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ON SOME SPACES WHICH ARE COVERED
BY A PRODUCT SPACE

by Izu VAISMAN

The subject which we want to discuss here starts from the
well known reducibility theorem proved by G. de Rham [16] for
complete reducible Riemannian manifolds, which states that the
universal covering space of such a manifold is a product manifold
and for which several proofs as well as notable generalizations and
applications are now available [8, 24, 25].

Particularly, S. Kashiwabara [5] proved a reducibility theorem
for complete affinely connected manifolds and next he was able
to give a similar proof for a class of locally product differentiable
manifolds which satisfy some topological conditions [6] and to
make a complete study of an important particular case [7],

v v v

On another side, la. L. Sapiro [17-20] and Sapiro-Zukova
[21] gave a detailed description of the structure of the reducible
complete Riemannian manifolds (see also Wang [24]) and of the
locally product manifolds which can be given a reducible complete
Riemann metric and which, also, have a product universal covering
space.

In the theory of foliations there is also an important situation
when a foliate manifold has a product universal covering space.
This situation has been investigated in codimension one by G. Reeb
[14] and S.P. Novikov [12] and in codimension > 2 by L. Conlon
[1] and J. Meyer [11].

Finally, such a situation is encountered in an important theorem
of Riemannian geometry due to Cheeger, Gromoll and Lichnerowicz
[10].
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All these clearly suggest that it would be interesting to analyse
the geometric structure of the topological spaces which are covered
by a topological product.

Actually, a careful reading of the above mentioned papers by
Kashiwabara and Sapiro shows that the results of these authors, if
considered in a proper frame are of a topological nature. Thus,
one can get a significant information on the considered class of
spaces by giving a topological version of the results of Kashiwabara
and Sapiro.

It is just the aim of this Note to give such a topological version
and this is accomplished in the first two sections. In the third section
some complementary remarks are made including algebraic topology
information and an application to topological groups. Finally, in
the last section, the theory is applied to differentiable foliations
which gives an alternative way for the deduction of the results of
Reeb, Novikov and Conlon and of a part of the Cheeger-Gromoll-
Lichnerowicz theorem cited above. Consequently, we can say that
there are no essentially new geometrical facts in this paper, but
that there is a new framework which gives the results their full
generality.

1. Spaces covered by a product and the topological version of
Kashiwabara's results.

Let us begin with the folloving preliminary considerations. If
</? : S -> T and a : S -^ S are two continuous maps of topological
spaces, a is said to be (R- compatible if there is a continuous map
a ' : T -> T such that <^ a = o' {p. Clearly, if \p is epimorphic a ' is
unique. Let ^> be epimorphic and let G be a group of (p-compatible
homeomorphisms of 5'. Then it is obvious that

G'= {^:T-^T/^ == ^>g , g^G}

is a group of homeomorphisms of T and the map g «-̂  g defines
an epimorphism q : G -> G'. Particularly, if 8 = 8 ^ x 8 2 with the
projections pp p ^ , a group G of homeomorphisms of S is said to be
compatible with the product structure of S if it is compatible with
both p^ and p^. In this case, two corresponding groups GpG^of



ON SOME SPACES WHICH ARE COVERED BY A PRODUCT SPACE 109

homeomorphisms of S^, S^ respectively can be derived as above,
together with two epimorphisms q^ '. G -> G^ (i = 1 , 2) and it follows
easily that g E G acts on S by the formula

g (5i , s^) = (q^ (g) s ^ , q^ (s) s^)

This shows that q^ x q^ : G ~^_G^ x G^ is a monomorphism, which
identifies G with the subgroup G of G^ x G^ given by the pairs (g^,g^)
such that gi= q^ (g), g^ = q-i fe) lor some g E G.

Now, we can introduce the structures which we are interested in.

1. DEFINITION.— Let X be a connected locally path-connected
and semi-locally \-connected metrizable topological space with a
countable basis and at most countable fundamental group. A
product covering (P.C.) structure on X is a regular covering map
p : X -^ X with X connected and such that X = Y x Z and the
covering transformation group G is compatible with the product
structure of X. Isomorphisms of P.C. structures on X can be considered
in an obvious manner. A pair consisting of a space X as above and
a P.C. structure on X is called, in this first section, a space covered
by a product (C.P. space). If for the P.C. structure Y or Z reduces
to one point the structure is called trivial.

It is worth to remark that, though the C.P. spaces are charac-
terized by a property of their covering spaces, this property does
not depend on the fundamental group of the space only. Actually,
R" and S" (n > 2) have the same (trivial) fundamental group,but
while R" has a non-trivial decomposition as a product, i.e. a P.C.
structure, S" has no such decomposition [2].

The following results will introduce the fundamental structural
properties of the C.P. spaces.

2. THEOREM. — If X is a C.P. space, it admits two disjoint
partitions

X = U L,= U A, (1)
a<=A oGE

where L^ and Ay are connected subspaces of X and all the intersections
L^ n A^are nonvoid totally disconnected subsets ofX.
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Proof. - Consider the P.C. structure of X with the notation
of definition 1. From the fact that the covering group G is compatible
with the product structure X = Y x Z and that it acts transitively
on the fibres of p , one deduces that p (Y x {z}) (z G Z) and
p ({y} x Z) C y E Y ) are the two partitions looked for. We shall
say that L^ are the leaves of type 1 and A^ are the leaves of type
2 of X.

Consider now L^ = p (Y x {z^}), A^ = p ({^} x Z). Then

P^YO^O^ L^ H A^,

hence the intersection is nonvoid. Moreover, one can deduce that

p-1 (L^) = Y x G, (Zo) , ̂ -1 (A^) = G, 0.,) x Z,

^-1 (L^ 0 A^) = G,C^) x G, (Zo)

where G^ (y^) and G^ (z^) are the trajectories of y^ and z^ by the
induced groups G^ and G^ in V, Z respectively.

Since G is a factor group of the fundamental group of X, it is
also at most countable and, hence, so is L^ H A^ . Then, by a
well known theorem of the dimension theory, L n A^ has the
dimension zero and it is a totally disconnected space [9].

Next, let X be an arbitrary topological space, which has two
disjoint partitions of the form (1) with connected leaves. Then,
for every Y C X one gets the disjoint connected partitions given by

Y = U C(L^HY)= U C(A^HY) (3)
a^A (jCE

where C denotes connected components, and we denote by

p, (Y) 0 = 1 , 2 ) -

the corresponding equivalence relations on Y. The equivalence classes
of p,(Y) will be called slices of type 1 and 2 respectively and they
will be denoted by brackets. Now, we can consider the map

TT (Y) : Y ̂  (Y/p^ (Y)) x (Y/p, (Y)) (4)

defined by TT (y) = ([y]^ [y]^) and we shall give

3. DEFINITION. - The subset Y CX is distinguished with respect
to (1) if it is open and connected and if TT(Y) is a homeomorphism.
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4. THEOREM. — Every point of a C.P. space X has a basis of
neighbourhoods which are distinguished with respect to the partitions
of theorem 2 and the corresponding slices are locally path-connected.

Proof. — Clearly, if x G V CX, where V is open, x has an
open connected neighbourhood U C V for which U = A x B C X
exists, with A and B connected open subsets of V, Z respectively,
and such that p/V sends homeomorphically U onto U. Now, one
has by (2)

u n L^ = p (U n p-1 (L^)) = p [A x (B n G, (z^))] (5)
and, since G^ (z^) is 0-dimensional hence totally disconnected, it
follows that the slices of type 1 have the form p (A x {&}). A similar
result holds for the slices of type 2 and, since p is a homeomorphism<^ --^ /^/
from U onto U and U is distinguished in an obvious sense in X,
we get that U is distinguished in X, which proves our first assertion.
The second assertion is trivial.

We shall now establish an important connection with a generali-
zation of the foliation theory due to Reeb [15].

5. PROPOSITION. — Let X be a T^ topological space endowed
with the two partitions (1) having connected leaves, and suppose that
every point of X has a basis of distinguished neighbourhoods with
locally connected slices. Then, the distinguished neighbourhoods
and the two corresponding equivalence relations p ^ ( i = 1 ,2 ) define
on X two generalized dynamical systems in the sense of Reeb [15],
whose leaves are fust the leaves defined by (1).

Proof. - From the existence of the homeomorphism (4), it
follows easily that a distinguished neighbourhood Y is homeomorphic
with the product of any two of its slices of different types,
whence the conditions of Reeb's definition (namely : (i) p^ are
open equivalence relations, (ii) the slices are connected and locally
connected, (iii) the slices of Y are closed in V, (iiii) for every

a C Y n Y'

there is a distinguished Y" such that p,, p\ induce the same equivalence
relation in Y " ) are trivially verified and the proposition follows.
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Then, following Reeb [15], one obtains on X of proposition 5
two new topologies which are finer than the initial topology of X
and whose open sets are unions of open sets of the slices of type 1
and 2 respectively. These will be called the leaf topologies and play
an important role in the sequel. From now on, we make the convention
that the leaves are always to be considered with the respective leaf
topology w^ile X has always the initial topology. We also remark
that the leaf topologies can be similarly defined without the assump-
tion that X be a T^ space.

6. COROLLARY. - The leaves of a C.P. space X define generalized
dynamical systems. If L = p (Y x {z^}) is a leaf endowed with
the corresponding leaf topology, L is connected, locally path
connected and p/Y x {z^} is a covering map, and similarly for
^0-

In fact, only the second assertion has still to be verified and
this is straightforward.

We proceed now by considering a notion due to Kashiwabara
[6].

7. DEFINITION. — Let X be a topological space with the two
partitions (1). Then, let x (a) (aE [0 , 1]) be a path with origin
XQ = x (0) in the leaf L (x^) and x ' (r) (r G [0 , 1 ]) a path with the
same origin XQ = xt (0) in A (x^). A continuous map f : [0 , 1 ]2 -> X
is called a latticed map with respect to the paths x, x ' if one has

f(a , 0) = x (a) ,/(0 , T) =x (r) ,/(a,r)G L(x (r)) 0 A (x (a)). (6)

8. PROPOSITION. - // the space X has the partition (1) and if
every point of X has a distinguished neighbourhood, then, if the
latticed map of two paths exists, it is unique.

Proof. — We already remarked that a distinguished neighbourhood
is homeomorphic with the product of any two of its slices of different
types and, hence, the maps with values in such a neighbourhood
can be projected on the two slices. Then the proof of the announced
proposition as given in [6] for manifolds holds without change in
the situation considered here.
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We can derive now another important property of the C.P.
spaces.

9. THEOREM. — In a C.P. space X, latticed maps exist for every
couple of paths satisfying the conditions of definition 7.

Proof. — We use the notation of definitions 1 and 7 and consider
XQ = (YQ , Zo) G p~1 (XQ). Let x (a) be the lift of x (a) beginning at
XQ. From connexity considerations, it follows that ^(a) is contained
in Y x [z^s. Similarly, the lift 7 (r) of x ' (r) beginning at ^ is
contained in {^} x Z. Hence one has

^(a) == (y (a), z^) ̂  (r) = (^o ̂  0-)).
Now, it follows easily that / (a , r) = p (y (o), z (r)) is just the latticed
map looked for.

Finally, we arrived at the main theorem of this section :

10. THEOREM. — Suppose that the space X satisfies all the
conditions of definition 1. Then X is given a P.C. structure (hence it
becomes a C.P. space) if and only if: 1° X has two partitions (1)
with connected leaves, such that any two leaves of different types
have a totally disconnected intersection, 2° every point of X has a
basis of distinguished neighbourhoods and the leaf topologies are
locally path connected, 3° for every couple of paths like in definition
7 a corresponding latticed map exists.

Proof. — The announced conditions are necessary as shown by
theorems 2, 4 and 9 above.

To prove the sufficiency, let a? : X -^ X be the universal
(1-connected) covering of X. Then, the connected components of
o?~1 (L^) and a?"1 (A^) define two partitions of X which are easily
seen to satisfy on X the conditions 1°, 2°, 3°. (Particularly, the
latticed maps on X are lifts of latticed maps of X). For the leaves of/^
these partitions on X and X, we shall always consider the leaf
topologies which can be introduced in view of proposition 5.

Next, the proof of theorem 2 of [6] can be seen to work in our
situation too. The various lemmas needed, which are proved in
[6] for differentiable manifolds, remain true in X. The only detail
to which attention must be paid is the fact that two leaves have a
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totally disconnected intersection and, hence, any continuous map
with connected domain and with values in such an intersection is
constant. In [6] this detail has not been mentioned explicitely
because the mentioned property always holds there.

Hence, applying that theorem of Kashiwabara, we get

X ^ L^ x A^,

where, obviously, L^ and Ay are the universal covering spaces of
some leaves L^, Ay of X, with the leaf topologies. Moreover, the
previous homeomorphism preserves the leaf structure or, equivalently,
the covering transformations of X are compatible with the product/^/ ^^
structure L^ x Ay.

We thus obtained a P.C. structure on X which ends the proof
of theorem 10. It is important to remark that the sufficiency proof
made no use of the conditions that X be metrizable and with countable
basis and fundamental group, which makes this result even more
general.

Theorem 10 suggests to give

11. DEFINITION. - Two P.C. structures on X are called equivalent
if the corresponding partitions of X into leaves are the same for
the two structures.

Then it obviously follows

12. COROLLARY. — The universal covering space of a C.P. space X
is isomorphic to the product of the universal covering spaces of
two arbitrary leaves of different types of X. The equivalence classes
of P.C. structures of X are in an one-to-one correspondence with
the isomorphism classes of decompositions of its universal covering
space X into products compatible with the covering transformations
ofX.

13. CONVENTION. — From now on, a C.P. space will be understood
as a pair consisting of a space X as in definition 1 and an equivalence
class of P. C. structures on X.
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2. The topological version of la. L. Sapiro's results.

More results on the geometric structure of C.P. spaces can be
obtained by generalizing the studies of la. L. Sapiro [17-21].

We consider again a C.P. space X in the sense of convention
1.13 and we shall use all the notation of section 1 with the supple-
mentary convention that X is always the universal covering space
of X, whence it follows that the group G is isomorphic with TT (X).

We also recall that G has the associated groups G^ (i = 1 , 2)
acting on Y and Z respectively. In [17], the structure of G is precised
by introducing the groups G^ = q^ (ker q.) (i ^ / == 1 , 2). Then, the
correspondence of section 1, which relates the pairs of G ^ G
induces an isomorphism 0 : G^/G\ -> G^/G^ such that one has

G ^ G = {(g, ,^) E G, x G^/O [g,] = [^]}, (1 )

where the brackets denote classes with respect to G^. In this manner,
one sees that the group G is equivalent to the system (G^., G^ , 6 ;
i= 1 ,2).

In the sequel, we shall need the following fundamental lemma
(which is folklore-type and replaces in our version the lemma V of
[17]).

1. LEMMA. — Let S be a connected locally path-connected and
semi-locally 1-connected topological space, G be a group of homeo-
morphisms acting properly discontinuous on S and H an invariant
subgroup of G. Then, the natural bijection ( S / H ) / ( G / H ) w S/G is
a homeomorphism.

Proof. — The existence of this bijection requires only a technical
verification, which is given in lemma IV of [17]. In order to see
that one has a homeomorphism, we first remark that H is acting
properly discontinuous on S, which defines the regular covering
map pi : S -> S/H with covering group H. Next, S/H is connected
and G/H acts properly discontinuous on S/H, which defines a regular
covering map p^ '. S/H -> (S/H)/(G/H) whose covering group in G/II.
Since S and hence (S/H)/(G/H) are semilocally 1-connected, p ^ o p ^
is also a regular covering map and one sees that its covering group is
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G. The investigated map is just the identification of the base space
of p ^ o p ^ w1^ ^/^' hence it is a homeomorphism. (For details
regarding covering spaces see for instance [22]).

Remark. — Lemma 1 remains valid if the hypothesis that S is
semi-locally 1-connected is replaced by the hypothesis that so is
S/H or (S/H)/(G/H).

Now, in order to obtain the topological version of Sapiro's
main theorem we give.

2. DEFINITION. - The C.P. space X is called regular if on X =Y x Z
there is at least one point (Jo»^ which is not a fixed point of
any nonidentical transformation of G^ x G^.

One obtains now the following main theorem :

3. THEOREM. — Let X be a regular C.P. space. Then there are point
XQ^ X such that one has a leaf-preserving homeomorphism

X ^ L Q C o ) x A ( X o ) / ^ ,

where L (Xg), A (XQ) denote the leaves through XQ with the corres-
ponding leaf topologies and ^ is a group of homeomorphisms
acting properly discontinuous on the product of these leaves and
which is isomorphic to

7T (X , Xo)/n (L (XQ) , XQ) X 7T (A (^o) , XQ>.

Also, ^ is compatible with the product structure and induces on
L (Xo), A (XQ) groups which are isomorphic to G^G\ (i = 1 , 2).

Proof. — The proof is exactly the same as that given by Sapiro
[17] for the case of reducible complete Riemannian manifolds and
it goes on the following lines. The universal covering space of X
being X = Y x Z, one has X^ Y x Z/G. Now, let (y^ , z^) E Y x Z
be a points un-fixed by all the nonidentical elements of G^ x G^;
such points exist in view of the regularity of X in the sense of defi -
nition 2. Consider XQ = p (YQ , z^) and

L (JCo) = P (Y x {Zo}), A (xo) == p ({y^} x Z).

Since g^y^ ^ y^ if id. ^ ̂  e G^ and g^ ZQ ̂  ZQ if id. ^ g^ E G^, it
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follows that the covering map p i [y^ x Z has a covering group which
can be identified with G^ and, similarly, pl\ x {z^} has the covering
group G\. Next, it is easy to see that G[ x G^ is an invariant subgroup
of G. Hence, the announced homeomorphism follows from lemma 1
by taking there S = Y x Z (which is a 1-connected space), G=G and
H = G[ x G\. All the other assertions of theorem 3 follow by technical
verifications.

The previous theorem suggests the consideration of

4. DEFINITION. - Let X be a C.P. space. Then, any leaf-preserving
homeomorphism

S : X ^ L x A/^, (2)

where L and A are connected locally path-connected spaces and
^ is a group of homeomorphisms acting properly discontinuous
on L x A, compatible with the product structure and with associate
groups ̂  = ^2 = id., is called a presentation of X.

In the case of such a presentation, one obviously has that the
isomorphism 0 of (1) is an isomorphism of the induced groups
^p 4^ and one has 4^ ^ 4^ ^ ^.

Let X be a C.P. space and ^ a leaf-preserving homeomorphism
of the form (2), with a properly discontinuous group ^ of homeo-
morphisms. Denote again by X the universal covering space oiX
with the group G. Then, one has the following important result.

5. LEMMA. — The homeomorphism (2) is a presentation if and
only if the fundamental groups of L and A are respectively isomorphic
to G\ and G\.

Proof. — Consider the homeomorphism (2) and denote by
^ : L x A -> X the associated covering. Since this covering is regular
with covering group ^, one has [22].

^ ^ 7r(X ^ (/^ , \))/^ TT (L x A, (/^, \)). (3)

Now, let L, A be the universal covering spaces of L and A.
Since X is semilocally 1-connected, one gets, by using the homotopy
covering property of ^ and the discretness of its fibres, that Z. x A,
hence L and A are also semilocally 1-connected. Hence, L and A are
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1-connected, L x A is the universal covering space of X, and G
appears as the covering transformation group of this space.

Then, if we denote by T, (i = 1 , 2) any groups which are
respectively isomorphic with TT (L), TT (A), the relation (3) becomes

^ ^ G/TI x T^. (4)

But, it follows by a technical verification that the isomorphism
(4) induces isomorphisms

^G^.^G^/T,, (5)

which proves the announced lemma.
The result given by lemma 5 has been proved for the reducible

complete Riemannian manifolds in [171, by using the respective
metrics, and it has been used to obtain a uniqueness theorem for
presentations, which is valid in the topological version too. Namely :

6. THEOREM. — Let ^ and $* be two presentations of the C.P.
space X and denote with a star all the elements of ^*. Then,

L ^ L* , A ^ A* , ̂  ^ ^*

and the induced groups act compatibly with these homeomorphisms.

Proof. - Like in the proof of lemma 5, we get two universal
covering spaces L x A and L* x A* of X. From the equivalence
of these two coverings one gets L ^ L*, A ^ A*, G ^ G*, whence,
by the previous lemma, T .̂ ^ T?. It follows L ^ L*, A ^ A* and,
by formula (4), ^ ^ '^*, which proves the theorem.

By theorem 3, every regular C.P. space has a presentation and
by theorem 6 this presentation is essentially unique. Moreover,
there are always points XQ G X such that L (Xg) ^ L and A (x^) ^A.
In this manner, for a regular C.P. space one can use either universal
coverings or presentations as representatives of the corresponding
class of P.C. structures.

Let us also mention that the definition of the regularity has
v

not been explicitely given by Sapiro, but in his case, of the reducible
complete Riemannian manifolds, Sapiro proved that regularity
always holds. (For the same case, see also the results ofWang [24]).
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As for the possible non-regular C.P. spaces, one can again
apply that part of the proof of theorem 3 which consists in factorizing
by G[ x G\ and this provides again a presentation of the space,
but the presentation covering space will be, generally, the product of
some covering spaces of leaves and not of leaves as in theorem 3.
Since we don't know very much about those covering spaces, we shall
use presentations only in the case of regular C.P. spaces.

Let us also indicate the topological version of some of the other
results of Sapiro [18].

7. DEFINITION. - Let X be a C.P. space and x E X. Then L (x) is a
regular leaf if L (x) = p (Y x {z^}) where g^ ZQ ̂  z^for id. ^ g^ G G^.
In the contrary, L(x) is nonregular. Similar definitions hold for
A (x). If both L(x) and A (x) are regular, X is a regular point (and
one can apply theorem 3 with XQ •= x).

The notion is important since, if LQc) is a regular leaf then,
coming back to the reasoning in the proof of theorem 3, we have
that G[ is the covering group of p/Y x {z^} and if we factorize the
universal covering space of A" by G[ x id. we get a covering space
of X which is of the form L (x) x Z.

As shown in [18], if X has the presentation (2), we could use
in definition 7 the covering map ^ instead of p. In this case, every
leaf L(x) (A (x)) is covered by L (A), the regular leaves being those
for which ^ induces a homeomorphism. Hence, all the regular leaves
of the same type are homeomorphic and they cover the nonregular
leaves.

The fact that all the leaves of a given type have homeomorphic
covering spaces can be considered as a global stability property of
the kind encountered in the theory of foliations [14]. Another
connection with this theory has been considered- in proposition
VII of [18]. Namely, in the present version, we shall have

8. PROPOSITION. — Suppose that the leaves L ̂ satisfy the definition
of a regular foliation as given by Palais [13] and that all the non-
identical elements of G^ have, at most, a set of fixed points with
empty interior. Then, G^ acts properly discontinuous on Z and the
leaves L^ are regular in the sense of definition 7. Conversely, if
G^ acts properly discontinuous on Z, the "foliation" L^ is regular.
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Proof. — Let XQ = p Q^o»^o) ^ ^ anc^ ^ U be a regular neigh-
bourhood of XQ in the sense of [131. One may suppose that there
is a neighbourhood U = A x B of ( y ^ , Zg) in X which is sent homeo-
morphically by p onto U. Now, if B H g^ B -^ 0 for some ^2 e= G^,
it is easy to see that every point of this intersection is fixed for
g^ and, since this intersection is open, it follows from the hypotheses
that g^ = id. This proves the first part of the proposition. For the
second part, we start with B and construct U such that the relation
considered above between them holds ; then U will be a regular
neighbourhood.

Other interesting results are :

9. THEOREM. - Let X be a regular C.P. space. Then, the number
of intersection points of two regular leaves of different types is
equal to the order of the covering transformation group of a presen-
tation of X.

The proof is that of proposition IV of [18].

10. DEFINITION. — If X is a regular C.P. space, a leaf of X is called
completely nonregular when, considering a presentation of X as in
theorem 3, the covering leaves of that leaf of X remain unchainged
by all the transformations of .̂

11. THEOREM. — Let X be a regular C.P. space and L^ be a
completely nonregular leaf of X. Then X is a locally trivial fibre
bundle with base space L^, fibre A and structure group ^3.

The proof is that of proposition VI of [18].

3. Miscellaneous complementary topological remarks.

A. It is obviously interesting to have a convenient notion of a
morphism of C.P. spaces. Following §apiro and Zukova [21], we
shall consider in our version :

1. DEFINITION. — Let X, S be two C.P. spaces. By a morphism
between them one understands a continuous map f : X -> S which
carries leaves of the same type of X to leaves of the same type of S.
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//, moreover, X and S are regular and f sends one regular point of X
to a regular point of S, f is called a regular morphism.

We already met such maps in the previous section. Here, we
want to give one more characterization of morphism s by

2. PROPOSITION. — Let f : X -^ S be a morphism of C.P. spaces.
Then f has a lift to the universal covering spaces of X and S and
this lift is compatible with the corresponding product structures.
If f is a regular morphism, it has a similar lift to the presentation
covering spaces which are products of leaves.

Proof. - Let p : Y x Z -> X, q : P x Q -^ S be the universal
coverings of X and S and G, r be the respective covering transfor-
mation groups. The existence of a lift / : Y x Z - ^ P x Q such
that fp =qf is^ obvious from the lifting properties of coverings.
To show that / is a product map, let ( y ^ , z) G Y x Z (;' = 1 , 2).
Then p ( y ^ z ) belong to the same leaf L^ of X, hence f p ( y ^ z )
belong to some precised leaf F of S which, for instance, may also be
supposed of the first type. It follows f ( y ^ , z) G q~1 (F) = P x 1̂  (^o)
for some QQ G Q and, since f^y^, z) belong to the connected set
7(Y x {z}), one must have /b^., z) = (p,, ̂ ) C = 1 , 2j^ GQ).
Hence, we obtain a continuous map/2 : Z -^ Q defined by^^^^r
Similarly, a continuous map/^ : Y -> P will be obtained and/ = /i x f^
which proves the first assertion or the proposition.

We remark that the universal character of the coverings p , q
has been used only to show the existence of /. Hence, for every
coverings for which / exists, the second part of the proof applies
and one gets that / is a product map.

It follows that, in order to prove the second part of the propo-
sition we must prove only the existence of the desired lift.

Let ^ = L x A -> X and I J L ' '. A x B -> S be presentation coverings
of the regular C.P. spaces X and S, and let p, q be the corresponding
universal coverings as above. As shown in section 2, one can identify
L and A with leaves of X and Y, Z with the universal covering
spaces of these leaves, and similarly for A, B, P, Q. Moreover, suppose
that L and A are the leaves through the regular point XQ and A, B
through the regular point /(x^). By lemma 2.5, it follows that

7T (L) ^ GpTT (A) ^G^TT (A) ^ r[ , 7T (B) ^ 1̂

and, of course, TT (X) ^ G, TT (S) ^T.
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Now, one sees that, by these isomorphisms, the monomorphisms
^: TT (L x A) -^ TT (X), jLi^:7T (A x B) -^ TT (S) correspond to the inclu-
sion maps G\ x G^ C G, F[ x F^ C T. Also, the induced homo-
morphism /^ : TT (X) -> TT (S) corresponds to some homomorphism
/* : G -^ r. Since / is leaf preserving, we get f^ (G[ x G^) C F\ x F^
hence, equivalently (f^)#^ (L x A) C jn^ TT (A x B). Then, from the
well known lifting property of the coverings [22], it follows that/
has a lift / : L x A -> A x B, which ends the proof of the proposition.

Moreover, in just the same way, it follows that every morphism
of C.P. spaces admits a product lift to general presentation covering
spaces of the given spaces (i.e. which may not be products of leaves).

Remarks 1). Clearly, if / : X -^ S is a map of C.P. spaces
which admits a "product-type" lift to any of the P.C. structures
defining X and 5, / is a morphism in the sense of definition 1.

2) Let / : X -> S be a regular morphism and ^, x Ihe groups
associated to presentations of X and S as in theorem 2.3. Then,
in view of the structure of ^ and x as given by the same theorem 2.3,
one gets an induced homeomorphism f^ : ^ -> \ which is compatible
with the actions of ^ and \ on the spaces of the presentations.
Now, one can deduce that the regular morphisms / : X -> S may
be identified with morphisms of triples f^ : (L , A , ̂ ) -> (A, B, x).

B. At the second place, let us briefly indicate the sources
which could provide information about the homotopy and the
homology of the C.P. spaces.

A first such source is the classical result that, for every covering
map p : X -' X vhere X is connected and locally path-connected
and X is connected, the induced homomorphisms

P# : 7T^ (X , X) ̂  7^ (X , X) (p (.?) = X)

are isomorphisms for n > 2 and monomorphisms for n = 1. If
we use again the notation of the previous section, we have

3. PROPOSITION. -// X is a C.P. space and if L^, A^ are t\^o
arbitrary leaves of different types, then - n ^ ( X ) ^ TT^ (L^) ® TT^ ̂  )
(n>2).



ON SOME SPACES WHICH ARE COVERED BY A PRODUCT SPACE ] 23

4. COROLLARY: - If X is a C.P. space and if at least one leaf
of each family is an Eilenberg-Mac Lane space K (^ , 1) (;'= 1,2),
then X is an Eilenberg-Mac Lane space K (TT^ , 1), where TT^ ® TT^
is some subgroup of TT.

5. COROLLARY. — // the universal covering space X has finitely
generated singular homology groups, then, for n > 2, TT^ (X) are
finitely generated and the groups T^ (X), TT^ (L^) determine the
groups TT^ (A^).

In fact, this follows from proposition 3 and from some results
of Hilton [4].

Next, in order to get homology (cohomology) information for
our spaces, one could use the known spectral sequences of a covering.
For instance, for the homology of the C.P. space X, there will be a
spectral sequence such that E2 ^ H (G , H (Y x Z, .)). These
groups depend on the action of G .̂ (; == 1 , 2) on the homology
of Y and Z, since the homology of Y x Z can be calculated by
the Kunneth formula. E.g., in this way it follows that whenever G .̂
acts trivially on the homology of Y and Z respectively, G acts trivially
on the homology of Y x Z.

Some other information can be obtained by the use of the
following commutative diagram

X

P / \° (0
X—^B = (Y/Gi) x (Z/G^)

where a is the canonical projection and r is continuous since p is
open. The desired information can be obtained via the following
proposition :

6. PROPOSITION. — Consider the diagram (1) and suppose that
the trajectories of G^ (i = 1 , 2) define on Y and Z equivalence
relations having Godbillon's homotopy prolongation property [3].
Then, the fibres of r define on X an equivalence relation \\?hich also
has the homotopy prolongation property. Particularly, if a of (1)
is a Serre fibration, r is a Serve fibration too.
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Proof. - Only a technical verification using the definition of
[3] and the lifting properties of the covering map p is needed.

Now, if the hypotheses of proposition 6 are satisfied, the
homotopy and homology groups of X enter in some exact sequences
and spectral sequences as shown in section IV 2 of [3] and which we
do not write down here. E.g., in view of theorem III 3.3 of [3]
this in the case if G, act without fixed points on Y and Z.

Of course, a diagram similar to (1) can be constructed for a
presentation covering of X and similar results hold for that diagram
too.

C. Finally, we shall consider an application of the developed
theory for the topological groups.

Hence, let X be a C.P. space which is a topological group. Let
us suppose that the corresponding universal covering space X = Y x Z
with its natural group structure is the product of two topological
groups V and Z. Then, we call X a C.P. topological group.

In this case, one derives easily that, if e is the unit of the group
X, the leaves L (e), A (e) are permutable subgroups of X and the
leaves L^ are obtained from LQ?) by translations with elements
of A (e) and A^ are obtained from A (e) by translation with
elements of L(e).

Now, let X be a topological group satisfying the topological
conditions of definition 1.1 and let e be its unit. Let us suppose
that there are two topological subgroups L (e), A (e) of X which
are connected and satisfy the following conditions : a) the two
subgroups are permutable and have a totally disconnected inter-
section, b) every x E X has at least one decomposition of the form
x = / X, / E L (e), X E A (e), c) for some open connected neigh-
bourhood U of the unit e, there are the open and path-connected
neighbourhoods A, B of e in L (e), A (e) respectively such that the
map (a , b) --> a b (a E A , 6 E B) is a homeomorphism, of A x B
onto U.

Then, it is easy to see that, by translating L (e) (A (e)) with
elements of A (e) (L (e)), one gets two partitions of X which satisfy
the three conditions of theorem 1.10. The distinguished neigh-
bourhoods of e are obviously defined by U in view of the homeo-
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morphism given by condition c) above, and the distinguished neigh-
bourhoods of an arbitrary x G X are defined by x U since this
neighbourhood is homeomorphic to / A x X B where x == / X. As
for the latticed maps, if x (a) and x ' (r) are two paths beginning
at XQ = IQ \o, in the leaves through this point, then

f ( a , T ) = x ( a ) \ ^ l ^ x ( T )

defines the corresponding latticed map.
It follows that, under the above conditions, X is a C.P. topological

group and if, moreover, e is a regular point for the corresponding
P.C. structure, one gets by theorem 2.3 a presentation of X given
by the product L (e) x A (e).

4. Applications to differentiable foliations.

If the theory of the previous section is applied to differentiable
manifolds, one gets (in a slightly generalized version ) the results

v
of Kashiwabara and Sapiro.

Thus, suppose that X is a finite or infinite dimensional connected
C^manifold (r = 0, . . . , oo or real analytic) with a P.C. structure in
the sense of section 1 and with the universal covering p : Y x Z -> X.
Then, X = Y x Z has a canonical (T'-structure which makes p a
C^covering map. Now, suppose that the following supplementary
conditions are satisfied : Y and Z are C^-manifolds and the canonical
C^-structure of X is C^-equivalent to the CY-product structure Y x Z.
In this case, X will be called a C.P. manifold of class C^. Then, the
covering transformation group G is a group of C^-homeomorphisms
and it follows easily that the leaves of X are submanifolds and
that they define two complementary exfoliations on X, i.e. a C1' -local
product structure. Hence, X is a locally decomposed C''-manifold
with latticed maps in the sense of Kashiwabara [6]. In this case,
by the proof of [6], theorem 1.10 is valid and gives necessary and
sufficient conditions for A" to be a C.P. manifold. Moreover, in
theorem 1.10 it suffices now to ask that latticed maps exists for
paths of the class C1' only.

In [6], it is shown that these conditions hold, for instance,
in the case of reducible complete affinely connected, Finsler and
Riemann manifolds.
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Next, if a C.P. manifold is regular in the sense of definition
2.2, we get, by theorem 2.3 a topological covering presentation
which can easily be seen to be a C^-covering presentation. The essential
result of S^piro [17] is just that a reducible complete Riemann
manifold is regular, and in this case the (^-covering presentation is a
Riemannian covering. Also, in [19], it is shown that C.P. manifolds
with regular foliations are regular in the sense of definition 2.2.

Finally, we remark that the previous theory applies also to
complex analytic manifolds, in which case the theorem of Kashiwabara
gives again that X is diffeomorphic to Y x Z. But, from the construc-
tion of this diffeomorphism as given in [6] and using a lemma of
Kobayashi-Nomizu [8, Section IX. 8] it follows that, actually, X is
holomorphic with Y x Z.

In the sequel, we want to use the theory of C.P. manifolds
in order to obtain in a new manner the results of Reeb [13] and
Conlon [1] on some particular class of differentiable foliations.
For the notions and notation regarding foliations we send to [14],
[1 ]and [23].

Let X be a connected finite dimensional paracompact diffe-
rentiable manifold and ^fi a foliation of codimension q on M, where
q < m = dim X. For the sake of simplicity, differentiability will
always be assumed C°° although it would be sufficient to take it
Cf' with r > 2. Let T (X) be the tangent bundle of X, E the tangent
bundle of ^ and Q = T (X)/E the normal (transverse) bundle. We
agree to call foliate elements on X all the elements (functions, vector
fields, forms, bundles, etc.) which depend only on the leaves of°^ ,
which means that, if

a= {UQ ,xa,xu}(a= 1 , . . . , q ,u= q 4- 1,. . . , m)

is an adapted atlas of ^ on X in the sense that, in QL ̂  is given by the
local equations dxa = 0, then the respective elements depend locally
on the ̂  only [23].

Following [I], we consider

1. DEFINITION. — ^ is called an e-foliation if Q admits q global
foliate cross sections Z^ . . . , Z which are independent at every
point of X //, moreover, ^ admits a Haefliger cocycle whose derivative
is the unit element of Gl (q , R),^ is called a strong e-foliation.
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In the sequel, it is useful to choose a complementary subbundle
of E in T (X) and to identify this subbundle with Q. Then, with
respect to the atlas QL above, E has the local bases {X^ = 9/9 x"}
and Q has local bases of the form {X^ = 8/3 x0 - ̂  X^}, where
^ are some locally defined functions with a suitable transformation
law [23].

Now,, if ^ in an ^-foliation, Z ^ , . . . , Z of definition 1 are
identified with vector fields on X which can be locally expressed as

Z , = ^ X , ( a , & = 1 , . . . , ^ ) , (1)

and the fact that they are foliate means just that [231

X,^=0. (2)

If all the vector fields belonging to the real linear space generated
by {Z^} are complete (i.e. define global 1-parameter groups of
diffeomorphisms on X), ̂  is called a transversely complete e-foliation
[1].

As for strong ^-foliations, the condition of definition 1 means
just that there is an adapted atlas QC such that the vector fields Z^
above are given locally by

Z,=X,. (3)

The following proposition provides a simple characterisation
of the considered foliations in terms of differential forms.

2. PROPOSITION. — ^ is an e-foliation if and only if it is defined
by a system

d^ = 0(a= 1 , . . . , ^ ) , (4)

where a?0 are globally defined independent Pfaff forms on X such
that

d^ = ̂ , ̂  A c^ (a, b . c = 1, . . . , q\ (5)

for some globally defined functions ^.^ is a strong e-foliation if
and only if it is defined by a system (4), where the forms a?0 are
closed.
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Proof. - If ^ is an ^-foliation with the structure defined by
(1), we define o^ by the conditions

^(Z,)= S^.G^X^O,

which, because Z^ are globally defined, define globally the forms
a?0. Namely, one gets a?0 = ̂  dxb where ^ ̂  = §^, which implies
X^ jn^ = 0, and, from these relations, (5) follows immediately. If,
moreover, ^ is strong we have (3), whence locally (^a = dxa and
this forms are closed.

Conversely, let ^ be given by (4) and (5). Consider the dual
cobases of (X^ , X^ which are easily seen to be (dxa , 0" = dxu + ^ dx")
and define \ by o^ (Z^) = 5^, 0" (Z^) = 0. It follows easily that ^is
an ^-foliation with the structure defined by Z^. If a?0 are closed, we
have locally c^ = dxa whence (3) and ^ is a strong ^-foliation.

Clearly, condition (5) means just that c^ are foliate forms.
Let us now discuss the application which we have in mind.

The main part of this application consist in the following result of
Conlon [1].

3. THEOREM. — Let X be a compact manifold and ^ a strong
e-foliation of codimension q on X. Then, the universal covering
manifold X of X is diffeomorphic with L x R/7, where L is an
arbitrary leaf of^.

Proof. — The main step is to prove this theorem for q == 1.
In this case it suffices to ask ^ to be an ^-foliation and iff is defined
by a closed Pfaff form a?. The result has then been proved by Reeb
[14] and we prove it here again, by using, this time, the theorem
1.10 of Kashiwabara.

Namely, let Z be the foliate vector field attached to S1 like in
the proof of proposition 2. It clearly exists then an adapted atlas QL1

on X, with local coordinates (y , x") (u = 2, . . . , m) such that one
has locally

G; = d y , Z = a/a y (6)

and it follows that exp (t Z) are diffeomorphisms of X which send
leaves of ^ to leaves of §?. Moreover, since X is compact, ^ is
transversaly complete and exp(fZ) make up a group.
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Now, the atlas Cl' shows that X is a locally decomposed manifold
and we shall also see that it has latticed maps. In fact, let PQ E X
and let L be the leaf of ^ and T the trajectory of Z through pp-Then,
let a (a), b (r) (a , rE [0 , 1]) be paths in L, T respectively, beginning
at PQ. We devide [ 0 , 1 ] by points 0 = TQ < r^ < . . . < r^ = 1 such
that & (T,._i T .̂) 0' = 1, . . . , n) belong to some coordinate neigh-
bourhood of OL1 and b is given there by (y (r), x" (^o)). Next, we
introduce the functions

/(a , r) = [exp (y (r,) - y (r,_i)) Z] a (a) (a G [0 , 1 ] , T G [r,_i , r,])

and glue them up such that to get a continuous function on [0 , I]2.
It is simple to verify that the obtained function is just the latticed
map looked for.

Hence, by the differentiable version of theorem 1.10, we get
X ^ L x R, where L is the universal covering space of L and the
real line R appears as the universal covering space of the trajectory
T of Z.

We also make the following important remark : the previous
proof and result are valid if the assumption that X is compact is
replaced by the assumption that g? is transversaly complete.

Suppose now that theorem 3 is valid for codimension q — 1
foliations and let ^ be a ^codimension q strong ^-foliation on X
given by the equation a?1 = 0, . . . , ̂ q == 0, where a?1,. . . , c^ are
closed Pfaff forms. Denote by ^ the strong ^-foliation of codimension
q — 1 on X defined by a;1 = 0, . . . , a/7"1 = 0. By the induction

f^ut /^ /^/

hypothesis, we get X ^ L x R^"*, where L is the universal covering
space of the leaf Z/ o f ^ ' . Obviously 0 ^ = 0 induces on L9 a trans-
versaly complete ^-foliation of codimension 1 whose leaves are
leaves of ^ and, consequently, we have I/ ^ L x R, where L is
a leaf of ^ . Hence, X ^ L x R^ and theorem 3 is proved.

A similar result does not hold for e-foliations of an arbitrary
codimension, but, as it is shown in [I] , such a result holds for
^-foliations of codimension 2. We send also to [1] for the discussion
of the relation between codimension 1 ^-foliations and the foliations
without limit cycles of Novikov [12], where the universal covering
space is homeomorphic to L x R. Namely, a Novikov foliation is
an e-foliation with respect to another differentiable structure of
the manifold.
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4. COROLLARY. — I f X is a compact manifold and ^ a strong
e-foliation on X, ifi admits a complementary transverse^ foliation.
Also, X has a covering space of the form X ^ L x Rq or X ^ L xTq,
where Tq is a q-dimensional torus and L is a leaf of % All the leaves
of ^ are diffeomorphic.

Proof. — Indeed, following step by step the induction process
of the proof of theorem 3, we see that the covering transformation
group G acts on L x R^ compatible with the product structure, so
that G induces G^ on L and G^ on Rq. Hence, X is a C.P. space
and, if we consider the projection p : X -^ X, the transverse foliation
is defined by p ({ /} x R^) (/ G L).

Next, with the notation of theorem 3, the foliation L x [t]
(re R^) is defined on X by p^ c^ = 0 (a = 1, . . . , q) and, since
this are closed forms and X is 1-connected, we can choose the
coordinates ta m R^^ such that p * c^ = dta. Since these forms are
invariant by G^, it follows that G^ acts on Rq by translations and,
consequently without fixed points. In this case, it is known from
section 2 that G' (defined as in section 2) is the covering group of^ ip / L x {t} and we can factorize_ the universal covering by G^ x id
which provides the covering X w L x Rq. Then, if G^ =^ id. we
can further factorize through id. xG^ and get a covering X^ L x T7.

Finally, from the form of X it follows that the fixed leaf L
covers all the leaves of ^ and since L was arbitrary we immediately
obtain that all the leaves are diffeomorphic.

Similar considerations can be made for ^-foliations of codi-
mension 2 [11. Moreover, based on the above mentioned results,
Conlon [1] and Meyer [11] derive many interesting consequences
involving the fundamental groups of X and L and which generalize
similar results of Novikov [12] for the case of the codimension 1.

As another corollary of theorem 3, we can obtain a part of the
Cheeger-Gromoll-Lichnerowicz theorem [10] mentioned in the intro-
duction. Namely :

5. COROLLARY. — Let X be a compact Riemannian manifold
which has the Lichnerowicz tensor 00 [10] and let k be the
greatest first Betti number of the compact covering spaces of X.
Then the universal covering space X of X is diffeomorphic with
a product space L x Rk.
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Proof.—Let X be the compact Riemannian covering space of
X with &i (X) = k. Then A" has also 0_Q and, from results of
[10], every nonzero harmonic 1-form on X vanishes nowhere.

_It follows that, if one takes k independent harmonic 1-forms
on X, they define a strong ^-foliation of codimension k and theorem
3 applies. This proves the announced corollary. But the theorem of
[10] is stronger : it gives also that L is compact and that X is
isometric to Lx R^.

Finally, it would of course be interesting to have results like
in theorem 3 for the complex analytic case. In this case, the diffi-
culty consists in the fact that generally there is no complementary
analytic subbundle of the foliation, since an exact sequence of the
form

0-^ E ^ T ( X ) ^ Q^ 0 (7)

where T (X) is the complex analytic tangent bundle of the complex
manifold X and £, Q are complex analytic vector bundles on X,
does not split analytically.

But, let us define complex analytic strong ^-foliations ^ on X
to be complex analytic foliations such that : i) they are defined
by a system (^a = 0 (a = 1, . . . , q), where c^ are closed holomorphic
1-forms everywhere independent on X, and ii) the tangent bundle
E of ^ admits an analytic complementary tangent bundle. Then,
we get

6. THEOREM. — Let X be a compact complex analytic manifold
and ^ a complex analytic strong e-foliation of complex codimension
q on X. Then, the universal covering manifold X of X is holomorphic
with L x Cq where L is an arbitrary leaf of§i.

Proof. — Consider first q = 1. Then, choosing an analytic
transverse vector field of ^ we get on X a complex analytic reducible
structure. Since ^ is a real strong ^-foliation of codimension 2 on X
we can apply theorem 3 whence we deduce the existence of latticed
maps on X. Finally, with the remark at the beginning of this section
regarding the theorem 1.10 in the complex analytic case, we deduce
the result given by theorem 6.
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Now, the passage to an arbitrary codimension q will be obtained
just like in theorem 3, which ends the proof of theorem 6.

We shall also remark that one can remove the condition if)
of the definition of the strong ^-foliations for complex analytic
manifolds X for which every exact sequence (7) splits analytically.
In this case, we call X a tangentially splitting complex analytic
manifold. But the existence of compact tangentially splitting manifolds
remains to be discussed. Thus, it is well known that (7) splits if
and only if some obstruction which is a cohomology class in
H1 (X , Sl (Horn (Q , E))) vanishes. By representing this obstruction
by differential forms, one sees that it can be reinterpreted as a class
in H1 (X , n (Horn (T (X) , T (X)))). Hence, the vanishing of this
last cohomology space is a sufficient condition for X to be
tangentially splitting. Now, other sufficient conditions can be looked
for, if X is a compact Kahler manifold, using the theory of harmonic
forms and a well known method of Bochner. These conditions
will be expressed in terms of the curvature of the Kahler metric
of X.
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