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ON SOME SPACES WHICH ARE COVERED
BY A PRODUCT SPACE

by Izu VAISMAN

The subject which we want to discuss here starts from the
well known reducibility theorem proved by G. de Rham [16] for
complete reducible Riemannian manifolds, which states that the
universal covering space of such a manifold is a product manifold
and for which several proofs as well as notable generalizations and
applications are now available [8, 24, 25].

Particularly, S. Kashiwabara [5] proved a reducibility theorem
for complete affinely connected manifolds and next he was able
to give a similar proof for a class of locally product differentiable
manifolds which satisfy some topological conditions [6] and to
make a complete study of an important particular case [7].

On another side, la. L. éapiro [17-20] and éapiro-iukova
[21] gave a detailed description of the structure of the reducible
complete Riemannian manifolds (see also Wang [24]) and of the
locally product manifolds which can be given a reducible complete
Riemann metric and which, also, have a product universal covering
space.

In the theory of foliations there is also an important situation
when a foliate manifold has a product universal covering space.
This situation has been investigated in codimension one by G. Reeb
[14] and S.P. Novikov [12] and in codimension = 2 by L. Conlon
[1] and J. Meyer [11].

Finally, such a situation is encountered in an important theorem
of Riemannian geometry due to Cheeger, Gromoll and Lichnerowicz
[10].
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All these clearly suggest that it would be interesting to analyse
the geometric structure of the topological spaces which are covered
by a topological product.

Actually, a careful reading of the above mentioned papers by
Kashiwabara and éapiro shows that the results of these authors, if
considered in a proper frame are of a topological nature. Thus,
one can get a significant information on the considered class of
spaces by giving a topological version of the results of Kashiwabara
and gapiro.

It is just the aim of this Note to give such a topological version
and this is accomplished in the first two sections. In the third section
some complementary remarks are made including algebraic topology
information and an application to topological groups. Finally, in
the last section, the theory is applied to differentiable foliations
which gives an alternative way for the deduction of the results of
Reeb, Novikov and Conlon and of a part of the Cheeger-Gromoll-
Lichnerowicz theorem cited above. Consequently, we can say that
there are no essentially new geometrical facts in this paper, but
that there is a new framework which gives the results their full
generality.

1. Spaces covered by a product and the topological version of
Kashiwabara’s results.

Let us begin with the folloving preliminary considerations. If
¢:S>T and 0 : S— S are two continuous maps of topological
spaces, 0 is said to be p-compatible if there is a continuous map
o' : T— T such that po = o' ¢. Clearly, if ¢ is epimorphic ¢’ is
unique. Let ¢ be epimorphic and let G be a group of g-compatible
homeomorphisms of S. Then it is obvious that

G=1{g':T>Tlg'y = pg,g€EG)

is a group of homeomorphisms of T and the map g+ g’ defines
an epimorphism ¢ : G = G'. Particularly, if S = S, x S, withthe
projections p,, p,, a group G of homeomorphisms of § is said to be
compatible with the product structure of S if it is compatible with
both p, and p,. In this case, two corresponding groups G,, G,of
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homeomorphisms of S,, S, respectively can be derived as above,
together with two epimorphisms q; : G = G; (i =1, 2) and it follows
easily that g € G acts on S by the formula

g(s,,5) =1(q,@)s,,q,(@)s,)

This shows that g, x g, : G > G, x G, is a monomorphism, which
identifies G with the subgroup G of G, x G, given by the pairs (g,,g,)
such that g, = q, (g), g8, = q, (g) for some g € G.

Now, we can introduce the structures which we are interested in.

1. DEFINITION.— Let X be a connected locally path-connected
and semi-locally 1-connected metrizable topological space with a
countable basis and at most countable fundamental group. A
product covering QC ) structure on X is a regular covering map
p: X > X with X connected and such that X =Y x Z and the
covering trarlgformatzon group G is compatible with the product
structure of X. Isomorphisms of P.C. structures on X can be considered
in an obvious manner. A pair consisting of a space X as above and
a P.C structure on X is called, in this first section, a space covered
by a product (C.P. space). If for the P.C. structure Y or Z reduces
to one point the structure is called trivial.

It is worth to remark that, though the C.P. spaces are charac-
terized by a property of their covering spaces, this property does
not depend on the fundamental group of the space only. Actually,
R” and S"(n = 2) have the same (trivial) fundamental group,but
while R” has a non-trivial decomposition as a product, i.e. a P.C.
structure, S" has no such decomposition [2].

The following results will introduce the fundamental structural
properties of the C.P. spaces.

2. THEOREM. — If X is a C.P. space, it admits two disjoint
partitions
X= UL =U A n

where L, and A are connected subspaces of X and all the intersections
L, N A are nonvoid totally disconnected subsets of X.

L]
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Proof. — Consider the P.C. structure of X with the notation
of definition 1. From the fact that the covering group G is compatible
with the product structure X =Y x Z and that it acts transitively
on the fibres of p, one deduces that p (Y x {z}) (z € Z) and
p({y} x2Z) (»€Y) are the two partitions looked for. We shall
say that L, are the leaves of type 1 and A, are the leaves of type
2 of X.

Consider now Lm0 =p (Y x {z,), A(70 = p ({J)p} x Z). Then
p 0o,29) € Loy N Agy,
hence the intersection is nonvoid. Moreover, one can deduce that
P (L) = Y x G, (29 .07 (Ag) = G, ) X Z,
P! (Lyy N Agy) = G, ) X G, (zo)

where G, (y,) and G, (z,) are the trajectories of y, and z, by the
induced groups G, and G, in Y, Z respectively.

(2)

Since G is a factor group of the fundamental group of X, it is
also at most countable and, hence, so is Laoﬂ AOO. Then, by a
well known theorem of the dimension theory, L, M A,/ has the
dimension zero and it is a totally disconnected spacea([)9].

Next, let X be an arbitrary topological space, which has two
disjoint partitions of the form (1) with connected leaves. Then,
for every Y C X one gets the disjoint connected partitions given by

Y=U C(LNY)= U CA,NY) 3)
oEZ

a€EA
where C denotes connected components, and we denote by
P (Y)(@=1,2)

the corresponding equivalence relations on Y. The equivalence classes
of p,; (Y) will be called slices of type 1 and 2 respectively and they
will be denoted by brackets. Now, we can consider the map

T(Y): Y = (Y/p, (X)) x (Y/p,(Y)) 4)
defined by 7 (¥) = ([»],, [¥],) and we shall give

. 3. DEFINITION. — The subset Y CX is distinguished with respect
to (1) if it is open and connected and if w(Y) is a homeomorphism.
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4. THEOREM. — Every point of a CP. space X has a basis of
neighbourhoods which are distinguished with respect to the partitions
of theorem 2 and the corresponding slices are locally path-connected.

Proof. — Clearly, if x €V CX, where V is open, x has an
open connected neighbourhood UC V for which U= A x B CX
exists, with A and B connected open subsets of Y, Z respectively,
and such that p/U sends homeomorphically U onto U. Now, one
has by (2)

UNL,=p@np (L) =plAXBNG, )] (5

and, since G, (z,) is O-dimensional hence totally disconnected, it
follows that the slices of type 1 have the form p (A x {b}). A similar
result llplds for the slices of type 2 and, since p is a homeomorphism
from U onto U and U is distinguished in an obvious sense in },
we get that U is distinguished in X, which proves our first assertion.
The second assertion is trivial.

We shall now establish an important connection with a generali-
zation of the foliation theory due to Reeb [15].

5. PROPOSITION. — Let X be a T, topological space endowed
with the two partitions (1) having connected leaves, and suppose that
every point of X has a basis of distinguished neighbourhoods with
locally connected slices. Then, the distinguished neighbourhoods
and the two corresponding equivalence relations p; (i =1, 2) define
on X two generalized dynamical systems in the sense of Reeb [15],
Whose leaves are just the leaves defined by (1).

Proof. — From the existence of the homeomorphism (4), it
follows easily that a distinguished neighbourhood Y is homeomorphic
with the product of any two of its slices of different types,
whence the conditions of Reeb’s definition (namely : (i) p;, are
open equivalence relations, (ii) the slices are connected and locally
connected, (iii) the slices of Y are closed in Y, (iiii) for every

aeEYNY

there is a distinguished Y"' such that [ p,f induce the same equivalence
relation in Y'') are trivially verified and the proposition follows.
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Then, following Reeb [15], one obtains on X of proposition 5
two new topologies which are finer than the initial topology of X
and whose open sets are unions of open sets of the slices of type 1
and 2 respectively. These will be called the leaf topologies and play
an important role in the sequel. From now on, we make the convention
that the leaves are always to be considered with the respective leaf
topology while X has always the initial topology. We also remark
that the leaf topologies can be similarly defined without the assump-
tion that X be a T, space.

6. COROLLARY. — The leaves of a C.P. space X define generalized
dynamical systems. If Lao =p (Y x {zo}) is a leaf endowed with
the corresponding leaf topology, L, o is connected, locally path
connected and pl/Y x {z4} is a covering map, and similarly for

A

[}
In fact, only the second assertion has still to be verified and
this is straightforward.

We procced now by considering a notion due to Kashiwabara

(6].

7. DEFINITION. — Let X be a topological space with the two
partitions (1). Then, let x (0) (60 €[0,1]) be a path with origin
xo =x(0) in the leaf L (x,) and x' (1) (1 €[0, 1)) a path with the
same origin x, = x'(0) in A (xo). A continuous map f : [0, 12> X
is called a latticed map with respect to the paths x, x' if one has

f(0,00=x(0),f0,n)=x"(),f(0,nELK (N NA( (). (6)

8. PROPOSITION. — If the space X has the partition (1) and if
every point of X has a distinguished neighbourhood, then, if the
latticed map of two paths exists, it is unique.

Proof. — We already remarked that a distinguished neighbourhood
is homeomorphic with the product of any two of its slices of different
types and, hence, the maps with values in such a neighbourhood
can be projected on the two slices. Then the proof of the announced
proposition as given in [6] for manifolds holds without change in
the situation considered here.
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We can derive now another important property of the C.P.
spaces.

9. THEOREM. — In a C.P. space X, latticed maps exist for every
couple of paths satisfying the conditions of definition 7.

Proof. — We use the notation of definitions 1 and 7 and consider
;0 =y, 2y €p! (xqy). Let ;(o) be the lift of x (0) beginning at
X, From connexity considerations, it follows that X (o) is contained
in Y x {zo). Similarly, the lift X’ (r) of x'(r) beginning at X, is
contained in {y,} x Z. Hence one has

xX(0) = (0),29),X (1) = g,z (7).
Now, it follows easily that f (o ,7) =p (¥ (0), z (1)) is just the latticed
map looked for.

Finally, we arrived at the main theorem of this section :

10. THEOREM. — Suppose that the space X satisfies all the
conditions of definition 1. Then X is given a P.C. structure (hence it
becames a C.P. space) if and only if : 1° X has two partitions (1)
with connected leaves, such that any two leaves of different types
have a totally disconnected intersection, 2° every point of X has a
basis of distinguished neighbourhoods and the leaf topologies are
locally path connected, 3° for every couple of paths like in definition
7 a corresponding latticed map exists.

Proof. — The announced conditions are necessary as shown by
theorems 2, 4 and 9 above.

To prove the sufficiency, let w : X - X be the universal
(1-connected) covering of X. Then, the connected components of
w (L) and w™! (Ag) define two partitions of X which are easily
seen to satisfy on X the conditions 1°, 2°, 3°. (Particularly, the
latticed maps on X are lifts of latticed maps of X). For the leaves of
these partitions on X and f, we shall always consider the leaf
topologies which can be introduced in view of proposition 5.

Next, the proof of theorem 2 of [6] can be seen to work in our
situation too. The various lemmas needed, which are proved in
[6] for differentiable manifolds, remain true in X. The only detail
to which attention must be paid is the fact that two leaves have a
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totally disconnected intersection and, hence, any continuous map
with connected domain and with values in such an intersection is
constant. In [6] this detail has not been mentioned explicitely
because the mentioned property always holds there.

Hence, applying that theorem of Kashiwabara, we get
X~T,xA,

where, obviously, fa and Ka are the universal covering spaces of
some leaves L, A, of X, with the leaf topologies. Moreover, the
previous homeomorphism preserves the leaf structure or, equivalently,
the coverigg trzinsformations of X are compatible with the product
structure L, x A,.

We thus obtained a P.C. structure on X which ends the proof
of theorem 10. It is important to remark that the sufficiency proof
made no use of the conditions that X be metrizable and with countable
basis and fundamental group, which makes this result even more
general.

Theorem 10 suggests to give

11. DeErINITION. — Two P.C. structures on X are called equivalent
if the corresponding partitions of X into leaves are the same for
the two structures.

Then it obviously follows

12. COROLLARY. — The universal covering space of a C.P. space X
is isomorphic to the product of the universal covering spaces of
two arbitrary leaves of different types of X. The equivalence classes
of P.C. structures of X are in an one-to-one correspondence with
the isomorphism classes of decompositions of its universal covering
space X into products compatible with the covering transformations
of X.

13. CONVENTION. — From now on, a C.P. space will be understood
as a pair consisting of a space X as in definition 1 and an equivalence
class of P.C. structures on X.
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2. The topological version of la. L. sapiro’s results.

More results on the geometric structure of C.P. spaces can be
obtained by generalizing the studies of Ia. L. Sapiro [17-21].

We consider again a C.P. space X in the sense of convention
1.13 and we shall use all the notation of section 1 with the supple-
mentary convention that X is always the universal covering space
of X, whence it follows that the group G is isomorphic with m (X).

We also recall that G has the associated groups G; (i =1, 2)
acting on Y and Z respectively. In [17], the structure of G is precised
by introducing the groups G; = g, (ker q;) G Fi=1,2). Therl, the
correspondence of section 1, which relates the pairs of G =G
induces an isomorphism © : G,/G| > G,/G} such that one has

G~G=1{(g,.8)€G, xG,/0[g] =g}, (1)

where the brackets denote classes with respect to G;. In this manner,
one sees that the group G is equivalent to the system (G;, G,'. ,0
i=1,2)

In the sequel, we shall need the following fundamental lemma

(which is folklore-type and replaces in our version the lemma V of

(17D).

1. LEMMA. — Let S be a connected locally path-connected and
semi-locally 1-connected topological space, G be a group of homeo-
morphisms acting properly discontinuous on S and H an invariant
subgroup of G. Then, the natural bijection (S/H)/(G/H)= S/G is
a homeomorphism. '

Proof. — The existence of this bijection requires only a technical
verification, which is given in lemma IV of [17]. In order to see
that one has a homeomorphism, we first remark that H is acting
properly discontinuous on S, which defines the regular covering
map p, : S—> S/H with covering group H. Next, S/H is connected
and G/H acts properly discontinuous on S/H, which defines a regular
covering map p, : S/H - (S/H)/(G/H) whose ‘covering group in G/H.
Since S and hence (S/H)/(G/H) are semilocally 1-connected, p,o p,
is also a regular covering map and one sees that its covering group is



116 I. VAISMAN

G. The investigated map is just the identification of the base space
of p,op, with S/G, hence it is a homeomorphism. (For details
regarding covering spaces see for instance [22]).

Remark. — Lemma 1 remains valid if the hypothesis that S is
semi-locally 1-connected is replaced by the hypothesis that so is
S/H or (S/H)/(G/H).

Now, in order to obtain the topological version of §apiro’s
main theorem we give.

2. DEFINITION. — The C.P. space X is called regular if on X =YxZ
there is at least one point (y,,z,) which is not a fixed point of
any nonidentical transformation of G, x G,.

One obtains now the following main theorem :

3. THEOREM. — Let X be a regular C.P. space. Then there are point
XoE X such that one has a leaf-preserving homeomorphism

X =Ly x A (xo)/ V¥,

where L (x,), A (x,) denote the leaves through x, with the corres-
ponding leaf topologies and Y is a group of homeomorphisms
acting properly discontinuous on the product of these leaves and
which is isomorphic to

T (X, x0)/m (L (xq), xo) x (A (xq), X,).

Also, ¥ is compatible with the product structure and induces on
L (xo), A (xy) groups which are isomorphic to G,./G,f i=1,2).

Proof. — The proof is exactly the same as that given by Sapiro
[17] for the case of reducible complete Riemannian manifolds and
it goes_on the following lines. The universal covering space of X
being X =Y x Z, one has X~ Y x Z/G. Now, let (y, ,z)) €Y xZ
be a points un-fixed by all the nonidentical elements of G, x G,;
such points exist in view of the regularity of X in the sense of defi -
nition 2. Consider x, = p (¥, z,) and

L(xy) =p (Y x {zoD), A (x9) = p ({yg} x Z).
Since g,y, # ¥, if id. #g, € G, and g, z, # z, if id. # g, € G,, it
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follows that the covering map p/{y,} x Z has a covering group which
can be identified with G'2 and, similarly, p/Y x {z,} has the covering
group G'l. Next, it is easy to see that G'l X G'2 is an invariant subgroup
of G. Hence, the announced homeomorphism follows from lemma 1
by taking there S =Y x Z (which is a l-connected space),G=G and
H = G x G),. All the other assertions of theorem 3 follow by technical
verifications.

The previous theorem suggests the consideration of

4. DEFINITION. — Let X be a C.P. space. Then, any leaf-preserving
homeomorphism

£:X=Lx A/, 2)

where L and A are connected locally path-connected spaces and
¥ is a group of homeomorphisms acting properly discontinuous
on L x A, compatible with the product structure and with associate
groups V', = V) = id., is called a presentation of X.

In the case of such a presentation, one obviously has that the
isomorphism © of (1) is an isomorphism of the induced groups
V,, ¥, and one has ¥, ~ ¥, = ¥,

Let X be a C.P. space and ¢ a leaf-preserving homeomorphism
of the form (2), with a properly discontinuous group ¥ of homeo-
morphisms. Denote again by X the universal covering space of X
with the group G. Then, one has the following important result.

S. LeMMA. — The homeomorphism (2) is a presentation if and
only if the fundamental groups of L and A are respectively isomorphic
to G| and G),.

Proof. — Consider the homeomorphism (2) and denote by
¢ : L x A= X the associated covering. Since this covering is regular
with covering group ¥, one has [22].

Vo r(XLE U, A E T (Lx AL Uy, A 3)

Now, let L~, A be the universal covering spaces of L and A.
Since X is semilocally 1-connected, one gets, by using the homotopy
covering property of £ and the discretness of its fibres, that L x A,
hence L and A are also semilocally 1-connected. Hence, L and A are
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I-connected, L x A s the universal covering space of X, and G
appears as the covering transformation group of this space.

Then, if we denote by T,(i=1,2) any groups which are
respectively isomorphic with 7 (L), # (A), the relation (3) becomes

¥~ G/T, x T,. (4)

But, it follows by a technical verification that the isomorphism
(4) induces isomorphisms

v =~ G/T,, ¥;~ G)/T,, )
which proves the announced lemma.

The result given by lemma S has been proved for the reducible
complete Riemannian manifolds in [17], by using the respective
metrics, and it has been used to obtain a uniqueness theorem for
presentations, which is valid in the topological version too. Namely :

6. THEOREM. — Let ¢ and §* be two presentations of the C.P.
space X and denote with a star all the elements of £*. Then,

L~L*, A~A*, ¥~ ¥*

and the induced groups act compatibly with these homeomorphisms.

Proof. — Like in the proof of lemma 5, we get two universal
covering spaces LxA and T* X A* of X From the equivalence
of these two coverings one gets L~ L*, A~ A*, G = G*, whence,
by the previous lemma, T, =~ T¥. It follows L ~ IL*, A = A* and,
by formula (4), ¥ ~ ¥*, which proves the theorem.

By theorem 3, every regular C.P. space has a presentation and
by theorem 6 this presentation is essentially unique. Moreover,
there are always points x, € X such that L (x,) = L and A (xy) =~A
In this manner, for a regular C.P. space one can use either universal
coverings or presentations as representatives of the corresponding
class of P.C. structures.

Let us also mention that the definition of the regularity has
not been explicitely given by éapiro, but in his case, of the reducible
complete Riemannian manifolds, Sapiro proved that regularity
always holds. (For the same case, see also the results of Wang [24]).






