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THE LEVI PROBLEM
FOR DOMAINS SPREAD

OVER LOCALLY CONVEX SPACES
WITH A FINITE DIMENSIONAL
SCHAUDER DECOMPOSITION (slt)

by Martin SCHOTTENLOHER

Introduction.

In this article it is shown that for certain locally convex
Hausdorff spaces E over C with a finite dimensional
Schauder decomposition (for example for Frechet spaces with
a Schauder basis) the Levi problem has a solution, i.e. every
pseudoconvex domain spread over E is a domain of exis-
tence.

The Levi problem for infinite dimensional spaces has pre-
viously been investigated for less general situations by several
authors (cf. list of references). Their common method is the
following: For a suitable sequence (rrj in a pseudoconvex
domain Q c E with the property that the cluster points
of (x^) are dense in the boundary ^Q. of Q, an analytic
function /*: 0, —> C is constructed which is unbounded on
sufficiently many subsequences of (^). Non-schlicht domains
have been studied in a similar manner (cf. [10]).

A different method is presented in this paper. We show that
a pseudoconvex domain Q. spread over a metrizable, locally
convex space E with an equicontinuous finite dimensional
Schauder decomposition (cf. Section 2 for the definition)
has a strong convexity property which is expressed in terms

*) This article constitutes a part of the author's « Habilitationsschrift », cf. [311.
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of suitable subalgebras (namely « regular classes », cf. [26])
of the algebra 0(0.) of all analytic functions on ti. A cha-
racterization given in [26] implies that Q is a domain of
existence. Similar to [5], where only schlicht domains are
considered, the result extends to non-metrizable spaces E
which satisfy certain countability conditions, for instance
it extends to hereditary Lindelof spaces with an equiconti-
nuous finite dimensional Schauder decomposition. In particu-
lar, a pseudoconvex domain spread over a Silva space (called
« LS-Raum » in [6]) with a finite dimensional Schauder
decomposition is a domain of existence.

The method presented here also provides a tool to prove
an approximation theorem of the Oka-Weil type for pseudo-
convex domains, thereby generalizing and strengthening
results of Noverraz [20]. Moreover, we prove that a pseudo-
convex domain spread over a Frechet space (resp. a Silva
space) with a finite dimensional Schauder decomposition is
holomorphically convex.

The Levi problem remains unanswered for arbitrary sepa-
rable, locally convex spaces since a Banach space with a
finite dimensional Schauder decomposition has the bounded
approximation property, and not every separable Banach
space has the bounded approximation property (cf. [7]).
For the non-separable case counterexamples are known
(cf. [13]).

I want to thank R. Aron, V. Aurich, G.Katz, C. 0. Kiselman
and Ph. Noverraz for many fruitful discussions and valuable
suggestions.

0. Notations and Preliminaries.

Throughout this paper let E be a locally convex Hausdorff
space over the field C of complex numbers. The set of non-
trivial continuous seminorms on E will be denoted by
cs(E). For a e cs(E), y e E and r > 0 the a-fcaH with
radius r and center y is B^(y, r) == {x e E\(x.{x — y) < r},
and the line segment of length r in the direction of a e E
is D^y; a, r ) = {y + Xa]X eC , \\\ < r}.

A domain spread over E is a pair (Q, p) where Q is a
connected Hausdorff space and p : Q -> E is a local homeo-
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morphism. If p is injective, the domain (t2, p) is called a
schlicht domain. For short, we often write Q instead of
(Q, p) for a domain spread over E although p is the
essential part of the pair (t2, p) and many properties depend
on the particular projection p : ^1 —> E.

For a fixed domain (Q, p) spread over E the distance
functions d^ : £1 -> [0, oo], a e cs(E), and

SQ: a x E-> ]0, oo ]

are useful to describe local and global geometric properties
of (0, p). They are defined as follows :

^{x) === ^P {r > 0| There exists a connected neigh-
borhood U of x such that p\ U : U —^ B^{px, r) is
a homeomorphism} u {0} for x e Q, and

8Q(rc, a) == sup {r > 0[ There is a connected D <= Q
with x e D such that p|D : D -> Dp:(p^; a, r) is a
homeomorphism}

for (a;, a) e D x E. C?Q is continuous while SQ is in
general only lower semicontinuous. For 0 < r ^ ^o(^)
(resp. 0 < r ^ S^(x, a)) the oc-&aM B^rc, r) in Q (resp.
the line segment DQ(^; a, r) in Q) is defined to be that
component of p-^B^p^, r)) (resp. of R-^DF^P^; a, r)))
which contains .r. For V <= t2 we put

^(V) - inf {^)|rr e V},

and V? = u {B^, 5)|o; e V} if 0 < s < ^(V). d^ and
SQ are related by the following formula :

d^{x) = inf {SQ(^, a)|a e E, a(a) ^ 1}

for x e Q, and a e cs(E).
An upper semicontinuous function v : 0. -> [— oo, oo[

on a domain (Q, p) spread over E is called plurisubharmonic
{psh) if all restrictions of p to line segments in 0. are
subharmonic. (Q, p) is called pseudocowex if — log SQ is
psh on (Q X E, p X ide).

A continuous function f: Q, -> C on a domain (Q, p)
spread over E is called analytic if all restrictions of f to
line segments in ^ are analytic. (P(ti) denotes the algebra
of analytic functions on t2. A function f: Q -> C is ana-
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lytic if and only if for every x e 0. there exist a e cs(E),
r > 0 with r < d^x), and a sequence of continuous n-homo-
geneous polynomials PY(^) : E -> C such that

f{y} = 2 P'/N. {PV - P^) uniformly for y e B^{x, r).
o^^i

A simultaneous analytic continuation (s.a.c.) of a collection A
of analytic functions on a domain (^, p) is a morphism
/ : (0, p) -> (D, p) (i.e. a continuous map / : 0. -> Q, into
another domain (t2, p) with p = p o j) such that

A <= {go/ |ge^)} .

An s.a.c. / of A <= 0{0.) is called maximal if for every
s.a.c. / / of A there is a unique morphism / with / = j o j ' .
There exists always a maximal s.a.c. of A, and it is unique
up to isomorphisms. When A == 0(0.) it is called the envelope
of holomorphy. (Q, p) is said to be an A.-domain of holomorphy
it id^: (0, p) —^ (0, p) is a maximal s.a.c. of A. (Q, p)
is a domain of existence if (t2, p) is an {/*}-domain of holo-
morphy for a suitable fe 0(0.), and a domain of holomorphy
if it is an ^(^)-domain of holomorphy. A domain of holo-
morphy is always pseudoconvex.

Finally, the A.-hull VA of V c: 0 for A c ^P(Q) is defined
by V A = ( V ) ; = { ^ G Q | |/^)| ^ H/lv for all ye A}, where

||/'||v-sup{|^)||^GV}.

1. Permanence Properties.

In this section we first show that for a separable, metri-
zable, locally convex space E the property that every
pseudoconvex domain spread over E is a domain of existence
is inherited by complemented subspaces of E. Then a dual
situation is investigated (following Dineen [3], [4] who
considers only schlicht domains) : Let 9 : E -> F be a linear,
continuous, open surjection of locally convex Hausdorff
spaces. Then the Levi problem for domains spread over E
is studied under the assumption that it can be solved for
domains spread over F.
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The first permanence property is proved with the aid of
admissible coverings and regular classes (cf. [26], [30]).
The definitions and some results which are needed also in
Section 3 are briefly recalled :

1.1 DEFINITION. — A covering 3S of a domain (0, p)
spread over E is called admissible if £1 = \J {V jVeSS} ,
where V is the interior of V, and

1° For U, V e SB there exists always W e 3S with

U u V c= w.

2° For every U e §S tA^re ea;̂  a e cs(E), 5 > 0 ami
V e 3S ^c/i ̂  ^(U) > s and U? c: V.

For an admissible covering SS of Q. we define

A^= {f^=(^W\ ||/1u < oo for all U £ SB}.

Then As^ is a regular class of analytic functions in the fol-
lowing sense: A collection A <= ^(t2), A ^ 0, of analytic
functions on ^ is said to be a regular class if

3 0 X f l e A and P^eA for all X e C . / ' e A . n e N and
a e E, where P^/*: t2 -> C is given by ^ i—^ Pnf{x).a,
x e ii.

4° For each ^ e 0, there is a neighborhood U of x with
l iy i lu < oo for all f e A .

Note that according to a result of Josefson [14] it follows
from condition 4° that ^P(^) is a regular class if and only if
E is finite dimensional.

For an admissible covering 3S of £1 the regular class
As^ is endowed with a natural topology, the topology of
uniform convergence on all sets U e 3S. A^ is a Frechet
algebra when 3S is countable.

1.2 DEFINITION. — Let A c ^(0). Then (t2, p) is called
A-separated if A separates the fibers of p, i.e. if for x, y e t2
with x ^ y and px = py there exists / e A with f{x) ^ f(y)'
When SB is an admissible covering of 0. then (t2, p) is
called A^convex if for every U e 38 there exists a e cs(E)
and s > 0 with d^{\3^) > 0.
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1.3. PROPOSITION (cf. [26], [30]). — Let 3S be a countable,
admissible covering of a domain (0., p) spread over E. Then
Q. is an As^-domain of holomorphy if and only if Q, is As^-
convex and A^-separated.

1.4. PROPOSITION (cf. [26], [30]; see also [17]). — For a
domain (Q, p) spread over a separable^ metrizable, locally
convex space E the following properties are equivalent:

1° D is a domain of existence.

2° Q is an A-domain of holomorphy for a suitable regular
class A.

3° There exists an admissible covering 38 of 0. such that
£2 is As^'convex and K^-separated.

4° There exists a countable^ admissible covering SS of 0,
such that R = {f e As^\ Q is an {f}'domain of holomorphy}
contains a countable intersection of open and dense subsets of
A$g. In particular, R is dense in As^.

Recall that a vector subspace F of a locally convex Haus-
dorff space E is said to be complemented if there exists a
linear, continuous projection 9 : E —>• E with <p(E) == F. E
is then isomorphic to F X ^"^(O).

1.5. PROPOSITION. — Let (ti, p) be a domain spread over
the complemented subspace F of E == F X G(G a locally
convex Hausdorff space over C). Suppose there is an admis-
sible covering 2S of (t2 X G, p X ide) such that Q. X G is
KsQ-convex [resp. A^-separated). Then there exists an admissible
covering SB of 0. such that Q is As^-convex (resp. As^-separa-
fed). SB can be chosen to be countable whenever 28 is countable.

Proof. — For U e 3S let Uo be defined by

Uo == {xe Q|(o;,0) eU}.

It can easily be checked that SB == (Uo)u<=» ls an admissible
covering of ti. Let 0. X G be A^-convex. For every U e SS
there are a e cs(E) and s > 0 with C?QXG(UA^) > s. Let
x e Q. with d^x) ^ s. There exists f e As^ with

11/llu < 1/^,0)1
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since d^{x, 0) ^ d^{x) ^ s. Put f^x) = f{x, 0) for x e 0.
Then ô e A^ and ||/o||u, ^ ||/1|u < \U{x)\ which implies
^(Uo)A^. Hence ^((Uo)^) > 5, and Q is A^-convex.
The separation property can be shown similarly.

1.6. COROLLARY (1). — Let F be a complemented subspace
of a metrizable, locally convex space E such that every pseudo-
convex domain spread over E is a domain of existence. Then
every pseudoconvex domain 0. spread over F is a domain
of holomorphy (resp. a domain of existence when E is sepa-
rable).

Proof. — Let (Q, p) be a pseudoconvex domain spread
over F. Then (Q X G, p X ide) is pseudoconvex over
E = F X G, and thus an {/*}-domain of holomorphy for
a suitable f e C?(0 x G). Since E is metrizable there is a
countable, admissible covering S of 0. x G such that
fe A<g. The corollary now follows from 1.5, 1.3 and 1.4.

The following generalization of 1.5 would be a useful result:
Instead of a product E == F X G and the projection <p :
E -> F consider a linear, continuous, open surjection 9 :
E -> F. To a domain (Q, p) spread over F there corres-
ponds the pull-back (^*, p*), a domain spread over E
which is defined by n* = {(x, a) e Q x E\p{x) = 9(0)} and
p*(x, a) == a, (x, a) e ti*.

Conjecture. — If D* is A^-convex (resp. A^-separated)
for an admissible covering % of Q* then 0. is Agg-convex
(resp. A^-separated) for a suitable admissible covering 9R
of 0 °

A confirmation of the above conjecture for separable Banach
spaces E would answer the Levi problem positively for all
separable Banach spaces, since for every such space F there
exists a linear, continuous surjection 9 : Li -> F and since
Li has a Schauder basis.

Instead of the above conjecture we can deduce certain
continuation properties of ^* from corresponding properties

(1) G. Katz has proved a similar result in his thesis, Rochester, N.Y., 1974.
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of Q(2) which is done already by Dineen in [3] for schlicht
domains (see also Nachbin [18] for more special situations, and
Aurich [1] for the case of E == C^.

We first need a lemma :

1.7. LEMMA. — Let (Q, p) be a pseudoconvex domain spread
over E. Suppose there are XQ e t2 and a e cs(E) with

^o) > 0.

Then SQ(^, a) == oo holds for all x e Q, and a e a-l(0).

Proof. — Fix a e a-l(0) and let Z denote the interior
of {x e tl| SQ(^, a) = oo}. Z ^ 0 since ^o e Z. To prove
the lemma it is enough to show Z = 0. which follows from

(*) DQ(^$ &, () c: Z for all z e Z, b e E and ^ < SQ^, 6).
To prove (*) we choose (B e cs(E) and s > 0 so that
(B(6) - 1, Bj^, 2^) <= Z and 4(y) > 5 for all

y e Do(z; &, t).

Let z' e B^(z, s) and .r e Do(^; a, oo). Then SQ^, b) ^ s
(by [29, 1.7] for instance). Hence x i—>- — log 8jQ(a;, 6),
^ e n^7 ? a? °°)? ls bounded from above and thus a constant
( — l o g 8^ is psh, and a subharmonic function on C which
is bounded from above is a constant). Consequently,
^(•^ b) = S^O^? b) for all x e Do(z'; a, oo), and it follows
(again by [29, 1.7]) that S^, a) = oo for all

y ' eU{B^/ ,5) |yeD^; &,( )} .

Hence Do(z; &, f) <= Z which completes the proof.

1.8. PROPOSITION. — L^< 9 : E —^ F 6e a linear, continuous,
open surjectwn of locally convex Hausdorff spaces over C, and
let (Q, p) &6 a pseudoconvex domain spread over E. Assume
further that there are (B e cs(E) and XQ e 0 wi^/i df^^o) > 0-

1° There exists a pseudoconvex domain (dy, p^) spread
over F and a continuous open surjection 90: Q —> Q.^ with
P = P^ ° ?Q 5ucA (Aa( 9^ separates the fibers of p, and tAe
following universal property is satisfied: For every continuous

(a) We have recently learned that P. Berner has obtained some related results
in his thesis, Rochester, N.Y., 1974.
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map ^ : Q —> Q' into a domain (O.', p') spread over F
w^A p = p' o ^ and ^{x) = ̂ {y) for x, y e 0. whenever
90(^0 == ?Q(2/)? there exists a unique morphism of domains
j : Qy -> Q' w^/i / o cpQ == ^. Hence (tiy, p<p) 15 a quotient
in a suitable category. Also : (Q, p) is isomorphic to the pull-
back of (Qy, py).

2° For every morphism j : £1 —> S m(o a pseudoconvex
domain (S, gr) spread over E (/i<°re em'5t5 a unique morphism
h : (^y? P?) -> (^o? ??) wl^ î! ° / = /y ° 9Q. Hence the fol-
lowing diagram is commutative

n -^o

Moreover, j is an isomorphism of domains whenever j ^ is.

3° Suppose i2y is an A-domain of holomorphy for a collec-
tion A of analytic functions on Q^. Then 0, is an A o <p-
domain of holomorphy, where A o cp == {fo (fQ\fe A}. In
particular, Q 15 a domain of existence (resp. a domain of
holomorphy) whenever Q^ is.

4° Suppose Q.^ is A^-convex (res p. A^-separated) for a
(countable) admissible covering 3S of t2®. T^M Q is Agg-
convex (resp. As^-separated) for a suitable (countable) admis-
sible covering SB of Q.

Proof. — 1° According to 1.7, SQ(^, a) = oo for all ^ e ^
and all a e (P o cp)"1^), in particular for a e 9~1(0). Hence
the relation ^ defined by

x ^ y ^==^ There is a e cp'^O) with y e 'D^{x', a, oo),

for x, y e Q, is an equivalence relation on Q. It is not diffi-
cult to see that ^ is an open equivalence relation and that
the graph of ^ is closed in Q, X ^. Therefore, Q.^ = £11 ^
endowed with the quotient topology is a connected Hausdorff
space, the natural projection <pQ: Q. —> Q.^ is a continuous,
open surjection, and py : ^y —> F, 90(^)1—^ ^{px) for
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x e Q, is a local homeomorphism. Clearly 9 o p == n o 90.
For a;, y e Q with .r ^ y and px = py the definition of
^ yields x ^ y immediately, hence 9o(^) ^ y^y). The
universal property of (RQ : H -> ^y follows directly from the
corresponding property of 0,^ as a quotient in the category
of topological spaces.

It remains to show that (tiy, py) is pseudoconvex. From
the construction of tiy it follows that

(*) SQ(^ ^) = 8^(9Q(^), 9(^)) for a; e t2, a e E,

since, in a suitable neighborhood U of DQ(^; a, SQ(^, a)),

(plU)-^ + Xa) = (p^U))-^?^) + X9(a)),
| X) < 8 ,̂ a).

Now ( * ) implies that f^ is pseudoconvex because Q.
was supposed to be pseudoconvex.

2° Let / : Q, —> S be a morphism of pseudoconvex domains
spread over E. Because of d^^^x^)) ^ d^00^) > 0, there
is a quotient map <ps : s -> ^y as in 1°. The universal pro-
perty applied to ^ == (p^ ° / then yields a morphism

/y : Qy -> Sy with ?s ° / == /y 0 ?Q.

Suppose now that /<p is an isomorphism. Let x, y e Q
with x ^ y. When pa; == py, then (pQ(rr) ^ 9o(z/) by 1°.
Since j\ is injective, /y o 9^) ^ ^ o ^^(y) and therefore
JW ^ J\y}^ When prc ^ pz/, then /(^) ^ j((y) since /
is a morphism. Thus / is injective. It remains to show that /
is surjective. Let y e S. Because /y and <pQ are surjective
there is a; e n with /y o 9^) == ^^(y). Now 9^ o y(a;) === <p^(y)
implies j\x) ^ y , and hence there exists a point x ' e £i,
a/ -^ a;, with /(^ /) = y : Take a == qy — q o j\x) e ^(O)
and a;' == (pID)-^?^ + ^)? where D = DQ(^; a, oo).

3° Let Qy be an A-domain of holomorphy, A <= ^(^<p),
and let /: Q, —> S be the maximal s.a.c. of A o <p. Then S
is in particular a domain of holomorphy and therefore pseu-
doconvex. According to 2° there is a canonical morphism
/ < p : iiy -> S^, and it is easy to see that /y is an s.a.c. of A.
Therefore /<p is an isomorphism and so is / due to 2°, which
means that £1 is an A o 9-domain of holomorphy.
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4° SB === (pQ^U^ue^ has the required properties.
The consequences of Proposition 1.8 can be formulated

conveniently by the following notion: A collection 0 of
continuous, linear surjections <p : E -> Ey, 9 e O, is called
a basic system of E (and E is then said to be a surjective
limit of the spaces E^, 9 G <I>, cf. [4], [15] if

F == {|B o 9 | 9 e < D , P £ C S ( E ^ ) }

generates the topology of E and if for all a, (B e F there is
Y e F with sup {a, (B} ^ Y. 0 is called open (and E is
said to be an open surjective limit) when all 9 6 $ are open
mappings. Examples can be found in [3], [4], [15], [18].

1.9 COROLLARY. — Let E be an open surjective limit of
spaces E^), 9 e 0, such that every pseudoconvex domain spread
over Ey, 9 e 0, is a domain of existence (resp. a domain of
holomorphy^ A^-convex, A.yseparated). Then every pseudocon-
vex domain spread over E is a domain of existence (resp. a
domain of existence^ Ag^- convex^ Ks^-separated).

Proof. — Let (Q, p) be a pseudoconvex domain spread
over E. For XQ e Q, there exists a e cs(E) with

^o) > 0,

and one can find 9 0 0 and (B e cs(Ey) so that a ^ p o 9,
hence rf^09^) ^ d^Xy) > 0. The assertion now follows from
Proposition 1.8.

2. Schauder decompositions.

Let E be again a locally convex Hausdorff space over C.

2.1. DEFINITION. — A sequence (wj of linear, continuous
projections n^: E -> E with dime ^n(E) < oo, n e N, is
called a finite dimensional Schauder decomposition (for short
f.d. decomposition) of E if rc^ o 7^ = n^ o 7^+1 = n^ for
all n e N and lim 7r^(rc) == re /or aM x e E.

n>ao

This definition differs slightly from the definition of a
Schauder decomposition in [16, ch. VII], but coincides in
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the case of a Frechet space. An f.d. decomposition is called
finite dimensional expansion of identity in [231.

Let (^) be an f. d. decomposition of E. Then (wj
is said to be ^.-monotone for a seminorm a e cs(E) if the
following (obviously equivalent) conditions are satisfied:

1° a o T^ ^ a o TT^+I for all n e N.
2° a o TT^ ^ a tor all n 6 N.
3° a == sup {a o Trjn e N}.
The straightforward proof of the following lemma is omitted.

2.2. LEMMA. — For an f.d. decomposition (n^) of E the
following properties are equivalent:

1° (TrJ converges locally uniformly to id^ in the following
sense: For all XQ e E, a 6 cs(E) and e > 0 there are N e N,
(3 e cs(E) and 8 > 0 such that a(7c^) — x) < e for all
x e B|(a;o, 8) and n ^ N.

2° For each a e cs(E), the seminorm

a = sup {a o Tcjn e N}
i5 continuous.

3° T/ie topology of E 15 generated by {a e cs(E)|(7rJ 15
a-mono (one}.

^° (^n) l5 equicontinuous.
Note that an f.d. decomposition of a barrelled space E is

already equicontinuous, since for every a e cs(E),

T = { a ; e E [ a o TT^) ^ 1

for all n e N} = {x e E|a(.r) ^1} is a barrel, and thus a
is continuous.

A locally convex space with an f.d. decomposition
is obviously separable. However, not every separable, locally
convex space has an f.d. decomposition, since a Banach space
with an f.d. decomposition has the approximation property,
and there are separable Banach spaces without the approxi-
mation property (cf. [7]). General examples of locally convex
spaces with an f.d. decomposition are the spaces with a
Schauder basis (cf. [16]). An example of a space with an equi-
continuous Schauder decomposition which occurs in Complex
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Analysis is the Frechet space ^(R) of analytic functions on
a Reinhardt domain R c C^ with 0 e R. Each f e 0(R)
has a locally uniformly convergent power series expansion

f(z)=I.Pnf{0).z, zeR,
m

hence lim ^ P^O) == f in ^(R). Therefore, the projections
w>ac n==0 m

TC,: <B{R) -» (P(R), defined by ^(f) = S PY(0), /•e(P(R),
n=0

form an f.d. decomposition which is equicontinuous since
<P(R) is barrelled.

The next proposition, due to Dineen [3], allows to reduce
our study of the Levi problem to spaces which have a conti-
nuous norm.

2.3. PROPOSITION.— Let [n^) be an equicontinuous /*. d.
decomposition of E. Then E is an open surjective limit ofspaces
E^, cp e $, where each Ey has a continuous norm and an equi-
continuous /*. d. decomposition.

The proof is essentially the same as for spaces E with a
Schauder basis (cf. [3]).

3. The Levi problem.

3.1. THEOREM. — Let (0, p) be a pseudoconvex domain
spread over a locally convex Hausdorff space E with an equi-
continuous f.d. decomposition such that there is a sequence

(ay) of seminorms ay e cs(E) with ^1 == L J jQ^, where
v e N

^a == [x e 0-\d^{x) > 0} for a e cs(E). Then there exists a
countable, admissible covering 35 of £1 such that ^1 is A$^-
convex and As^-separated.

The rest of this section will be devoted to proving 3.1.
However, we first want to present the main consequences :

3.2. COROLLARY. — Let E be a metrizable^ locally convex
space with an equicontinuous f.d. decomposition. The following
properties of a domain ^ spread over E are equivalent:

1° Q is pseudoconvex.
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2° 0 is a domain of existence.
3° There exists an admissible covering 38 of 0 5uc/i that

Q is A.s^-convex.
4° The subset {feO(fl)\Q is an {/^-domain of holomor-

phy} of f f(n) is sequentially dense in ^(t2), when (P(Q)
15 endowed with a locally convex Hausdorff topology with the
same bounded sets as the compact open topology.

Proof. — The implications 4° => 2° ==^ 3° ===^ 1° are
obvious. To show 1° ==> 4° let f e ^(Q) and let SS be as
in 3.1. Since E is metrizable there is a countable, admis-
sible refinement 56 of 3S with f e Agg. Now 4° follows from
1.4.4° and the fact that the injection Agg -> <P(Q) is conti-
nuous for the bornological topology associated with the com-
pact open topology on (P(ti) (cf. [26], [30]).

The following are examples of locally convex topologies on
(P(Q) with the same bounded sets as the compact open
topology: The topology T^ of uniform convergence on
compact subsets of Q of analytic functions and their deri-
vatives up to the order n, for n e N; the topology

^oo == LJt-n;
neN

the Nachbin topology T^ (cf., for instance, [3]); the e-topo-
logy, that is the finest locally convex topology on (P(Q)
which agrees on the equicontinuous sets with the simple
topology.

3.3. COROLLARY. — Let E be a locally convex Hausdorff
space with an equicontinuous f.d. decomposition^ and suppose
that E is hereditary Lindelof. The following properties of a
domain Q spread over E are equivalent:

1° 0, is pseudoconvex.
2° There exists an admissible covering 38 of 0. such that

Q, is A^-convex.
3° Q. is a domain of holomorphy.

Proof. — It is enough to observe that 0 is hereditary
Lindelof, and to apply 3.1 and 1.3.
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3.4. COROLLARY. — Every pseudoconvex domain spread
over a Frechet space F with the bounded approximation pro-
perty is a domain of existence.

Proof. — According to [23] a. Frechet space with the boun-
ded approximation property is isomorphic to a complemented
subspace of a Frechet space with an f.d. decomposition.
Therefore the corollary follows from 1.5 and 3.2.

Note that 3.2 contains the results of [9], [10] and [5] while
3.4 is a generalization of [19, 6.6]. The Levi problem is unsol-
ved for the more general (cf. [7]) separable spaces with the appro-
ximation property, and for separable Banach spaces. For non-
separable Banach spaces counterexamples are known (cf.
Josefson [13]).

Theorem 3.1 also yields a solution of the Levi problem for
domains spread over a Silva space with an f.d. decomposition,
thus generalizing [21], [24], [25]. A Silva space is the strong
dual of a Frechet Schwartz space (or an « LS-Raum » in the
terminology of [6]), and hence barrelled and hereditary Lin-
delof. Therefore, a pseudoconvex domain Q spread over
a Silva space with an f.d. decomposition is A^-convex and
A^-separated. Similar to a reasoning in [21], where the schlicht
case is investigated, it can be shown that n is a domain of
existence (details are in [31]).

Moreover, following [5] Corollary 3.2 gives a positive
answer to the Levi problem for other non-metrizable locally
convex spaces with certain countability conditions.

The second permanence property of Section 1, in particular
Proposition 1.9, can be applied to obtain a solution of the Levi
problem for various other locally convex spaces : For instance
for an arbitrary product of suitable spaces, in particular tor
E == C^ (cf. [1]); for locally convex spaces with the weak
topology; for the spaces E == ^(M) of continuous C-valued
functions on a metrizable space M with the compact open
topology; for the space E == <P(F), where F is a locally
convex Hausdorff space over C and <P(F) is endowed
with the topology of uniform convergence on all compact
subsets of F with finite dimensional span.

The next corollary generalizes results in [2], [10], [II],
[27], [30].
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3.5. COROLLARY. — Let (S, q) be a domain spread over a
metrizable, locally convex space F, and let (£2, p) be a domain
spread over a metrizable, holomorphically complete (cf.y for
instance, [30]) locally convex space with an equicontinuous f.d.
decomposition. Then every analytic mapping f: S —> i2 has
an analytic continuation ^(f) : <^(S) —> <^(t2) with

^(/>) ° h = /Q ° A

where /^ : S->(^(S) (resp. /^: Q->^(t2)) denotes the enve-
lope of holomorphy of S (resp. Q) ^.<°. ^ ^5 functorial).

Proof. — In [30] it is shown that p o f: S —^ E has an
analytic continuation to <^(2) since E is holomorphically
complete. The corollary now follows as in [27] from 3.1 and
the representation of (^(S) (resp. (^(Q)) as a subset of the
spectrum of ^(S) (resp. ^)) (cf. [26], [30]).

Corollary 3.5 could also be regarded as a general « Kon-
tinuitatssatz » :

3.6. COROLLARY. — Let E be a metrizable, holomorphically
complete, locally convex space with an equicontinuous f.d. decom-
position. Then a domain Q spread over E is pseudoconvex if
and only if for every domain S spread over any metrizable,
locally convex space and for every analytic f: S —> Q, there
exists an analytic continuation <^(/*) : <^(S)—^Q of f with
/•=<^)o/^

The assertion follows immediately from 3.5 and the classi-
cal Kontinuitatssatz.

Proof of the theorem. — To prove 3.1 we can assume that E
has a continuous norm. The general case then follows from
2.3 and 1.9.

For the remainder of this section let (D, p) be a pseudo-
convex domain spread over the locally convex Hausdorfl*
space E with an f.d. decomposition (TTJ, and let (o^)
be an increasing sequence of continuous norms on E such

that Q == t_) 0°S and such that (rrj is o^-monotone for
v e N

every ^ G N (See 2.2). Furthermore, let Q^ denote the
pseudoconvex manifold ^ = 0. n p-^Tr^E)) spread over
the finite dimensional space E^ == 7i:JE).
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The main step of the proof of 3.1 will be applied also in the
next section. Therefore we want to present it in a general
form. In order to do this, let us assume we have determined
an open covering (XJ^^, X^ <= X^i, of n, and conti-
nuous maps T^ : X^ -> i^, n e N, such that for all M E N :
°n c X^, rj Q^ = id^, p o T^ == TT^ o p] X^, and

^ ° ^n+l(^) == ^n(^)

for all x e X^ with ^+i(a;) e X^. (For a schlicht domain
Q c: E put X, = T^1^ n EJ n Q and T, = TiJX,.)

3.7. DEFINITION. — A countable cohering (VJ^^ o/' Q
wiM fee called compatible with (rj i/* ^/ie following holds : There
exists a strictly decreasing null sequence (y\) of real numbers
such that

1° V, c: V^i, 0 = LJ V,, ^(V,) ^ r, an^ V, c: X, for
v e N . V€N

2° ^p.(Vv) i8 relatively compact in Q«, and T«(V^) == V^ n t2»
/or aZZ (JL, v e N, [JL ^ v.

3° (V, n ^p.)o(Q^ c: {a; e ^^|^(rc) ^ r,} for all (JL ^ ^.

4° K^ = (V^ n t2v)6(Q.) satisfies K^ c: X^_i /or aZZ ^ > i.
The following lemma is related to the key result of Gruman

and Kiselman [9, lemme].

3.8. MAIN LEMMA. — Let (V^) be a compatible covering
of i2, and let /*e^(QJ. For every s > 0 there exists

geOW
satisfying

i° l lg - / > o ^ lk < £ and

2° l l g l l v v < oo for all v e N.

Proof of the lemma. — By induction, a sequence (/p.)u.$>n?
f^ E ^(£2(1), will be defined satisfying

( ^ ) ll/ î - U o T^IK^ < s.2-(^1) for pi ^ n.

Put fn==f and assume that /^, . . . , / « are already defined.
X^. n Qp.+i is an open neighborhood of K»+i according
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to 3.7.4°. Hence, by the classical Oka-Well approximation
theorem (cf. [12, p. 116]) for the Stein manifold t^.+i there
exists /u.+i e (S(0-^+i) with ( * ) . (Note that every Q.^ has
at most countably many components which are pseudocon-
vex domains spread over the finite dimensional space E^.
Therefore, 0.^ is a Stein manifold according to [12, 5.4.6]).

Now, for v ^ k ^ m:
m—l

11/m ° ^m — fk ° ^llv, ^ S 11/ix+l 0 ^+1 — fy. ° ^HV,
P.=fc

w—i

^ 5 II/(JL+I — /(JL 0 ^HT^V,) (T^. 0 T^.+i == T^, on Vy)
(A==fc

< "S111^+1 - /t.0 ^11 K^ (due to 3.7.2")
P.==k

< e-^^-^1) ^ e.2-^ (by (^ ) ) .
p.==fc

Therefore, (/« o T«L^v converges uniformly on Vy and
defines an analytic function g e 6?(t2) with

l lg- /vOT,| |v, ^ £.2^ < £

for all v e N. It follows 1° and

llglk < ^ + 1 1 / v o T,[|v, ^ e+ll/vk < a).
hence 2°.

A countable, admissible covering '8 == (Uy) of t2 (cf. 1.1)
will be called compatible with (n^) if there exist a compatible
covering (Vy) of 0, and a strictly decreasing null sequence
(«v) of real numbers with (Uy)^ c: Vy for all v e N. To a
given compatible covering (Vy) of t2 with (ry) as in 3.7 there
always corresponds a compatible, admissible covering (Uy)
defined as follows :

U, == [x e Vy|B^, Fy) c: Vy} for v e N.

In fact, 3S === (Uy) is admissible since (Uv)^!1^^ c Uy-n
for all v G N.

3.9. LEMMA. — Let ^ be a compatible, admissible cohe-
ring of Q. Then 0. is As^-cowex and A.s^-separated.
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Proof of the lemma. - Let (V,), (r,) be as in 3.7 and
(sy) with (Uv)^ <= V,. We show that D is Ayconvex
by proving ^((Uy):) > r, for all v e N (A = Ag, to
simplify the notation). Let a; be a point of 0 with

W < r,.

When x e 0, n V, for a suitable ra > v, there exists
/•6fl>(aj with

I/WI > U/lkna^
since (V, n OJ^ c {x e QJ^(a;) > r,} (cf. 3.7.3<>). Thus,
according to 3.8 there exists g e A with |g(a;)| > ||g||v

(take e = -^ {\f{x)\ - ||/'||v,nQj). This implies x i (V,); and

therefore x ^ (U^)!.

When x i [_f 0, there are s > 0, a e cs(E) and W e ̂
n6N

with a, < a, s, ^ 2s < d^x), s + d^x) < r,, ^(U,) > 2s
and (U,)^ c: W. Assume x e (U,)l. Then |P»7'(a;)| < ||Py||u
for all feA.,neVf and a e E, because A is a regular class.'
Hence, by the Cauchy inequalities, for a e B^(0, 1) :

W(x)\ ^ (2.)-»11/-1|^ < (2.)-1|/1|v,nw,

since (U,)j, <= (U,),̂  <= V,. Consequently, for every

yeBQ{x,s) n('U^n)
\ nEN /

W ^ W + ^ < r,
and

\f{y)\ ^ ^\PW.{py-px)\ < S2-»||/-||v,nw=2i|/||v,nw.
n^•v n^O

This inequality is also true for all powers of f e A, and it
follows that \f{y)\ < ll/'jjv^w, /'e A. Thus i/ e (V,).: in
contradiction to the first part of the proof. Hence x ^ (U^A
for every x e Q with <^(a;) < T\ which implies

^((Uv)!) > r,.

It remains to show that Q is Ayseparated. Let x, y e Q

with a; ^ y and pa; = joy. When px e LJ E,, then there
rt€N
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exists n e N with x, y e Q, n V,. Since ^ is in parti-
cular a Stein manifold, there is f e ^(£2J with /*(^) ^ /'(y),
and 3.8 implies g(x) ^ g(y) for a suitable g e A. When

P^ ^ I—} E^, the assumption g{x) = g(y) for all g e A
n€N

would imply g { x ' ) = g{yf) for all

(^ 2/) ^ B^, 5) X B^(y, ^), p x ' == p y ' ,

for a suitable choice of a e cs(E) and s > 0. Because of

B^px, s) n (^_)^n} ^ 0? this is a contradiction to what
\ raGN /

we have just proved.
To complete the proof of the theorem it remains now to cons-

truct a compatible covering (V^) of 0.. To define the cove-
ring (X^) and the mappings Ty (see 3.7) let us introduce
the functions T^ : Q, -> ]0, oo], v e N, given by

^(x) == inf {S^{x, ^^{px) — px) \\L ^ v}, x e Q.

Since Tc^(p^) --̂  px for all a; e 0. it is clear that ^ > 0
for every v e N. Moreover, each function 7]y is lower semi-
continuous : Let x e Q with T],,(^) > c, where c e R.
For every r, c < r < ^{x), the set

L = U {DQ(^; T^(/^) — p ,̂ r)|{ji ^ v}

is well-defined and compact. Hence, there is a seminorm
a e cs(E) with a = a (cf. 2.2) and ^(L) > 0. Choose
s > 0 so that s(2r + 1) < ^(L). Then, for all

y e BQ(^, 5), |X| ^ r and pi > v
^w + H^^py) — py) — px — Hn^px) — px))

^ (1 + H)a(py - p^) + W^(py - px))
< (1 + r)^ + rs < ^(L).

Consequently, 8^{y, ^^{py) — py) ^ r and hence

c < r ^ ^(y)
for all yeB^x.s).

Since D is pseudoconvex, each function

— log 7],: î  -> [— 00, 00 [

is psh as an upper semicontinuous supremum of the plu-
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risubharmonic functions x \——^ — log S^{x, •n^(p.r) — px),
[i ^ v.

Now let X, = {x e il\^(x) > 1} for v e N. According
to the definition of ^ there is a canonical continuous map
T^ : Xy -> Qy such that r JDy == id^ and T^ o p = p o T y :
Put T,(^) = (pID^-^TT,^)) for ^ e X y , where

D^ = OQ^; ^v(p^) — p ,̂ -y]v(^)).

Note that X, c= X,^, T^(X,) c X, and T, o r^jX, = T,
for all v G N.

To define (VJ we need another real-valued function.

For v e N put ^ = L G ^,|rf^) ^ ^j. Without loss of

generality we can assume that Q.[ ^ 0. Fix a point x^ e ^.
On ^ the distance functions y^ ^v -> [0, oo] are defined
as follows : Let I\(a;) be the set of all finite sequences

[X-^, • . • 5 Xf^y ^k+l)
k

in D, with |j DQ^,; px^ — px^ 1) c: ^ and a; = ^+1.
Put %=1

( k ^
inf ) S ^i(p^+i — px^\{x^ . . ., ^+1) G I\(^)^

», //y,\ ——— \ X=l }

^[x) ——— •P T-l / \if r,{x) + 0,
oo, if I\(^) = 0.

The functions Yv are continuous and satisfy Y v + i l D v ^ Yv
for all v e N.

3.10. LEMMA. — L, = {xe Q^|y,(^) ^ v} i5 compact in
Q^, aMd /or every x G Q ^Aere ^m^ /z e N anrf a neighbor-
hood V of x with U c: X, and T^(U) c: L^ for all [L ^ n.

Proof of the lemma. — The restriction of the norms ai and
o^ are equivalent on E,,, hence there is C > 0 with

Therefore,
a,|E, ^ CaJE,.

1 ^ W ^ d^(x) ^ d^{x) = Cd^(x) for x e ̂ .
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Choose t > 0 with Ct < — Put Ti == Dy ^BQ\(^, t) and

T^i = ̂  n ( U {B^x^\x e T,}). Then T, is compact for
m e N. Furthermore, by induction it can be shown that
{x e t^| Yv(^) < m0 c T^. It follows that Ly is compact
since L^ c T^ for all m e N with v < m^.

To show the second property of the lemma let x e D.
Since t2 is pathwise connected there is a compact, connected
subset W of ^ with x, x^ e W. There exists v e N with
W <= X^, and v can be chosen in such a way that

<%(W) > 4^ + -1

for a suitable s > 0. Because of the uniform convergence
of (TrJ in the sense of 2.2 there is m e N, m ^ v, with

av(7Tm.(jw) — jw) < s for all w e W and (JL ^ m.

It follows ^(r^(W)) > 35 + -1-, hence T^(W) c: Q^ and

Y{Jl ° T{A(rc) < °° ^or a^ ^ ^ w*

Now let U == B^(o;, s). For y e U and (A ^ m

^(^(py) — py) ^ av(^pL(py — p^)) + av(7r^(p^) — px)
+ a^(pa; — py) < 3s,

and
j[

^(y) ^ ^(a;) — s > 3S + -7-

From these inequalities we deduce r^^{y) > 1, thus U <= X^.
Furthermore,

fc(y)) ^ ^(y) - 35 > 1-
hence T«(U) ^ Qp. for all p. ^ m. From

av(^m(P^) — ^(Py)) < 25

j[
and d^^{x)) > 3s + — we get

M^)? ^^Py) —'"•m^)) > 1,
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and thus

Y{i ° T^/) ^ Y(i ° Tm(^) + ̂ l{^m{P^) — ^(P?/)) ^ Ym ° Tm(^) + 2^.

Therefore, U and n ^ sup {m, Ym ° ^m{x) + 2^} have the
required properties. This completes the proof of the lemma.

After these preparations we now come to the construction
of a compatible cohering (Vy) of Q. For v e N

j[
Vv = {x (== Xv_i|T^) e L^, d^(T^)) ^ —

1and 7]v_i o rja;) ^ 1 + — for all (JL ^ v}.

(Vi is well-defined when Xo == Xi and Y]o = ^i-) We
/ 1 \have to check the conditions 3.7.1° — 4° with ( — ) instead

of M: V^
lo Obviously, V, <= Vv+i c: Xy+i and ^(V,) ^ — for

v e N. To show Q == LJ^v let ^ e tl- We can find v e N,
^ ^N

m ^ v and 5 > — so that dl^rc) > 7^ and

ff.^pX — TV^(px)) < S

for all (A ^ m. Put V == B^(a;, 5). For y e V and (JL, x > m

^(^(w) — ^^(py)) < ̂
and

^
d^{y}) ^ ^(tr) - av(p ° ̂ (y)) - P^) > 75 - 2S = 55 > 7"
hence

5
SQ(^(I/), TT^P o T^)) — p o T^(l/)) ^ -^-.

j[
It follows that T]^ o T«(y) ^ — 4- 1 for all (JL ^ m and' m
y e V. With U and yi as in Lemma 3.10 we obtain

U n V c V^

tor all [L ^ sup {n, m + 1}, hence x e L_J V^.
veN
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2° ^(i(V^) == V^ n 0.^ is an immediate consequence of the
definition of V^, and T«(V^) is relatively compact for
|A ^ v, since ^(V^,) <= L^..

3° Let x e (V, n ^)o(0^ For every a e E

— log 8^ ̂ ) ^ sup {— log 8o(y, a)[y e V, n D^,},

since Q^ is a Stein manifold and z i—>• — log §0(2, a) is
psh on ^ (cf. [12, p. 116]). Therefore

d^{x) = inf {SQ^, a)[a e E, a,(a) ^ 1} ^ d^(V, n 0^) ^ A..

4° — log 7}^_i is psh. Hence, as in 3°, for x G Ky

— log "^v-i(^) ^ sup { — log ^-i(y)|y e V, n f2^}
^-log(l+^) .

It follows that FS <= X^_i.

4. Approximation.

In this section some results of Noverraz [20] on the appro-
ximation of analytic functions on a pseudoconvex domain are
generalized and strengthened using the methods of Section 3.

First, we investigate whether a pseudoconvex domain 0.
is holomorphically convex (i.e. K^)(Q) is precompact for all
compact K c: £2). For schlicht domains satisfying the
conditions of 3.1 this follows immediately from the fact that
the convex hull of a compact subset of a locally convex
Hausdorfl* space is precompact. However, for non-schlicht
domains a separate consideration is necessary. The above
question is closely related to the Levi problem. In fact, Oka
showed in [22] that a pseudoconvex domain spread over C^
is holomorphically convex, to deduce then that it is a domain
of existence.

4.1. PROPOSITION. — Let (^2, p) be a domain spread over
a sequentially complete, locally convex space E with an equi-
continuous Schauder decomposition, and suppose there are
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ay e cs(E), ^ e N, with Q == I J ti^. TT^n /or e^ry sequence
V€N

(a^) m Q without an accumulation point there exists an
analytic function fe ^(Q) with sup |/'(^n)| = oo.

Proof. — When {px^) contains no Cauchy sequence in E,
then there exists g G ^(E) with sup|g(prcj| = oo accor-
ding to Lemma 4.2. Hence, sup|/*(a;J| == oo, where

f= g o p e 0 { £ l ) .

When (p^n) has a Cauchy subsequence we can assume
px^ -> a for a suitable a e E. Assume that sup \f{x^)\ < oo
for all f e (P(^). According to 3.1 there is a countable, admis-
sible covering 3S so that Q. is A^-convex. The seminorm
Y : A$^-> R, f\——>- sup \f{x^)\, is continuous since

{fe^\f{f} < 1}

is a barrel in A^ and Asg is barrelled as a Frechet space.
Consequently there are a constant C > 0 and U e 3S
with Y(/*) ^ C||/'||u for all / 'eA^. Since this inequality also
holds for all powers of a given f e A^ (A^ is a regular class)
we can assume C = 1. Since 0. is A^-convex there are
a e cs(E) and s > 0 with ^(UAJ > 5, hence d^{x^) > s
for all n G N. Moreover, a and s can be chosen in such
a way that there exists V e 38 with U? <= V. For all f e A^,
a e E and m, M e N

|Pfc)| ^ IjPyilu,

since x^ e UA^ and A<g is a regular class. Therefore, by the
Cauchy inequalities

|PaY(^)[ ^ ^-l/llu? ^ ^-H/'llv for a(a) ^ 1.

It follows \f{y}\ ^ l i y i lv ^ f-^-y" ̂  ̂ B^,, () ,0 < « .9,
n=o \ t /

and /*€ A^ which implies BQ(^, 5) <= VA^ tor all m e N.

Now choose N e N with v-{px^ — a) < — for all m ^ N
^j

0

and z G E with a{z — a) < — and z e E^ for a suitable
2i

n e N. For every m ^ N there exists a uniquely determi-
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ned z^ e B^(^, s) with p^ == z, and (^)^^N has no accu-
mulation point.

Let us suppose that E has a continuous norm. Then,
according to the proof of 3.1, 38 === (U^,) can be chosen to
be compatible. Applying 3.8 we obtain

". ^ (Uv)^ ^ (". n V,)̂ .

Hence, t2^ n (U^)!^ is compact in 0.^ For a suitable
subsequence (^) of (^) with z^ e (U^JA^\(U^)I^
there are /«, € A^ with

11^11^ < 2-^ and |/̂ )| ^ (. + 1 ̂ -^IA^I-

Now /*=S/^eA^ satisfies |/*(^ )[ ^ (A, i.e.

supl/M == °o-

This is a contradiction to B^(x^ s) <= VA<B tor all m e N.
When E has no continuous norm, there exists a quotient

t2<p of Q. spread over a space Ey with an equicontinuous
Schauder decomposition and a continuous norm (cf. 2.3 and
1.8). From px^ -> a it follows that (<PQ(^J) has no accu-
mulation point, since 90 separates the fibers of p. Moreover,
P ° PQ^n) -> ̂ {a) e Ey. Thus, as above, there is an analytic
g e ^(t2y) with sup \g o <pQ(^)[ = oo and

f= g ° VQ^^W

satisfies sup \f(x^)\ = oo. This completes the proof.

4.2. LEMMA. — Let E be a separable, locally convex Haus-
dorff space over C, and let (aj be a sequence in E with no
Cauchy subsequence. Then there exists an analytic function
ge^(E) with sup|g(aj| = oo.

The proof given in [28] for separable Banach spaces can
be transferred.

4.3. COROLLARY. — A pseudocowex domain 0 spread
over a Frechet space (resp. over a Silva space) with an f.d.
decomposition is holomorphically convex: K )̂(Q) is compact
for every compact subset K of t2.
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For the next proposition we need the following notations :
^{Q) (resp. ^c(^)) denotes the set of plurisubharmonic
(resp. continuous plurisubharmonic) functions on a domain
a. For V c a and Q <= ^(ti), VQ is given by

VQ == {x e £l\v{x) ^ sup v{y) for all ^ e Q}.
Y<sVyev

4.4. PROPOSITION. — Let JL be a locally convex Hausdorff
space with an equicontinuous Schauder decomposition, and let
Q. be a pseudoconvex domain spread over E with

0. = LJ ̂ a

veN

for a sequence (a^) of continuous seminorms on E. Moreover,
suppose there exists a compatible, admissible covering 3S of Q.
{Such a covering exists when E has a continuous norm, cf.
Section 3.) Then

KA^ = K^Q) === K^(Q)

for all compact subsets K of Q.

Proof. — Let K <== Q be compact. Obviously,

K^(Q) c KQ(Q) C: KA^

since [/'| is psh for every fe0{£l). To show the reverse
inclusion let x e KA^. There is N e N with {x} U K <= VN,
where (V^) is the compatible covering of ti defining the
admissible covering 38 == (U^,). It follows that

^(x) e (T,(K))^) for all n ^ N.

Otherwise, j / 'oT^a;)) > ||/IT,(K) for a suitable /*e^(QJ, and
/ " 1 \according to 3.8 (with z = — {\f o ^^x)\ — \\fo T J J K ) there
^ . / . .

would exist g e A^ with |g(^)| > l l g J K in contradiction
to x e KA^. Because of (T,(K))^) = (T,(K))^) (cf. [12,
p. 116]) every v e ^(ti) satisfies

^ o -r^x) ^ sup {^(y)|y e T,(K)} = sup {v o T,(y)|y e K}.
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Since T, -> ido uniformly on compact subsets of 0 (cf. 2.2),
this implies p{a;) ^ sup p(y) for all p e ^,(Q), hence

yes.

x 6 -̂̂ Q).

4.5. PROPOSITION (Oka-Weil). — Let E, Q, onrf §8 be
as in 4.4. Furthermore, suppose that E is sequentially com-
plete. If K is a compact subset of D with K = ̂ (Q), ̂
epery function which is analytic in a neighborhood of K can
be approximated uniformly on K by functions in Asg.

Proof. — Let V <= Q be an open neighborhood of K and
let fe (P(V). There exist a e cs(E), s > 0 and N e N with
K? <= V and K? <= VN, where (V,) is again the compatible
covering belonging to SB. We show that there is TO ^ N
such that

( * ) T,,(K)O(Q,.) <= K? n 0, for all n > m.

Otherwise there were x, e (T,,(K))S(Q,.)),V e N, with ^ ̂  K?.
For all g e ff(Q)

1^)1 < llgk,(K)=||g°Tj|K->||g||K,

hence sup|g(a;,)| < oo. According to 4.1 we can assume
that (x^) converges to a point Xy e Q. Now a;o e K, since
|§'(a;o)| = lim|g(0| < lim ||g o TJK = ||g||K (cf. 2.2). This
contradicts a-v ^ K?.

Now let s > 0. Choose n > m such that

II/1 " ^ - / • H K < y

According to the classical Oka-Weil Theorem for the Stein

manifold D, there exists h e ff(£l,) with \\h - f\\-^ < -s-,

since f is analytic in a neighborhood of (^(K))^) (*).

Due to 3.8 there is g e Ag, with H g — A o - r J v < ^
Therefore, | |g—/'| |K < s which completes the proof." 3

From 4.5 one can deduce a result on Runge pairs. (The proof
is the same as for finite dimensional E, cf. [12, Th. 4.3.3].)
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4.6. COROLLARY. — Let E, Q and 3S be as in 4.5, and let
S c Q, be a pseudoconvex subdomain of 0.. The following
properties are equivalent:

1° Every function in ^(S) can be approximated by functions
in ASQ uniformly on every compact subset of 2.

2° KA«> = ^O(E) /or <°^^/ compact subset K o/* S.

3° KA^ n 2 = K^S) /oy* every compact subset K o/* S.

4° TAe closure of KA^ ^ S ^5 compact in S /or every
compact subset K of Ti.

Lemma 3.8 implies that the restriction mappings

A.»->6W

have dense image whenever 33 is a compatible, admissible
covering of 0. With the aid of 4.5 this can be generalized
to arbitrary complemented subspaces F of E :

4.7. PROPOSITION. — Let E, 0. and 3S be as in 4.5, and let
F be a complemented subspace of E. Then the restriction
map A^ —> (P[0. n p'^F)) has a dense image when

0{£1 n p-^F))

is endowed with the compact open topology.

Proof. — Let TT : E -> E be a linear, continuous projec-
tion with ^(E) = F. There exist an open neighborhood X
of 0. n p'^F) and a continuous mapping

T : X -> 0. n p-^F)

with 7 r o p ] X = = = p o T and r| Q n p'^F) == idQ^p-^p). Let
fe (9{Q. n p-^F)). Then f o r is analytic in a neighbor-
hood of every compact subset of Q. n p^F), hence the
assertion follows from 4.5.

It is an open question whether or not the above restriction
map is onto. The restriction map A<g —> ^{0-n) ls onto when
dim^ E^+i = dim^ E^ + 1 for all n e N.

Final remark. — Certain results of this section can be gene-
ralized with the aid of the methods given in Section 1.
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