de $T^*X \setminus 0$, alors $WF(f) \cap U$ est une réunion de bicaractéristiques de P.
- (ii) Soit (x, ξ) un point de $\Sigma = \operatorname{car} P, C$ un arc de bicaractéristique $\ni (x, \xi)$, il existe un voisinage conique U de (x, ξ) et une distribution f de $\mathscr{E}'(X)$ tels que:

Pf est
$$C^{\infty}$$
 dans U et $WF(f) \cap U = C \cap U$.

Indiquons les arguments essentiels de la preuve des théorèmes 7.2 et 7.1.

Des hypothèses 7.1 et 7.2 il résulte que l'on peut construire, localement, une transformation canonique Φ , homogène, qui transforme le cône $\Sigma = \operatorname{car} P$ en le cône $\xi_1 = \cdots = \xi_{\nu} = 0$ de $T^*\mathbf{R}^n$.

Si F est un opérateur de Fourier elliptique associé à Φ et F^{-1} une paramétrix, l'opérateur FPF^{-1} vérifie les hypothèses de la définition 7.1 et son ensemble caractéristique est le cône $\xi_1 = \cdots = \xi_{\nu} = 0$.

Quitte à remplacer P par FPF^{-1} nous supposerons que car P est l'ensemble $\xi_1 = \cdots = \xi_{\nu} = 0$.

Nous noterons (x, t) la variable de \mathbb{R}^n , (ξ, τ) la variable duale de sorte que:

car P devienne $\xi = 0$.

Le feuilletage canonique de Σ est constitué des « plans » affines :

$$F = \{(x, t, \xi = 0, \tau) | x \in \mathbf{R}^{\mathsf{v}} \}$$

Par un développement de Taylor au voisinage de Σ on peut écrire

$$p_m = \sum_{i_1 \dots i_k} a^0_{i_1 \dots i_k} \xi_{i_1 \dots} \xi_{i_k}$$

où les $a_{i_1...i_k}^0$ sont homogènes de degré m-k.

Et désignant par $A^0_{i_1...i_k}$ un opérateur pseudo-différentiel de symbole principal $a^0_{i_1...i_k}$ on pose :

$$\mathrm{Q}_{m-1} = \mathrm{P} \, - \sum\limits_{i_1 \dots i_k} \mathrm{A}^{0}_{i_1 \dots i_k} igg(1/i \, rac{\eth}{\eth x_{i_1}} igg) \dots igg(1/i \, rac{\eth}{\eth x_{i_k}} igg)$$

dont le symbole principal $q_{m-1} = \sigma_{m-1}(Q_{m-1})$, qui s'annule à l'ordre $(k-2)_+$ sur Σ , admet un développement de la forme:

$$q_{m-1} = \sum_{i_1 \dots i_{k-2}} a'_{i_1 \dots i_{k-2}} \xi_{i_1 \dots} \xi_{i_{k-2}}.$$

En itérant le procédé sur Q_{m-1} on construit pour

$$1 \le i \le \lceil k/2 \rceil$$

des opérateurs Q_{m-j} tels que:

$$Q_{m-j-1} = Q_{m-j} - \sum_{i_1 \dots i_{k-2j}} A^j_{i_1 \dots i_{k-2j}} \left(1/i \frac{\delta}{\delta x_{i_1}} \right) \dots \left(1/i \frac{\delta}{\delta x_{i_k-2j}} \right)$$

avec

de sorte que

$$\mathrm{P} = \mathrm{R} + \sum_{j=\mathbf{0}}^{\lfloor k/2 \rfloor} \sum_{i_1 \dots i_{k-2j}} \mathrm{A}^j_{i_1 \dots i_{k-2j}} \left(1/i \, rac{\mathrm{d}}{\mathrm{d} x_{i_1}} \right) \cdots \left(1/i \, rac{\mathrm{d}}{\mathrm{d} x_{i_{k-2j}}} \right)$$

où R est un opérateur de degré m - [k/2] - 1.

Or (cf. B. Helffer), $\tilde{q}_{j}(x, t, 0, \tau) = \frac{1}{(k-2j)!}$ Hess' q_{m-j} (hessien transverse d'ordre k-2j de q_{m-j} sur Σ), de sorte que si $X = (\eta_{1}, \ldots, \eta_{\nu})$ est un vecteur cotangent en $(x, t, 0, \tau)$

propagation des singularités des solutions d'équations 119 à la v-feuille contenant ce point :

 $\tilde{q}_{j}(P)_{(x, t, 0, \tau)}.(X \ldots X) = \sum_{i_{i} \ldots i_{k-2j}} a^{j}_{i_{i} \ldots i_{k-2j}}(x, t, 0, \tau) \eta_{i} \ldots \eta_{i_{k-2j}}$ de sorte que:

$$\tilde{q}(X) = \sum_{j=0}^{\lfloor k/2 \rfloor} \sum_{i_1 \dots i_{k-2} j} a^j_{i_1 \dots i_{k-2} j}(x, t, 0, \tau) \, \eta_{i_1} \dots \, \eta_{i_{k-2} j}$$

 $A^{j}_{i_{1}...i_{k-i_{j}}}$ est un opérateur de degré m-k+j.

Notant $S_{(1,2)}^q$ les classes de symboles quasi homogènes définis en $\S 1$, les poids 1 et 2 s'appliquant respectivement aux variables ξ et τ .

Lemme. — Dans le cône $\tau \neq 0$ tout symbole $a(x, t, \xi, \tau)$ de S^m est un symbole de $S^{2m}_{(1,2)}$ admettant le développement asymptotique:

$$a \sim \sum_{\alpha} a_{\alpha}$$

avec
$$a_{\alpha} = \frac{1}{\alpha !} \xi^{\alpha} D_{\xi}^{\alpha} a(x, t, 0, \tau) \in S_{(1,2)}^{2m-|\alpha|}$$
.

En vertu du lemme les opérateurs

$$A_{i_1 \ldots i_{k-2j}}^j \left(1/i \frac{\delta}{\delta x_{i_1}} \right) \cdots \left(1/i \frac{\delta}{\delta x_{i_{k-2j}}} \right)$$

sont des opérateurs de $OPS_{(1,2)}^{2m-k}$ qui admettent pour symbole quasi homogène :

$$a_{i_1 \ldots i_{k-2}j}(x, t, 0, \tau) \xi_{i_1} \ldots \xi_{i_{k-2}j}$$

Et finalement P est un opérateur de $OPS_{(1,2)}^{2m-k}$ et son symbole quasi homogène est:

$$p' = \sigma_{qh}(P) = \sum_{j=0}^{\lfloor k/2 \rfloor} \sum_{i_1 \dots i_{k-2j}} a^j_{i_1 \dots i_{k-2j}}(x, t, 0, \tau) \xi_{i_1} \dots \xi_{i_{k-2j}}$$

Soit F une feuille $F = \{(x, t, 0, \tau) | x \in \mathbb{R}^{\nu}\}, \text{ notons } (x, \eta) \text{ les coordonnées dans } T^*F \text{ de sorte que :}$

$$\tilde{q}(x, \eta) = \sum_{j=0}^{\lfloor k/2 \rfloor} \sum_{i_1 \dots i_{k-2}} a^j_{i_1 \dots i_{k-2}}(x, t, 0, \tau) \eta_{i_1} \dots \eta_{i_{k-2}}$$

et

$$\mathrm{H}_{ ilde{q}} = \sum\limits_{j=1}^{\mathrm{v}} \tilde{q}_{\eta_{j}}^{\prime} \frac{\mathrm{d}}{\mathrm{d}x_{j}} - \tilde{q}_{x_{j}}^{\prime} \frac{\mathrm{d}}{\mathrm{d}\eta_{j}}$$

Par suite l'hypothèse (7.4) s'exprime par:

p' est réel et $H'_{p'} \neq 0$ quand p' = 0, $H'_{p'}$ étant le champ hamiltonien partiel introduit dans la section 4.

De plus les projections sur les feuilles des courbes intégrales de $H_{\tilde{q}}$ sont les projections sur $\xi = 0$ des courbes intégrales de $H'_{p'}$.

Le théorème 7.2 résulte alors des théorèmes 4.1 et 6.1 ainsi que de la remarque:

$$f \in \mathscr{E}'(X)$$
 telle que $WF_{(1,2)}(f) \subset \tau \neq 0$

alors

$$WF(f) = pr_{\xi=0}WF_{(1,2)}(f)$$
.

Indiquons maintenant la preuve du théorème 7.1.

(i) \Longrightarrow (ii) de l'hypothèse $\tilde{q} \neq 0$ il vient que p' est un symbole quasi homogène elliptique de $S_{(12)}^{2m-k}$ par suite il existe un opérateur Q de $OPS_{(12)}^{-(2m-k)}$ tel que

$$PQ - I \sim QP - I \sim 0$$
 ce qui prouve (i) \Longrightarrow (ii).

Pour établir (ii) \Longrightarrow (i) prouvons le lemme:

Lemme 7.1. — Soit P un opérateur de $OPS_{(12)}^m(X)$ de symbole quasi homogène $p_m(x, \xi)$; notons

$$x = (y, t)$$
 et $\xi = (\eta, \tau)$

les variables duales de poids respectifs 1 et 2.

Soit (x_0, ξ_0) un point caractéristique de P:

$$p_m(x_0, \xi_0) = 0, \quad \tau_0 \neq 0.$$

On peut trouver alors une distribution $\mu \in \mathcal{D}'(X)$ telle que:

$$P\mu\,\in\,H^{\mathfrak s}_{(1,\,2)} \qquad \text{et} \qquad \, \mu\,\notin\,H^{\mathfrak s+\mathfrak m-1/2+\epsilon}_{(1,\,2)} \quad \, \forall \epsilon\,>\,0$$

et

$$WF_{(1,2)}(\mu) \subseteq \Sigma' = \{(x_0, \lambda \eta_0, \lambda^2 \tau_0)\lambda \in \mathbf{R}_+\}.$$

Pour déterminer μ nous allons nous inspirer d'une construction assez classique, voir par exemple [7].

On peut supposer, pour simplifier

$$x_0 = 0, \ \eta_0 = 0$$
 et $\tau_0 = (0, \dots, 0, 1).$

Posons

$$t = (t', t_n) \tau = (\tau', \tau_n), \zeta = (\eta, \tau')$$

de sorte que

$$\Sigma' = \{x = 0, \zeta = 0, \tau_n > 0\}$$

Considérons alors l'ensemble $I^r(\Sigma')$ des distributions μ de la forme:

(7.5)
$$\mu = (2\pi)^{-n} \int e^{i\xi \cdot x} f(\tau_n, \zeta/|\tau_n|^{1/4}) d\xi$$

avec

(7.6)
$$f(\tau_n, \zeta) \sim \sum_j f_{r_j}(\tau_n, \zeta)$$
 avec $r_0 = r$ $r_j \downarrow -\infty$

et où les f_{r_j} sont homogènes de degré r_j en τ_n et à décroissance rapide en ζ .

Il est aisé de vérifier les propriétés suivantes, si $\mu \in I^r(\Sigma')$:

$$- WF_{(1,2)}(\mu) \subset \Sigma'.$$

$$\begin{array}{l} - \operatorname{WF}_{(1,2)}(\mu) \subset \Sigma'. \\ - y_i \mu \ (\operatorname{resp} \ t_i' \mu) \in I^{r-1/4}(\Sigma'). \end{array}$$

$$-t_n\mu\in\mathrm{I}^{r-1}(\Sigma').$$

$$-\frac{\mathrm{d}}{\mathrm{d} y_i}\,\mu\left(\mathrm{resp}\,\frac{\mathrm{d}}{\mathrm{d} t_i'}\,\mu\right)\in\,\mathrm{I}^{r+1/4}\!(\Sigma').$$

$$-\frac{\delta}{\delta t_n} \mu \in \mathrm{I}^{r+1}(\Sigma').$$

De plus si F est un opérateur de $OPS_{1,2}^m(X)$ de symbole $a(x,\zeta)$ on peut par un développement de Taylor sur $x=\zeta=0$ écrire:

(7.7)
$$F\mu = (2\pi)^{-n} \sum \int e^{i\xi \cdot x} a_{\alpha,\beta,\gamma,\delta}(\tau_n) y^{\alpha} t^{\beta} t_n^{\gamma} \eta^{\delta} f(\tau_n, \zeta/|\tau_n|^{1/4}) + \cdots$$

avec

$$a_{\alpha,\beta,\gamma,\delta}(\tau_n) = \frac{1}{\alpha ! \beta ! \gamma ! \delta !} \left(\frac{\delta}{\delta y}\right)^{\alpha} \left(\frac{\delta}{\delta t'}\right)^{\beta} \left(\frac{\delta}{\delta t_n}\right)^{\gamma} \left(\frac{\delta}{\delta \eta}\right)^{\delta} a(x,\zeta)|_{x=\zeta=0}.$$

Par suite les $a_{\alpha,\beta,\gamma,\delta}$ sont homogènes de degré $\frac{m-|\delta|}{2}$.

Dans (7.7) Fµ se présente sous forme d'une somme de termes de:

$$\int_{1}^{r+\frac{m-|\delta|}{2}-\frac{|\alpha|}{4}-\frac{|\beta|}{4}-|\gamma|+\frac{|\delta|}{4}}$$

dont le terme prépondant est:

$$\int e^{i\xi \cdot x} a(0, 0, \tau_n) f(\tau_n \zeta/|\tau_n|^{1/4}) \ d\zeta \ \text{modulo} \ \operatorname{I}^{r + \frac{m}{2} - 1/4}(\Sigma');$$

d'où le résultat suivant:

Si $F \in OPS_{(1,2)}^m$ de symbole quasi homogène a_m on a:

$$(7.8) \quad \mu \in I^{r}(\Sigma') \Longrightarrow F\mu \in I^{r+m/2}(\Sigma') \quad \text{et} \quad F\mu \in I^{r+\frac{m}{2}-1/4}(\Sigma')$$

si $a_m = 0$ sur Σ' .

De plus de (7.5) il vient $\mu \in I^r(\Sigma')$ est dans $H^s_{(1,2)}$ pour tout s tel que s + 2r < 0.

Puis choisissant dans (7.6) f_r elliptique en τ_n on peut construire (appliquer 7.8) une distribution μ telle que:

$$P\mu\in H^s_{(1,\,2)}\quad \text{et}\quad \mu\notin H^{s+m-1/2+\epsilon}_{(1,\,2)}\quad \forall \epsilon\,>\,0.$$

Ce qui achève la preuve du lemme, puis celle du théorème.

BIBLIOGRAPHIE

- [1] R. Beals, A general calculus of pseudo-differential operators (à paraître).
- [2] L. BOUTET DE MONVEL et F. TRÈVES, On a class of pseudo-differential operators with double caracteristics, *Inventiones Math.*, 24.1.34 (1974).
- [3] L. BOUTET DE MONVEL, Hypoelliptic operators with double caracteristics and related pseudo-differential operators, *Comm. Pure Appl. Math.*, 27 (1974).
- [4] L. BOUTET DE MONVEL, Propagation des singularités d'équations analogues à l'équation de Schrödinger, Congrès Nice (Mai 1974), Lect. Notes Springer-Verlag (à paraître).
- [5] J.-J. Duistermaat, On Carleman estimates for pseudo-diff. operators, Inventiones Math., 17 (1972).
- [6] J.-J. Duistermaat et L. Hörmander, Fourier integral operators II, Acta. Math., 128 (1972).
- [7] V. V. Guillemin, Symplectic spinors and Fourier integral operators (à paraître).
- [8] B. Hellfer, Invariants associés à une classe d'opérateurs pseudodifférentiels et applications à l'hypoellipticité, Annales de l'Institut Fourier, 26 fasc. 2 (1976).
- [9] L. HÖRMANDER, Pseudo-differential operators and hypoelliptic equations, Amer. Math. Soc. Roc. Symp. Pur Math., 10 (1967).
- [10] L. HÖRMANDER, Fourier integral operators I, Acta Math., 127 (1971).
- [11] L. HÖRMANDER, On the Singularities of solutions of partial diff. equations, Comm. Pure and App. (1970).
- [12] L. HÖRMANDER, On the existence and regularity of solutions of linear part. diff. equations, L'Enseignement Math., 17 (1971).
- [13] R. Lascar, Propagation des singularités des solutions d'équations pseudo-différentielles quasi homogènes, C. R. Acad. des Sciences (Nov. 1974).

- [14] A. Piriou, Problèmes aux limites généraux pour des opérateurs différentiels paraboliques dans un domaine borné, Annales Inst. Fourier, 21 fasc. 1 (1971).
- [15] V. S. Rabinovic, Soviet Math. Dokl, 12 (1971).
 [16] A. Unterberger, Résolutions des équations aux dérivées partielles dans des espaces de distribution d'ordre de régularité variable, Ann. Inst. Fourier, Grenoble, 21,2 (1971).

Manuscrit reçu le 21 novembre 1975 Proposé par B. Malgrange.

> Richard LASCAR, U.E.R. de Mathématiques Université Paris VII 2, place Jussieu 75005 Paris.