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ON THE FRACTIONAL PARTS
OF xjn AND RELATED SEQUENCES. II

by B. SAFFARI and R.-G. VAUGHAN

1. Introduction and statement of theorems.

1.1. In this paper we assume the notation of [9]. Throu-
ghout, the implicit constants in the 0, <^ and > notations
are absolute unless otherwise indicated. In addition, we use
the symbol ^<. By U X V one means that U <^ V and
V <^ U. The letter p always designates a prime number.

1.2. The standard case. In this section we study the case
h{n) = 1/n. We are primarily interested in the behaviour of

(1.1) Q^(a) = y-^ S c^xin)
n^y

where x and y tend to infinity together. We observe that
this is essentially the same as taking the simple Riesz means
(R, Xj with \ == 1 for n ^ y and \ = 0 for n > y .
In fact, we are considering the positive Toeplitz trans-
formation

^ = { a ^ y ) : y e [ l , ^), n = 1, 2, ...)

with a^(y) = y~1 for n ^ y and a^{y) == 0 for n > y .
We recall the definition of F(a, ,̂ a) (ct. [9], (2.4), (2.5)).

0 (a < 0)
1 (a ^ 1)

' 6(a, S)(l - V(\n + a)-^/ * C\\ T-V y \ \ 7 •> / \ • ' V L ^ J 1 I I

(1.2) F(a, S, CT) = +^ ^ (^ _(^+a)- 1 )
k>f.

(0 < a < 1, <T .> 0)
a (0 < a < 1, a = 0)
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where

(\ ^ 6^ ^_ ^"(S-a ,^ O N ̂(1.3) 6(a, ^ - ̂  ^herwise,

and write

(1.4) F(a, ̂  = F(a, S, 1).

The connection between @^y and the Dirichlet divisor
problem can be seen, for example, via

(1.5) A(aQ = 2x^ f^ (0,,,,,,(a) - a) da •+ 0(1)

or

(1.6) Hx) == x f,1 (©,,(a) - F(a, 1)) ̂  + 0(1)

where

(1.7) A(a-) == ^ d{n) - x\ogx- (2y - l)a;
n-$a*

and as usual d is the divisor function and y ls Euler's
constant.

THEOREM 1. — Suppose that 1 ̂  y < x. Then

(1.8) Q^(a) = F(a, ^/y) + O(x^y-1 log x ) .

By adapting the Van der Corput method of trigonometric
sums it would be possible to improve the error term here,
much as in the Dirichlet divisor problem. However, we have
carried out no detailed calculations in this direction, partly
because we do not believe that the small improvements that
could be obtained are anywhere near the truth. In fact,
Theorem 2 below suggests that ©3. y(a) —> a even when
y = of where s is any fixed number with 0 < e < 1.
There are three immediate consequences of Theorem 1.

COROLLARY 1.1. — As x -> oo,

(1.9) ©,,(a) = S ,7 -̂-̂  + 0(^ log ^)-
fe=i ̂  ~T~ v-)
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COROLLARY 1.2. — Let t be a fixed number with 0 < t < 1.
Then

(1.10) Q^(a) = F ( a 1 ) + O^""1 log x ) .
\ l /

COROLLARY 1.3. — Suppose that yfx -> 0 as x —> oo.
T/ien

(1.11) ©^(a) == a + ()(yr-1 + x^y-1 \ogx),

If y is quite close to x, the error term in (1.11) is not very
good, and at first sight one might hope to do better. However,
on inspecting F(oc, ^) one finds that the error can indeed
be this large, and is essentially due to the irregular behaviour
of F(a, ^) as a function of S at the points 2,3, ... (see
Lemma 4 of [9]).

The next theorem suggests that Theorem 1 is some way
from being best possible.

THEOREM 2. — Suppose that y == y(x) is increasing,
y = o(;r) and y -> oo as x -> oo. Suppose further that
0 < a < 1 and lira ©.. Ja) exists. Then-a-,y\

a"^x>

lim ©^y(a) == a.
tO'30

The next three theorems put some limitations on how good
the error term can really be in (1.8) an don how small y can
be for there to be an asymptotic distribution.

THEOREM 3. — Suppose that y(u) is increasing and

y{u) -> oo

as u —> oo. Let S = S(a) be sufficiently small, and suppose
that x and X satisfy the inequalities

(1.12) 0 < X ^ x,
(1.13) {y(x + X) - y{x)) (log {y{x + X)))4 < Sy{x)

and

(1.14) 2 ^ y{x} < -J- X^
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Then, for x > Xo(o(.),

(1.15) (sin »).^ < J^' |e.,,.,(.) - .1' ta < ̂ .

As an immediate consequence we have

COROLLARY 3.1. — Suppose that
j[

0 < a < 1 and 0 < (3 < -T--
J

T/î n ^Aere are numbers 8i(a) and ^(P) such that, whenever
x > x^),

(1.16) ^^^^lO,^) -a|^u^^(log^.

Moreover

(1.17) Innsupa^ie.^a) — a| > 0.
a->oo

THEOREM 4. — Suppose that the continuous function G(u)
satisfies the differential difference equation

(1.18) uG(u) == - G(u - 1) (u > 1),
G(u) = 1 (0 ^ u ^ 1).

Then, for each u > 0,

(1.19) lim sup 0^(a) ^ G(^) (0 < a < 1, y = (log^)").
a;>oo

Theorem 5 is an immediate corollary of Theorems 2 and 4.

THEOREM 5. — Suppose that 0 < a < G(u). TTien

©,» (y=(log^11)

does not have a limit as x -> oo.

The function G, often called Dickman's function, has been
studied by a number of people (see references in Norton [7]),
who have shown that it is monotone decreasing and satisfies

(1.20) 0 < G(u) ^ F(u+ I)-1

and

(1.21) f^ G(u) du = e\
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It is easily seen that
(1.22) G(u) = 1 - log u (1 < u ^ 2)

and
/»u /7/»

(1.23) G(u) == 1 - log u + ( log (P - 1) — (2 < v < 3).
J2 v

1.3. The «logarithmic case ». As one might expect, when one
considers limit distributions of {xjn} in the sense of the loga-
rithmic density, things can be pushed a good deal further.
Write

(1.24) 9.,,(a)-(log2/)-i S 1-^^).
n^y ^

There is a close connection between Q^. y and the error
term

E{x)= S <^)-^
n^a- Lzt

where a is the sum of the divisors function. It is easily seen
that

E(^)=^(logz) r(6^(a)-a)da+1^-2 f1^./^)-01)^
Jo L Jo

+ 0{x) + 0(^z-3)
where z ^ x and

9,,,(a) = 2y-2 S ^a(^^).
n^y

JL
When x2 ^ z ^ x this reduces to

E{x) =x (log z) ^ (6^,(a) - a) rfa + 0(a;).

There is also a simple relation connecting < p ^ y with E,
namely

E(x) = 1 ^ r (<p^(a) - F(a, 1, 2)) da + 0(a;).
-" Jo

We do not study y^y in detail, since its general behaviour
can be easily deduced from that of Q^y.

The next theorem shows that, not only does one obtain the
uniform distribution tor Q^y when y = x\ but even when
y == x.
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THEOREM 6. — Suppose that y ^ x. Then

(1.25) 6^(a) = a + 0 ((log x^ (log y)-1).

We would conjecture that 6^ y (a) -> a providing that

log log x = o (logy).

THEOREM 7. — Suppose that y == 2/(a") 15 increasing to
infinity and y ^ x. Suppose that 0 < a < 1. Then, whenever
Qy ̂ (a) ^nck to a limit as x —> oo, ^ ^mi^ mu^ be a.

In the opposite direction we can do somewhat better than
the analogue of Theorem 4. (Note that by (1.20) and (1.21),
for u > 1,

G(u) ^ r(l + u)-1 < ilu
whereas \ n G(^) d^ > 1 and | " G(^) d^ -> e^ as u -> oo).

THEOREM 8. — For each u > 0,

(1.26) lim sup 6^(a) ^ ^- F G(^) rfp
0 (0 < a < ^^(loga;)")

where G is gwen by (1.18).

As an immediate consequence of Theorems 7 and 8 we
have

THEOREM 9. — Suppose that u > 0 and

0 < a < -1- F G(P) d^.
u J o

Then
e^(a)(2/=(log^)»)

dloe^ not have a limit as x -> oo.

It is very likely that both Theorems 5 and 9 hold with the
upper bounds 1 for a for every fixed u.

1.4. The prime numbers. The following theorem shows that
the prime numbers, suitably normalized, behave in much the
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same way as the natural numbers. Let

(1.27) ^(a)=^ S (logp)c^/p).
P^J

^+6
THEOREM 10. — Suppose that s > 0 and x11 < y ^ x.

Then

(1.28) ^(a) - F(a, .ly) + 0 (exp (- C(.) (^^) 3))

wAere C(s) is a positive number depending at most on e.

We remark that on the density hypothesis concerning the
r*

distribution of the zeros of the Riemann zeta function the —.
1 fi

could be replaced by „-• The .. arises as ———,- where c
is such that 1 11 ° + 2

(1.29) N((T, T) < T^-^2

and where N(0-, T) is the number of zeros p = (3 + if of
the Riemann zeta function with P ^ a and [ y ] ^ T. The e
in Theorem 10 could be made an explicit function of x, but
there is little point in doing so.

As far as the un-normalized case is concerned, providing
that the conditions of Theorem 10 are satisfied, partial sum-
mation gives

(1.30) ^ o.(,/p) = ̂  F(., ./») + ̂  ̂  *.

/ ^xx
i r\ { { n \ ( l°g x \3 \\+ 0 \ y exp \ — C s ——f—- ) ; ;.

\ \ \log log x ) / /

The asymptotic distribution is the same, but there is a second
order term which has no very simple closed form, although
the main terms can be combined to give

r^ _______________aLX ^u____________
J^ (u - (1 - a){u})2 log {xl(u - (1 - a){u}))'

It is trivial that ^y(a) does not have an asymptotic distri-
bution when y = (log ^)" with 0 < u ^ 1. (Indeed, this
is so for all choices of \. We hope to discuss this further in a



8 B. SAFFARI AND R. C. VAUGHAN

later paper). However, we have not been able to extend this
to the region u > 1.

It is a simple application of Theorem 5 of [9], that if

0 < 6 < 1, y = x^ and ^,,y(a)

has a limit as x tends to infinity, then the limit must be a.
Moreover, this can be sharpened along the lines of Theorem 2.

1.5. A « law of the iterated logarithm ». In all the applications
of Theorems 3 and 4 of [9] hitherto, the expressions

and

/ 1 \2S (S-^(y))
n \ m n J

S S J- <U</)(1 - e^m)}\
n m l i t ' |

have behaved very much like ^ a^{y). We now show that
n

this is not always so, even under fairly reasonable conditions.
In particular, the following theorem justifies our remark
below Theorem 4 of [9] to the effect that taking ^ a^{y) in

n
that theorem can lose a factor as large as log log y.

THEOREM 11. — There is an infinite subset 2 of N* with
the following property. Let

^ = (a,(y) : y e [1, 0)), n = 1, 2, ...)

be the Toeplitz transformation where the a^{y) are the simple
Riesz means (R, Xj obtained by taking \ to be the charac-
teristic function of Q). Then there are arbitrarily large y such
that whenever XQ ^ 0 and x > 0,

max (0, x - y2) < ^n<y sup F0^ (0^(a) - a)2 rfa < x + y2

0 0 fJ — I / XQ

1.6. In conclusion we mention an example with h{n) = tin
in which the asymptotic distribution function differs from
F(a, S). Suppose that k e N* and let \ == 1 if n is a k th
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power and \ = 0 otherwise. Then trivially by the method
of the hyperbola,

<D^(a) = F(a, xfy), l//c) + 0 (x^y^),

and deeper methods doubtless enable one to improve a little
further the range of validity for y .

2. Proof of theorem 1.

2.1. The following lemma is implied by Satz 566 of Lan-
dau [4].

LEMMA 1. — Let

6(z)= ^--t (z^)
0 (^Z).

Suppose that u < w, f(^) is positive and twice differentiable
for u ^ ^ ^ w and f " [ v ) is non-zero and always has the same
sign. Suppose also that for u ^ v ^ w we have

0 < X ^ f(^) ^ ^

and that p is any real number with p > 1, p > X~3 and

P ^ |f^)|-l(l+/>'(^)2)3/2 (^ ^ ̂  ̂

Let N be the number of pairs of integers m, n for which

u ^ m ^ w and 0 ^ n ^ f(m)

where any pair m, n for which either m=u,m=w,n=0
A

or n = f{m) is counted with weight —. Then
Zs

= ,C" fW du - b(w)f{w) + b{u)f{u) + o( p ^(i).N =

2.2. To prove Theorem 1, consider six sets Si, Sg, Sa, 83, Sy
and 84 of pairs of integers m, n defined as follows;

S^ : x- < m ^ x^'3, -^— < n < -x-
y m + a m
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Sa : x112 < m ^ ^i\ —x— < n ^ -x-
mJ2 •

xX XS^ : — < m ^ x2^ < n ^
y m + a m

^ : -i72^—— < m ^ ̂  -^ - a < ^ ^ x-9 xw < n ^ xlt2
x112 + a m m

x < m ^ ̂ 3, -x- - a < n ^ ^-, ^- < n ^ x1!20,' . _____
"3- x^+a.

84 : m ^ x1'3
m m y

xx
m a < n ^ —, a^3 < n ^ re.

m

Let |S| denote the number of elements of the set S. By (1.1),

(2•l) ^([fHf-'])^- x̂ . .
— + ay J

+ i M,j=^
\ LyJ

where

(2.2)

(2.3)

(2.4)

and

(2.5)

_{\S,\i!x2'3 < y ^ x
1 — ( 0 if y < a;2/3

[Sal ifa^/2 < y < a;
M2= [Sal if a;1/3 < y ^ x1!2

0 if y ^ x1!3

|S3| if a;2/3 < y ^ x
Ms == [83! if 2̂ < y < a2'3

0 i fy < a '̂2

USJifa;1/3 <y ^ x
14 - ( 0 if y < a;1/3.

Suppose first of all that a?'3 < y < a;. By (2.2) and (2.5),

oca;
(2.6) U,= S , , ,

^<^3m(m+a)

+ O^3) and |M4| ^ ^1/3.

If x112 ^ m ^ ^/3, then there are < 1 integers n with

3; ^
—————,———— < Tt ^ ———5

m 4- a ^
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and the number of pairs m, n with either n{m + a) == a;
or mn == a; is < ^£. Hence, by (2.3),

(2.7) M^ = M^ + O(^) with M^ = ^' S' 1
a;i/2^m^a;2/3 a- y_

w-+-a^ "" m

where the dashes are used to indicate that if the pair m, n
is on the « boundary » of the region under consideration, then
• • i
it is counted with weight -— The same argument is applied

to M3. Note that there is at most one integer n in

[^•^]
and likewise in [xj{x1^ + a), x1'2]. Hence, by (2.4),

(2.8) M3 == Mi + 0(3;^ where M^ = ^' S' 1.
x^i*^m<a'*i3 a- „ y—oc •^yi^—

TVT • m m

i\ow write

(2.9) M, = N,(0) - N,(a) and M^ = N3(6) - N3(0)

where, for (B with 0 ^ (B ^ 1,

(2.10) N,(p)= S' S' 1
-^/s^m^^/< _^_

p-m
and

(2.11) ^)= s' ^ ' i .
-^/3^m^-^/. ^

w P

It is now a straightforward application of Lemma 1 to inter-
vals of the kind - 2'l+l.rl/2 ^ m ^ - 2Y/2 to obtain

N.(P) = r———du + b(x^) ———— - b(^) -x——
Jx^ U + P v / ^1/2 -^ p \ / ^2/3 ^_ p

+ 0(x1'3 log ^)
and

Na(P) = r7-̂  - P) du + &(^)(^ - p) - &(.,i - p)
»/ .E'y2 \ U ^ / \ r /

+ O^loga;).
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Therefore, by (2.7), (2.8), (2.9), (2.10) and (2.11),

M2= S / aa, ,+0{xll3logx)^^ m(m + a) v

and

Ms = a(a^/3 — x1'2} + o(x^ log x)
= 5 -7-°^——r+O^loga;).."3<^«. m(m + a) ' v & /

Hence, by (2.6),

SM,= S ^1 ^ + 0(^3 ̂ g x)
j=i m>xiy m[m ~r a)

and Theorem 1 in the case rc^3 < y ^ x now follows from
(2.1).

The cases x^12 < y < ^2/3 and ^1/3 < y ^ x112 are treated
similarly.

3. Proofs of theorems 2, 3 and 7.

3.1. First of all we state a lemma which is a consequence
of Theorems 3 and 4 of [9].

LEMMA 2. — Suppose that x and X are non-negative real
numbers, y ^ 1 and 0 < a < 1. Then

(sin ̂ (X - y^ ^ f;^ S (^a(^) - a) |2 du < (X + ^)y.
l/ n<^Vi^y

3.2. We require a result in which in the integrand y can be
made a function of u. In order to obtain this we first of all
require some information concerning short intervals.

LEMMA 3. — Suppose that x, z and X are non-negative
real numbers, y ^ 1, Y = max (z, y) and 0 < a < 1. Then

F^ S (c.(^-}-^Vdu ^ (X + Y^ (log 2Y)^.
J x z<n^z+y \ \n / /
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Proof. — By Theorem 3 of [9], the left hand side is

< ̂  + Y2) 5 ( S l-\
n \ m m

\z<nm^z+y /

<^+^)^( 5 -^g^
n \z<nm^z+y "v /

< {x + Y2) ^ S ^- log 2Y
2" <Q^z+Y m\q n^

< (:r+Y^/(log2Y)2,
as required.

LEMMA 4. — On the hypothesis of Lemma 3,

F^ ^P S (^a (-^) - a)2 du < (X + Y2)y (log 2Y)4,
0'a' v^ ^<n^.?+u \ \'v / /

where the supremum is taken over all non-negative real numbers
with v ^ y.

Proof. — This uses a technique which goes back to
Menchov [5] and Rademacher [8]. It may certainly be suppo-
sed that the supremum is taken only over those numbers of
the form

^ = y S ^-r
• • • r==o ' , - ; •

where ^ = 0 or 1 and k = [log y/log 2]. For such a v
let

r—l

m, = m,(^) = ^ e^7'--7, m^ = 0.
J=0 • - ^ - • • • - • • • • • .

Then m, < 2^/y ^ 2' < y, m^^-^ = m^ + e^-7'

and ym^^-1 = ̂ .

Now for given u choose some v = v{u) for which the supre-
mum occurs. Then

U
^P S <-a - -a < S S C,nv^y r<n.^z+u

u
n

where the inner summation is over those integers n such
that

z + ymr2-r < n < z + (m, + s,)^-7'.
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^+X
(3.1) f

J x

Usup ^ c,
a; u^ ^<^z+u \ \ n

— a ) du

r+X k / / ,.
^ (log 2Y) S S (c, (-u-

r=o \ \ rl
a ) rfu

where the inner sum is over those n such that

z + ym^ < n ^ z + y(m, + 1)2-'.

The right hand side of (3.1) is
k 2^-l /»a?+X / / „ \ \ |2

(3.2) ^ (log2Y) S S f ^ f^ t - ^ ) - 0 ' ) ^
r=o m=o Jx \ \ n / /)

where the inner summation is over those n such that

z + ym2-r < n ^ z + y(m + 1)2-',

and, by Lemma 3, (3.2) is

< (log 2Y) S 2'(X + Y^-' (log 2Y)2 < (X + Y2)^ (log 2Y)4,
r==o

as required.

3.3. First of all we prove Theorem 2. Observe that

,. . j. ?/(2.r) — ' u ( x ) .hm inf y v — , \ ^ 1^ 1,t/(.r)

for otherwise y{x) > re. Therefore the set

(3.3) S= {x > i:S = { ^ > 1:^-^2}
y(^)

is unbounded. By Lemma 4,

(3.4) inf S ̂ .-l2^^"^^ ,̂ (a) y(u) |^^r^^^)-')^'' ̂ y y^2^ (^g 2y(2•r))4•
i2

a ^ Ju
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If S contains an unbounded subset S* such that

(3.5) y(2^) < S (log ^)-5 whenever ^ e S*,

then by (3.3), (3.4) and (3.5)

liminf V ca^) - a =0
x^ n^yw y\x)

This gives the desired conclusion if such an S* exists. Other-
wise there is a constant XQ > 1 such that

(3.6) y{2x) > x (log a;)-5 whenever x e S, x > x^

Then, by (3.6) and Corollary 1.3,

lim ©2^(2..) == a.
£000
a-6S

This completes the proof of Theorem 2.

3.4. To prove Theorem 3 we use both Lemma 2 and Lemma 4.
By Lemma 2,

(sin n^Xy{x) ^ F 1

J x

U

l 5 (^("n)^ du< x^9
a- In^^(a-) \ \ n / /

and by Lemma 4,
^+X£ -{

_.a" ly(a*)<i^y(u)
5 U

n — a ) rfu <^ Xy{x).

Thus, if y is sufficiently small in terms of x, then

''•""^r10-''''-'^^^-2/W J x y{u) | y(^)

This gives (1.15), provided that x > a;o(a).

3.5. The proof of Theorem 7 follows the same pattern as
that of Theorem 2. We observe that Theorem 3 of [9] gives

ro' x
2

\n^Y(u) n a j du <^ x.
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(3.7) inf S ctt(M/n) 7°Tx^u^ ,̂  n log y(u) |
1 /'2•^ 1 / / M \ \ I2

< -Ti——— î ( S —(c . f -^ -a )^a; (log y{x}}2 J, ^^^ n Y a ^ n ^ )\

<^(log^))-^l+log^y.\ yw /
If there exists an unbounded set of real numbers x > 1
on which y(2x)ly{x) is bounded, then Theorem 7 follows
at once from (3.7). Otherwise

(3.8) y{x) > x,

and Theorem 7 follows from (3.8) and Theorem 6, which we
shall prove in Section 5.

4. Proofs of theorems 4 and 8.

Let

(4.1) ^=exp(1 A(r))
\r=l /

where A is Von Mangoldt's function, and

(4.2) ^ = (log x,)\

Then

(4.3) S c^/^) - 5 ^nl^) + 0 f,-^)
m^ m^n" V^g n/

.^.M+o(^)

where S' means that the sum is restricted to those m which
have no prime divisor exceeding n. (Very probably the part
of the sum thrown away contributes an amount infinitely
often as large as (a — e)(l — G(u)), and if this is so, then
Theorem 5 also holds when G(u) ^ a < 1). By (4.1), the
number of these m not exceeding n" and not dividing x^
is a most

S n^ <§ n~^.
p,k

k'^2,P>nlll{
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Thus we have

(4.4) S ̂ » ^ S ' i+of-^V
m^ m^n" V°g /̂

de Bruijn [1] has shown that if 4'(X, Y) is the number of
natural numbers not exceeding X which have no prime
factor exceeding Y, then

(4.5) +(Y», Y) = G(u)Y» + O^-^u + I)2 max |R(^)|)
2^^Y

uniformly for Y ^ 2, u ^ 0, where R(x) = n[x) — li x
is the error term in the prime number theorem. This with
(4.4) and (4.2) gives Theorem 4.

The proof of Theorem 8 proceeds in the same manner. Thus

S ^- c^lm) ^ ^ ^- c^jm) + 0 (~^—\
m^ rn m^ ^ V°g n)

and

^ ' ^ < s s —^<:"- l /210gra•
w^n" "l' p,fc w^nn/p^ "^
^^n fr^2,P>nl/A

Hence

(4.6) S - l-^(^/m)^ ^ ' - l + o f 1 - ^
^^ ^ m^« ^ VOg /̂

By partial integration,

(4.7) ^f -i-= n-̂ n", n) + (log n) f" M—Y^, M) ̂ .
m<n" m JQ

Combining (4.5), (4.6) and (4.7) now establishes Theorem 8.

5. Proof of theorem 6.

Suppose that

(5.1) 0 < (3 < 1.

Let

(5.2) Mp=[j--p]
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and

(5.3) S(p)= s S J-
M.<m.sSa!—(J m$a;/(»i-Kj) ra

Then

(5.4) e^(a) log y = S(0) - S(a) + (Mo - M.) V -I.
,^ "

Let

(5.5) N = [a^/2].

Then, by (5.3)

S(P)= s (^.^Q+T+of^)
Mp<m^N \ m + P V^ / /

+ s l^-p-i-N').^-U" J ;
providing that N ^ Mp. This also holds when N < Mp,
providing that the convention

s =- s
M^<TO<N H < m ^ M «

is adopted. Hence

S(0) - S(a)

= S log (l + -) - (Mo - M,) log ———— + 0(1)
M»<m^n \ ' n ' / Mo + a

+ y x, _ y ^ _ ^L\ _ 1 ,̂ 1^n2 ,<2^^2 ^ ^-L^
"N ^N+a NTa<^N'

- ^ ±Bf^+ S ^-B^-a^
nt- n ^^ ^re V " /N N-KX

/I

where B(u) = {u} — —. Therefore, by (5.4),
2i

(5.6) e,»logy=(Mo-MJlog^MO±a)
X

+«1»^+0(1)

+«log,,j^-T(0)+T(«)
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where

(5.7) T(p)= S -^(^-P)-
n^a-i/2 'c' \ /fr /

By(5.2)

a < 1 + (a - 1) y- ^ y- (Mo + a) < 2
^ ^

and
J .̂ rcN 3; F)
T < Mo(N + a) " r^i " y '

Hence, by (5.6),

(5.8) 6^(a) log y = a log y + 0(1) + T(a) - T(0).

The proof is completed by observing that a trivial modifi-
cation of the proof of Satz 3.2.2 of Walfisz [11, p. 98] gives

T(p)<(log^3 .

6. Proof of theorem 10.

6.1. We require a lemma which has some independant
interest. Let

(6.1) ^(X)= S log P.
P<a-

LEMMA 5. — Let N(or, T) denote the number of zeros

p = ia + IY
of the Riemann zeta function with (3 > cr, [ y l ^ T. Suppose
that there are positive constants B, C (with C ^ 2) such that

(6.2) N((T, T) < T^-0) (log T)" (T ^ 2).

Then, whenever x ^ 4 and x^-210 < 6 < 1, we have

(6.3) F x \^{u + u6) — -&(u) — u6|2 du

/ / loo r V^X<e2^exp(-c , ( 1 0 ^) ),
\ Ybg^g^/ /

where Ci is a suitable positive number depending at most on e.
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If the Riemann hypothesis is assumed instead, then whenever
x ^ 4

(6.4) F x \HU + u6) ~ ^(u) -- u6|2 rfa ^ 6^ flog -^Y
^ \ e /

uniformly in 6 w?(A 0 < 6 ^ 1.

This is essentially due to Selberg [10]. It differs firstly
in that in (6.4) the bound is uniform for 6 close to 1 whereas
Selberg apparently requires 6 ^ x-\ and secondly it is
slightly weaker when 6 ^ x-^ with 0 < Ci < 1 since
Selberg obtains

y^e-4^
(6.5) ( \Hu + uQ) - ̂ (u) - uQ^u-2 du

Jo

^6(log^-)2.

Moreno [6] has observed (6.3) with C = 5/2 and 9- replaced
by Y (where

(6.6) Y(a;) = S A(»)
n^x

and A(n) is von Mangoldt's function), and given only a
weaker result for ^. In fact, there are at least two obvious
ways of deducing a corresponding result for 3-.

Proof of Lemma 5. — Clearly

(6.7) f^ (Y(u + 6u) - Y(u) - 6u)2 du

^ fi2 (SZ (^(^ + 6U) - v(u) - ̂  du) d^
Let ^ denote summation over all the complex zero of ^

grouped in complex conjugate pairs, that is, lim ^ . Then,
by the explicit formula (Ingham [3], TheorenT^.^henever
y ^ 2

^AM=,,-2^_^_^,^( l_^

where the dash means that if y e Z, then A{y) is to be
^j

replaced by y A(y). The sum over the zeros is boundedly
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convergent (cf. Ingham [3], p. 80). Thus

(6-8) JS w" +eu) - ̂ (u) -6M)2 du
^ r^ ^ ^ ^ O)P -1^ ( 1 _ ^ _ 1 .

Ja-v/2 P Pt/CT/2 P P'a-v/2 | p
-»2<a;u/»2a;u / / ( A i Q\2 _ A \ \ 2

+L(log(l-^4-^-i))^
and 12a;u - (l + e)P - i 2 ,y, -^——'-—— vf1 du

/^2a'u

(6.9) f S
»/ a-w/2

= v v (1+6)^-1 ( i+e j^ - l
Pi P« _ Pl _ P2

2l+p.+p2 _ 2-1-F<-P2 , ,
.————————— {x^W^

I- + Pi + P2
Trivially

^2rv / / (\ -4- 0^2 I \ \2^ LO^^-^+V-i))^^'--'
By Theorem 25a of Ingham [3],

(6.11) N(0, T + 1) - N(0, T) < log T (T ^ 1).

Thus, the double sum on the right of (6.9) converges absolu-
tely, and uniformly in v on [1, 2]. Thus, by (6.6), (6.8),
(6, 9) and (6.10)

(6.12) f^ (^(u + 6u) - T(u) - Qu)2 du <g 62^-3 + S^

where
( 1 + 6 ) ^ — 1 (1 + 6)P2 — 1 21+P1+P^ — 2-1-F1-F2

^i- s s
1 + Pi + P2

22+pi+p2 _ j_
pi pi Pi

..r(;l+Pd-F'.
2 + Pi + p2

By the trivial inequality \z^\ < |^i|2 + I ^212?

Si < 5 5 ^^min (62, yY2)(l + ]^ - Y,|)-2.
- • Pi Pi • . • . . -

Thus, by (6.11),

(6.13) 2i < ^ ^1+2P min (62, y-2) log y.
p

T>O.P^1/2
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If the Riemann hypothesis is assumed, then at once from
(6.11) and (6.13),

2 i < ^ 5 6 2 1 o g Y + ^ S ^^ ^flog-J-Y.
0<Y^9-1 T>6-1 T \ u /

This with (6.12) establishes (6.4) with 0- replaced by Y.
To deduce the corresponding inequality involving ^, observe
that for y ^ l , y ^ Z ,

-^-t-iT-»2
^(2/) - ^(2/) - V112 + 1 = ̂ lim f2 f- ̂  - 1——27TiT->ocJ^_^ ^ ^2s) 2 5 — 1

2

+ y ^SP \ Vs, dg
• } P5^ - 1)) s ds-

Let

A(c, 6) == (Y(e"(l + 6)) - Y(e°) - ̂ (^(1 + 6)) - ̂ )
— e"'̂ ! + 9)1/2 + e^e-"12

and

FO) = - ̂ (i + 2tf) _ J_ 4. v log?
" ^(14- 2i() 2iT r L -L+.(' / p p2 (p^2" - 1)

Then, by Plancherel's theorem,

FA(.,«)|.̂ |̂(l+,)i

< f"(log(l+|(|))8min(e',(l+|l|)-•)<^l
J ——00

<e(log^'.

This combined with the observation

r (u î + o)1/2 - u1/2) rfu <^ e2^
•^a'

enables one to deduce (6.4) from the corresponding result
with replaced Y. Another line of approach is to use the
relation

^) = S ^(W^)
k
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where (JL is the Mobius function, but in the proof of (6.3)
this gives rise to complications of detail.

To prove (6.3) note that by (6.11),

^ ^2plo^T^ i.
p T

Thus, by (6.13),

(6.14) S, < 1 + x (^ (log ̂ \ S, + ̂

where
S2 = S ^p

P
0<J^8-1

P^l/2
and

(6.15) S3 = ^ ^^Y-2 log Y.
pe-^T^^

P>1/2
Hence

(6.16) Sg = ^N f 1 Q-1} + 2 f1 ̂ u (log ^)N(u, 6-1) du.
\ 1 ) Jl/2

By (2), page 226, of Walfisz [II], we have

(6.17) N((T, ^4) = 0 whenever o ^ 1 — €3 (loga;)-^3

(log log a;)-1/3.
This with (6.2) and (6.11) gives

2:2 < xQ-1 (log ̂ -) + 2 F1"^ ̂ u (log ̂ )6-i Aog ̂ \ du
T

/^l—Cs^og.B^/snogloff^-i's / 9 \ B+ 2 J _ ^ ^"(log^e-^-o^og-^) ^u.

It is assumed that ^ > x^ > 1. Thus

(6.18) S^a'-h-ilog^-

/C,(ciog^--21og^\
+ ̂  (log ̂  exp \ (log ̂  (log log ̂ /
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The sum £3 is estimated in the same way. By f6.16), f6 11)
(6.17) and (6.2), ' "

^ S (^--)(to-4-^)+(]o^+e.(log{)2
P

Q-i<Y<a;i
P>1/2

A—l '̂ Y -̂ -ri x /

< 6.r (log ̂  + f Y f^ ^"(2 log ̂ )N(u, ^) ̂  ̂  du
\ ° / ^JL we 1 ( y

2

_-2. / o \2 /^ (Clog——21og^)^
^ e^2'' log-) +^(loga;)B^exp\-A b — — . ^ 1 -

\ y / \ (log ̂ "(log log x)113 /

This, with (6.12), (6.14) and (6.18), gives (6.3) with ^ replaced
by Y. The deduction for ^ is the same as in the proof of (6.4).

6.2. It is possible to deduce Theorem 10 directly from
Lemma 5, or even from the corresponding result with 0-
replaced by Y. However, the argument is then somewhat
more complicated than with the method we are going to use.
Moreover, the following two lemmas also have some interest
of their own.

LEMMA 6. — Let h be any real number with 0 ^ h ^ x.
If (6.2) holds, then

(6.19) C^^u + h) - Hu) - h)2 du
J x

. „ / „ / log a; V/^^ h^x exp — Ci ,——°—— ) )\ yiogioga-y )
£—-^-+1

whenever x c < h ^ x and x ^ 3. On the Riemnan
hypothesis,

p 2aa / Q \ 2
(6.20) ( (HU + h) - ^(u) - h)2 du < h^x (log ̂ }

Jx \ h )
uniformly in A.

Proof. — It suffices to prove the lemma with h ^ rr/6.
Suppose that 2h ^ P ^ 3h and x ^ u ^ 2x, so that

h ^ ^ -— h ^ 2h and x ^ u + h ^ 3rc.
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Then, since

(^(u + h) — Hu) - h)2 ^ (^(u + ^) - ̂ {u) - ^)2

+ {HU + ^) - ̂ (u + h)) - ̂  - A))2,

on making the substitution w = Qu{h ^ w ^ 3A) and on
observing that

^ < A < ft < 3h < 3h < 1Q— ^ — ^ y ^ — ^ — ^ —,
ox u u x 1

one has

h C2' (HU + h) - Hu) - h)2 du
J x

/-> 3a? / /-»3/i \

< {^ + ^) - ̂ (^) - ̂ )2 dw } du
Jx \Jh /

/^3x / r*Mx

< x \ ( {^(u + uQ) — ^(u) - Qu)2 dQ) du.
J x \J h/Sx

The integrand in the last double integral is continuous on -
[x, 3x] X [A/3rr, Shfx] except on a subset having zero content.
Thus the order of integration can be inverted. Hence

(6.21) F " (^(u + A) — ^(u) - h)2 du
J x

ry /••3/i/a; / /^3x \

< ~L ( (^(u + Qu) — ^(u) — Qu)2 du) dQ.
h Jh/3x \Jx )

Using this, (6.20) follows from (6.4). If x ^ S2^, then (6.19)
is trivial. Thus it can be assumed that

-l-i-^h ^ 3x2 c.

Combining (6.3) and (6.21) then gives (6.19).

LEMMA 7. — Suppose that (6.2) holds. Then

(6.22) F " max \^(u + ?) - ̂ (u) - ^[2 du
Jx O^v^h

( / l^o. ^ \1/3\
^ }flr exn — C iogx \ \<$ g n JL exp — ^4 i _——_—— j jVogiog^y )

s-^+l
whenever x G < h ^ x and x ^ 3. Moreover, on the
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Riemann hypothesis^
/^2x

(6.23) f max \^{u + ^ — ^(u) - ̂  du <g hx (log xY
J x O^v^/i x 0 /

whenever 0 ^ h ^ x.
This follows from Lemma 6 by a similar argument to that

used to deduce Lemma 4 from Lemma 3.

6.3. We now proceed with the proof of Theorem 10. By
S^ it is meant that possible terms with m < [xfy] are
omitted, [ x / y ] is only counted when x < y ( [ x / y ] + a),
and if [xfy} is counted, then x\\x\y\ is replaced by y in
all the appropriate places. Observe now that, by (1.27),

(6.24) z/^(a)= ^ ^ logp+ S S i
m^2-^-^^ p^H2 m ^SP

^-l-a m 3c—(x.p<mp^x

- S 2 log p.
m^x1'2 —?_<p^i/2

w+a

Clearly the contribution from the second double sum is 0{x112),
and from the third is 0 (log a;). Thus, by (6.24)

^(a)=.2.'••(»a)-(,,T-.))̂ (-)
so that, by (1.2),

(6.25) t/(^,,,(a) - F(a, xfy))
=.<s'"(<i)-»(^)-;^)+o(^

Suppose that

(6.26) 0 < 8 < 1

and

0 ^ u - ——— ^ —8^——.
m + a m(m + a)

then

(6.27) ^ ̂  - ̂  ̂  ^ ^ - atr

\m} \m + a/ ^(^4-0)

^-^^-^((^M
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Let X be of the form

(6.28) X = (1 + 8)\

where k is a non-negative integer, and suppose that

(6.29) X2 < a-.

Then

(6.30) X

m
V.Xr 8'

x
^w + ay m(m + a^

sup |&(u + ?) — 8-(u)

x< w^x+sx

X2 y"X2 /-/X

8^ Ja;/(X+8X+l) v^X-9

2' (8?
xon.-sx-hgx V^

^J.

+ 2' f^+^ log^-
X<w-^X+oX V772 /

Before proceeding further with the proof consider the conse-
quence of assuming the Riemann hypothesis. By Lemma 7
and (6.30),

r
X<w^X+8X

0-
X

m
x OLX

.m+ a m(m 4- o^
"Y2 /^/y. /y. /y. / ^-T \
-/V / 'JJL tJt/ Ju /-i \A \1 /o I ^^ / / -'tA/ | A \ 1

^ ^X ( X X2 X (log x) ) + s ( ^2 + 1 log ̂6 A \ A A" A x<w<x+8x\m /

Thus, summing over those X, given by (6.28), for which
(6.29), holds, one finds that

m^x1!2

Xs ^ - -^
"— \ yvi /

X OLX

m ^m + a/ m(m + a)|
^ ^i/2S-3/2^Qg ^3 _F 8y log ^ ^_ ^1/2 jog ̂

which with (6.25) and the choice 8 = y-^^log o;)4^,
which is consistent with (6.26), gives

^(a) = F(a, ̂ ) + 0(^y/5(log^9/5)

whenever y > x^tlog x)2.
To return to the proof, suppose that (6.2) holds. Then,

providing that

X ^ x^~\
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one has, by (6.30), the Schwarz inequality and Lemma 7,

^/ ^\-^ x ^ xx
x<»^x+8x| \"V \TO+a/ m(m + a)

X2/^ ^ .K / „ / IOSX Y/3\Y/2

^^(x-^x^^-^^iogiog.) ))
+ S (^+i)log^.

X<w^X+8X V^ /

Thus summing over all the numbers X of the form (6.28)
for which (6.29) holds gives

^ ^(^L\^^ x \
m) \m + ^} m(m + a)!m<x1!2

< ^ s (^+i)'»g^
x^2 t<m^<xll2

( / Ino- 'r X1^
+»8-"exp -C.(î ) )+(8y+^")log..

/ 1 / loff ^ V^This with the choice 8 == exp ( — — Cg ( -——?—— ) ) and
' V 2 \loglog^/ /

Huxley's theorem [2] that (6.2) holds with C = 12/5 esta-
blishes Theorem 10.

7. Proof of theorem 11.

Define Ny inductively by

(7.1) NI = 3 and N^i = lip

where the product is over all those primes p such that

(7.2) p ^ ^-.
Let

(7.3) ^ = {n: n|N^., log N .̂ < n ^ N,}

and
00

(7.4) Q == LJ ̂ .
j=i
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Further, let / be large and write

(7.5) i /==N, .

Let Xn be the characteristic function of 2 and

n ̂  ^ Vs xm {n < y}
(7.6) a^y} == . / m^y

0 (M > y).

By (7.1), (7.2), (7.3) and (7.4), all the elements of Q are odd.
Let a = 1/2. Hence, by Theorems 3 and 4 of [9],

(7.7) max (0, x - y^} ^ ( ̂  i a,,(y)Y
n=l \m=l m /

f*XQ-\-X oo / oo A \2

< ( (^»,.(°') - »)2 ̂  ^ (•» + y2) S ( S — ^n(y)) •
^ XQ n=l \m=l "c' /

By (7.1), (7.2), (7.3), (7.4) and (7.5), it is easily seen that y
is squarefree and the elements of

2 n (logN^, N^]

are precisely the divisors of y in the range (log N ,̂ Nj],
Since \ is the characteristic function of ^,

(7.8) S ^^^OOogy)
m^y

where P is the number of prime divisors of y. Also,

s f s ±^= ? f 5 ^T+oaieg^)mn /
n^y \m^yin m / iogy<n^y \wra|y m

— V / V 1 \2
- ~ ( ~ -) +o(( log t/)3)it\f \mnff "l /

1 , 1
=2p^( l+^+^)+o( ( logy )3 )•

Hence, by (7.1), (7.2), (7.6) and (7.8),

» / » i \2 n (1 + p-1 + 4-p-2)
(7.9) S(S-<U2/)) ^^-v /

^J \ ^J "/na\^/ i - - V -X
n==l \m=l m / 2) "n

n^y

Theorem 11 now follows in a straightforward manner from
(7.1), (7.2), (7.5), (7.7) and (7.9).
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