Annales de l'institut Fourier

DAVID Kinderlehrer
 Guido Stampacchia
 A free boundary value problem in potential theory

Annales de l'institut Fourier, tome 25, no 3-4 (1975), p. 323-344
http://www.numdam.org/item?id=AIF_1975__25_3-4_323_0
© Annales de l'institut Fourier, 1975, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier» (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m d a m}^{\prime}$

A FREE BOUNDARY VALUE PROBLEM IN POTENTIAL THEORY by David KINDERLEHRER (*) and Guido STAMPAGCHIA

Dédié à Monsieur M. Brelot à l'occasion de son 70 ${ }^{\mathrm{e}}$ anniversaire.

1. Introduction.

In this paper we shall describe the formulation and solution of a free boundary value problem in the framework of variational inequalities. For simplicity, we confine our attention to a problem in the plane which consists in finding a domain Ω and a function u defined in Ω satisfying there a given differential equation together with both assigned Dirichlet and Neumann data on the boundary Γ of Ω. Under appropriate hypotheses about the given data we prove that there is a unique solution pair Ω, u which resolves this problem and that Γ is a smooth curve.

Let $z=x_{1}+i x_{2}=\rho e^{i \theta}, 0 \leqslant \theta<2 \pi$, denote a point in the z-plane. Let us suppose, for the moment, that $F(z)$ is a function in $\mathrm{C}^{2}\left(\mathrm{R}^{2}\right)$ which satisfies the conditions

$$
\begin{gather*}
\rho^{-2} F(z) \in C^{2}\left(R^{2}\right) \\
\inf _{\mathbf{R}^{2}} \rho^{-2} F(z)>0 \\
F_{\rho}(z) \geqslant 0 \quad z \in R^{2} \tag{1.1}\\
F(0)=F_{\rho}(0)=0 .
\end{gather*}
$$

(*) The first author was partially supported by C.N.R. and ASOFR 71-2098.

These conditions will be weakened. Our object is to solve, in some manner, this

Problem 1. - To find a bounded Ω and a function u such that

$$
\begin{gather*}
-\Delta u=\rho^{-1} \mathrm{~F}_{q} \quad \text { in } \quad \Omega \tag{1.2}\\
\left\{\begin{array}{l}
u=0 \\
\frac{\partial u}{\partial v}=-\mathrm{F} \frac{d \theta}{d s}
\end{array} \text { on } \quad \Gamma\right. \tag{1.3}\\
u(0)=\gamma \tag{1.4}
\end{gather*}
$$

where $\Gamma=\partial \Omega, \nu$ is the outward directed normal pector and s the arc length on Γ, F satisfies (1.1), and γ is given.

Supposing Ω, u to be a solution to Problem 1, the maximum principle for superharmonics implies that $u>0$ in Ω since $-\Delta u \geqslant 0$ in Ω. We assume, consequently, that $\gamma>0$ and that $u \in \mathrm{C}\left(\mathbf{R}^{2}\right)$ with $\Omega=\{z: u(z)>0\}$. Further, if Ω is a domain with smooth boundary Γ and u satisfies (1.2) in Ω and (1.3) on Γ then

$$
\frac{\partial u}{\partial v}(z)<0 \quad \text { for } \quad z \in \Gamma
$$

in view of Hopf's well known maximum principle. Therefore

$$
\frac{d \theta}{d s}(z)=-\frac{1}{\mathrm{~F}(z)} \frac{\partial u}{\partial v}(z)>0 \quad \text { for } \quad z \in \Gamma,
$$

or the central angle θ is a strictly increasing function of the arc length parameter on Γ. Interpreting this situation geometrically, we conclude if Γ is smooth and u satisfies (1.2) in Ω and (1.3) on Γ, then Ω is starshaped with respect to $z=0$.

We shall solve Problem 1 by means of a variational inequality suggested by the properties of a function $g(z)$ which satisfies

$$
\begin{equation*}
g_{\rho}=-\rho^{-1} u \tag{1.5}
\end{equation*}
$$

The idea of introducing a new unknown related to the original one through differentiation is due to C. Baiocchi [1] who
studied a filtration problem. It has subsequently been employed by H. Brézis and G. Stampacchia [5], V. Benci [2], Duvaut [6], and also in [12].

A characteristic of the present work is the logarithmic nature of a function g defined by (1.5) at $z=0$. This difficulty will be overcome by considering an unbounded obstacle.

In the following section we transform our problem to one concerning a variational inequality. In $\S 3$ we solve the variational inequality. With the aid of [4] we are able to show in § 5 that Γ is a Jordan curve represented by a continuous function of the central angle θ. In $\S 6$ we use a result of [8] to conclude the smoothness of Γ and the existence of a classical solution to Problem 1.

2.

In this section we introduce a variational inequality and determine its relationship to Problem 1. We begin with some notations. Set $\mathrm{B}_{r}=\{z:|z|<r\}, r>0$, and (${ }^{1}$)
$\mathrm{K}_{r}=\left\{\rho \in \mathrm{H}^{1}\left(\mathrm{~B}_{r}\right): \rho \geqslant \log \rho\right.$ in B_{r} and $\varphi=\log r$ on $\left.\partial \mathrm{B}_{r}\right\}$.
Define the bilinear form

$$
\begin{gathered}
a(\nu, \zeta)=\int_{\mathrm{B}_{r}} \rho_{x_{i}} \zeta_{x_{i}} d x=\int_{\mathrm{B}_{r}}\left\{p_{\rho} \zeta_{\rho}+\frac{1}{\rho^{2}} \varphi_{\theta} \zeta_{\theta}\right\} \rho d \rho d \theta, \\
\varphi, \zeta \in \mathrm{H}^{1}\left(\mathrm{~B}_{r}\right) .
\end{gathered}
$$

We always depress the dependence of $a(\varphi, \zeta)$ on $r>0$. Let

$$
f \in \mathrm{~L}_{\mathrm{ioc}}^{p}\left(\mathrm{R}^{2}\right) \text { for some } \quad p>2 .
$$

Problem (*). - To find a pair $r>1$ and $\rightsquigarrow \in \mathrm{K}_{r}$ such that
(2.1) $\varphi \in \mathrm{K}_{r}: a(\varphi, \varphi-\varphi) \geqslant \int_{\mathrm{B}_{r}} f(\varphi-\varphi) d x \quad \varphi \in \mathrm{~K}_{r}$
(1) Usual notation is employed for function spaces.
and the function $\tilde{\boldsymbol{w}}(z)$ defined by

$$
\tilde{\mathcal{w}}(z)=\left\{\begin{array}{ll}
\mathscr{w}(z) & z \in \mathrm{~B}_{r} \tag{2.2}\\
\log |z| & z \notin \mathrm{~B}_{r}
\end{array} \quad \text { is in } \quad \mathrm{C}^{1}\left(\mathrm{R}^{2}\right)\right.
$$

The existence and other properties of a solution to Problem (*) will be investigated in the next paragraph. We note here that the restriction of $\tilde{\mathcal{W}}$ to B_{R} for $R>r$ will be a solution of (2.1) in B_{R}. Since this means that (2.2) will be automatically satisfied, so that $R,\left.\tilde{\mathscr{W}}\right|_{B_{\mathrm{R}}} \in \mathrm{K}_{\mathrm{R}}$ is also a solution to Problem $\left(^{*}\right)$, we shall not distinguish between \Leftrightarrow and $\tilde{\mathcal{W}}$ in the sequel.

Theorem 1. - Let Ω, u be a solution of Problem 1 where F satisfies (1.1) and $\gamma>0$. Suppose that Γ is a smooth curve. Then there exists a solution $r, \rightsquigarrow \in \mathrm{~K}_{r}$ of Problem (*) for

$$
f(z)=-\frac{1}{\gamma \rho^{2}} \mathrm{~F}(z)
$$

such that
(2.3) $\Omega=\{z: \propto(z)>\log \rho\} \quad$ and $\quad u(z)=\gamma\left(1-\rho w_{\rho}(z)\right)$.

The theorem is based on the lemma below which also explains the role of the normal derivative condition in (1.3).

Lemma 2.1. - Let Ω be a simply connected domain containing the origin and $\Gamma^{\prime} \subset \partial \Omega$ a smooth arc. Let $\mathrm{F} \in \mathrm{C}^{2}\left(\mathrm{R}^{2}\right)$ satisfy (1.1). Suppose that u satisfies

$$
\begin{aligned}
& -\Delta u=\rho^{-1} \mathrm{~F}_{\rho} \quad \text { in } \quad \Omega \\
& \left\{\begin{array}{l}
u=0 \\
\frac{\partial u}{\partial v}=-\mathrm{F} \frac{d \theta}{d s}
\end{array}\right.
\end{aligned}
$$

Let $g \in \mathrm{C}^{1}(\bar{\Omega}-\{0\})$ denote any function with the property

$$
g_{\rho}=-\rho^{-1} u \quad \text { in } \quad \bar{\Omega}-\{0\} \quad \text { and } \quad \Delta g \in \mathrm{C}(\bar{\Omega}-\{0\})
$$

Let $\zeta \in \mathrm{C}_{0}^{\infty}\left(\mathrm{R}^{2}\right)$ vanish in a neighborhood of $\partial \Omega-\Gamma^{\prime}$ and $z=0$. Then

$$
\int_{\Gamma^{\prime}} \zeta_{\rho^{2}} \Delta g d \theta=\int_{\Gamma^{\prime}} \zeta \mathrm{F} d \theta-\int_{\Gamma^{\prime}} g_{\theta}\left(\zeta_{\rho} d \rho+\zeta_{\theta} d \theta\right)
$$

Proof. - First we compute Δg in Ω. For this, observe that

$$
\begin{aligned}
-\mathrm{F}_{\rho} & =\left(\rho u_{\rho}\right)_{\rho}+\rho^{-1} u_{\theta \theta} \\
& =-\left(\rho\left(\rho g_{\rho}\right)_{\rho}\right)_{\rho}-g_{\rho \theta \theta} \\
& =-\frac{\partial}{\partial \rho}\left\{\rho\left(\rho g_{\rho}\right)_{\rho}+g_{\theta \theta}\right\} \\
& =-\frac{\partial}{\partial \rho}\left(\rho^{2} \Delta g\right) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\frac{\partial}{\partial \rho}\left(\rho^{2} \Delta g\right)=\mathrm{F}_{\rho} \quad \text { in } \Omega . \tag{2.4}
\end{equation*}
$$

Let $\zeta \in \mathrm{C}_{0}^{\infty}\left(\mathrm{B}_{r}\right)$, where $\bar{\Omega} \subset \mathrm{B}_{r}$, satisfy $\zeta=0$ in a neighborhood of $\partial \Omega-\Gamma^{\prime}$ and $z=0$. Then observing that $-\mathrm{F} d \theta=\frac{\partial u}{\partial v} d s=\rho u_{\rho} d \theta-\frac{1}{\rho} u_{\theta} d \rho$,
$-\int_{\Gamma^{\prime}} \mathrm{F} \zeta d \theta$
$=\int_{\Gamma^{\prime}} \zeta\left(\rho u_{\rho} d \theta-\frac{1}{\rho} u_{\theta} d \rho\right)$
$=\int_{\Omega} \zeta\left(\left(\rho u_{\rho}\right)_{\rho}+\frac{1}{\rho} u_{\theta \theta}\right) d \rho d \theta+\int_{\Omega}\left(\rho u_{\rho} \zeta_{\rho}+\frac{1}{\rho} u_{\theta} \zeta_{\theta}\right) d \rho d \theta$
$=-\int_{\Omega} \zeta \mathrm{F}_{\rho} d \rho d \theta-\int_{\Omega}\left\{\rho\left(\rho g_{\rho}\right)_{\rho} \zeta_{\rho}+g_{\rho \theta} \zeta_{\theta}\right\} d \rho d \theta$
$=-\int_{\Omega} F_{\rho} \zeta d \rho d \theta-\int_{\Omega}\left\{\left(\rho^{2} \Delta g-g_{\theta \theta}\right) \zeta_{\rho}+g_{\rho \theta} \zeta_{\theta}\right\} d \rho d \theta$
$=-\int_{\Omega}\left\{\zeta \mathrm{F}_{q}+\rho^{2} \Delta g \zeta_{q}\right\} d \rho d \theta+\int_{\Omega}\left\{g_{\theta \theta} \zeta_{\rho}-g_{\rho \theta} \zeta_{\theta}\right\} d \rho d \theta$.
We evaluate the first integral by (2.4). Hence

$$
\begin{aligned}
\int_{\Omega}\left\{\mathrm{F}_{\rho} \zeta+\rho^{2} \Delta g \zeta_{\rho}\right\} d \rho d \theta & =\int_{\Omega} \frac{\partial}{\partial \rho}\left(\zeta \rho^{2} \Delta g\right) d \rho d \theta \\
& =\int_{\Gamma^{\prime}} \zeta \rho^{2} \Delta g d \theta
\end{aligned}
$$

Turning to the second integral, we compute that

$$
\begin{aligned}
\int_{\Omega}\left\{g_{\theta \theta} \zeta_{\rho}-g_{\rho \theta} \zeta_{\theta}\right\} d \rho d \theta & =\int_{\Omega}\left\{\left(g_{\theta} \zeta_{\rho}\right)_{\theta}-\left(g_{\theta} \zeta_{\theta}\right)_{\rho}\right\} d \rho d \theta \\
& =\int_{\Gamma^{\prime}}\left(g_{\theta} \zeta_{\rho} d \rho+g_{\theta} \zeta_{\theta} d \theta\right)
\end{aligned}
$$

Finally, we obtain that

$$
\int_{\Gamma^{\prime}} \mathrm{F} \zeta d \theta=\int_{\Gamma^{\prime}} \rho^{2} \Delta g \zeta d \theta+\int_{\Gamma^{\prime}} g_{\theta}\left(\zeta_{\rho} d \rho+\zeta_{\theta} d \theta\right) . \quad \text { Q.E.D. }
$$

Lemma 2.2. - Let Ω, u be a solution to Problem 1 and suppose that $\Gamma=\partial \Omega$ is smooth. Set $u=0$ in $\mathrm{R}^{2}-\Omega$. Let r be large enough that $\bar{\Omega} \subset \mathrm{B}_{r}$ and choose

$$
\begin{equation*}
g(z)=\int_{\rho}^{r} t^{-1} u(t, \theta) d t, \quad|z|=\rho, \quad 0 \neq z \in \mathrm{~B}_{r} \tag{2.5}
\end{equation*}
$$

Then

$$
g \in \mathrm{C}^{1}(\bar{\Omega}-\{0\}), \quad \Delta g \in \mathrm{C}(\bar{\Omega}-\{0\}),
$$

and

$$
\Omega=\{z: g(z)>0\}
$$

and moreover

$$
\Delta g=\left\{\begin{array}{lll}
\rho^{-2} \mathrm{~F} & \text { in } & \bar{\Omega}-\{0\} \\
0 & \text { in } & \mathrm{B}_{r}-\Omega .
\end{array}\right.
$$

Proof. - As we remarked in the introduction, smoothness of Γ implies that Ω is starshaped with respect to $z=0$. Hence if $g(z)=0$ for $z=\rho e^{i 0}$, then the non-negative continuous integrand in (2.5) vanishes for $t e^{i \theta}, t>\rho$, so that $g\left(t e^{i \theta}\right)=0, t>\rho$. Therefore, since $u>0$ in Ω, we see that $g(z)>0$ in $\Omega-\{0\}$ and $g(z)=0$ in $\mathrm{B}_{r}-\Omega \supset \Gamma$. Because u is smooth in Ω it is easy to derive that $g \in \mathrm{C}^{1}\left(\mathrm{~B}_{r}-\{0\}\right)$. On the other hand g attains its minimum on $\mathrm{B}_{r}-\Omega$ whence

$$
\begin{equation*}
g_{\rho}=0=g_{\theta} \quad \text { on } \quad \mathrm{B}_{r}-\Omega . \tag{2.6}
\end{equation*}
$$

Since $g_{\rho}=-\rho^{-1} u$ in Ω, by (2.4),

$$
\begin{equation*}
\frac{\partial}{\partial \rho}\left(\rho^{2} \Delta g\right)=\mathrm{F}_{\rho} \text { in } \Omega . \tag{2.7}
\end{equation*}
$$

We may integrate (2.7) in Ω since Ω is starshaped to obtain

$$
\rho^{2} \Delta g(z)=\mathrm{F}(z)+\psi(\theta), \quad z=\rho e^{i \theta} \in \Omega,
$$

where ψ is a function of the central angle θ only. Now by Lemma 2.1
$\int_{\Gamma} \zeta \mathrm{F}(z) d \theta+\int_{\Gamma} \psi(\theta) \zeta d \theta=\int_{\Gamma} \mathrm{F} \zeta d \theta-\int_{\Gamma} g_{\theta}\left(\zeta_{\rho} d \rho+\zeta_{\theta} d \theta\right)$ for $\zeta \in \mathrm{C}_{0}^{\infty}\left(\mathrm{B}_{r}-\{0\}\right)$. Since $g_{\theta}=0$ on $\Gamma \subset \mathrm{B}_{r}-\Omega$ (cf. 2.6),

$$
\int_{\Gamma} \psi(\theta) \zeta d \theta=0 \quad \zeta \in \mathrm{C}_{0}^{\infty}\left(\mathrm{B}_{r}-\{0\}\right)
$$

or

$$
\psi(\theta)=0,0 \leqslant \theta<2 \pi .
$$

Proof of Theorem 1. - As we have observed, Ω is starshaped with respect to $z=0$ so the function $g(z)$ defined by (2.5) satisfies the conclusions of Lemma 2.2. Let r be so large that $\bar{\Omega} \subset B_{r}$ and define

$$
\begin{aligned}
\wp^{*}(z) & =\frac{1}{\gamma} g(z)+\log \rho \quad 0 \neq z \in \mathrm{~B}_{r} \\
& =\frac{1}{\gamma} \int_{\rho}^{r} t^{-1}(u(t, \theta)-\gamma) d t+\log r
\end{aligned}
$$

where $\gamma=u(0)>0$. We shall show that $r, w^{*} \in \mathrm{~K}_{r}$ is a solution to. Problem (*). Clearly w^{*} is bounded in B_{r} and satisfies

$$
-\Delta w^{*}=\left\{\begin{array}{ll}
f & \text { in } \quad \Omega-\{0\} \tag{2.8}\\
0 & \text { in } B_{r}-\Omega
\end{array}\right. \text { a.e. }
$$

by Lemma 2.2 where $f(z)=-\frac{1}{\gamma \rho^{2}} F(z)$. Since $f \in \mathrm{C}^{2}\left(\mathrm{R}^{2}\right)$, cf. (1.1), it follows from Riemann's Theorem on removable singularities that ς^{*} is smooth in Ω. We observe that

$$
\aleph^{*}(z) \geqslant \log \rho \quad \text { since } \quad g(z) \geqslant 0
$$

and $\Omega=\left\{z: \propto^{*}(z)>\log \rho\right\}$. Further, $\bar{\Omega} \subset B_{r}$ implies that, for $|z|=r$,

$$
\begin{aligned}
& w^{*}(z)=\log r \\
& w_{\rho}^{*}(z)=1 / r \quad \text { and } \quad w_{\theta}^{*}(z)=0
\end{aligned}
$$

Therefore, $\varsigma^{*} \in \mathrm{~K}_{r}$ and the function

$$
\tilde{\mathcal{w}}^{*}(z)= \begin{cases}w^{*}(z) & z \in B_{r} \\ \log \rho & z \notin B_{r}\end{cases}
$$

is a $\mathrm{C}^{1}\left(\mathrm{R}^{2}\right)$ function. Hence (2.2) holds.
It is easy to verify (2.1). Let $\varphi \in \mathrm{K}_{r}$. Then

$$
a\left(\aleph^{*}, \varphi-\aleph^{*}\right)=\int_{\Omega} f\left(\varphi-\aleph^{*}\right) d x
$$

by (2.8) and an integration by parts, valid since $w^{*} \in \mathrm{C}^{1}(\bar{\Omega})$. Indeed, $\kappa^{*} \in \mathrm{C}^{1}\left(\mathrm{R}^{2}\right)$, as noted above. Hence

$$
a\left(\aleph^{*}, \varphi-\aleph^{*}\right)-\int_{\mathrm{B}_{r}} f\left(\varphi-\aleph^{*}\right) d x=-\int_{\mathrm{B}_{r}-\Omega} f\left(\varphi-\aleph^{*}\right) d x
$$

Since $f \leqslant 0$ in B_{r} and $\varphi \in \mathrm{K}_{r}$ implies

$$
0 \leqslant \varphi-\log \rho=\varphi-\varphi^{*} \quad \text { in } \quad \mathrm{B}_{r}-\Omega,
$$

the last integral is non-negative so that

$$
a\left(\varphi^{*}, \varphi-\varphi^{*}\right) \geqslant \int_{\mathrm{B}_{r}} f\left(\varphi-\varsigma^{*}\right) d x \quad \varphi \in \mathrm{~K}_{r} \quad \text { Q.E.D. }
$$

3.

This paragraph is devoted to the solution of the variational inequality Problem (*). According to a well known theorem [11], there is a solution to (2.1) for each $r>0$. To establish its smoothness in B_{r}, we shall prove that it is bounded. For once this is known, the obstacle $\log \rho$ may be replaced by a smooth obstacle ψ which equals $\log \rho$ when

$$
\log \rho>-\|\mathscr{L}\|_{\mathbf{L}^{\infty}\left(\mathbf{B}_{r}\right)}
$$

and (2.1) may be solved in the convex K_{ψ} of $\mathrm{H}^{1}\left(\mathrm{~B}_{r}\right)$ functions which exceed ψ in B_{r} and satisfy the boundary condition $\varphi(z)=\log r,|z|=r$. The solution to this latter problem is known to be suitable smooth (cf. [10]) and is easily shown to be the solution of (2.1).

Lemma 3.1. - Let $f \in \mathrm{~L}^{p}\left(\mathrm{~B}_{r}\right)$ for some $p>2$ and satisfy

$$
f \leqslant 0 \quad \text { in } \quad \mathrm{B}_{r} .
$$

Then the solution \rightsquigarrow of (2.1) for f satisfies

$$
\log r-c\|f\|_{L^{p_{\left(\beta_{r}\right)}}} \leqslant \propto(z) \leqslant \log r \text { in } \mathrm{B}_{r}
$$

where $c=c(r, p)>0$.
Proof. - Let φ_{0} denote the solution to the Dirichlet problem

$$
\begin{array}{lll}
-\Delta \mathscr{s}_{0}=f & \text { in } & \mathrm{B}_{r} \\
\mathscr{w}_{0}=0 & \text { on } & \partial \mathrm{B}_{r} .
\end{array}
$$

We know that $\varphi_{0} \in \mathrm{H}^{2, p}\left(\mathrm{~B}_{r}\right)$ and

$$
\begin{equation*}
\left\|\varphi_{0}\right\|_{L^{\circ}\left(\mathbf{B}_{r}\right)} \leqslant c\|f\|_{L^{\left.p_{(B r r}\right)}}, \quad c=c(r, p)>0 . \tag{3.1}
\end{equation*}
$$

Consequently, for any $\zeta \in \mathrm{H}_{0}^{1}\left(\mathrm{~B}_{\mathrm{r}}\right)$,

$$
a\left(\varsigma-\aleph_{0}, \zeta\right)=a(\rightsquigarrow, \zeta)-\int_{\mathrm{B}_{\mathrm{r}}} f \zeta d x .
$$

We define $\varphi=\max \left(\omega_{,} \varphi_{0}+\log r\right) \in \mathrm{K}_{r} \quad$ so by (2.1)

$$
a\left(\varphi-\varphi_{0}, \varphi-\aleph\right) \geqslant 0
$$

Further, computing explicitly, we find

$$
\begin{aligned}
a\left(\varphi-\varphi_{0}, \varphi-\varphi\right) & =\int_{\mathrm{B}_{r}}\left(\varphi-\varphi_{0}\right)_{x_{i}(}(\varphi-\varphi)_{x_{i}} d x \\
& \left.=-\int_{\{\nu>w\}}(\varphi)-\varphi_{0}\right)_{x_{i}}^{2} d x \leqslant 0 .
\end{aligned}
$$

Hence meas $\{\varphi>\varphi\}=0$ or $\log r+\varphi_{0} \leqslant \varphi$ a.e. This proves the lower bound in view of (3.1). The same argument may be employed to prove the upper bound, with

$$
\varphi=\min (\varphi, \log r),
$$

using that $f \leqslant 0$ in B_{r}. Q.E.D.
For general f, we observe that an upper bound for the solution of (2.1) is

$$
\log r+c(r, p)\|\max (0, f)\|_{\mathbf{L}^{p}\left(\mathbf{B}_{r}\right)} .
$$

Corollary 3.2. - Let $f \in \mathrm{~L}^{p}\left(\mathrm{~B}_{r}\right)$ for some $p>2, f \leqslant 0$ in B_{r}, and let \rightsquigarrow denote the solution to (2.1) for f. Then $w \in \mathrm{H}^{2, p}\left(\mathrm{~B}_{r}\right)$. If $f \in \mathrm{C}^{1}\left(\overline{\mathrm{~B}}_{\mathrm{r}}\right)$, then $\rightsquigarrow \in \mathrm{H}_{\mathrm{loc}}^{2, \infty}\left(\mathrm{~B}_{r}\right)$.

Proof. - This is clear from the remarks preceding the proof of the lemma. In particular, that $\rightsquigarrow \in \mathrm{H}_{\mathrm{loc}}^{2, \infty}\left(\mathrm{~B}_{r}\right)$ follows by a result of Frehse [7] (cf. also [4]).

Lemma 3.3. - Let $g \in \mathrm{H}^{1}\left(\mathrm{~B}_{r}\right)$ satisfy

$$
g \geqslant \log \rho \text { in } \mathrm{B}_{r}
$$

and

$$
a(g, \zeta)-\int_{\mathrm{B}_{r}} f \zeta d x \geqslant 0 \text { for } 0 \leqslant \zeta \in \mathrm{H}_{0}^{1}\left(\mathrm{~B}_{r}\right) .
$$

Let \oiint denote the solution of Problem (${ }^{*}$) for $f \in \mathrm{~L}^{p}\left(\mathrm{~B}_{r}\right)$, for some $p>2$. Then $\rightsquigarrow \leqslant g$ in B_{r}.

Proof. - This is a familiar property of supersolutions. cf. [10], [11].

Theorem 2. - Let $f \in \mathrm{~L}_{\mathrm{loc}}^{p}\left(\mathrm{R}^{2}\right)$ for a $p>2$ satisfy

$$
\sup _{\mathrm{R}^{2}} f<0 .
$$

Then there exists a solution $r, \propto \in \mathrm{~K}_{r}$ to Problem (*). In addition, $\varphi \in \mathrm{H}^{2, p}\left(\mathrm{~B}_{\mathrm{r}}\right)$.

Proof. - We shall construct a supersolution $g(z)=h(\rho)$ to the form

$$
a(w, \zeta)-\int_{\mathrm{B}_{\mathrm{r}}} f \zeta d x
$$

for some $r>1$, which satisfies

$$
\begin{gather*}
h \in \mathrm{~K}_{r} \tag{3.2}\\
h_{\rho}(r)=\frac{1}{r} . \tag{3.3}
\end{gather*}
$$

Indeed, suppose that

$$
0<\beta \leqslant-\sup _{\mathbf{R}^{2}} f \text { and } \beta<2 e^{-1}
$$

and define

$$
h(\rho)=\alpha+\frac{1}{4} \beta \rho^{2} .
$$

Then

$$
-\Delta h=-\frac{1}{\rho}\left(\rho h_{\rho}\right)_{\rho}=-\beta \geqslant \sup f
$$

Assume for the moment that (3.2) and (3.3) are fulfilled. Then

$$
\varphi \leqslant h \quad \text { in } \quad \mathrm{B}_{r}
$$

by the previous lemma. Moreover, since $\log \rho \leqslant \oiint \leqslant h$ we conclude from (3.3) that

$$
\aleph_{\rho}(z)=\frac{1}{r} \quad \text { for } \quad|z|=r
$$

and, since $\varphi=\log r$ on $|z|=r$,

$$
\varphi_{\theta}(z)=0 \quad \text { for } \quad|z|=r .
$$

Therefore $\tilde{\mathcal{W}}$ defined by (2.2) is in $\mathrm{C}^{1}\left(\mathbf{R}^{2}\right)$.
It remains to find α and r from the conditions (3.2),
(3.3). One discovers that

$$
r=\left(\frac{2}{\beta}\right)^{1 / 2} \geqslant 1
$$

and

$$
\alpha=\log r-\frac{1}{2}=\frac{1}{2}\left(\log \frac{2}{\beta}-1\right)>0 .
$$

To verify that $h \in \mathrm{~K}_{r}$, i.e., to verify that $h(\rho) \geqslant \log \rho$ knowing that $h(r)=\log r$, note that $h(\rho)-\log \rho$ is strictly convex and attains its (unique) minimum at the ρ where $h_{\rho}=\frac{1}{\rho}=0$. This $\rho=r$. Q.E.D.

We wish to point out here that ideas similar to those in the proof of Theorem 2 were also studies by H. Brezis [3].

Corollary 3.4. - Let $f \in \mathrm{~L}_{\text {ioc }}^{p}\left(\mathrm{R}^{2}\right)$ for a $p>2$ satisfy $\sup _{\mathbf{R}^{2}} f<0$. Let $r, \rightsquigarrow \in \mathrm{~K}_{r}$ denote the solution to Problem (*) for f. Then for $\mathrm{R}>r$, the pair $\mathrm{R}, \tilde{\boldsymbol{w}} \in \mathrm{K}_{\mathrm{R}}$, where $\tilde{\mathcal{w}}$ is defined by (2.2) is a solution to Problem (*).

In view of this Corollary, we shall not distinguish between Φ and $\tilde{\mathcal{W}}$ in the sequel. Furthermore, we recall that $\varphi \in H_{\mathrm{Ioc}}^{2, \infty}\left(\mathbf{R}^{2}\right)$ whenever $f \in \mathrm{C}^{1}\left(\mathbf{R}^{2}\right)$.

Proof. - We need only verify (2.1) in B_{R}. Let $\zeta \in \mathrm{C}_{0}^{\infty}\left(\mathrm{B}_{\mathrm{R}}\right)$. Then

$$
\begin{aligned}
a(\tilde{w}, \zeta)= & \int_{\mathbf{B}_{r}} \oiint_{x_{i}} \zeta_{x_{i}} d x+\int_{\mathrm{B}_{\mathrm{n}}-\mathrm{B}_{r}} \frac{\partial}{\partial x_{i}} \log \rho \zeta_{x_{i}} d x \\
= & -\int_{\mathrm{B}_{r}} \Delta \nmid \psi \zeta d x+\int_{\mid z!=r}{w_{\rho} \zeta r d \theta+\int_{\mathrm{B}_{\mathrm{n}}-\mathbf{B}_{r}} \Delta \log \rho \zeta d x}-\int_{|z|=r} \frac{1}{r} \zeta r d \theta
\end{aligned}
$$

since ζ has support in B_{R}. Now $\tilde{\mathcal{\varphi}} \in \mathrm{C}^{1}\left(\mathrm{~B}_{\mathrm{R}}\right)$ implies, in particular, that $x_{\rho}(z)=\frac{1}{r}$ for $|z|=r$ and the two integrals over $|z|=r$ cancel. Hence

$$
\begin{aligned}
a(\tilde{w}, \zeta) & =-\int_{\mathfrak{r}_{r}} \Delta ผ \zeta d x \\
& =\int_{\Omega_{r}} f \zeta d x, \quad \Omega=\{z: \Phi(z)>\log \rho\} .
\end{aligned}
$$

Now given $\varphi \in \mathbf{K}_{\mathrm{R}}$,

$$
a(\tilde{\mathscr{\varphi}}, \varphi-\tilde{\mathscr{\varphi}})-\int_{\mathrm{B}_{\mathrm{R}}} f(\varphi-\tilde{\mathscr{\varphi}}) d x=-\int_{\mathrm{B}_{\mathrm{R}}-\Omega} f(\varphi-\tilde{\mathcal{\varphi}}) d x \geqslant 0
$$

where the last integral is non-negative because $\tilde{\boldsymbol{w}}=\log \rho$ in $B_{R}-\Omega$ and $f<0$. This verifies (2.1). Q.E.D.

4.

Here we show that the set where the solution to Problem (*) exceeds $\log \rho$ is starshaped under an assumption about f. First we prove a lemma which is useful also in the succeeding sections. It is a form of converse to Lemma 2.1 with an analogous proof.

Lemma 4.1. - Let $f \in \mathrm{~L}_{\text {loc }}^{p}\left(\mathrm{R}^{2}\right)$ for some $p>2$ satisfy $\sup _{\mathrm{R} 2} f<0$. Let $r, \propto \in \mathrm{~K}_{r}$ denote the solution to Problem (*) for f and define

$$
u(z)=1-\rho \oiint_{\rho}(z) \quad z \in B_{r}
$$

and

$$
\Omega=\left\{z \in \mathrm{~B}_{r}: \propto(z)>\log \rho\right\} .
$$

i) Then $u \in \mathrm{H}^{1, p}\left(\mathrm{~B}_{r}\right)$.
ii) Let $\omega \subset \mathrm{B}_{r}$ be open and suppose that $-\Delta \mathfrak{\psi}=f$ in ω. Then

$$
\begin{equation*}
-\Delta u=-\rho^{-1}\left(\rho^{2} f\right)_{\rho} \quad \text { in } \quad \omega \tag{4.1}
\end{equation*}
$$

iii) Suppose that $f \in \mathrm{C}^{1}\left(\overline{\mathrm{~B}}_{r}\right)$ and that Γ^{\prime} is a smooth (open) arc in $\partial \Omega$. Then

$$
\begin{equation*}
\frac{\partial u}{\partial v}=\rho^{2} f \frac{d \theta}{d s} \quad \text { on } \quad \Gamma^{\prime} \tag{4.2}
\end{equation*}
$$

where v denotes the outsard directed normal vector on Γ^{\prime}.
Proof. - Since $f \in \mathrm{~L}_{\mathrm{loc}}^{p}\left(\mathrm{R}^{2}\right), \quad p>2, \quad \varphi \in \mathrm{H}^{2, p}\left(\mathrm{~B}_{r}\right)$, so $u=1-\Sigma x_{i} w_{x_{i}} \in \mathrm{H}^{1, p}\left(\mathrm{~B}_{r}\right)$. The statement (4.1) will be understood in the sense of distributions.

Let $\zeta \in \mathrm{C}_{0}^{\infty}(\omega)$. Then

$$
\begin{aligned}
\int_{\omega} u_{x_{i}} \zeta_{x_{i}} d x & =\int_{\omega}\left(\rho u_{\rho} \zeta_{\rho}+\frac{1}{\rho} u_{\theta} \zeta_{\theta}\right) d \rho d \theta \\
& =\int_{\omega}\left\{\rho\left(1-\rho w_{\rho}\right)_{\rho} \zeta_{\rho}+\frac{1}{\rho}\left(1-\rho w_{\rho}\right)_{\theta} \zeta_{\theta}\right\} d \rho d \theta \\
& =-\int_{\omega}\left\{\rho\left(\rho w_{\rho}\right)_{\rho} \zeta_{\rho}+w_{\rho \theta} \zeta_{\theta}\right\} d \rho d \theta
\end{aligned}
$$

We integrate by parts in the last term, first with respect to ρ and then with respect to θ, to obtain

$$
\begin{aligned}
\int_{\omega} u_{x_{i}} \zeta_{x_{i}} d x & =-\int_{\omega}\left\{\rho\left(\rho\left(y_{\rho}\right)_{\rho} \zeta_{\rho}+\omega_{\theta \theta} \zeta_{\rho}\right\} d \rho d \theta\right. \\
& =-\int_{\omega} \rho^{2} \Delta w \zeta_{\rho} d \rho d \theta \\
& =\int_{\omega} \rho^{2} f \zeta_{\rho} d \rho d \theta
\end{aligned}
$$

since $-\Delta \propto\rangle=f$ in ω by hypothesis. Hence

$$
\int_{\omega} u_{x_{i}} \zeta_{x_{i}} d x=-\int_{\omega} \frac{1}{\rho}\left(\rho^{2} f\right)_{\rho} \zeta_{\rho} d \rho d \theta
$$

We turn now to the proof of iii). Suppose that Γ^{\prime} has a Hölder continuous tangent vector as a function of the arclength parameter. In Ω, that $\kappa(z)>\log \rho$ implies

$$
-\Delta \varphi=f
$$

whence

$$
-\Delta u=-\frac{1}{\rho}\left(\rho^{2} f\right)_{\rho} \quad \text { in } \quad \Omega
$$

Moreover, $w_{\rho}(z)=\frac{1}{\rho}$ for $z \in \partial \Omega$ so $u=0$ on $\Gamma^{\prime} \subset \partial \Omega$. From this and the fact $f \in \mathrm{C}^{1}\left(\overline{\mathrm{~B}}_{r}\right)$ we may conclude that $u \in \mathrm{C}^{1, \lambda}\left(\Omega \cup \Gamma^{\prime}\right)$ for some $\lambda>0$. Let $\zeta \in \mathrm{C}_{0}^{\infty}\left(\mathrm{B}_{r}\right)$ with $\operatorname{supp} \zeta \cap\left(\partial \Omega-\Gamma^{\prime}\right)=\varnothing$. Then

$$
\begin{aligned}
& (4.3) \quad \int_{\Gamma^{\prime}} u_{\nu} \zeta d s=\int_{\Gamma^{\prime}} \zeta\left(\rho u_{\rho} d \theta-\frac{1}{\rho} u_{\theta} d \rho\right) \\
= & \int_{\Omega} \zeta\left(\left(\rho u_{\rho}\right)_{\rho}+\frac{1}{\rho} u_{\theta \theta}\right) d \rho d \theta+\int_{\Omega}\left(\rho \zeta_{\rho} u_{\rho}+\frac{1}{\rho} u_{\theta} \zeta_{\theta}\right) d \rho d \theta \\
= & \int_{\Omega} \zeta\left(\rho^{2} f\right)_{\rho} d \rho d \theta \\
- & \int_{\Omega}\left\{\rho\left(\rho w_{\rho}\right)_{\rho} \zeta_{\rho}+w_{\theta \theta} \zeta_{\rho}-w_{\theta \theta} \zeta_{\rho}+\propto_{\rho \theta} \zeta_{\theta \theta}\right\} d \rho d \theta \\
= & \int_{\Omega}\left(\zeta\left(\rho^{2} f\right)_{\rho}-\rho^{2} \Delta \propto \zeta_{\rho}\right) d \rho d \theta+\int_{\Omega}\left(w_{\theta \theta} \zeta_{\rho}-w_{\rho \theta} \zeta_{\theta}\right) d \rho d \theta
\end{aligned}
$$

Since $-\Delta 乡=f$ in Ω, we evaluate the first integral to yield
(4.4) $\quad \int_{\Omega}\left(\left(\rho^{2} f\right)_{\digamma} \zeta-\rho^{2} \Delta \mu \nu \zeta_{\rho}\right) d \rho d \theta=\int_{\Gamma^{\prime}} \zeta_{\rho^{2}} f d \theta$.

On the other hand, $\wp_{\theta}=0$ on $\Gamma^{\prime} \subset \mathrm{B}_{r}-\Omega$, therefore

$$
\begin{aligned}
\int_{\Omega}\left(w_{\theta \theta} \zeta_{\rho}-w_{\rho \theta} \zeta_{\theta}\right) d \rho d \theta=\int_{\Omega} & \left\{\left(凶_{\theta} \zeta_{\rho}\right)_{\theta}-\left({\left.\left.\omega_{\theta} \zeta_{\theta}\right)_{\rho}\right\} d \rho d \theta}=-\int_{\Gamma^{\prime}} \aleph_{\theta}\left(\zeta_{\rho} d \rho+\zeta_{\theta} d \theta\right)=0\right.\right.
\end{aligned}
$$

Finally, from (4.3) and (4.4) we obtain that $\int_{\Gamma^{\prime}} u_{\nu} \zeta d s=\int_{\Gamma^{\prime}} \rho^{2} f \zeta d s, \zeta \in \mathrm{C}_{0}^{\infty}\left(\mathrm{B}_{r}\right), \operatorname{supp} \zeta \cap\left(\partial \Omega-\Gamma^{\prime}\right)=\varnothing$.

Theorem 3. - Let $f \in \mathrm{~L}_{\mathrm{loc}}^{p}\left(\mathrm{R}^{2}\right)$ satisfy $\sup _{\mathrm{R}^{2}} f<0$ and $\rho^{-1}\left(\rho^{2} f\right)_{\rho} \leqslant 0$. Let $r, w \in K_{r}$ denote the solution of Problem (*) for f and set

$$
\Omega=\{z: \rightsquigarrow p(z)>\log \rho\}
$$

Then Ω is starshaped with respect to $z=0$.
Proof. - Consider, as in the preceding proposition,

$$
u(z)=1-\rho w_{\rho}(z), \quad z \in \mathrm{~B}_{r}
$$

and note that $u \in \mathrm{C}^{0,1-\frac{2}{p}}\left(\mathrm{~B}_{r}\right)$ and $u=0$ on $\Gamma \subset \mathrm{B}_{r}-\Omega$, $\Gamma=\partial \Omega$. By the hypothesis on f and (4.1),
$\int_{\Omega} u_{x_{i}} \zeta_{x_{i}} d x=-\int_{\Omega} \rho^{-1}\left(\rho^{2} f\right)_{\rho} \zeta d x \geqslant 0 \quad$ for $\quad 0 \leqslant \zeta \in \mathrm{C}_{0}^{\infty}(\Omega)$.
The maximum principle may now be applied to conclude that

$$
u(z) \geqslant \min _{\Gamma} u=0 \quad \text { for } \quad z \in \Omega
$$

Hence the function

$$
g(z)=-\log \rho+\rightsquigarrow(z), \quad 0 \neq z \in \mathrm{~B}_{r}
$$

is decreasing on each ray $\rho e^{i \theta}, 0<\rho<r$, because it has derivative

$$
g_{\rho}(z)=-\frac{1}{\rho}\left(1-\rho w_{\rho}(z)\right)=-\frac{1}{\rho} u(z) \leqslant 0, \quad z \in B_{r}, \quad z \neq 0
$$

Therefore, given $z=\rho e^{i \theta}$ with $\{(z)>\log \rho$, then

$$
\varphi\left(t e^{i \theta}\right)>\log t \text { for } t \leqslant \rho
$$

This proves that Ω is starshaped.
Q.E.D.

5.

In this paragraph we initiate the study of the free boundary determined by a solution to Problem (*). To begin, we fix an $f \in \mathrm{C}^{1}\left(\mathrm{R}^{2}\right)$ which satisfies
(5.1) $\quad \sup _{\mathbf{R}^{2}} f<0$ and $\quad\left(\rho^{2} f\right)_{\rho} \leqslant 0$ in R^{2}
and let $r, 凶 \in K_{r}$ denote the solution to Problem (*) for f. As before, set

$$
\Omega=\{z: \propto(z)>\log \rho\}
$$

and let

$$
\mathrm{E}=\overline{\mathrm{B}}_{r}-\Omega
$$

Observe that, by Theorem 3, E is starshaped with respect to the point at ∞ in the sense that

$$
z \in \mathrm{E}, t \geqslant 1 \text { and } \quad|t z| \leqslant r \quad \text { implies } \quad t z \in \mathrm{E} .
$$

Define

$$
\begin{equation*}
\mu(\theta)=\inf \left\{\rho: z=\rho e^{i \theta} \in \mathrm{E}\right\}, 0 \leqslant \theta<2 \pi \tag{5.2}
\end{equation*}
$$

Note that $\mu(\theta)$ is lower semicontinuous since E is closed. For given $z_{n}=\rho_{n} e^{i \theta_{n}}, \quad \rho_{n}=\mu\left(\theta_{n}\right), \quad$ and $\quad z_{n} \rightarrow z=\rho e^{i \theta}$, we conclude that $z \in E$ and hence $\rho \geqslant \mu(\theta)$. In addition

$$
\begin{equation*}
\mathrm{E}=\left\{z=\rho e^{i \theta}: \mu(\theta) \leqslant \rho \leqslant r\right\} \tag{5.3}
\end{equation*}
$$

by the starshaped quality of E and Ω. In the next lemma, we utilize that the characteristic function of E, φ_{E}, is of bounded variation in \mathbf{R}^{2} which follows from [4] (Corollary 2.1).

Lemma 5.1. - Let f satisfy (5.1). Then $\mu(\theta)$ defined by (5.2) is a losver semi-continuous function of bounded sariation.

Proof. - The characteristic function of $\mathrm{E}, \varphi_{\mathrm{E}} \in \mathrm{BV}\left(\mathbf{R}^{\mathbf{2}}\right)$ as we have noted. This means that

$$
\left|\int_{\mathbf{R}^{2}} \varphi_{\mathrm{E}} \zeta_{x_{i}} d x\right| \leqslant \mathrm{C} \sup _{\mathbf{R}^{2}}|\zeta|, \quad \zeta \in \mathrm{H}_{0}^{1, \infty}\left(\mathrm{R}^{2}\right)
$$

for $i=1,2$ and some $\mathrm{C}>0$. Hence by Fubini's Theorem and (5.3)

$$
\begin{aligned}
\int_{0}^{2 \pi} \int_{\mu(\theta)}^{r} \zeta_{x_{i} \rho} \rho d \rho d \theta & =\int_{0}^{2 \pi} \int_{0}^{r} \varphi_{\mathrm{E}} \zeta_{x_{i} \rho} \rho d \rho d \theta \\
& =\int_{\mathbf{R}^{2}} \varphi_{\mathrm{E}} \zeta_{x_{i} \rho} \rho \rho d \theta \\
& \leqslant \mathrm{C}\|\zeta\|_{\mathrm{L}^{\infty}\left(\mathrm{R}^{2}\right)} \text { for } \quad \zeta \in \mathrm{H}_{0}^{1, \infty}\left(\mathrm{R}^{2}\right) .
\end{aligned}
$$

In particular, we choose $\zeta=\zeta(\theta) \in \mathrm{C}^{1}(0,2 \pi)$, periodic of period 2π, and $\eta(\rho)$ a function vanishing identically in a neighborhood of 0 in Ω, identically one in a neighborhood of E , and vanishing outside, say, $\mathrm{B}_{2 r}$. Applying the above to the product $\zeta(\theta) \eta(\rho)$ we see that

$$
\begin{aligned}
& \int_{0}^{2 \pi} \int_{\mu(\theta)}^{r}\left(\frac{1}{\rho} \zeta^{\prime}\right) \rho d \rho d \theta=-\int_{0}^{2 \pi} \zeta^{\prime}(\theta)(r-\mu(\theta)) d \theta \\
&=\int_{0}^{2 \pi} \mu(\theta) \zeta^{\prime}(\theta) d \theta
\end{aligned}
$$

and hence, by the foregoing,

$$
\left|\int_{0}^{2 \pi} \mu(\theta) \zeta^{\prime}(\theta) d \theta\right| \leqslant \mathrm{C} \sup _{0 \leqslant \theta \leqslant 2 \pi}|\zeta|, \quad \zeta \in \mathrm{C}^{1}(0,2 \pi)
$$

We may invoke the Riesz Representation Theorem to the functional

$$
\zeta \rightarrow \int_{0}^{2 \pi} \zeta^{\prime}(\theta) \mu(\theta) d \theta
$$

defined and uniformly bounded on the dense subset $\mathrm{C}^{1}(0,2 \pi)$ of $\mathrm{C}^{\mathrm{o}}(0,2 \pi)$ to infer the existence of

$$
g(\theta) \in \mathrm{BV}(0,2 \pi)
$$

with the properties

$$
\int_{0}^{2 \pi} \zeta^{\prime}(\theta) \mu(\theta) d \theta=-\int_{0}^{2 \pi} \zeta(\theta) d g(\theta)=\int_{0}^{2 \pi} \zeta^{\prime}(\theta) g(\theta) d \theta .
$$

In particular, $\mu(\theta)-g(\theta)=$ const. a.e., which we may take to be zero, so that

$$
\begin{equation*}
\mu(\theta)=g(\theta) \quad \text { a.e. in } \quad[0,2 \pi] . \tag{5.4}
\end{equation*}
$$

We proceed to show that $\mu(\theta)=g(\theta)$ everywhere. We may assume that g is lower semicontinuous. Let us agree to further modify g so that

$$
\begin{equation*}
g(\theta)=\liminf _{t \rightarrow \theta} g(t) \tag{5.5}
\end{equation*}
$$

It follows that $\mu(\theta) \leqslant g(\theta)$. For suppose that $g(\theta)<\mu(\theta)$ and select $\theta_{k} \rightarrow \theta$ such that $g(\theta)=\lim _{k>\infty} g\left(\theta_{k}\right)$. Since μ is lower semi-continuous given $\varepsilon>0$, there is a $\delta>0$ such that

$$
\mu(\theta)-\varepsilon<\mu(t) \text { for }|t-\theta|<\delta .
$$

Hence for k so large that

$$
\left|g\left(\theta_{k}\right)-g(\theta)\right|<\varepsilon
$$

we may find a neighborhood $\mathrm{I}_{k}=\left(\theta_{k}-\delta_{k}, \theta_{k}+\delta_{k}\right)$,

$$
\mathrm{I}_{k} \cap \mathrm{I}_{h}=\varnothing \quad \text { for } \quad h \neq k,
$$

of θ_{k} with the property

$$
\begin{aligned}
\operatorname{Var} g & \geqslant \max _{\mathbf{I}_{k}} g-\min _{\mathbf{I}_{\mathbf{k}}} g \\
& \geqslant g(t)-\left(g(\theta)^{-}-\varepsilon\right) \text { for any } t \in \mathrm{I}_{k} \\
& \geqslant \mu(t)-(g(\theta)-\varepsilon) \text { for almost all } t \in \mathrm{I}_{k}
\end{aligned}
$$

by (5.4). Hence, by our choice of ε,

$$
\underset{\mathbf{1}_{k}}{\operatorname{Var}} g \geqslant \mu(\theta)-g(\theta)-2 \varepsilon>0
$$

Consequently, Var $g=+\infty$, a contradiction. Therefore once (5.5) is assumed, $\mu(\theta) \leqslant g(\theta)$ in $[0,2 \pi)$. Observe that g satisfying (5.5) has no inessential discontinuities.

Consider the set

$$
\mathrm{F}=\left\{z: \rho e^{i \theta}: g(\theta) \leqslant \rho \leqslant r\right\} \subset \mathrm{E} \text { since } \mu \leqslant g .
$$

Since the points θ in $[0,2 \pi]$ for which $g \neq \mu$ have measure zero,

$$
\mathrm{N}=\mathrm{E}-\mathrm{F}=\left\{z=\rho e^{i \theta}: \mu(\theta) \leqslant \rho<g(\theta)\right\}
$$

satisfies meas $\mathrm{N}=0$. Furthermore F is closed by lower semi-continuity of g so $\overline{\mathrm{B}}_{r}-\mathrm{F}$ is open, $\Omega \subset \overline{\mathrm{B}}_{r}-\mathrm{F}$, and

$$
\overline{\mathrm{B}}_{r}-\mathrm{F}=\Omega \cup \mathrm{N} .
$$

Recall here that $\rightsquigarrow \in \mathrm{H}^{2, \infty}\left(\mathrm{~B}_{r}\right)$ since $f \in \mathrm{C}^{1}\left(\mathrm{~B}_{r}\right)$ by Corollary 3.2. Inasmuch as $-\Delta \varphi=f$ in Ω, we see that $-\Delta \varphi=f$ a.e. in $\Omega \cup N$. Since $\Omega \cup N$ is open, we may deduce that

$$
-\Delta_{\varphi}=f \quad \text { in } \quad \Omega \cup \mathrm{N}
$$

and

$$
\Phi \in \mathrm{C}^{2, \lambda}(\Omega \cup \mathrm{~N}) \text { for } 0<\lambda<1
$$

Now consider $u(z)=1-\rho \oiint_{\rho}(z), z \in B_{r}$, which satisfies

$$
\int_{\Omega U \mathbf{N}} u_{x_{i}} \zeta_{x_{i}} d x=-\int_{\Omega U \mathbf{N}} \frac{1}{\rho}\left(\rho^{2} f\right)_{\rho} \zeta d x, \zeta \in \mathrm{C}_{0}^{1}(\Omega \cup \mathrm{~N})
$$

by Lemma 4.2 (ii). Hence $u \in \mathrm{C}^{1}(\Omega \cup \mathrm{~N})$ and

$$
\int_{\mathrm{v} \cup \Omega} u_{x_{i}} \zeta_{x_{i}} d x \geqslant 0 \quad \text { when } \quad 0 \leqslant \zeta \in \mathrm{C}_{0}^{1}(\Omega \cup \mathrm{~N})
$$

so that by the strong maximum principle

$$
u(z)>\min _{\partial(\Omega \cup \mathbb{N})} u=0
$$

because $\mathfrak{\partial}(\Omega \cup \mathrm{N}) \subset \mathrm{B}_{r}-\Omega$ where $\mathscr{\varphi}_{\rho}=\frac{1}{\rho}$ and $\varphi_{\theta}=0$. In particular, $u(z)=0$ for $z \in \partial(\Omega \cup N)$. However, if $z \in \mathrm{~N}$

$$
\aleph_{\rho}(z)=\frac{1}{\rho} \quad \text { and } \quad w_{\theta}(z)=0
$$

so that

$$
u(z)=1-\rho w_{\rho}(z)=0,
$$

a contradiction. Therefore $\mathrm{N}=\varnothing$, and

$$
\mu(\theta)=g(\theta), \quad 0 \leqslant \theta \leqslant 2 \pi
$$

Theorem 4. - Let $f \in \mathrm{C}^{1}\left(\mathrm{R}^{2}\right)$ satisfy (5.1) and let $r, w \in \mathrm{~K}_{r}$ denote the solution to Problem (${ }^{*}$) for f. Let

$$
\Omega=\{z: \propto(z)>\log \rho\} .
$$

Then the boundary Γ of Ω has the representation

$$
\Gamma: \rho=\mu(\theta), \quad 0 \leqslant \theta \leqslant 2 \pi
$$

where μ is a continuous function of bounded variation.

Proof. - Let $\mu(\theta)$ be defined by (5.2) so that the conclusion of Lemma 5.1 holds. Suppose that $\theta=0$ is a discontinuity of μ. Then $\theta=0$ is a jump discontinuity so that

$$
\lim _{\theta \rightarrow 0^{-}} \mu(\theta)=\mathrm{L}>\lim _{\theta \rightarrow 0^{+}} \mu(\theta)=\mu(0)
$$

without any loss in generality. For $\varepsilon>0$ sufficiently small, there is a $\delta>0$ so that the segments

$$
\left\{z=\rho e^{i \theta}: 0 \leqslant \rho \leqslant L-\varepsilon\right\} \subset \Omega \text { for }-\delta<\theta<0
$$

and

$$
\left\{z=\rho e^{i \theta}: \mu(0)+\varepsilon \leqslant \rho \leqslant r\right\} \subset \mathrm{E} .
$$

Hence we may find a disc $\mathrm{B}_{\eta}\left(z_{0}\right), z_{0}=\frac{1}{2}(\mathrm{~L}+\mu(0))$, such that

$$
\mathrm{B}_{n}\left(z_{0}\right) \cap \Omega=\left\{z \in \mathrm{~B}_{\eta}\left(z_{0}\right): \operatorname{Im} z<0\right\}
$$

Let $\sigma=\left\{z: \operatorname{Im} z=0, z_{0}-\eta<\operatorname{Re} z<z_{0}+\eta\right\}$ and set

$$
u=1-\rho W_{\rho} .
$$

It follows that $u \in \mathrm{C}^{1}\left(\sigma \cup \Omega \cap \mathrm{~B}_{\eta}\left(z_{0}\right)\right)$ and u attains its minimum value zero at each point of σ by Hopf's maximum principle and Lemma 4.1 (ii). Therefore

$$
\frac{\partial u}{\partial v}(z)<0 \quad \text { for } \quad z \in \sigma .
$$

But according to Lemma 4.1. (iii) with $\Gamma^{\prime}=\sigma$

$$
\frac{\partial u}{\partial v}(z)=\rho^{2} f(z) \frac{d \theta}{d s}(z)=0 \quad \text { for } \quad z \in \sigma
$$

since $\theta=0$ on σ. This is a contradiction.

6.

In this paragraph we show that Γ has a smooth parameterization and that a solution to Problem 1 exists in the classical sense. For this, we employ the results of [8]. In the case where f is real analytic, these questions may be treated by the results of H. Lewy [9].

Theorem 5. - Let $f \in \mathrm{C}^{1}\left(\mathrm{R}^{2}\right)$ satisfy $\sup f<0$ and $\left(\rho^{2} f\right)_{\rho} \leqslant 0$ in R^{2}. Let $r, \varphi \in \mathrm{~K}_{r}$ denote the solution to Problem (*) for f and Γ the boundary of $\Omega=\{z: \Phi(z)>\log \rho\}$. Then Γ has a $\mathrm{C}^{1{ }^{1 \tau}}$ parameterization, $0<\tau<1$.
Proof. - From Theorem 4 it is known that Γ is a Jordan curve. We now apply [8] (Theorem 1). Let $z_{0} \in \Gamma$ and set $\omega=B_{\varepsilon}\left(z_{0}\right) \cap \Omega, \varepsilon<\left|z_{0}\right|$, and consider

$$
g(z)=-\frac{1}{z}+\frac{1}{2}\left(w_{x_{x}}(z)-i w_{x_{z}}(z)\right) \quad z \in \bar{\Omega}-\{0\} .
$$

From the known regularity of $\rightsquigarrow, g \in \mathrm{H}^{1, \infty}(\omega)$. Furthermore

$$
\begin{array}{ll}
g_{z}(z)=\frac{1}{4} \Delta \omega(z)=-\frac{1}{4} f(z), & z \in \omega \\
g(z)=0 & \\
z \in \Gamma \cap \bar{\omega}
\end{array}
$$

Since $-\frac{1}{4} f(z)>0$ in $B_{\varepsilon}\left(z_{0}\right)$, we may conclude that a conformal mapping φ of $\mathrm{G}=\{|t|<1, \operatorname{Im} t>0\}$ onto ω which maps $-1<t<1$ onto $\Gamma \cap \bar{\omega}$ has boundary values in $\mathrm{C}^{1, \tau}$ for every $\tau, 0<\tau<1$.

Theorem 6. - Let $\mathrm{F} \in \mathrm{C}^{1}\left(\mathrm{R}^{2}\right)$ satisfy $\rho^{-2} \mathrm{~F} \in \mathbf{C}^{1}\left(\mathrm{R}^{2}\right)$ and

$$
\begin{gathered}
\inf \rho^{-2} \mathrm{~F}>0 \\
\mathrm{~F}_{\mathrm{p}} \geqslant 0 \\
\mathrm{~F}(0) \stackrel{\mathrm{F}_{\rho}(0)}{ }=0 .
\end{gathered}
$$

Then there exists a domain Ω and a function $u \in H_{b o c}^{j \infty}\left(\mathrm{R}^{2}\right)$ such that

$$
\left\{\begin{array}{c}
-\Delta u=\rho^{-1} \mathrm{~F}_{\rho} \quad \text { in } \quad \Omega \\
u=0 \\
u_{\nu}=-\mathrm{F} \frac{d \theta}{d s} \text { a.e. on } \Gamma \tag{6.3}\\
u(0)=\gamma
\end{array}\right.
$$

where \vee is the outward directed normal vector and s is the arclength of Γ and $\gamma>0$ is given.

Proof. - Given F, define $f(z)=-\frac{1}{\gamma p^{2}} \mathrm{~F}(z)$ and observe
that $\sup f<0$ and $\left(\rho^{2} f\right)_{\rho} \leqslant 0$ in R^{2}. Denote by $r, \propto \in \mathrm{~K}_{r}$ the solution to Problem (*) for f and define

$$
u(z)=\gamma\left(1-\rho w_{p}(z)\right) \quad z \in \mathbf{R}^{2} .
$$

Then, in view of Corollary 3.2, $u \in H_{100}^{1, \infty}\left(\mathbf{R}^{2}\right)$ and satisfies (6.1) (by Lemma 4.1), (6.2), and (6.4). Moreover,

$$
\Omega=\{z: u(z)>0\}
$$

According to Theorem 5, Γ has a $\mathrm{C}^{1,5}$ parameterization $t \rightarrow \varphi(t), \quad t$ real, where we may assume that

$$
\varphi:\{t: \operatorname{Im} t>0\} \rightarrow \Omega
$$

is a conformal mapping. It is known that $\varphi^{\prime}(t) \neq 0$ a.e., $-\infty<t<\infty$. In a neighborhood of any t_{0} for which $\varphi^{\prime}\left(t_{0}\right) \neq 0$, the tangent angle to Γ is of class $\mathrm{C}^{0, \tau}$. From this one checks that u_{v} is continuous in a neighborhood of $\varphi\left(t_{0}\right)$ in $\bar{\Omega}$, e.g., by use of conformal mapping. Now Lemma 4.1 (iii) may by applied to verify (7.3) on this neighborhood of $\varphi\left(t_{0}\right)$ in Γ.

BIBLIOGRAPHY

[1] C. Baiocchi, Su un problema di frontiera libera connesso a questioni di idraulica, Ann. di Mat. pura e appl., IV, 92 (1972), 107-127.
[2] V. Benci, On a filtration problem through a porous medium, Ann. di Mat. pura e appl., C (1974), 191-209.
[3] H. Brezis, Solutions with compact support of variational inequalities, Usp. Mat. Nauk, XXIX, 2 (176) (1974), 103-108.
[4] H. Brezis and D. Kinderlehrer, The smoothness of solutions to nonlinear variational inequalities, Indiana U. Math. J., 23,9 (1974), 831-844.
[5] H. Brezis and G. Stampacchia, Une nouvelle méthode pour l'étude d'écoulements stationnaires, CRAS, 276 (1973), 129-132.
[6] G. Duvaut, Résolution d'un problème de Stefan (Fusion d'un bloc de glace à zéro degré), CRAS, 276 (1973), 1461-1463.
[7] J. Frehse, On the regularity of the solution of a second order variational inequality, Boll. U.M.I., 6 (1972), 312-315.
[8] D. Kinderlefrer, The free boundary determined by the solution to a differential equation, to appear in Indiana Journal.
[9] H. Lewy, On the nature of the boundary separating two domains with different regimes, to appear.
[10] H. Lewy and G. Stampacchia, On the regularity of the solution of a variational inequality, C.P.A.M., 22 (1969), 153-188.
[11] J.-L. Lions and G. Stampacheia, Variational Inequalities, C.P.A.M., 20 (1967), 493-519.
[12] G. Stampacchia, On the filtration of a fluid through a porous medium with variable cross section, Usp. Mat. Nauk., XXIX, 4 (178) (1974), 89-101.

Manuscrit reçu le 21 avril 1975.
D. Kinderlehrer, University of Minnesota Minneapolis, Minn. 55455 (U.S.A.).
G. Stampacchia, Scuola Normale Superiore Istituto di Matematica Pisa (Italie).

