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ON THE FRACTIONAL PARTS
OF x / n AND RELATED SEQUENCES. I

by B. SAFFARI and R. C. VAUGHAN

1. Introduction.

1. Throughout this paper {x} = x — [x] denotes the frac-
tional part of the real number x. We write \\x\\ == min \x — k\
and e{x) == e2^. kez

Also, the implied constants in the 0 symbol of Landau
and the > and < symbols of Vinogradov are absolute.

Finally, by a distribution function we always mean a distri-
bution function in the sense of probability theory, defined on
the real line.

2. Let (rcj be a sequence of real numbers. The usual
study of the distribution modulo 1 of (^) is essentially
that of the distribution of the sequence (e(x^)) on the circle
T. The main problems are those of investigating

(i) the existence of the asymptotic (or limit) distribution
measure

(1.1) (A = lim ̂
k>w

where

(1.2) ^=4^^
n. n==l

with Sy denoting the Dirac measure at v e T, and
(ii) the size of the discrepancy
(1.3) SUp|^(co)-pL(co)|

(i)

where co runs through those arcs of T whose end points have
pi-measure zero.
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It is classical that the existence of [L together with the
assumption that the point 1 e T has ^ -measure zero is
equivalent to the existence of a distribution function F such
that

(1.4) F(0 +) = 0, F(l -) == 1
and

(1.5) ^)=limlA([0,^,k,{x^
JOQO K

at every a at which F is continuous, the counting function
(1.6) A( [ a ,p ) , / c , ( ^ ) )

= Card {n: 1 ̂  n ^ /c, a ^ {x^} < (3}

being here defined for all real numbers a and (3. The condi-
tions (1.4) mean that F is continuous at 0 and 1, and
imply that F is constant on the intervals (— oo, 0] and
[1, oo). In this case F is called the asymptotic (or limit)
distribution function modulo 1 of the sequence (^), and
the discrepancy (1.3) is equal to

(1.7) sup 1 A([a, [B), /c, (^)) - (F(P) - F(a))
0^a<?^l K

where a and j3 run through the continuity points of F.
In some situations it may be more appropriate to consider

the existence of the A-asymptotic distribution function
modulo 1, namely the existence (outside a countable set),
and the continuity at a == 0 and a = 1, of

(1.8) lim 1 a^c^}
k>w 71=1

where

(1.9) ^a(u) = S1 0 < ̂  <(U otherwise0 otherwise

is the characteristic function modulo 1 of [0, a), and
A = (a^) is a positive Toeplitz matrix. Here by a positive
Toeplitz matrix we mean that

00 CO

a^ ^ 0, S ^k,n < °° and lim ^ a/,^ = 1.
^==l 1C><Xl /l==l
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3. The sequence (rcj is, of course, independant of A*.
Our object is to investigate the distribution modulo 1 of
xh{n) with x a large real number, h{n) an arithmetical
function, and the integer n belonging to S n [1, k] where
S c: N and k depends on re. For our purposes it is some-
what more convenient to replace k by a real parameter y.
We call ^ = (a^(z/) : y e [1, oo), n = 1, 2, . . .) a positive
Toeplitz transformation if a^(y) ^ 0 for all n and y,

00 00

2 ^(y) < °° ^or every y, and lim ^ ^n(y) ^ 1- We are
n==l y>ao n==i

particularly interested in the special case where the a^y) are
the simple Riesz means (R, Xj given by

(1.10) \ ^ 0 {n= 1 ,2 , . . . ) , \ > 0

and

,,,,, , , VS ^ (w < y)(l.ll) ^ (y)= . /
0̂ (m > y}

which we assume henceforward, although several of our
proofs go through in the general case (see Appendix). Let

(1.12) 0,,,(a, h) = S a,{y)c^(xh{n}).
71=1

A good deal of our attention will be taken up with h{n) == ifn
and we write

(1.13) 0,.,(a) = 1 a^{y}c^n).
n==l

The problems arising from the study of 0^. ,j(a) as x and
y = y^) tend together to infinity are closely related to the
Dirichlet divisor problem.

If there exists a distribution function 0/t such that

(1.14) 0,(0 +) - 0, 0,(1 --) = 1

and

(1.15) <D,(a) = lim 0,,^)(a, /i)
a;>-oo

at every a at which O/i is continuous, then we call 0^ the
6
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j^-asymptotic distribution function modulo 1. This situation
is equivalent to the existence on the circle T of the cC/-limit
(or .^/-asymptotic) distribution measure

00

(1.16) v == lim S a^y) S^w)
a;>oo n==l

together with the fact that the point 1 G T has v-measure
zero. However, if there exists no distribution function O/i
satisfying both (1.14) and (1.15), then it is more appropriate
to investigate the distribution modulo 1 of xh(n) via
(1.16).

4. Our interest in this problem arose from investigating
the asymptotic behaviour of

S c^xjn).
n^y

During our investigation it became obvious that there were
methods which could be applied in a much more general
situation. In this paper we present these methods, deferring to
the sequel the study of special methods.

As an example of the application of Theorem 2, consider a
subset A of N* such that the counting function

A(^) = S 1
a^:x
a€A

satisfies
A(^) == x^Hx)

where a is a constant with 0 < (T ^ 1 and L is a slowly
varying function, that is

T Ucx) Mlim -^-^ = 1
a->oo L[X)

for any positive constant c. Then

(1.17) l im 1 - S c^xia) = 1 (n-3 - (n + a)-°).
a;>oo 1\.^X) a^x n==l

a€A

Moreover, there exists a function yo{x) such that if y > y^x)
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and y = o(x) as x —> oo, then

(1.18) lim—— S ^/a)=a.
x^ A.(y)a^y

aeA

Relation (1.18) means that the fractional parts {xfa}, where
a runs over [0, y} n A, are asymptotically uniformly dis-
tributed, whereas (1.17) means that if a runs over the whole
of [0, x] n A, then the {xfa} have the asymptotic distri-
bution function

S (n-^ - {n + a)-).

2. Theorems and proofs.

1. We first of all state a theorem which gives a sufficient
condition for the (R, Xj-asymptotic distribution to be
uniform. This is essentially due to Erdos and Turan [I], [2]
and is a finite form of Weyl's criterion. It is also possible, of
course, to give a necessary condition corresponding to WeyPs
criterion, and to give results when the asymptotic distribution
is non-uniform but continuous, but we have no applications
in mind for these.

Theorem 1 is somewhat divorced from the following theo-
rems. However, it clearly applies to the general situation. As
an application we have in mind the case

(2.1) h{n) = log n.

THEOREM 1. — Let the discrepancy D^y(/i) be defined by

(2.2) D^(A) = sup | a>,,,(P, h) - 0^(a, h) - ((3 - a)|.
0-$a<P^l

Then, for any positive integer m,

6(2.3) D,,,(A) <
TO+ 1

4 m / 1 1 \ °° I
+ - s (t - n~^~\) s ̂ W^"))!-7C /c=l \ K HI -\- ly n=i
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Theorem 1 is a generalization of Theorem 2.2.5 of Kuipers
and Niederreiter [3], and can be proved in exactly the same
way.

2. The following theorem (together with the observations
made in Lemmas 2, 3, 4) shows that the (R, Xj asymptotic
distribution function modulo 1 of x\n can exist under
very general conditions provided that y is not too small
compared with x.

Whenever ^ ^ 1 and a ^ 0 define
/ 0 (a ^ 0)
1 1 (a ^ 1)

^ FV . ^ 6(a;S)(l-^]+a)-)(2.4) F(a;^)= ^ ^ ^ ^ - ( k + a ^ ) - ^
I k>^
f (0 < a < 1, (T > 0)
\ a (0 < a < 1, a = 0)

where
(25} 6 f a . ^ - S 1 if ^-^ O N ^ 0
(2.5) 6 ( 0 , ^ ) - ^ o^erwise.

THEOREM 2. — Suppose that for every real number t with
0 < ( < 1 the limit

(2.6) lim S ^{y)
y>oo ra^ty

exists and for at least one value of t is non-zero. Then there is a
non-negative real number a such that for every real number

1s with 0 < s < — there is a real number z/o(£, cr) ^ 1 so
2i

that whenever 2/0 (£, a) ^ y ^ x we have

(2.7) 0^(a) = F(a; x/y, a) + 0(^xy-1) + 0(2^).

Lemma 1 below will show that the limit (2.6) is ^, which
defines cr. We observe that when a == 0 Theorem 2 tails to
give non-trivial information. Very likely O^. y(a) —> a still
holds in this case, at least when ^ X^ -> oo, but even when
X^ == 1/n this is a deep result. n<y

Before proceeding with the proof of Theorem 2 we state a
corollary concerning the case when the integer n is allowed
only to run through a shorter interval [y, z].
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COROLLARY 2.1. — With the assumptions of Theorem 2, if

2/o(s, a) < y < z < ^/2, (y/js)0 < 1 - e2-^, ^ ^ y,

an^ ^ 7^ > 0, ^Aen
y<n^2-

(2.8)
S X,Ca(a;/n)

y<"^————— — a
S ^y<n^2

<^ {a2^x-1 + ̂ xy-1 + 2ff£CT)(l — z/^ - e2^)-1.

We remark that, in this case, the asymptotic distribution
is always the uniform one, at least when a > 0.

3. The proof of Theorem 2 requires the following lemma.

LEMMA 1. — On the hypothesis of Theorem 2 there is a non-
negative real number CT such that for every real number e
with 0 < e < 1/2 there is a real number i/o(s, ^) ^ 1 so
that whenever y ^ t/o(e, or) we have, for every t with s ^ t ^ 1,., \j j m> /n</>'c-, f^i c'w'r u t/ ^i/<//(. c. ^ i, ^

^ __ V n t^i\\ ^ -2+0(2.9) (CT- S a,(t/)| < e .̂
n^fy I

Proof. — The existence of (2.6) for every real number t
with 0 < t < 1 together with the assumption that for some
t in this range the limit is non-zero imply that there is a
non-negative real number a such that for every t with
0 < t ^ 1 we have

lim S ^n(y) == (a.
y>ao n^(y

Let
N = ̂ "^max (1, o)] + 1

and choose t/o(s, <?) > 1 so that if i/ > t/o(e, o), then for
every integer r with 1 < r ^ N we have

(2.10) (-Y- S »»(!/) <l-e2+I•
\ 1^ / n^ry/N ^

Now choose an integer q such that

(2-") -^o^.l,
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which is always possible if e <S t < 1. Note that

A, _L 1\n / o \° /•(?+1)/N

(^-fr) -(-1-) = f au^du\ N ^ ^N; J^
. 0 //g + 1\T-1 / q V-^
^ N ^ ^ N - ) '(i) )
< a max (N-1, N-') ^ max (oN-1, (e log N)-1)

< I-.-.

Thus, by (2.10) and (2.11),

S <y} < S ^(y) < (l^Ay+4e2+°
n^ty n^(q+l)yiv \ i^ / -

< ^Y + e^0 ^ ^ + e^0

and

S ^(2/) > S ^{y) >(^_\-1^
n^iy n^yiv \rN / zl

> f3^1) — e24^ ^ ^ — e2-^.

These last two inequalities give (2.9) as required.

4. Proof of Theorem 2. — Since (2.7) is trivially true when
a ^ 0 or a ^ 1, we may assume 0 < a < 1. Let

K=r-"-ai .
L"/ J

Then, by (1.13), (1.11), (1.9), Lemma 1 and (2.5),

l^^) = S ^CaW + 0 ( S ^(</))
^<,^ ^^ /

= S 5 ^(y) + 0(2^')
/c==l n^y

a'/(fc+a)<n^a'/fc

=6(a;^) /S a,(y)- S ^(</)^
\i>«»' n<.i;/([.r/y]+a) /

+ S f S ^(y) - S a^y)) + 0(2^°).
a;/y^fe^K \n^a-/fc n^xKk+ac.) /
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Hence, by Lemma 1 and (2.4),

<D^(a) = F(a; xjy, a) + O^^K) + 0(2^)+OCi(fy^-(/f+a)-o)•
The proof of (2.7) is completed by observing that eK ^ x\y
and

/^/c+a /o/c+l
^ (/c-7 — (A- + oc)-^ = S ( ^~<^~l du^ ^ au-^-1 du

k>K k>Kj^ k>Kjjt

- (K + i)-° < (2s^)3.

5. Proof of Corollary 2.1. — We use (2.7) and Lemma 1.
The condition that (y^Y < 1 — ^2+<5 means that we can
assume that a > 0. Suppose that S > 1. Then, by (2.4),

/^]+a / ^1 \
F(a; ^,0) ^ y \ ' u-^^+ 0 ( 6 ( a ; S ) ( GU^du)

JK} \ ^^]+a) /

^ <W}Y

+ 0('6(a; ̂ (1 - S/([S] + a)) max (l, ('-̂ l̂ -̂î

= a + 0(o2^-1).

Similarly
/»?4-l+a

F(a; S, 0) ^ ^ ( u-^d^

^(i+^r^a--^^
Hence, if ^(^ <T) < </ < ^/2, then by (1.11), (1.13) and
(2.7),

S \c^n) = (oc + O^^-1 + a^s^0!/-1 + 2^°)) ^ X,.
n^y n^y

1Thus, if z/o(e, cr) ^ y < z ^ -, .? then
Zi

^ \Cy{xjn) == a ^ X^

+' 0 ((<r2^-1 + ̂ l+CTy-l + 2^) ^ X \ .
v n^y )

We complete the proof of (2.8) by observing that by (1.11)
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and Lemma 1,

(S/»)/ 2^
"̂  (1 -( S ^.)/S ^n)-1 < (1 - (2//^ - S24-')-1.

\ Vn^y // n^2 1

6. In this section we make some observations concerning
the nature of F(a; 2;, 0).

LEMMA 2. — Suppose that 0 ^ a ^ 1 and ^ ^ 1. Then

(2.12) F(a; ^, a) = a + 0(o2^-1) (a > 0),
(2.13) lim F(a; S, a) = a = F(a; S, 0)

(T-X)-1-
and

(2.14) F(a; 1, a) = S (^-ff - (/c + a)-) (a > 0).
fc=i

By (2.14) with a = 1, F(a; 1, 1) = ^ /(a) /^(a) + y + I/a
where F is the gamma function and y is Euler's constant.

Proof. — The asymptotic formula (2.12) was established
in the proof of (2.8), (2.13) then follows trivially, and (2.14)
is immediate from (2.4).

LEMMA 3. — For each E; ^ 1 and cr > 0 the function
F(a; ^,0) is a continuous function of a and is analytic on
R\{0, {S}, 1} with

(2.15)
0 ( a < 0 , a > l )

P(a) == a^ S ^+a)-'-1 ( 0 < a < { ^ } )
^

a^([^+a)-CT-l+^ S (/c+a)-^ ( { S } < a < l ) .
/c>^

The points 0, { ^ } and 1 are angular points of F.

LEMMA 4. — Suppose that 0 < a < 1 and or > 0. Then
considered as a function of S, F(a; ^, o-) 15 continuous on
[1, oo)\{2, 3, 4, . . .} and for each integer n > 2,

(2.16) lim F(a; ̂  a) = n7 ^ {k-^ - (k + a)-^
^->n~ /c=:^4-l
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and

(2.17) UmF(a;^)
$->n-»-

= n- S (^-CT - (^ + a)-') == F(a; n, a).
k==n

7. We now establish upper and lower bounds for the mean
square of O^y(a) — a which in turn imply respectively

(i) that if y is small compared with x then the only
possible (R, Xj asymptotic distribution modulo 1 is the
uniform one, and

(ii) that the discrepancy cannot be too small.

THEOREM 3. — Suppose that XQ and x are non-negative
real numbers, y ^ 1 and 0 < a < 1. Then

(2.18) f^\ 0,,,,(a) - a|^u ^ min (I^, I,)

where

(2.19) I, = 1 {x + ^) S (I -1- a^(y)Y
0 n=i \̂ n=l 7M y

and
00 / 1 1 \ / ° ° 1 \2

(2.20) I, - S (-^ + -yn)( S -^/)) •
n=l \6 Z / \m=l HI /

This theorem can be thought of in a rather loose way as a
law of the iterated logarithm. This will be discussed further
in a later paper. (See [5]).

THEOREM 4. — On the hypothesis of Theorem 3,

(2.21) f^ | <&^(a) - a|2 du ^ max (Ji, J^)

where

(2.22) J , = 1 ^{x - y2) 5 § ^- a,,.(y)(l - e^m)} 2
A n=i OT=I W

and

(2.23) J2=((27r)-2 S (2a;-3yn) S -i a^(i/)(l-.(am)) 2.
n=l m=l m

By taking the real part of the innermost sum in (2.22) and
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(2.23) and then discarding all the terms with m > 1 one
obtains in (2.21) the particularly simple lower bound max (L^,
La), where

Li - 27T-2 (sin TTOC)^ - y2) ^ al{y)

and

L, = n-2 (sin 7ra)4 ^ (2^ - 3yn)a^).

However, in certain circumstances this loses a factor as large
as loglog y.

COROLLARY 4.1. — Let the discrepancy D^p y be given by

(2.24) D,,,= sup |0 ,^(p)-0,^(a)-(p-a)l .
0<a<p<l

TTiezz

(2.25) f^0 D^ du ^ sup max (Ji, Jg)./U^y U/t^ 5^

a e [0,1]1/370 ' w <=rn n

By analogous methods it is possible to obtain corresponding
inequalities for

M+N
S |0^,(a)-a|2

n==M+l

but the bounds obtained are more complicated and not so
illuminating.

8. To prove Theorems 3 and 4 we require the following
lemma which is Theorem 2 of Montgomery and Vaughan [4].

LEMMA 5. — S u p p o s e that x^ x^ . . . , ^ R are R distinct
real numbers^ and that ^i, ^3, . . ., ^R are R complex numbers.
Also. let

(2.26) S = min \x^ — x^\ and §r = mm \xr — ^1-
r, s s
r^-s s-^r

Then
R R ^,

(2.27) S S r J ^ TT min (K^, K^)
' =15=1^ — ^

r^s
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where

(2.28)

and
(2.29)
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K^s-^N2
r-=l

Q R0 V
K.=W5"-Q ^-t I

2 r==l

o ^ A — Let K be a positive
•'• pre^ ̂ -tTe^y.-^ A. function ..(») P-n

ln;T9)T^^-th«fOTm-
l̂ ArLJ'M .(ak)

(2.30) c.(») = « + .Ai 2'"'' , i \\

+o(-(^i))+o(min^'K-7:^l//

Clearly £+•'' . /^ ___J- du
(2.31) "lln 1' I u .

K- - P11 n\ ^\n I I / , „ ,,
, , -.^l^g-K (0 < P < 1)-^ {x + n) ~~^~ '

Hence, by (1.9) and (2.30),

^^i^'^f^o^..^)
where

(2.33)r x

I==
.

00 /

v ^9 1
J^o^^(ra,fc)==i

/ ^ C^m(.

\^m^K/l»cl

ft

J Xo fn ,fc)==l . p • __ \ Ai v ' • / j \ _- \ for 7 =^ 5

Clearly ii n,< ^ ̂  ̂  K'& i'l/(̂ .) > ^-2-
and ̂  ^ y"2^^" ;nd Lemma 5,

Therefore, by (^°) auu

(2.34) , a,,,̂ !̂ -̂01 !̂2

i=i s ^+e^J^—"^^^ '
n^KX^l^ 1n^l0<l^^^

(n,fc)=l
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and

(2.35)

l=S S ^+|-e^) S ^H1-^-0^))
n=l o<|/c|^K \ A / m^K/|/f| ZTTl/Cm

(n,k)==l N /

where [9i| < 1, [ G ^ j ^ 1. Theorem 3 now follows from
(2.32) on letting K—> oo. Theorem 4 follows in the same
way on discarding all the terms with \k\ =^ 1.

Sometimes, when the simple Riesz means (R, Xj are speci-
fied, it may be more appropriate to use (2.34) and (2.35)
rather than appeal to Theorems 3 and 4.

10. By (2.7), (2.8) and (2.13) we see that if y is small
compared with x but not too small, then under very general
conditions

(2.36) lim <D,,^)(a) == a.
«C>00

We now show, as a consequence of Theorem 3, and again
under very general conditions, that even if y is very small
compared with x, then (2.36) still holds.

THEOREM 5. — Suppose that 0 < 6 < l , 0 < a < l ,

(2.37)
// 3d=_l\ / ^ \ 2 \

lim ^ l + 2 / 2 e ) f S ^rs( S -x-) ==0

^00 \ Wy-yC86-1)^ 7 n^Wy/n ̂  / /

and

(2.38) lim<£^e(a)
a'>oo

exists, Then

(2.39) lim0^e(a) = a.
a*>ao

We remark that (2.37) is rather a weak condition. For
instance, if \ == 1 for every n, then it holds for every 9
with 0 < 6 < 1.
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Proof. — Let y be large and define z == y — yC3^-1)/2^.
Then by Theorem 3, (1.13) and (1.11),

(2.40) r1" S ^(cJ-^-^Ydu
J^ n^ \ \n / /

^ (2/2 + I/1'9 - Z179) S f S J- ^nY-
n<:7 \m^y/n TH J

Furthermore, by Cauchy's inequality (inegalite de Schwarz
en frangais !),

^yi/e

( S \(cJ^-)-^)[du^{y^-zll^l+y-z)^^.
'21^ z<n^a9 \ \n / /I n^Y

Hence, by (2.40),
/'y1" / / „ \ \ •

(2.41) f S ^ (^ ( -^ ) -a )a )| du
39-1 ^

J^» ^a« \ \ n / /
/ / Sfî U / 1 \2

^ ^2 + (yi/e _ ^i/e) U + y 2e ^ S ( S - ̂ n) •
n^y \m^y/n TH J

It is easily verified that
y2 ^ ^1/6 _ ^1/9^(39-1)/29^

Thus, by (2.41) and (2.37),

inf | Oa u6(a) — a| —> 0 as y —> co.
z^^u^y^

This gives the desired result.

3. Appendix.

1. Theorem 1 does not require that the a^y) be the
simple Riesz means (R, Xj. It is valid provided that

s ^(y) = L
ft==l

2. Theorem 2 can be generalized in the following way. We
say that the positive Toeplitz transformation js/ == (^n(y))
has asymptotic (or limit) distribution function 9 with
respect to the ordinary Cesaro method (C, 1) if there exists
a distribution function 9 such that

(3.1) lim ^ a^y) = y(^)
y>x> n^ty
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at every t at which 9 is continuous. For example, if the
a^{y) are the simple Riesz means (R, Xj and if <p exists,
then by Lemma 1 it is either a continuous function given
by

0 (t ^ 0)
(3.2) <p(<) = . t'5 (0 < ( < 1) (with (T > 0),

1 (f > 1)
or is one of the « Heaviside » functions Yg and Yi, where
¥„(() =0 if t < a, ¥„(() =1 if t ^ a. (In the general
case, necessarily y(() == 0 for ( < 0). On examining the
proof of Theorem 2, one sees that provided <p exists, is conti-
nuous and satisfies cp(0) == 0, cp(l) == 1, then it is possible
to replace Theorem 2 by a similar but more general statement.
In particular F(a; ^, a) is to be replaced by

(3.3) G(a ;^ ,v )
/ O (a ^ 0)
1 (a ^ 1)

i-^^v/^^-^Ae(a'^l-^[^J^SA?(i^y^
(when 0 < a < 1),

but some care is needed with the error terms. Besides the
above example where 9 is given by (3.2), there are other
interesting instances in which 9 exists.

3. Theorems 3 and 4 do not require the a^{y) to be the
simple Riesz means (R, X^). They remain valid without
modification provided that a^(y) = 0 for n > y . Otherwise,
there are extra error-terms involving ^ ^n(2/)- Thus one can

still obtain meaningful information in case lim ^ a^{y) = 0.
y->.ao n>y
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