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PROPAGATION OF SINGULARITIES
FOR OPERATORS

WITH MULTIPLE INVOLUTIVE CHARACTERISTICS

by Johannes SJOSTRAND (*)

0. Introduction.

The purpose of this paper is to give a result on propagation of
singularities, which generalizes some results of Duistermaat-Hormander
[6] and Chazarain [4]. In the category of hyperfunctions such a result
has already been obtained by Bony-Schapira [1] for the propagation
of the analytic wavefront set. The main difference with their result is
that we will have to impose a condition on the lower order symbols
of the operator.

Let X be a paracompact C°° manifold of dimension n and let
2 C T*X\0 be a closed conic submanifold of codimension d. We
shall assume that S is involutive. This means that if S is locally given
by q^ (x , {;) = • • • = ^(.x , 0 = 0, where q^ are smooth, real valued,
with linearly independent differentials, then all the Poisson brackets
{ ^ / » ^/J vanish on 2. The Hamilton fields H^ , . . . , H^ are then
tangential to S and form an integrable Frobenius system on £. If
p G 2, we denote by F C S ; the set obtained by integrating succes-
sively all such Hamilton fields, starting at the point p. Locally this
"flow out" is a d-dimensional submanifold of 2, but globally Yp may
be more complicated.

We shall assume :

(0.1) For all choices of q ^ , . . . , q^ as above, the cone axis direction
and H, , . . . , H- are linearly independent at 2.w 1 ^d

(*) This article was prepared, while visiting the Mittag-Leffler Institute.
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This condition means that it is possible to construct locally a
homogeneous canonical transformation K : T*X\0 -> T*R"\0 which
maps 2 into 2 = {(x , ^)G T*R"\0 ; ̂  = 0}. See [6]. Here we use
the notation ^ == (^ , ̂ ), ^R"~^ F ̂  K^ tor arbitrary vectors
^ G R " .

We now consider a classical properly supported pseudodifferential
operator P^Lm+k(X\ where m is a positive integer and k G R. Let
^w+fc ^e ̂  principal symbol and assume that p^^k vanishes at £ to
order m and that ^+^, ^) ^ 0 outside 2. Considering the Taylor
expansion of p^+^ at any point p E 2, we get a homogeneous poly-
nomial ^(r), rGT^(T*X)/T^(2) = F^ of degree m. We assume that

(0.2) ^ (r) ^ 0 when 0 ̂  r G F^, for all p G 2 .

In the proof below we shall work with Carleman estimates. We
therefore need the following condition, that will permit us to apply
the estimates in the proof of Calderon's uniqueness theorem for the
Cauchy problem :

(0.3) Let F = T^(T*X)/T(2) and let F x^ F be the product bundle
over 2. Let z^ ( s , t) , . . . , z^ (s , t) G C be the roots of the equa-
tion a^(s + zt) = 0, s, t ^ P ^ . Then when ( s , t) varies in
{(s, t) €: F x^ F ; s, t are linearly independent} the roots z . ( s , t)
are either simple or double and of constant multiplicity.

The condition on the lower order symbols, that we shall need,
is the natural extension of the Levi condition in the case when
codim (2) == 1. C.f. Chazarain [4].

(0.4) Let 2 be given locally by q^(x , § ) = • • • = q^x , ^) = 0,
where q^ 6: C°°(T*X\0) are real valued, positively homogeneous
of degree 1 with linearly independent differentials. Then, if
Qy are classical pseudo-differential operators with principal
symbol = q • , there exist classical pseudodifferential operators
A^ of order k such that

P= S A^..^
\ot\<m

microlocally.
When m = 2 this condition means precisely that the subprincipal

symbol of P vanishes on 2.
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The result of this paper is now

THEOREM 0.1. - Suppose that P satisfies (0.1) - (0.4). Then if
u E fi)'(X), Pu G C°°(X) and p is a point in WF(^) (so that p G 2), \^e
have r^ CWF(^).

When m = 1 we have d = 1 or 2 and the theorem gives some of
the wellknown results of Duistermaat-Hormander [6]. When d = 1
and m arbitrary we find a result of Chazarain [4].

When m = 2 and d > 3 it is easy to see that (0.3) is always
verified. The same is true when (m, d) = (2,2) if we assume that
the argument variation of P^^k ^^S small closed curves in (T*X\0)
is always 0. (C.f. Sjostrand [12]).

The condition (0.4) is very essential for our results. In fact,
when m = 2, Boutet de Monvel [2] has constructed a pseudodiffe-
rential parametrix under the assumptions (0.1), (0.2) and the assump-
tion that the subprincipal symbol of P avoids the values of — a^ at
every point p ^ = 2 . For other cases with non-vanishing subprincipal
symbol, Boutet de Monvel [3] and Lascar [9] have shown that there
is a propagation of singularities, but not along the whole leaves F in
general.

The condition (0.3) is also important. Let P = P(x" , D") be an
elliptic operator in Rd of order m, such that P<^ = 0 for some ̂  ̂  (^(R^),
(p ^ 0. Considering P as an operator in R" we have (0.1), (0.2), (0.4)
satisfied (with 2 given by S;" = 0) but the conclusion of Theorem 0.1
is false, for we have P ^ ( x " ) ^ 8 ( x ' ) ) = 0.

In the sections 1 and 2 we are going to make some preparations
for the main part of the proof, which is given in section 3. As men-
tioned above, the proof is based on the use of Carleman estimates in
the spirit of Hormander [7, section 8.8], Unterberger [13, 14] and
Duistermaat [5].

Bony has communicated to us that the methods of [1] most
certainly can be modified to give our Theorem 0.1 in the case when
the condition (0.3) is replaced by the assumption that P is a diffe-
rential operator with analytic coefficients.
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1. Some preparations.

Using Fourier integral operators we can transform the operator P
microlocally into an operator P in R'1 with characteristic variety
2 = { ( x , S)^T*R"\0 ; S" == 0}. The conditions (0.1) - (0.4) are
preserved, so we can assume that

P = S aJx,D)D^ , (1.1)
|a| <m

where a^ are classical pseudodifferential operators of order 0. The
sets r^ are now of the form ( x ' , ̂ ) = const., ^ft = 0. We shall prove

THEOREM 1.1. - Let P satisfy (0.1) - (0.4) with 2 replaced
by 2. Let ^^""^V^ ̂  suppose that u ̂ (01 (R") satisfies
( 0 , ( ^ , 0 ) ) ^ W F ( ^ ) C £ ^ r f { ( 0 , x " , ^ , 0 ) ; | x " | < l } n W F ( P ^ ) =0.
77^ { ( 0 , ^ , ^ ,0) ; \xf\ < !}nWF(^) = 0.

Theorem 0.1 follows from Theorem 1.1, for in the situation of
Theorem 0.1 let us assume that p C: WF(i<), p ^ WF(i<), where p £ ]~^.
Then take a continuous curve 7 in F joining p to p' and let p " be
the last point of 7 belonging to WF(iQ. Near p ' ' we can apply Fourier
integral operators and then apply Theorem 1.1 to get a contradiction.

From now on we work in R" so we shall drop all the superscripts
in the notations of Theorem 1.1. Let a°^(x , ^) be the homogeneous

principal symbol of a^ of degree 0. In the proof below, we shall have
to approximate P(x , D) by PoQc , D) = S a°^(x , D' , 0) D^". Let

la |<w

us first establish a simple a priori estimate.

LEMMA 1.2. — For all K CC R" and s^R there is a constant C
such that

^ II D^ u ||, < C(|| Pu ||, + || u II,) , u G C^(K) .
|a| <m

Here || ||, is the norm in the usual Sobolev space H^R").

Proof-Let (XQ , (^ , 0)) G 2: and let x(^ , D) be a properly
supported pseudodifferential operator of degree 0 with WF(x) in a
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small conic neighbourhood of (XQ , (^ , 0)) and such that the principal
symbol takes its values in [ 0 , 1 ] . Then

I I [P , X] u ||, < C, S I I D^ u \\s ^ E W) , (1.2)
|a| <m-l

where C^ depends on K, s, x. Put Q = H a^x^ , ̂  , 0) D^ . Then
|a|<w

by Fourier transformation we get

Z IID^||,<C(||Qz;||, + Ml,) , (1.3)
la K m

for all v^CSQ(Rn) and all s G R. Moreover from the wellknown
continuity properties of pseudodifferential operators we know that
for all e > 0 and s E R, we have

I I (Q - P) \u ||, < e S || D^ x^ IL + C^ I I u II, , ^ G C^(K) , (1.4)
\a\<m

if WF(x) is sufficiently close to the half ray through (x^ , ̂  , 0). The
constant C^ depends on e, ^, x, K.

Using (1.2) - (1.4) we get for u G C^(K) :

i I I D ^ x ^ l l , <C( | |Qx t< l l , + I IX^I I .X
|a|<w

< C(|| xP^ II, + I I [P , Xl u II, + || (Q - P) x^ II, + I I xu II,) <

< C ( | l x P ^ I I , + e ^ [ | D ^ x ^ l l , + C 3 ^ I IDS^IU.
I ^ K w |a |<w-l

Choose e < 1/2C. Then we get

S I I D^ x^ II, < 2C(|| xP^ II, + €3 S || D^ ^ II,) ,
l a K w | a |<w- i

^GC^(K).(1.5)

If WF(x) does not intersect 2, we still have (1.5) because of the
ellipticity of P outside S. By a pseudodifferential partition of unity
we get

I II D^ u II, < C^ll Pu II, + 1: || D^ u II,) , u G C^(K) .
\oi\<m la|<w-l

(1.6)
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Then the lemma follows by using the inequality

S ||D^||,<e ^ IID^II,+C, | |^ , i/EC^R")
\0t K w - 1 |a|< w

and choosing e < l/2C^.

Remark. - From Lemma 1.2 it easily follows that if
D^ 1̂  E H^p(R") for | a | < m - 1 and Pu E H'(R"), then
D^EH'(R") for |a| <m.

If ^ E®'(R'2) and (x , ^) E T*R"\0 we put

S^ , S) = sup {s E R ; ^ E H5 microlocally near (x , ^)} .

Then S^ is a lower half continuous function on T*R"\0, positively
homogeneous of degree 0.

LEMMA 1.3. - / /KECD'(R") , (XQ ,^ )^WF(PK), then

^^^o)^,,^^^^,^) (1.7)

for all multiindices P.

Proof. - (1.7) is trivial when (x^,^)^!: so we assume that
C^o , So) = (^o ^o . °) E s- ^t X ̂  L°(R") be a properly supported
operator with WF(x) close to (x^ , ̂ ) and such that \ = I near
(•^o ' So)- If 7 is a multiindex we have

PX D^u = [P , xD^ = ^ ^(^ , D) D^u mod C°° ,
l < 3 K w + M - l

where Z?^ are of order 0 with WF(6^) close to (XQ , So). It follows
from Lemma 1.2 and the remark above, that D^. D^'u E ff near
(^•o . So) tor all a with | a | < m, if D^ E H' near (x^ , So) tor all
| j3 | with l j 3 | < m + l 7 l — 1. The lemma then follows by induction.

Now suppose that u E<D\R") and WF(i<) C 2. By Taylor's for-
mula we can write

(a^(x ,D)-a°^x , D' ,0))u =

= ( Z ^(^ , D) D^ + c(x , D)VU mod C00, (1.8)
V | - y | = l /
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where b^ and c are of order - 1. (We refer to the appendix in [11]
for some results about "pseudodifferentiaP operators of the type
S(x,D'). In (1.8) we assume that ^(x ,D\0) has been suitably
modified by adding an operator of order — °°, in order to become
properly supported). From (1.8) and Lemma 1.3 we get

LEMMA 1.4. -Let ^EiD^R"), WF(^) C S, (x^ , ̂ ) ̂  WF(P^).
Then

S(P-P,)^O , So) > ̂ n_^ S^(x, , ̂ ) + 1 .

2. Localization in the (x , ^)-space.

Our localization method will be essentially the same as the one
introduced by Hormander [8]. We denote by K/^R" x R^ '^x R""^)
the space of symbols \(x , y ' , ^) G S^"^"^4 ((R" x R^) xR"^)
having their support in a set of the form I x — y \ < const. and being
of class S~°° outside a set of the form \x9 — y ' \ < (const.) I ^ I"172.
For instance if ^ G (^(R"-^), we can take

X ( x , y ' , ^ ) = ^((x '-^^l^l1 7 2)!^!^-^4 for | ^ |> 1 (2.1)

and extend this definition suitably for small ^. Then x E K ° .
If ^ecD^R") and WF(i<) does not meet the normals of the

planes x " = const., we can define

T^(x,0= ^(^/^^^-^^(AX'W . (2.2)

It is easy to verify that T^u is a C°° function of (x , ^) G R'1 x R"-^.

LEMMA 2.1. - Let x ̂  K° and a(x , ̂ ) G S^(R" x R"-^). 5'̂ -
^o^e that the distribution kernel of a(x , D') has its support in a set
of the form \ x ' — y ' \ < const.. Then we have

T^a(x , D') u) (x , S') = a(x , ̂ ) T^u(x , S') + T^(x , ̂ ) , (2.3)

where x^K-^R" x R^-^ x R"-^). // V C R" x (R^-^VO}) ^
an open cone where a(x , ̂ ) or 1 - a(x , ^) belongs to S~00, r/?^
X^ ^ o/ cto5 S~00 in the set {(x , y 1 , ^) ; (x , ^ ' ) E V , y ' G R"-^}.
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The proof is straight forward, we write the formula (2.2) for u
replaced by a(x , D ' ) u . After a partial integration in the integral, we
apply the wellknown asymptotic formula to

ta(y , x 9 , Dy.) (x(x , y , ̂  e1^ -V • ^>)

The leading term is

a(y\x' ,^)x0c,^ ^ ' ) e i ( x - y l ' ^

and modulo K"172 ̂ ^--^^ this is congruent to

a(x ,0x0c,/ ,^)^-^>

In fact, we can Taylor expand a(x^ ,y , S') with respect to y ' at the
point y ' =x' and we only have to note that ( x ^ - y ' ) \ ( x , / , ^GK"172

since x is of class S~00 outside a set of the form

\x - y \ < (const.) l^ l - 1 7 2 .

We omit the details.

LEMMA 2.2. - Let x G K^R" x R"-^ x R"-^) a^ let u G CD'(R'1)
w/r/z WF(^) C 2 = {(x , ^ ) G T*Rn\0 ; ̂ ' = 0}. //^ E H5 microlocally
near a point (x^ , ̂  , 0), r/z^Ti r/ze^ is a conic neighbourhood
V C R" x (R^VO}) of (Xo , ̂ ) such that

(1 + l^ i rT^Oc.^eL^V) .

When x ^ o/ r/z^ form (2.1) ^rf i// ^ 0, the converse implication is
also true.

Proof. - If i;GC^(R'1), then T^(x, ^) is rapidly decreasing as
a function of ^ and

//(I + in2/ IT^,^!2^'^^,.)^ (2.4)

where
B^(x) = // ^^(x , >''. S') e'<^'-^' ,S'> i,(^', x " ) d y ' d^

and Z?^^ is given by

&2,^^',r)=(l+l^'12//x((^'^"),^'^')x?',^"),x',^)^'.
(2.5)
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It is easy to see that b^ G S^(R" x R"-^ x R"-^), so B^ is
a pseudodifferential operator of order Is in the tangential variables^'.
We therefore have

(B^ v , v) < CK I I v 11̂  , v E C^(K) , (2.6)

for all KCC R", where IMI(O,,) is the norm in H^'^R"), given by

11^0,,)= / ( I + \^\)2s\vW\2d^ .

Now let ^G(D'(R") be such that WF(^) C Z and u^H5 near
(^•o . So . 0). Choose a(x , ̂ ) E S? o(R" x R"-^) such that the distri-
bution kernel of a(x , D ' ) has compact support and such that a(x , ̂ )
(and 1 - a(x , ^)) belong to S~00 outside (respectively inside) a small
conic neighbourhood of (x^ , ̂ ).

Then ^(x , D') u G H<^^ (R") and we let i;, G C^(R"), / = 1 , 2 , . . .
be a sequence converging to a(x , D') ^ in H^^. Then

T^,(x,^) -^ T ^ a ( x , D ) ^ ( x , ^ )

locally uniformly, so combining (2.4), (2.6) with f replaced by v. we
see that

//(I + 1ST)5 IT^Oc.D^Oc,^)!2^^^ .

By Lemma 2.1 we have

T^(x , D ' ) u ( x ,0 ==T^^(x ,S ' ) + ©d^l-^

for (x , ^) in a small conic neighbourhood of (XQ , $o) and for all
N > 0. Then the first part of Lemma 2.2 follows.

We now prove the second part, so we assume that x is of the
form (2.1). Then from (2.5) it follows that

b^ - x - ̂  = I I ^ II^O + I ^ I2)' for I ^ I > 1 .L

This means that B^ is an ^Ptic operator in the tangential
variables, so we have the Girding inequality for all s ' G R and K CC R" :

(B,^,i ;)>(l/C)Hi; |[^^-C[| t ; | |^^ (2.7)

v ̂  C^(K) .

Here C is a positive constant depending on K, s, s ' .
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Let u e<D'(R") with WF(^) C Z and assume that

(1 + l^ i rT^Oc^EL^V) ,

where V is a small conic neighbourhood of (XQ , ̂ ). Let t E R be
such that u G H^ near (x^ , ̂  , 0). If t > s there is nothing to prove,
so we can assume that t < s. Take a(x , D') as above. Then we have

T^a(x , D') u) (x , ^) = a(x , ̂ ) T^(x , ̂ ) + T^(x , ̂ ) ,

where Xa E K"172. Applying the part of the lemma, which has already
been proved, we conclude that

(1 + I ^ I/' \(a(x , D ' ) u) (x , 0 G L^R" x R"-^) ,

where ^ = min(r + 1/2,5).
Combining (2.4), (2.7) for 5 replaced by t ' and using an easy

regularization argument, we conclude that a(x , D') u G H^'^R")
and therefore that u G H^ near (Xy , $o , 0) (because WF(i/)e2:).
Repeating this argument we finally get that u G H5 near (^-o , So » 0)
and the proof of Lemma 2.2 is complete.

Note that the first part of the proof also shows that T^ u (x , ̂ )
is rapidly decreasing in a conic, neighbourhood of (Xp , ^) if
^ o ^ o . O ) ^ W F ( ^ ) C £ .

3. Proof of Theorem 1.1.

Let P(x , D) (= PQc , D)) be the operator in Theorem 1.1 and
let PQ be the operator, introduced in section 1. The polynomial
a?(t) in the introduction is just the principal symbol ofF^x , ^ , D^"):
C^R^) ^ C^R^). The condition (0.3) then implies that P^OC , ̂  , D^)
satisfies the conditions of Calderon's uniqueness theorem with respect
to any hypersurface in Rd. We therefore have the following Carleman
type estimate, which follows from Nirenberg [10, inequality (6.1)] by
a partition of unity :

For all (XQ , ̂ ) E R" x (R"-^\{0}) and r > 0, there are numbers
To > 0, RQ > r and C such that for all r > TQ and v E (^(R^) with
support in r < |x" | < R < RQ, we have



PROPAGATION OF SINGULARITIES FOR OPERATORS 151

1: ii '̂'-^^")^ )<
| a |<w-l L V K

< C [l^^'^o) p^ ̂  ^ ̂  ^ D,.)^) ||̂ ^ . (3.1)

Here ̂ x") == (R - |x" |)2 - ((R - r)/2)2 so that^(x") is ̂  0
for | x 1 1 1 ^ (R + r)/2. In fact, the coordinates ( t , .x) in [ 10] correspond
here to polar coordinates (p , 0), p G R^, 0 E S^"1 in R^, centered at
Xo\ The inequality (6.1) in [10] then implies that (3.1) is true for
v G C^(R^) as above with the supplementary condition that 6 belongs
to a small open subset of Sd~l when (p ,0 ) is in the support of v.
This subset is independent of r and R, and we also know from [10]
that the constant C can be chosen arbitrarily small when R — r and
I/T are small enough. Then we can obtain (3.1) by a partition of
unity in the 0-variables, for the "bad" terms coming from the com-
mutators between PQ and the cut off functions can easily be eliminated.

It also follows from [10] that for given r, we can choose R(), C
To independent of (XQ , ̂ ) when XQ varies in a compact subset of R"
and ^ varies in R^VO}.

Now assume that i<G(D\R"), Pu = w, where

(O^O^W^)"
and

{ ( 0 , ^ , ^ , 0 ) ; |^| < l}HWF(w) = 0 .

If r > 0 is small enough we have

{ (0 ,^ ' ,So.O) ; |jc"| <r }nWF(^)=0 . (3.2)

For e > 0 put V^ = {(x' , Q E R"-^ x (R^VO}) ; \x I < e,
I S'/l ^ I ~ So/I So I I ^ e}- If ^ > 0 is small enough we have

{ (x ,S \0 ) ;(x',^)^ , |^| <r +e}nWF(^) = 0 , (3.3)

and if R > r is as in (3.1) above, we can also assume that

{ ( x , S ' , 0 ) ;(AS')^ , | x " | < R } n W F ( w ) = 0 . (3.4)

(Here we assume that R < 1 which is no restriction).
Now we write P^ u = w + (P() - P) u and we introduce

^ (x ,0=T^(x ,0 ,

where x E K° is of the form (2.1). Applying Lemma 2.1 we get
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Po(^ . ̂  , D,.) v(x , ^) + ^ T^ (D^) (x , 0 = T^ w(x , S ; ' ) +
|a|< w Qi

+T^((Po - P ) ^ ) ( x , n ,

where x^GKT 1 7 2 . We rewrite this as

^^',^)v(x^') =T^w(^ ,^ )+A_i /^ (x ,n . (3.5)

If /GC°°(R" x R"-^ and (x^ , So) ̂  R" x (R"-^^}), we put
P/C^o , ^o) = ^P ̂  E R ; (1 4" I ^ 1)^ /(^ , ̂ ) is square integrable in
some conic neighbourhood of (XQ , ̂ )}. Then if f = T^g for some
^ECD'(R") with WF(g)CS, we have F^x , S') = S^(;c, ^, 0) in
view of Lemma 2.2. In our particular situation it follows from Lemma
2.2 and Lemma 1.3 that

S ^ (x , ^, 0) > min F . (x , 0D^lu \ft\<m-i T^D^)' s /

for all a when (x \ ^ )GV^ and \ x " \ < R. Then from Lemma 2.2
and Lemma 1.4 it follows that

^ ,,^ - ^) > min F (x , ^) + 1/2 , (3.6)
-1/2 | a |<w- l D^'i;

(^\^)^V^ , |x" |<R .

Let V/R^ '^GC^CR^) have support in r < \ x l ' \ < R and be
such that ^ ^ ( x " ) = 1 near the domain r -h e < |x" | < (R + r)/2.
From (3.5) we obtain

P^x , ̂  , D .̂) (^/R(X") i;(x , ̂ )) = V/R(X") (T^ w(x , 0 +

+ A_,/^(x , ̂ )) + [P^(x , ̂  , D,.) , V/^] v(x , ̂ ) . (3.7)

Now we shall apply (3.1) to this equation, with r=v log(l + |^ |),
v ^ T ^ ' . Since by (3.3) v(x , ^ ' ) is rapidly decreasing in

{(^) ; ( x ' ,0^ , | x " | < r + e }

and T^w(x , ^) is rapidly decreasing in

{(^D ; (^ ,^)^V; , I^ 'KR},

we get for all real N and M :
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S iio+irir^-'D^oc.oii, <
| a |<w -l L ( B ( R + r ) / 2 )

<c^((i +lrl)-N-M+ll(l+l^'l^R('")~MA_^,^^^')||, +
L (BR)

+ S iKi+irir^-'D^^.Dii., ))
l a K w - l L ( B ( R + / - ) / 2 , R

(3.8)

when ( x ' , 0 G V^. Here we use the notations B^ ={x" G R^ ; |x" | <T}
and B, T = {x11 G R^ ; r < | x 1 1 < T} for 0 < t < T.

We can assume that R > r is so small that ^p^(x") < 1/2. Take
M so large that for I a \ < m - 1 we have F ^ (x , ^) > — M in
W=={(^) ; (^,^)GV^ |x" |<R}. The^b'y (3.6) we have
FA-l/2u(x 5 ̂ ) > - M + ^R^^ m w and from (3-8) with ^ = 1 we
get F^a,/^' n > - M + ^(Jc") in W for | a | < m - l . (For

|x"| > (R + r ) / 2 this inequality is trivial, since ^p^(x11) < 0 then).
Then F^_ u(,x ^ ' ) > - M + 2^(x") in W and applying (3.8)

with ^ = 2 , we get F^^(x , ^) > - M + 2 ^ ( x ' ) in W when

I a | < m — 1. Repeating this argument, we get

¥^X'^>~M+^R(X^

in W for all v, so that F^^ (x , ^ )=+°° when (x , ̂ ) G V^,

|x" | < (R + r)/2. In particular (by Lemma 2.2) :

WF(^) 0 {(0 , x " , ̂  , 0) ; | x 1 1 < (R + r)/2} = 0 . (3.9)

Recall that we started with the assumption (3.2).
Now take x'o E R^, such that

{ x ^ E R ^ ; \x" -X'Q\ ^ ^ C i x ' e R ^ ; | x " |< (R + r)/2}
and

{ x " G R ^ ; I x ' - j ^ K R K ^ G R ^ ; |x"| < 1} ,

where r < R < R^ are as in (3.1). Then by the same argument, that
gave (3.9) from (3.2), we get

<(0,x" ,^°) ; l ^ -^ l <(R +^) /2}nWF(^) = 0 .
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Repeating this procedure, we obtain

W F ( ^ ) n { ( 0 , x " , S o » 0 ) ; |;c"|< \}=<j>

and this completes the proof of Theorem 1.1.
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