Annales de l'institut Fourier

BAHMAN SAFFARI

R.C. Vaughan

On the fractional parts of x / n and related sequences. I

Annales de l'institut Fourier, tome 26, no 4 (1976), p. 115-131
http://www.numdam.org/item?id=AIF_1976__26_4_115_0
© Annales de l'institut Fourier, 1976, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier» (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m d a m}^{\prime}$

Ann. Inst. Fourier, Grenoble 26, 4 (1976), 115-131.

ON THE FRACTIONAL PARTS OF x / n AND RELATED SEQUENCES. I
 by B. SAFFARI and R. G. VAUGHAN

1. Introduction.

1. Throughout this paper $\{x\}=x-[x]$ denotes the fractional part of the real number x. We write $\|x\|=\min _{k \in \mathbf{Z}}|x-k|$ and $e(x)=e^{2 \pi i x}$.

Also, the implied constants in the O symbol of Landau and the $>$ and \ll symbols of Vinogradov are absolute.

Finally, by a distribution function we always mean a distribution function in the sense of probability theory, defined on the real line.
2. Let $\left(x_{n}\right)$ be a sequence of real numbers. The usual study of the distribution modulo 1 of (x_{n}) is essentially that of the distribution of the sequence $\left(e\left(x_{n}\right)\right.$) on the circle T. The main problems are those of investigating
(i) the existence of the asymptotic (or limit) distribution measure

$$
\begin{equation*}
\mu=\lim _{k>\infty} \mu_{k} \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu_{k}=\frac{1}{k} \sum_{n=1}^{k} \delta_{e\left(x_{n}\right)} \tag{1.2}
\end{equation*}
$$

with δ_{v} denoting the Dirac measure at $v \in \mathbf{T}$, and
(ii) the size of the discrepancy

$$
\begin{equation*}
\sup _{\omega}\left|\mu_{k}(\omega)-\mu(\omega)\right| \tag{1.3}
\end{equation*}
$$

where ω runs through those arcs of \mathbf{T} whose end points have μ-measure zero.

It is classical that the existence of μ together with the assumption that the point $1 \in \mathbf{T}$ has μ-measure zero is equivalent to the existence of a distribution function F such that

$$
\begin{equation*}
\mathrm{F}(0+)=0, \quad \mathrm{~F}(1-)=1 \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{F}(\alpha)=\lim _{k \rightarrow \infty} \frac{1}{k} \mathrm{~A}\left([0, \alpha), k,\left(x_{n}\right)\right) \tag{1.5}
\end{equation*}
$$

at every α at which F is continuous, the counting function
(1.6) $\mathrm{A}\left([\alpha, \beta), k,\left(x_{n}\right)\right)$

$$
=\operatorname{Card}\left\{n: 1 \leqslant n \leqslant k, \alpha \leqslant\left\{x_{n}\right\}<\beta\right\}
$$

being here defined for all real numbers α and β. The conditions (1.4) mean that F is continuous at 0 and 1 , and imply that F is constant on the intervals $(-\infty, 0]$ and $[1, \infty)$. In this case F is called the asymptotic (or limit) distribution function modulo 1 of the sequence $\left(x_{n}\right)$, and the discrepancy (1.3) is equal to

$$
\begin{equation*}
\sup _{0 \leqslant \alpha<\beta \leq 1}\left|\frac{1}{k} \mathrm{~A}\left([\alpha, \beta), k,\left(x_{n}\right)\right)-(\mathrm{F}(\beta)-\mathrm{F}(\alpha))\right| \tag{1.7}
\end{equation*}
$$

where α and β run through the continuity points of F .
In some situations it may be more appropriate to consider the existence of the A -asymptotic distribution function modulo 1, namely the existence (outside a countable set), and the continuity at $\alpha=0$ and $\alpha=1$, of

$$
\begin{equation*}
\lim _{k>\infty} \sum_{n=1}^{k} a_{k, n} c_{\alpha}\left(x_{n}\right) \tag{1.8}
\end{equation*}
$$

where

$$
c_{\alpha}(u)= \begin{cases}1 & 0 \leqslant\{u\}<\alpha \tag{1.9}\\ 0 & \text { otherwise }\end{cases}
$$

is the characteristic function modulo 1 of $[0, \alpha)$, and $\mathrm{A}=\left(a_{k, n}\right)$ is a positive Toeplitz matrix. Here by a positive Toeplitz matrix we mean that

$$
a_{k, n} \geqslant 0, \sum_{n=1}^{\infty} a_{k, n}<\infty \quad \text { and } \quad \lim _{k>\infty} \sum_{n=1}^{\infty} a_{k, n}=1
$$

3. The sequence $\left(x_{n}\right)$ is, of course, independant of k. Our object is to investigate the distribution modulo 1 of $x h(n)$ with x a large real number, $h(n)$ an arithmetical function, and the integer n belonging to $S \cap[1, k]$ where $\mathrm{S} \subset \mathbf{N}$ and k depends on x. For our purposes it is somewhat more convenient to replace k by a real parameter y. We call $\mathscr{A}=\left(a_{n}(y): y \in[1, \infty), n=1,2, \ldots\right)$ a positive Toeplitz transformation if $a_{n}(y) \geqslant 0$ for all n and y, $\sum_{n=1}^{\infty} a_{n}(y)<\infty$ for every y, and $\lim _{y>\infty} \sum_{n=1}^{\infty} a_{n}(y)=1$. We are particularly interested in the special case where the $a_{n}(y)$ are the simple Riesz means (R, λ_{n}) given by

$$
\begin{equation*}
\lambda_{n} \geqslant 0(n=1,2, \ldots), \quad \lambda_{1}>0 \tag{1.10}
\end{equation*}
$$

and

$$
a_{n}(y)=\left\{\begin{array}{cc}
\lambda_{n} / \sum_{m \leqslant y} \lambda_{m} & (m \leqslant y) \tag{1.11}\\
0 & (m>y)
\end{array}\right.
$$

which we assume henceforward, although several of our proofs go through in the general case (see Appendix). Let

$$
\begin{equation*}
\Phi_{x, y}(\alpha, h)=\sum_{n=1}^{\infty} a_{n}(y) c_{\alpha}(x h(n)) . \tag{1.12}
\end{equation*}
$$

A good deal of our attention will be taken up with $h(n)=1 / n$ and we write

$$
\begin{equation*}
\Phi_{x, y}(\alpha)=\sum_{n=1}^{\infty} a_{n}(y) c_{\alpha}(x / n) . \tag{1.13}
\end{equation*}
$$

The problems arising from the study of $\Phi_{x, y}(\alpha)$ as x and $y=y(x)$ tend together to infinity are closely related to the Dirichlet divisor problem.

If there exists a distribution function Φ_{h} such that

$$
\begin{equation*}
\Phi_{h}(0+)=0, \quad \Phi_{h}(1-)=1 \tag{1.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi_{h}(\alpha)=\lim _{x>\infty} \Phi_{x, y(x)}(\alpha, h) \tag{1.15}
\end{equation*}
$$

at every α at which Φ_{h} is continuous, then we call Φ_{h} the
\mathscr{A}-asymptotic distribution function modulo 1. This situation is equivalent to the existence on the circle \mathbf{T} of the \mathscr{A}-limit (or \mathscr{A}-asymptotic) distribution measure

$$
\begin{equation*}
\nu=\lim _{x>\infty} \sum_{n=1}^{\infty} a_{n}(y) \delta_{e(x h(n))} \tag{1.16}
\end{equation*}
$$

together with the fact that the point $1 \in \mathbf{T}$ has v-measure zero. However, if there exists no distribution function Φ_{h} satisfying both (1.14) and (1.15), then it is more appropriate to investigate the distribution modulo 1 of $x h(n)$ via (1.16).
4. Our interest in this problem arose from investigating the asymptotic behaviour of

$$
\sum_{n \leqslant y} c_{\alpha}(x / n) .
$$

During our investigation it became obvious that there were methods which could be applied in a much more general situation. In this paper we present these methods, deferring to the sequel the study of special methods.
As an example of the application of Theorem 2, consider a subset A of \mathbf{N}^{*} such that the counting function

$$
\mathrm{A}(x)=\sum_{\substack{a \leq x \\ a \in \mathcal{A}}} 1
$$

satisfies

$$
\mathrm{A}(x)=x^{\sigma} \mathrm{L}(x)
$$

where σ is a constant with $0<\sigma \leqslant 1$ and L is a slowly varying function, that is

$$
\lim _{x \rightarrow \infty} \frac{\mathrm{~L}(c x)}{\mathrm{L}(x)}=1
$$

for any positive constant c. Then

$$
\begin{equation*}
\lim _{x>\infty} \frac{1}{\mathrm{~A}(x)} \sum_{\substack{a \leq x \\ a \in \mathrm{~A}}} c_{\alpha}(x / a)=\sum_{n=1}^{\infty}\left(n^{-\sigma}-(n+\alpha)^{-\sigma}\right) . \tag{1.17}
\end{equation*}
$$

Moreover, there exists a function $y_{0}(x)$ such that if $y>y_{0}(x)$
and $y=\mathrm{o}(x)$ as $x \rightarrow \infty$, then

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{\mathrm{~A}(y)} \sum_{\substack{a \leq y \\ a \in \mathrm{~A}}} c_{\alpha}(x / a)=\alpha \tag{1.18}
\end{equation*}
$$

Relation (1.18) means that the fractional parts $\{x / a\}$, where a runs over $[0, y] \cap \mathrm{A}$, are asymptotically uniformly distributed, whereas (1.17) means that if a runs over the whole of $[0, x] \cap \mathrm{A}$, then the $\{x / a\}$ have the asymptotic distribution function

$$
\sum_{n=1}^{\infty}\left(n^{-\sigma}-(n+\alpha)^{-\sigma}\right)
$$

2. Theorems and proofs.

1. We first of all state a theorem which gives a sufficient condition for the $\left(R, \lambda_{n}\right)$-asymptotic distribution to be uniform. This is essentially due to Erdös and Turan [1], [2] and is a finite form of Weyl's criterion. It is also possible, of course, to give a necessary condition corresponding to Weyl's criterion, and to give results when the asymptotic distribution is non-uniform but continuous, but we have no applications in mind for these.

Theorem 1 is somewhat divorced from the following theorems. However, it clearly applies to the general situation. As an application we have in mind the case

$$
\begin{equation*}
h(n)=\log n \tag{2.1}
\end{equation*}
$$

Theorem 1. - Let the discrepancy $\mathrm{D}_{x, y}(h)$ be defined by

$$
\begin{equation*}
\mathrm{D}_{x, y}(h)=\sup _{0 \leqslant \alpha<\beta \leqslant 1}\left|\Phi_{x, y}(\beta, h)-\Phi_{x, y}(\alpha, h)-(\beta-\alpha)\right| \tag{2.2}
\end{equation*}
$$

Then, for any positive integer m,

$$
\begin{align*}
\mathrm{D}_{x, y}(h)< & \frac{6}{m+1} \tag{2.3}\\
& +\frac{4}{\pi} \sum_{k=1}^{m}\left(\frac{1}{k}-\frac{1}{m+1}\right)\left|\sum_{n=1}^{\infty} a_{n}(y) e(k x h(n))\right|
\end{align*}
$$

Theorem 1 is a generalization of Theorem 2.2.5 of Kuipers and Niederreiter [3], and can be proved in exactly the same way.
2. The following theorem (together with the observations made in Lemmas $2,3,4)$ shows that the $\left(R, \lambda_{n}\right)$ asymptotic distribution function modulo 1 of x / n can exist under very general conditions provided that y is not too small compared with x.

Whenever $\xi \geqslant 1$ and $\sigma \geqslant 0$ define
(2.4) $\mathrm{F}(\alpha ; \xi, \sigma)=\left\{\begin{array}{c} \\ \theta(\alpha ; \xi)\left(1-\xi^{\sigma}([\xi]+\alpha)^{-\sigma}\right) \\ \\ \quad+\xi^{\sigma} \sum_{k>\xi}\left(k^{-\sigma}-(k+\alpha)^{-\sigma}\right) \\ (0<\alpha<1, \sigma>0) \\ \alpha \quad(0<\alpha<1, \sigma=0)\end{array}\right.$
where

$$
\theta(\alpha ; \xi)= \begin{cases}1 & \text { if }(\xi-\alpha, \xi] \cap \mathbf{N} \neq \emptyset \tag{2.5}\\ 0 & \text { otherwise }\end{cases}
$$

Theorem 2.- Suppose that for every real number t with $0<t<1$ the limit

$$
\begin{equation*}
\lim _{y>\infty} \sum_{n \leqslant t y} a_{n}(y) \tag{2.6}
\end{equation*}
$$

exists and for at least one value of t is non-zero. Then there is a non-negative real number σ such that for every real number ε with $0<\varepsilon<\frac{1}{2}$ there is a real number $y_{0}(\varepsilon, \sigma) \geqslant 1$ so that whenever $y_{0}(\varepsilon, \sigma) \leqslant y \leqslant x$ we have
(2.7) $\quad \Phi_{x, y}(\alpha)=\mathrm{F}(\alpha ; x / y, \sigma)+\mathrm{O}\left(\varepsilon^{1+\sigma} x y^{-1}\right)+\mathrm{O}\left(2^{\sigma} \varepsilon^{\sigma}\right)$.

Lemma 1 below will show that the limit (2.6) is t^{σ}, which defines σ. We observe that when $\sigma=0$ Theorem 2 fails to give non-trivial information. Very likely $\Phi_{x, y}(\alpha) \rightarrow \alpha$ still holds in this case, at least when $\sum_{n \leq y} \lambda_{n} \rightarrow \infty$, but even when $\lambda_{n}=1 / n$ this is a deep result.

Before proceeding with the proof of Theorem 2 we state a corollary concerning the case when the integer n is allowed only to run through a shorter interval $[y, z]$.

Corollary 2.1. - With the assumptions of Theorem 2, if

$$
y_{0}(\varepsilon, \sigma) \leqslant y<z \leqslant x / 2,(y / z)^{\sigma}<1-\varepsilon^{2+\sigma}, \varepsilon^{z} \leqslant y,
$$

and $\sum_{y<n \leqslant z} \lambda_{n}>0$, then

$$
\begin{align*}
& \frac{\sum_{y<n \leq z} \lambda_{n} c_{\alpha}(x / n)}{\sum_{y<n \leqslant z} \lambda_{n}}-\alpha \tag{2.8}\\
& \stackrel{<}{\gtrless}\left(\sigma 2^{\sigma} z x^{-1}+\varepsilon^{1+\sigma} x y^{-1}+2^{\sigma} \varepsilon^{\sigma}\right)\left(1-y^{\sigma} z^{-\sigma}-\varepsilon^{2+\sigma}\right)^{-1} .
\end{align*}
$$

We remark that, in this case, the asymptotic distribution is always the uniform one, at least when $\sigma>0$.
3. The proof of Theorem 2 requires the following lemma.

Lemma 1. - On the hypothesis of Theorem 2 there is a nonnegative real number σ such that for every real number ε with $0<\varepsilon<1 / 2$ there is a real number $y_{0}(\varepsilon, \sigma) \geqslant 1$ so that whenever $y \geqslant y_{0}(\varepsilon, \sigma)$ we have, for every t with $\varepsilon \leqslant t \leqslant 1$,

$$
\begin{equation*}
\left|t^{\sigma}-\sum_{n \leqslant t y} a_{n}(y)\right|<\varepsilon^{2+\sigma} . \tag{2.9}
\end{equation*}
$$

Proof. - The existence of (2.6) for every real number t with $0<t<1$ together with the assumption that for some t in this range the limit is non-zero imply that there is a non-negative real number σ such that for every t with $0<t \leqslant 1$ we have

$$
\lim _{\nu>\infty} \sum_{n \leqslant t y} a_{n}(y)=t^{\gamma} .
$$

Let

$$
\mathrm{N}=\left[2 e^{e^{-2-t}} \max (1, \sigma)\right]+1
$$

and choose $y_{0}(\varepsilon, \sigma) \geqslant 1$ so that if $y \geqslant y_{0}(\varepsilon, \sigma)$, then for every integer r with $1 \leqslant r \leqslant \mathrm{~N}$ we have

$$
\begin{equation*}
\left|\left(\frac{r}{\mathrm{~N}}\right)^{\sigma}-\sum_{n \leqslant r y / \mathbf{N}} a_{n}(y)\right|<\frac{1}{2} \varepsilon^{2+\sigma} . \tag{2.10}
\end{equation*}
$$

Now choose an integer q such that

$$
\begin{equation*}
\frac{1}{\mathrm{~N}} \leqslant \frac{q}{\mathrm{~N}}<t \leqslant \frac{q+1}{\mathrm{~N}} \leqslant 1 \tag{2.11}
\end{equation*}
$$

which is always possible if $\varepsilon \leqslant t \leqslant 1$. Note that

$$
\begin{aligned}
&\left(\frac{q+1}{\mathrm{~N}}\right)^{\sigma}-\left(\frac{q}{\mathrm{~N}}\right)^{\sigma}=\int_{q / \mathrm{N}}^{(q+1) / \mathrm{N}} \sigma u^{\sigma-1} d u \\
& \leqslant \frac{\sigma}{\mathrm{~N}} \max \left(\left(\frac{q+1}{\mathrm{~N}}\right)^{\sigma-1},\left(\frac{q}{\mathrm{~N}}\right)^{\sigma-1}\right) \\
& \leqslant \sigma \max \left(\mathrm{N}^{-1}, \mathrm{~N}^{-\sigma}\right) \leqslant \max \left(\sigma \mathrm{N}^{-1},(e \log \mathrm{~N})^{-1}\right) \\
&<\frac{1}{2} \varepsilon^{2+\sigma} .
\end{aligned}
$$

Thus, by (2.10) and (2.11),

$$
\begin{aligned}
& \sum_{n \leqslant t y} a_{n}(y) \leqslant \sum_{n \leqslant(q+1) \gamma / \mathrm{N}} a_{n}(y)<\left(\frac{q+1}{\mathrm{~N}}\right)^{\sigma}+\frac{1}{2} \varepsilon^{2+\sigma} \\
&<\left(\frac{q}{\mathrm{~N}}\right)^{\sigma}+\varepsilon^{2+\sigma} \leqslant t^{\sigma}+\varepsilon^{2+\sigma}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{n \leqslant t y} a_{n}(y) \geqslant \sum_{n \leqslant q y / \mathbf{N}} a_{n}(y)>\left(\frac{q}{\mathrm{~N}}\right)^{\sigma} & -\frac{1}{2} \varepsilon^{2+\sigma} \\
& >\left(\frac{q+1}{\mathrm{~N}}\right)-\varepsilon^{2+\sigma} \geqslant t^{\sigma}-\varepsilon^{2+\sigma} .
\end{aligned}
$$

These last two inequalities give (2.9) as required.
4. Proof of Theorem 2. - Since (2.7) is trivially true when $\alpha \leqslant 0$ or $\alpha \geqslant 1$, we may assume $0<\alpha<1$. Let

$$
\mathrm{K}=\left[\frac{x}{\varepsilon y}-\alpha\right] .
$$

Then, by (1.13), (1.11), (1.9), Lemma 1 and (2.5),

$$
\begin{aligned}
& \Phi_{x, y}(\alpha)=\sum_{\frac{x}{\mathrm{~K}+\alpha}<n \leqslant y} a_{n}(y) c_{\alpha}(x / n)+\mathrm{O}\left(\sum_{n \leqslant 2 z y} a_{n}(y)\right) \\
& =\sum_{k=1}^{\mathbb{K}} \sum_{\substack{n \leq y \\
x / k+\alpha)<n \leq x / k}} a_{2}(y)+\mathrm{O}\left(2^{\sigma} \varepsilon^{\sigma}\right) \\
& =\theta(\alpha ; x / y)\left(\sum_{n \leqslant y} a_{n}(y)-\sum_{n \leqslant x /[(x / y]+\alpha)} a_{n}(y)\right) \\
& +\sum_{x / y \leqslant k \leqslant \mathrm{~K}}\left(\sum_{n \leqslant x / k} a_{n}(y)-\sum_{n \leqslant x / k+\alpha)} a_{n}(y)\right)+\mathrm{O}\left(2^{\sigma} \varepsilon^{\sigma}\right) .
\end{aligned}
$$

Hence, by Lemma 1 and (2.4),

$$
\begin{aligned}
\Phi_{x, y}(\alpha)=\mathrm{F}(\alpha ; x / y, \sigma)+\mathrm{O}\left(\varepsilon^{2+\sigma} \mathrm{K}\right) & +\mathrm{O}\left(2^{\sigma} \varepsilon^{\sigma}\right) \\
& +\mathrm{O}\left(\sum_{k>\mathrm{K}}\left(\frac{x}{y}\right)^{\sigma}\left(k^{-\sigma}-(k+\alpha)^{-\sigma}\right) .\right.
\end{aligned}
$$

The proof of (2.7) is completed by observing that $\varepsilon \mathrm{K} \leqslant x / y$ and

$$
\begin{aligned}
\sum_{k>\mathrm{K}}\left(k^{-\sigma}-(k+\alpha)^{-\sigma}\right) & =\sum_{k>\mathrm{K}} \int_{k}^{k+\alpha} \sigma u^{-\sigma-1} d u \leqslant \sum_{k>\mathrm{K}} \int_{k}^{k+1} \sigma u^{-\sigma-1} d u \\
& =(\mathrm{K}+1)^{-\sigma}<(2 \varepsilon y \mid x)^{\sigma} .
\end{aligned}
$$

5. Proof of Corollary 2.1. - We use (2.7) and Lemma 1. The condition that $(y / z)^{\sigma}<1-\varepsilon^{2+\sigma}$ means that we can assume that $\sigma>0$. Suppose that $\xi>1$. Then, by (2.4),

$$
\begin{aligned}
\mathrm{F}(\alpha ; \xi, \sigma) & \leqslant \xi^{\sigma} \int_{[\xi]}^{[\xi \xi]+\alpha} u^{-\sigma} d u+\mathrm{O}\left(\theta(\alpha ; \xi) \int_{\xi /[(\xi)+\alpha)}^{1} \sigma u^{\sigma-1} d u\right) \\
& \leqslant \alpha(\xi /[\xi])^{\sigma} \\
& +\mathrm{O}\left(\theta(\alpha ; \xi) \sigma(1-\xi /([\xi]+\alpha)) \max \left(1,\left(\frac{\xi}{[\xi]+\alpha}\right) \sigma^{-1}\right)\right) \\
& \left.=\alpha+\mathrm{O}\left(\sigma 2^{\sigma \xi}\right)^{-1}\right) .
\end{aligned}
$$

Similarly

$$
\begin{aligned}
\mathrm{F}(\alpha ; \xi, \sigma) \geqslant \xi^{\sigma} \int_{\xi+1}^{\xi+1+\alpha} & u^{-\sigma} d u \\
& \geqslant \alpha\left(1+\frac{1+\alpha}{\xi}\right)^{-\sigma} \geqslant \alpha-\frac{\sigma \alpha(1+\alpha)}{\xi} .
\end{aligned}
$$

Hence, if $y_{0}(\varepsilon, \sigma) \leqslant y \leqslant x / 2$, then by (1.11), (1.13) and (2.7),

$$
\sum_{n \leqslant y} \lambda_{n} c_{\alpha}(x / n)=\left(\alpha+\mathrm{O}\left(\sigma 2^{\sigma} y x^{-1}+x \varepsilon^{1+\sigma} y^{-1}+2^{\sigma} \varepsilon^{\sigma}\right)\right) \sum_{n \leqslant \gamma} \lambda_{n} .
$$

Thus, if $y_{0}(\varepsilon, \sigma) \leqslant y<z \leqslant \frac{1}{2}$, then

$$
\begin{aligned}
\sum_{y<n \leqslant z} \lambda_{n} c_{\alpha}(x / n)=\alpha \sum_{y<n \leqslant z} & \lambda_{n} \\
& +\mathrm{O}\left(\left(\sigma 2^{\sigma} y x^{-1}+x_{\varepsilon}^{1+\sigma} y^{-1}+2^{\sigma_{\varepsilon}^{\sigma}}\right) \sum_{n \leqslant \gamma} \lambda_{n}\right) .
\end{aligned}
$$

We complete the proof of (2.8) by observing that by (1.11)
and Lemma 1,

$$
\begin{aligned}
\left(\sum_{n \leqslant z} \lambda_{n}\right) / \sum_{y<n \leqslant z} \lambda_{n} \\
\quad=\left(1-\left(\sum_{n \leqslant y} \lambda_{n}\right) / \sum_{n \leqslant z} \lambda_{n}\right)^{-1}<\left(1-(y / z)^{\sigma}-\varepsilon^{2+\sigma}\right)^{-1}
\end{aligned}
$$

6. In this section we make some observations concerning the nature of $\mathrm{F}(\alpha ; \xi, 0)$.

Lemma 2. - Suppose that $0 \leqslant \alpha \leqslant 1$ and $\xi \geqslant 1$. Then

$$
\begin{gather*}
\mathrm{F}(\alpha ; \xi, \sigma)=\alpha+\mathrm{O}\left(\sigma 2^{\sigma} \xi^{-1}\right) \quad(\sigma>0) \tag{2.12}\\
\lim _{\sigma \rightarrow 0^{+}} \mathrm{F}(\alpha ; \xi, \sigma)=\alpha=\mathrm{F}(\alpha ; \xi, 0) \tag{2.13}
\end{gather*}
$$

and
(2.14) $\mathrm{F}(\alpha ; 1, \sigma)=\sum_{k=1}^{\infty}\left(k^{-\sigma}-(k+\alpha)^{-\sigma}\right)(\sigma>0)$.

By (2.14) with $\sigma=1, \mathrm{~F}(\alpha ; 1,1)=\Gamma^{\prime}(\alpha) / \Gamma(\alpha)+\gamma+1 / \alpha$ where Γ is the gamma function and γ is Euler's constant.

Proof. - The asymptotic formula (2.12) was established in the proof of (2.8), (2.13) then follows trivially, and (2.14) is immediate from (2.4).

Lemma 3. - For each $\xi \geqslant 1$ and $\sigma>0$ the function $\mathrm{F}(\alpha ; \xi, 0)$ is a continuous function of α and is analytic on $\mathbf{R} \backslash\{0,\{\xi\}, 1\}$ with

$$
F^{\prime}(\alpha)= \begin{cases}0 & (\alpha<0, \alpha>1) \tag{2.15}\\ \sigma \xi^{\sigma} \sum_{k>\xi}(k+\alpha)^{-\sigma-1} & (0<\alpha<\{\xi\}) \\ \sigma \xi^{\sigma}([\xi]+\alpha)^{-\sigma-1}+\sigma \xi^{\sigma} \sum_{k>\xi}(k+\alpha)^{-\sigma-1} & (\{\xi\}<\alpha<1) .\end{cases}
$$

The points $0,\{\xi\}$ and 1 are angular points of F .
Lemma 4. - Suppose that $0<\alpha<1$ and $\sigma>0$. Then considered as a function of $\xi, \mathrm{F}(\alpha ; \xi, \sigma)$ is continuous on $[1, \infty) \backslash\{2,3,4, \ldots\}$ and for each integer $n \geqslant 2$,
(2.16) $\lim _{\xi \rightarrow n^{-}} \mathrm{F}(\alpha ; \xi, \sigma)=n^{\sigma} \sum_{k=n+1}^{\infty}\left(k^{-\sigma}-(k+\alpha)^{-\sigma}\right)$
and
(2.17) $\lim _{\xi \rightarrow n^{+}} \mathrm{F}(\alpha ; \xi, \sigma)$

$$
=n^{\sigma} \sum_{k=n}^{\infty}\left(k^{-\sigma}-(k+\alpha)^{-\sigma}\right)=\mathrm{F}(\alpha ; n, \sigma)
$$

7. We now establish upper and lower bounds for the mean square of $\Phi_{x, y}(\alpha)-\alpha$ which in turn imply respectively
(i) that if y is small compared with x then the only possible $\left(R, \lambda_{n}\right)$ asymptotic distribution modulo 1 is the uniform one, and
(ii) that the discrepancy cannot be too small.

Theorem 3. - Suppose that x_{0} and x are non-negative real numbers, $y \geqslant 1$ and $0<\alpha<1$. Then

$$
\begin{equation*}
\int_{x_{0}}^{x_{0}+x}\left|\Phi_{u, y}(\alpha)-\alpha\right|^{2} d u \leqslant \min \left(\mathrm{I}_{1}, \mathrm{I}_{2}\right) \tag{2.18}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{I}_{1}=\frac{1}{3}\left(x+y^{2}\right) \sum_{n=1}^{\infty}\left(\sum_{m=1}^{\infty} \frac{1}{m} a_{m n}(y)\right)^{2} \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{I}_{2}=\sum_{n=1}^{\infty}\left(\frac{1}{3} x+\frac{1}{2} y n\right)\left(\sum_{m=1}^{\infty} \frac{1}{m} a_{m n}(y)\right)^{2} \tag{2.20}
\end{equation*}
$$

This theorem can be thought of in a rather loose way as a law of the iterated logarithm. This will be discussed further in a later paper. (See [5]).

Theorem 4. - On the hypothesis of Theorem 3,

$$
\begin{equation*}
\int_{x_{0}}^{x_{0}+x}\left|\Phi_{u, y}(\alpha)-\alpha\right|^{2} d u \geqslant \max \left(J_{1}, \mathrm{~J}_{2}\right) \tag{2.21}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{J}_{1}=\frac{1}{2} \pi^{-2}\left(x-y^{2}\right) \sum_{n=1}^{\infty}\left|\sum_{m=1}^{\infty} \frac{1}{m} a_{m n}(y)(1-e(\alpha m))\right|_{2} \tag{2.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{J}_{2}=\left((2 \pi)^{-2} \sum_{n=1}^{\infty}(2 x-3 y n)\left|\sum_{m=1}^{\infty} \frac{1}{m} a_{m n}(y)(1-e(\alpha m))\right|^{2}\right. \tag{2.23}
\end{equation*}
$$

By taking the real part of the innermost sum in (2.22) and
(2.23) and then discarding all the terms with $m>1$ one obtains in (2.21) the particularly simple lower bound $\max \left(\mathrm{L}_{1}\right.$, L_{2}), where

$$
\mathrm{L}_{1}=2 \pi^{-2}(\sin \pi \alpha)^{4}\left(x-y^{2}\right) \sum_{n=1}^{\infty} a_{n}^{2}(y)
$$

and

$$
\mathrm{L}_{2}=\pi^{-2}(\sin \pi \alpha)^{4} \sum_{n=1}^{\infty}(2 x-3 y n) a_{n}^{2}(y) .
$$

However, in certain circumstances this loses a factor as large as $\operatorname{loglog} y$.

Corollary 4.1. - Let the discrepancy $\mathrm{D}_{x, y}$ be given by

$$
\begin{equation*}
\mathrm{D}_{x, y}=\sup _{0 \leqslant \alpha<\beta \leqslant 1}\left|\Phi_{x, y}(\beta)-\Phi_{x, y}(\alpha)-(\beta-\alpha)\right| . \tag{2.24}
\end{equation*}
$$

Then

$$
\begin{equation*}
\int_{x_{0}}^{x+x_{0}} \mathrm{D}_{u, y}^{2} d u \geqslant \sup _{\alpha \in[0,1]} \max \left(\mathrm{J}_{1}, \mathrm{~J}_{2}\right) . \tag{2.25}
\end{equation*}
$$

By analogous methods it is possible to obtain corresponding inequalities for

$$
\sum_{n=M+1}^{\mathrm{M}+\mathrm{N}}\left|\Phi_{n, y}(\alpha)-\alpha\right|^{2}
$$

but the bounds obtained are more complicated and not so illuminating.
8. To prove Theorems 3 and 4 we require the following lemma which is Theorem 2 of Montgomery and Vaughan [4].

Lemma 5. - Suppose that $x_{1}, x_{2}, \ldots, x_{\mathrm{R}}$ are R distinct real numbers, and that $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{\mathrm{R}}$ are R complex numbers. Also, let

$$
\begin{equation*}
\delta=\min _{\substack{r, s \\ r \neq s}}\left|x_{r}-x_{s}\right| \quad \text { and } \quad \delta_{r}=\min _{\substack{s \\ s \neq r}}\left|x_{r}-x_{s}\right| . \tag{2.26}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|\sum_{\substack{r=1 \\ r \neq s \\ r \neq s}}^{\mathrm{R}} \sum_{\mathrm{r}}^{\mathrm{R}} \frac{s_{r} \bar{y}_{s}}{x_{\mathrm{r}}-x_{s}}\right| \leqslant \pi \min \left(\mathrm{K}_{1}, \mathrm{~K}_{2}\right) \tag{2.27}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{K}_{1}=\delta^{-1} \sum_{r=1}^{\mathbf{R}}\left|\varphi_{r}\right|^{2} \tag{2.28}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{K}_{2}=\frac{3}{2} \sum_{r=1}^{\mathrm{R}}\left|\varphi_{r}\right|^{2} \delta_{r}^{-1} \tag{2.29}
\end{equation*}
$$

9. Proofs of Theorems 3 and 4. - Let K be a positive integer. Then it is easily seen that the function $c_{\alpha}(u)$ given by (1.9) can be written in the form.

$$
\begin{align*}
& c_{\alpha}(u)=\alpha+\sum_{0<|k| \leqslant \mathrm{K}} \frac{1-e(-\alpha k)}{2 \pi i k} e(u k) \tag{2.30}\\
& \quad+\mathrm{O}\left(\min \left(1, \frac{1}{\mathrm{~K}\|u\|}\right)\right)+\mathrm{O}\left(\min \left(1, \frac{1}{\mathrm{~K}\|u-\alpha\|}\right)\right)
\end{align*}
$$

Clearly

$$
\begin{align*}
\int_{x_{0}}^{x_{0}+x} \min \left(1, \frac{1}{\mathrm{~K}\left\|\frac{u}{n}-\beta\right\|}\right) & d u \tag{2.31}\\
& <(x+n) \frac{\log \mathrm{K}}{\mathrm{~K}} \quad(0 \leqslant \beta \leqslant 1)
\end{align*}
$$

Hence, by (1.9) and (2.30),

$$
\begin{array}{rl}
(2.32) \quad \int_{x_{0}}^{x_{0}+x}\left|\sum_{n=1}^{\infty} a_{n}(y) c_{\alpha}(u / n)-\alpha\right|^{2} & d u \\
& =\mathrm{I}+\mathrm{O}\left((x+y) \frac{\log \mathrm{K}}{\mathrm{~K}}\right)
\end{array}
$$

where

Clearly, if $n_{j} \leqslant y, 0<\left|k_{j}\right| \leqslant \mathrm{K},\left(n_{j}, k_{j}\right)=1$ for $j=1$,
and $k_{1}\left|n_{1} \neq k_{2}\right| n_{2}$, then $\left|k_{1}\right| n_{1}-k_{2}\left|n_{2}\right| \geqslant 1 /\left(y n_{1}\right) \geqslant y^{-2}$.
Therefore, by (2.33) and Lemma 5,

$$
\begin{equation*}
\mathrm{I}=\sum_{n=1}^{\infty} \sum_{\substack{<|k| \leqslant \mathrm{K} \\(n, k)=1}}\left(x+\theta_{1} y^{2}\right)\left|\sum_{m \leq \mathrm{K} /|k|} \frac{a_{n m}(y)(1-e(-\alpha k m))}{2 \pi i k m}\right|^{2} \tag{2.34}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{I}=\left.\left.\sum_{n=1}^{\infty} \sum_{\substack{0<|k| \leq \mathbf{K} \\(n, k)=1}}\left(x+\frac{3}{2} \theta_{2} n y\right)\right|_{m \leqslant \mathbf{K} /|k|} \frac{a_{n m}(y)(1-e(-\alpha k m))}{2 \pi i k m}\right|^{2} \tag{2.35}
\end{equation*}
$$

where $\left|\theta_{1}\right| \leqslant 1,\left|\theta_{2}\right| \leqslant 1$. Theorem 3 now follows from (2.32) on letting $\mathrm{K} \rightarrow \infty$. Theorem 4 follows in the same way on discarding all the terms with $|k| \neq 1$.

Sometimes, when the simple Riesz means (R, λ_{n}) are specified, it may be more appropriate to use (2.34) and (2.35) rather than appeal to Theorems 3 and 4.
10. By (2.7), (2.8) and (2.13) we see that if y is small compared with x but not too small, then under very general conditions

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \Phi_{x, y(x)}(\alpha)=\alpha \tag{2.36}
\end{equation*}
$$

We now show, as a consequence of Theorem 3, and again under very general conditions, that even if y is very small compared with x, then (2.36) still holds.

$$
\text { Theorem 5. - Suppose that } 0<\theta<1,0<\alpha<1
$$

$$
\begin{equation*}
\lim _{y \rightarrow \infty}\left(\left(1+y^{\frac{3 \theta-1}{2 \theta}}\right)\left(\sum_{n \leqslant y-y^{(3 \theta-1) / 2 \theta}} \lambda_{n}\right)^{-2} \sum_{n \leqslant y}\left(\sum_{m \leqslant y / n} \frac{1}{m} \lambda_{m n}\right)^{2}\right)=0 \tag{2.37}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \Phi_{x, x^{\theta}}(\alpha) \tag{2.38}
\end{equation*}
$$

exists, Then

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \Phi_{x, x^{0}}(\alpha)=\alpha \tag{2.39}
\end{equation*}
$$

We remark that (2.37) is rather a weak condition. For instance, if $\lambda_{n}=1$ for every n, then it holds for every θ with $0<\theta<1$.

Proof. - Let y be large and define $z=y-y^{(30-1) / 20}$. Then by Theorem 3, (1.13) and (1.11),

$$
\begin{align*}
\int_{z^{1 / \theta}}^{y^{1 / \theta}} \mid \sum_{n \leqslant z} \lambda_{n}\left(c_{\alpha}\right. & \left.\left(\frac{u}{n}\right)-\alpha\right)\left.\right|^{2} d u \tag{2.40}\\
& \ll\left(y^{2}+y^{1 / \theta}-z^{1 / \theta}\right) \sum_{n \leqslant y}\left(\sum_{m \leqslant y / n} \frac{1}{m} \lambda_{m n}\right)^{2}
\end{align*}
$$

Furthermore, by Cauchy's inequality (inégalité de Schwarz en français!),

$$
\int_{z^{1 / \theta}}^{y^{1 / \theta}} \left\lvert\, \sum_{z<n \leqslant u^{\theta}} \lambda_{n}\left(c_{\alpha}\left(\frac{u}{n}\right)-\alpha\right)^{2} d u \ll\left(y^{1 / \theta}-z^{1 / \theta}\right)(1+y-z) \sum_{n \leqslant y} \lambda_{n}^{2} .\right.
$$

Hence, by (2.40),

$$
\begin{align*}
& \int_{z^{1 / \theta}}^{y^{1 / \theta}} \left\lvert\, \sum_{n \leqslant u^{\varphi}} \lambda_{n}\left(c_{\alpha}\left(\frac{u}{n}\right)-\alpha\right)^{2} d u\right. \tag{2.41}\\
& \ll\left(y^{2}+\left(y^{1 / \theta}-z^{1 / \theta}\right)\left(1+y^{\frac{3 \theta-1}{2 \theta}}\right)\right) \sum_{n \leqslant y}\left(\sum_{m \leq y / n} \frac{1}{m} \lambda_{m n}\right)^{2}
\end{align*}
$$

It is easily verified that

$$
y^{2} \ll\left(y^{1 / \theta}-z^{1 / \theta}\right) y^{(3 \theta-1) / 2 \theta} .
$$

Thus, by (2.41) and (2.37),

$$
\inf _{z^{1 / \theta} \leq u \leq \gamma^{1 / \theta}}\left|\Phi_{u, u^{0}}(\alpha)-\alpha\right| \rightarrow 0 \quad \text { as } \quad y \rightarrow \infty .
$$

This gives the desired result.

3. Appendix.

1. Theorem 1 does not require that the $a_{n}(y)$ be the simple Riesz means (R, λ_{n}). It is valid provided that

$$
\sum_{n=1}^{\infty} a_{n}(y)=1
$$

2. Theorem 2 can be generalized in the following way. We say that the positive Toeplitz transformation $\mathscr{A}=\left(a_{n}(y)\right)$ has asymptotic (or limit) distribution function φ with respect to the ordinary Cesaro method ($\mathrm{C}, 1$) if there exists a distribution function φ such that

$$
\begin{equation*}
\lim _{y>\infty} \sum_{n \leqslant t y} a_{n}(y)=\varphi(t) \tag{3.1}
\end{equation*}
$$

at every t at which φ is continuous. For example, if the $a_{n}(y)$ are the simple Riesz means $\left(R, \lambda_{n}\right)$ and if φ exists, then by Lemma 1 it is either a continuous function given by

$$
\varphi(t)= \begin{cases}0 & (t \leqslant 0) \tag{3.2}\\ t^{\sigma} & (0<t<1) \quad(\text { with } \sigma>0) \\ 1 & (t \geqslant 1)\end{cases}
$$

or is one of the "Heaviside» functions Y_{0} and Y_{1}, where $\mathrm{Y}_{a}(t)=0 \quad$ if $t<a, \mathrm{Y}_{a}(t)=1$ if $t \geqslant a$. (In the general case, necessarily $\varphi(t)=0$ for $t<0$). On examining the proof of Theorem 2, one sees that provided φ exists, is continuous and satisfies $\varphi(0)=0, \varphi(1)=1$, then it is possible to replace Theorem 2 by a similar but more general statement. In particular $\mathrm{F}(\alpha ; \xi, \sigma)$ is to be replaced by

$$
=\left\{\begin{array}{l}
0 \quad(\alpha \leqslant 0) \tag{3.3}\\
1 \quad(\alpha \geqslant 1) \\
\theta(\alpha, \xi)\left(1-\varphi\left(\frac{\xi}{[\xi]+\alpha}\right)\right)+\sum_{k>\xi}\left(\varphi\left(\frac{\xi}{k}\right)-\varphi\left(\frac{\xi}{k+\alpha}\right)\right) \\
\quad(\text { when } 0<\alpha<1),
\end{array}\right.
$$

but some care is needed with the error terms. Besides the above example where φ is given by (3.2), there are other interesting instances in which φ exists.
3. Theorems 3 and 4 do not require the $a_{n}(y)$ to be the simple Riesz means $\left(\mathrm{R}, \lambda_{n}\right)$. They remain valid without modification provided that $a_{n}(y)=0$ for $n>y$. Otherwise, there are extra error-terms involving $\sum_{n>y} a_{n}(y)$. Thus one can still obtain meaningful information in case $\lim _{y>\infty} \sum_{n>y} a_{n}(y)=0$.

BIBLIOGRAPHIE

[1] P. Erdös and P. Turán, On a problem in the theory of uniform distributions, I, Proc. Nederl. Acad. Wetensch., 51 (1948), 1146-1154, Indagationes Math., 10 (1948), 370-378.
[2] P. Erdös and P. Turán, On a problem in the theory of uniform distribution, II, Proc. Nederl. Acad. Wetensch., 51 (1948), 1262-1269, Indagationes Math., 10 (1948), 406-413.
[3] L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Wiley, New York, 1974.
[4] H. L. Montgomery and R. C. Vaughan, Hilbert's inequality, J. London Math. Soc., (2), 8 (1974), 73-82.
[5] B. Saffari and R. C. Vaughan, On the fractional parts of x / n and related sequences, II (to appear).

Manuscrit reçu le 17 juillet 1975
Proposé par J.-P. Kahane.
B. Saffari, Université de Paris-Sud Orsay.
R. C. Vaughan, University of Michigan Ann Arbor. and Imperial College London.

