ANNALES DE L’INSTITUT FOURIER

DAVID KINDERLEHRER

GUIDO STAMPACCHIA
A free boundary value problem in potential theory

Annales de Uinstitut Fourier, tome 25, n° 3-4 (1975), p. 323-344
<http://www.numdam.org/item?id=AlF_1975 25 3-4_323_0>

© Annales de I'institut Fourier, 1975, tous droits réservés.

L’accés aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique I’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

NuMDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=AIF_1975__25_3-4_323_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Ann. Inst. Fourier, Grenoble
25, 3 et 4 (1975), 323-344.

A FREE BOUNDARY VALUE PROBLEM
IN POTENTIAL THEORY

by David KINDERLEHRER (*) and Guido STAMPACCHIA

Dédié a Monsieur M. Brelot a I’occasion
de son 70¢ anniversaire.

1. Introduction.

In this paper we shall describe the formulation and solution
of a free boundary value problem in the framework of varia-
tional inequalities. For simplicity, we confine our attention
to a problem in the plane which consists in finding a domain Q
and a function u defined in Q satisfying there a given diffe-
rential equation together with both assigned Dirichlet and
Neumann data on the boundary T' of Q. Under appropriate
hypotheses about the given data we prove that there 1s a
unique solution pair Q, u which resolves this problem and
that I' is a smooth curve.

Let z=2x, + 1z, = pe%, 0 < 6 < 2n, denote a point in
the z-plane. Let us suppose, for the moment, that F(z) 1s
a function in C2(R2) which satisfies the conditions

p72F(z) € C3(R?)
inf p=2F(z) > 0
Re

(1.1) F(z) >0 zeR?
F(0) = F,(0) = 0.

(*) The first author was partially supported by C.N.R. and ASOFR 71-2098..
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These conditions will be weakened. Our object is to solve, in
some manner, this

Problem 1. — To find a bounded Q and a function u such
that

(1.2) —Au=p7'F, in Q
u=2~0

(1.3) ou_ _pdo " T
dv ds

(1.4 w(0) = v

where T' = 0Q, v 1is the outward directed normal vector and s
the arc length on T', F satisfies (1.1), and v s given.

Supposing Q, u to be a solution to Problem 1, the maximum
principle for superharmonics implies that w > 0 in Q since
—Au >0 1 Q. We assume, consequently, that y > 0
and that uwe C(R?) with Q = {z: u(z) > 0}. Further, if Q
1s a domain with smooth boundary I' and u satisfies (1.2)
in Q@ and (1.3) on I' then

—O—L—‘(z) <0 for zel
ov

in view of Hopf’s well known maximum principle. Therefore

do 1 du
- = — zel
T (z) (7 ov (z) >0 for zeT,
or the central angle 0 1s a strictly increasing function of the
arc length parameter on I'. Interpreting this situation geo-
metrically, we conclude if I' is smooth and u satisfies (1.2)
in Q and (1.3) on T, then Q s starshaped with respect to
z = 0.

We shall solve Problem 1 by means of a variational inequa-
lity suggested by the properties of a function g(z) which
satisfies

(1.5) g, = — p~u

op

The idea of introducing a new unknown related to the original
one through differentiation is due to C. Baiocchi [1] who
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studied a filtration problem. It has subsequently been
employed by H. Brézis and G. Stampacchia [5], V. Benci [2],
Duvaut [6], and also in [12].

A characteristic of the present work is the logarithmic
nature of a function g defined by (1.5) at z = 0. This
difficulty will be overcome by considering an unbounded
obstacle.

In the following section we transform our problem to one
concerning a variational inequality. In § 3 we solve the varia-
tional inequality. With the aid of [4] we are able to show in
§ 5 that I' 1s a Jordan curve represented by a continuous
function of the central angle 6. In § 6 we use a result of [8]
to conclude the smoothness of T' and the existence of a classi-
cal solution to Problem 1.

2.

In this section we introduce a variational inequality and
determine its relationship to Problem 1. We begin with some
notations. Set B, = {z: |z]| < r}, r > 0, and (})

K.={veHB,):v > logp in B, and ¢ =logr on dB,}.

Define the bilinear form

1
a(v, ¢) = ﬁr 04, AT = ﬁ, 399?;9 -+ P VQZO% e do do,
¢, e HY(B,).

We always depress the dependence of a(v, {) on r > 0.
Let

fe Lf,.(R?) forsome p > 2.

Problem (*). — To find a pair r > 1 and we K, such
that

(21) we K, :a(w, v — w) ffv—w v e K,

(Y} Usual notation is employed for function spaces.
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and the function w(z) defined by

w(z) z€B,

22 #& =001 2eB.

is in CY(R?)

The existence and other properties of a solution to Pro-
blem (*) will be investigated in the next paragraph. We note
here that the restriction of &% to Br for R > r will be a
solution of (2.1) in Bg. Since this means that (2.2) will be
automatically satisfied, so that R, #|s, € Ky 1s also a solution
to Problem (*), we shall not distinguish between w and &
in the sequel.

Tueorem 1. — Let Q, u be a solution of Problem I where F
satisfies (1.1) and vy > 0. Suppose that T' is a smooth curve.
Then there exists a solution r, we K, of Problem (*) for

such that
(23) Q@={z:w(z) > loge} and u(z)=y(1l— pwy(3)).

The theorem is based on the lemma below which also explains
the role of the normal derivative condition in (1.3).

Lemma 2.1. — Let Q be a simply connected domain contai-
ning the origin and I' < dQ a smooth arc. Let F e C*}(R?)
satisfy (1.1). Suppose that u satisfies

— Au=p7'F, in Q
u=20

du do

dv ds

on IV

Let geCY(Q — {0}) denote any function with the property
ge=—r¢'u in Q — {0} and AgeC(Q — {0}).

Let ¢ e Cy(R?) vanish in a neighborhood of 2Q — I and
z=0. Then

fotoragde = [ XF do — [ gy(t, do + o db)
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Proof. — First we compute Ag in Q. For this, observe
that

— Fo = (pup)p + o7 upe
= (P(ng)p)p — 8gbo
d
= — 5‘6 {P<ng)p + 8o}
— 0 (e
=5 (e*Ag).
Hence
(2.4) 5_ (e?Ag) = F, in Q.
p 1)

Let £ e Ce(B,), where Q = B,, satisfy { =0 ina neigh-
borhood of ?2Q — I and z=0. Then observing that

—Fdo =2%ds — ou, o — - uy do,
ov ’ )

o fl" FC do

= f <pup do — —:~ up dp>
_ f < 1 u00> do d9 -+ f <pupcp +1 uece> do do

— Jo EF do do — [ {o(p8e)s%e + gt} do p
— Jo Felde dd — [, {(s*Ag — gn) + gale} do dB
— Jo (P, + oAgl,} do d + [, {gnt, — gelo} do db.

We evaluate the first integral by (2.4). Hence

H

d
F, 2Agl,} dp db = — 2Ag) dp db
L{‘C%—p gt} de beP(Cp g) de
___fr, Ce?Ag db.

Turning to the second integral, we compute that

o fmt, — gt} do d0 = [ {(2%,)o — (gota)e} dp d

= [l (&%, do + g1 dB).
Finally, we obtain that

[ Fedd = [ o2Agtdo + [ g&(t, de + & d6). QE.D.
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Lemma 2.2. — Let Q, u be a solution to Problem I and
suppose that I' =03Q issmooth. Set u=0 in R*— Q. Let r be
large enough that Q < B, and choose

(25) g(s) = [ ru(t, 0) dt, |s =p, 0 #zeB,

Then
ge C{Q — {0}), AgeC(Q — {0}),
and
Q= {z: g(z) > 0}
and moreover B
__(p7?F in Q — {0}
Ag = %0 in B — Q.

Proof. — As we remarked in the introduction, smoothness
of I' implies that Q 1s starshaped with respect to z = 0.
Hence if g(z) =0 for z= e, then the non-negative
continuous integrand in (2.5) vanishes for te, ¢t > p, so that
g(te’) =0, t > p. Therefore, since u >0 in Q, we see
that g(z) >0 in Q@ — {0} and g(z) =0 in B,— Q > TI.
Because u 1s smooth in Q 1t 1s easy to derive that
g € G(B, — {0}). On the other hand g attains its minimum
on B, — Q whence

(2.6) g =0=g on B, — Q.
Since g, = — p~'u in Q, by (2.4),
D (A = F. ;
(2.7) Y (p?Ag) =F, in Q.

We may integrate (2.7) in Q since Q is starshaped to obtain
e?Ag(z) = F(z) + ¢(8), z=pele Q,

where ¢ is a function of the central angle 6 only. Now by
Lemma 2.1

[o€F(z) d0 + [L4(0)cdd = [ FLdo — [ gs(t, do + % do)

for {eC;(B, — {0}). Since g=0 on I <B,—Q
(cf. 2.6),

[Lu(0)rde =0  TeCy(B, — {0})
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or
$(0) =0, 0 < 0 < 2. Q.E.D.

Proof of Theorem 1. — As we have observed, Q 1is star-
shaped with respect to z=0 so the function g(z) defined
by (2.5) satisfies the conclusions of Lemma 2.2. Let r be so
large that Q < B, and define

w*s) = L gd) +loge 0 #zeB,
1 f 1 (u(t, 0) — v)dt 4 log r
Y Je
where y = u(0) > 0. We shall show that r, w*e K, is a

solution to. Problem (*). Clearly w* is bounded in B, and
satisfies

Ak N i Q— {0}
(2.8) Aw* = g A i ¥
by Lemma 2.2 where f(z) = — Y—t—i F(z). Since fe C2(R?),

cf. (1.1), it follows from Riemann’s Theorem on removable
singularities that w* is smooth in Q. We observe that

w*(z) = log p since g(z) = 0

and Q = {z: w*(z) > log p}. Further, Q = B, implies that,
for |z| =,
w*(z) = log r
wi(z) = 1/r and wi(z) =0
Therefore, w* € K. and the function
*
-x,\ __ (w*(z) z€B,
w*(z) = %logp z ¢ B,
1s a C!(R?) function. Hence (2.2) holds.
It is easy to verify (2.1). Let ¢ € K,. Then
a(w*, 0 — w*) = fg flv — w*) dx

by (2.8) and an integration by parts, valid since w* e C1(Q).
Indeed, w* e C!(R?), as noted above. Hence

a(w*, o — w*) — [, flo —w*) do = — [, _oflo—w*) da.
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Since f < 0 in B, and ¢ e K, implies
0<¢v—logp=v¢v—w* 1n B, —Q

’

the last integral is non-negative so that

a(w*, v —w*) > [, flv —w*)dz veK. QE.D.

3.

This paragraph is devoted to the solution of the variational
inequality Problem (*). According to a well known theorem [11],
there 1s a solution to (2.1) for each r > 0. To establish its
smoothness in B,, we shall prove that it 1s bounded. For
once this i1s known, the obstacle log ¢ may be replaced by a
smooth obstacle ¢ which equals log e when

loge > — [w]i=@m,

and (2.1) may be solved in the convex Ky of H(B,) func-
tions which exceed ¢ in B, and satisfy the boundary condi-
tion ¢(z) = log r, |z| = r. The solution to this latter problem
is known to be suitable smooth (cf. [10]) and 1s easily shown
to be the solution of (2.1).

Lemma 3.1. — Let fe Lr(B,) for some p > 2 and satisfy

f<0 m B,
Then the solution w of (2.1) for f satisfies
logr — ¢|flirpy < w(z) < logr in B,

where ¢ = c(r, p) > 0.

Proof. — Let w, denote the solution to the Dirichlet
problem
— Awy, =f 1 B,
wo = 0 on 0B..

We know that w, € H*?(B,) and

(3.1) [wollLemy < cllfllomn, ¢=c(r,p) > 0.
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Consequently, for any ¢ e H}(B,),
a(w — wo, €) = alw, ©) — [, ¢ da.
We define ¢ = max (w, w, 4+ logr) e K, so by (2.1)
a(lw — wy, v —w) = 0

Further, computing explicitly, we find

a(w—wo,v—w)—f — w),, dx

o>l ( ) dr < 0.

Hence meas {¢ > w} =0 or logr+4+ w, < w a.e. This
proves the lower bound in view of (3.1). The same argument
may be employed to prove the upper bound, with

¢ = min (w, logr),

using that f < 0 in B, QE.D.
For general f, we observe that an upper bound for the
solution of (2.1) 1s

log r + c(r, p) Imax (0, Pllvrsy.

CoroLrLary 3.2. — Let feLr(B,) for some p > 2, f<0
in B,, and let w denote the solution to (2.1) for f. Then
we H>?(B,). If feCYB,), then w e Hi(B,).

Proof. — This 1s clear from the remarks preceding the
proof of the lemma. In particular, that w e HE>(B,) follows
by a result of Frehse [7] (cf. also [4]).

Lemma 3.3. — Let ge HY(B,) satisfy

g 2logpe in B,
and

¢) — [, feda >0 for 0 < ¢eHyB,).

Let w denote the solution of Problem (*) for feLr(B,), for some
p > 2. Then w < g in B,

Proof. — This i1s a familiar property of supersolutions.

of. [10], [11].
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Tueorem 2. — Let feLf,.(R?) for a p > 2 satisfy
sup f < 0.
Re

Then there exists a solution r, we K, to Problem (*). In

addition, w e H>?(B,).

Proof. — We shall construct a supersolution g(z) = h(p)
to the form

a(w, ¥) — |, 1t da,
for some r > 1, which satisfies
(3.2) h e K,
(3.3) hlr) = -
Indeed, suppose that

0<p < —supf and B < 2¢7%,
Re
and define

Then
— A= —%(php)pz 8> supf

Assume for the moment that (3.2) and (3.3) are fulfilled.
Then

w< h 1n B,

by the previous lemma. Moreover, since logpe < w < h
we conclude from (3.3) that

wy(z) = — for |zl =r
and, since w=1logr on |z =,

wy(z) =0 for [z =r.

Therefore & defined by (2.2) is in C'(R2).
It remains to find « and r from the conditions (3.2),
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(3.3). One discovers that

and .
1 1 2
a:logr—?z—‘,z—(log—g——’l) >0.

To vernify that he K, 1e., to venfy that A(p) > loge
knowing that h(r) = log r, note that h(p) — log ¢ 1s strictly
convex and attains its (unique) minimum at the p where
1 .
h, = " =0. This p=r. QE.D.
We wish to point out here that ideas similar to those in the
proof of Theorem 2 were also studies by H. Brezis [3].

Cororrary 3.4. — Let feLf (R?) for a p > 2 satisfy
supf < 0. Let r, we K, denote the solution to Problem (*)
R2

for f. Then for R > r, the pair R, & € Kg, where & 1s
defined by (2.2) s a solution to Problem (*).
In view of this Corollary, we shall not distinguish between w

and & in the sequel. Furthermore, we recall that w € Hio (R2)
whenever fe C1(R?).

Proof. — We need only verify (2.1) in By. Let ¢ e C7(Bg).
Then

al@, Q) = [ wol. do + ® Jog o%,, da
B, Bg—B, xi
= - ﬂr Awl dx + ﬁz!:r wolrdb + j;R—Br Alog ¥ dx

— —1—Crd(')

|zl=r r

since { has support in Br. Now # € C}(Bg) implies, in
particular, that w(z) = % for |z| = r and the two integrals

over |z] = r cancel. Hence

a(w, {) = — f;r Aw¥ dx
=erfC dz, Q= {z: w(z) > logop}.
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Now given ¢ € Ky,

a(, v — %) — [y flo— @) do=— [, _of(v —#)dz > 0
where the last integral is non-negative because &% = logp
in By — Q and f < 0. This verifies (2.1). Q.E.D.

4.

Here we show that the set where the solution to Problem (*)
exceeds log o 1s starshaped under an assumption about f.
First we prove a lemma which is useful also in the succeeding
sections. It is a form of converse to Lemma 2.1 with an ana-
logous proof.

Lemma 4.1. — Let feLf,.(R?) for some p > 2 satisfy
supf < 0. Let r, we K, denote the solution to Problem (*)
Rt

for f and define

u(z) =1 — pw,(z) zeB,
and
Q= {zeB,: w(z) > loge}.

1) Then u e HY¥?(B,).

1) Let o < B, be open and suppose that — Aw = f in o.
Then

(4.1) — Au = — p7p%f), in o

iii) Suppose that fe CY(B,) and that T' is a smooth (open)
arc in 3Q. Then

ou

(4.2) 5 szﬂ

on IV

where v denotes the outward directed normal vector on TV.

Proof. — Since feLf(R?), p > 2, weH2PB,)), so
u=1— Zzw, € H'?(B,). The statement (4.1) will be under-
stood in the sense of distributions.
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Let ¥ e (Cy(w). Then

S uatude = [ (ougt 4 5 wa) do ds

= [ elt = ewet + = (1 — omite{ do a0
= — [, (e(ewp)ely + wiata} dp do.

We integrate by parts in the last term, first with respect to p
and then with respect to 6, to obtain

o oo = — [ {o(pwe)el, + wuaCo} do do
- ﬁ) e2Aw?, do do
— ﬁ o*ft, dp df

since — Aw =f in o by hypothesis. Hence

f UGy dox = — f —:— (p%f)oCe dep dO.

We turn now to the proof of iil). Suppose that I has
a Heélder continuous tangent vector as a function of the arc-
length parameter. In Q, that (z) > log e 1implies

— Aw = f7
whence
— Au = — L (e?*f), In Q.
p )
Moreover, w,(z) _ 1 for z€2Q so u=0 on IV <dQ.

From this and the fact fe C!(B,) we may conclude that
ueC*}Q uTI') for some A > 0. Let {eCy(B,) with
suppl N (0Q — I'") = @. Then

(4.3) f Wl ds = fl C<pupd0 ——:—uedp>
= f < pUg)e + — uee> do d6 + f <pCoug -+ —F—J— uele> do db

o E(p?f)p de db
fg {p(pw;)oCe + whole — ook, + welo} do dO
=[5 (€(6*)e — o*AwL,) dp dO + [, (wanl, — weals) de do.
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Since — Aw =1{f in Q, we evaluate the first integral to
yield

(44) [, (6%)k — o2AwLy) dp d8 = [, Co?f db.
On the other hand, wy =0 on I < B, — Q, therefore
fQ (weelp — weelo) dp dO = fg {(weZe)o — (w4Zo),} do dB
= — fr. wy(Lp do + Cp db) = 0.
Finally, from (4.3) and (4.4) we obtain that

frowtds = [, 02T ds, T e C3(B), supp T 0 (22 — ') = g

Tueorem 3. — Let fe L{(R?) satisfy supf <0 and
R

e~ (e*f)p < 0. Let r, w € K, denote the solution of Problem (*)
for f and set

Q= {z: w(z) > loge}
Then Q s starshaped with respect to z = 0.
Proof. — Consider, as in the preceding proposition,

u(z) =1-— pWP(Z), z€ Bn

2
and note that we Co'l-p(B,) and u=0 on T < B, — Q,
I' =2Q. By the hypothesis on f and (4.1),

Jo taloda = — [ o2 (e*) L dx > 0 for 0 < LeCH(Q).

The maximum principle may now be applied to conclude that

u(z) > mnu=0 for zeQ.
r

Hence the function
g(z) = —logpe + w(z), 0 # z€eB,

is decreasing on each ray pe® 0 < p < r, because it has
derivative

1 1

gp(z)=-——p—-(i——pwp(z))=———p—u(z)<0, zeB,, z#0.
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Therefore, given z = pel with w(z) > log p, then
w(te®) > logt for t < p.

This proves that Q is starshaped. Q.E.D.

5.

In this paragraph we initiate the study of the free boundary
determined by a solution to Problem (*). To begin, we fix
an fe C(R?) which satisfies

(5.1) supf < 0 and (p*), <0 in R?
R

and let r, w € K, denote the solution to Problem (*) for f.
As before, set

Q = {z: w(z) > logp}
and let

E =B, — Q.

Observe that, by Theorem 3, E 1is starshaped with respect
to the point at o in the sense that

zeE,;t>1 and |tz < r 1mplies izeE.
Define

(5.2) w(0) =inf{p:z=pe?cE}, 0 <0 < 2r,

Note that p(0) is lower semicontinuous since E 1s closed.
For given 1z, = p,el o, =u(0,), and z, > z=pe?, we
conclude that ze E and hence p > p(6). In addition

(5.3) E={z=1p6e%: u0) <p <r}

by the starshaped quality of E and Q. In the next lemma,
we utilize that the characteristic function of E, ¢g, is of
bounded variation in R? which follows from [4]
(Corollary 2.1).

Lemma b.1. — Let f satisfy (5.1). Then (0) defined by

(5.2) ts a lower semi-continuous function of bounded variation.
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Proof. — The characteristic function of E, ¢z € BV(R?)
as we have noted. This means that

Iﬁ’\’ ?rls; dxl < G Shlgp 12|, ¢ e Hy*(R?)

for =1, 2 and some C > 0. Hence by Fubini’s Theorem

and (5.3)

ﬁ% ﬂ*ie) Cap dp db = ﬁzn j;r ¢elsp dp dO

= ‘ﬁ‘e CPECw,p dp de
< Cl¢) ey for ¢ e Hy<(R2).

In particular, we choose ¢ = ¢(0) e C!(0,2x), periodic of
period 2x, and %(p) a function vanishing identically in a
neighborhood of 0 in Q, identically one in a neighborhood
of E, and vanishing outside, say, B,,. Applying the above
to the product Y(0)n(p) we see that

27 r 27
f f <—1— C’> ododd = — f 2'(0)(r — u(0))
o Juo \ P 0 .
:ﬁ " u(8)7'(6) db
and hence, by the foregoing,

| [ w(®)r'(0) do| < C sup [¢], T e C0,2n).

0<H<am

We may invoke the Riesz Representation Theorem to the
functional

¢ [7T(0)u(6) do

defined and uniformly bounded on the dense subset C!(0,2x)
of Co(0,2r) to infer the existence of

g(0) € BV(0,2r)
with the properties
2T T(0)u(0) do = — [ 2(0) dg(8) = [ '(0)g(0) db.

In particular, w®(6) — g(0) = const. a.e., which we may take
to be zero, so that

(5.4) w(0) = g(6) a.e.in [0,2x].
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We proceed to show that p(0) = g(0) everywhere. We may
assume that g is lower semicontinuous. Let us agree to
further modify g so that

(5.5) g(0) = lim inf g(t)

t>0
It follows that p(6) < g(06). For suppose that g(8) < u(8)
and select 6, > 6 such that g(0) =1lim g(6,). Since p

1s lower semi-continuous given e > 0, there is a § > 0
such that
w(0) —e < u(t) for [t— 0 < 8.

Hence for k so large that
1g(0:) — g(0)] <«
we may find a neighborhood I, = (6, — §,, 0, 4 3,),
L nLh=@ for h #k
of 6, with the property

Var g > max g — min g
I Iz I
> g(t) — (g(6) —¢) forany tel,
> u(t) — (g(0) — ¢) for almost all tel,

by (5.4). Hence, by our choice of «,
Var g > ¢(0) — g(6) — 2 > 0
I

Consequently, Var g= -+ o, a contradiction. Therefore
once (5.5) 1s assumed, p(9) < g(6) in [0,2x). Observe that g
satisfying (5.5) has no inessential discontinuities.

Consider the set

F=1{z:pe%:g06) <p<r}<E since p<g

Since the points 6 in [0,2n] for which g # p have measure
zero,

N=E —F = {z=0p¢e%: u(0) < p < g(0)}

satisfies meas N = 0. Furthermore F 1s closed by lower
semi-continuity of g so B, —F is open, Q < B, —F,
and

B,—F=Q UN.
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Recall here that w e H*>(B,) since fe C(B,) by Corollary
3.2. Inasmuch as — Aw ={f in Q, we see that — Aw =
a.e.in Q U N. Since Q U N is open, we may deduce that

—Aw=f iIn QUN
and
' we(C¥YQ UN) for 0 <2< 1.

Now consider u(z) =1 — pw,(z), z€B,, which satisfies

f w,l, do — — f L et de, tecya U N
QuUN Quw~ P
by Lemma 4.2 (11). Hence ueC}Q u N) and

Jovg tefads >0 when 0 < CeClQ UN)

so that by the strong maximum principle

u(z) > min u =0
AQUN)

because ?(Q U N) = B, — Q where w, = 1 and wy = 0.
' P

In particular, u(z) =0 for ze€d(Q U N). However, if
ze N

wo(z) = — and wy(z) = 0

so that
u(z) =1 — pwy(z) = 0,

a contradiction. Therefore N = @, and
w(8) = g(o), 0 <6 < 2n. Q.E.D.

Taeorem 4. — Let fe CY(R?2) satisfy (5.1) and let r, w € K,
denote the solution to Problem (*) for f. Let :

Q = {z: w(z) > log p}.
Then the boundary T of Q has the representation
I': p = p(0), 0<6<2rn

where p is a continuous function of bounded variation.
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Proof. — Let 1(0) be defined by (5.2) so that the conclusion
of Lemma 5.1 holds. Suppose that 6 = 0 is a discontinuity
of pu. Then 6 =0 is a jump discontinuity so that

lim p(60) =L > lim p(0) = u(0)
6>0*

§>0—

without any loss in generality. For ¢ > 0 sufficiently small,
there is a § > 0 so that the segments

{z=pe?:0<p<L—ec}cQ for —8<6<0

and

{z=1pe?: p0) +c<p <r}cE
Hence we may find a disc B,(z), z, = -—;— (L 4+ ©(0)), such
that

B,(z) N Q = {zeB,(%): Imz < 0}
Let o ={z: Imz=0, 20— 1 < Rez < 2, + n} and set
u=1— pw,.

It follows that ueCl(c U Q N B,(%)) and u attains
its minimum value zero at each point of ¢ by Hopf’s maxi-
mum principle and Lemma 4.1 (ii). Therefore

ou

g;(z) <0 for zeo.

But according to Lemma 4.1. (ii1) with IV = ¢

Uy — 2f(2) 0 () =
>y (z) = Pf(z)ds (z)=0 for z€o
since ® =0 on o. This is a contradiction. Q.E.D.
6.

In this paragraph we show that I' has a smooth paramete-
rization and that a solution to Problem I exists in the classical
sense. For this, we employ the results of [8]. In the case where

f is real analytic, these questions may be treated by the results
of H. Lewy [9].
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Tueorem 5. — Let fe CY(R?) satisfy supf <O and
(p*f)e < 0 in R2 Let r, we K, denote the solution to Pro-
blem (*) for f and T' the boundary of Q = {z: w(z) > log p}.
Then T has a CU'* parameterization, 0 < = < 1.

Proof. — From Theorem 4 it 1s known that T' is a Jordan
curve. We now apply [8] (Theorem 1). Let z, e€I' and set
o = B(z) N Q, ¢ < |3|, and consider

1 1 . =
glz) = — - + o (g, (2) — iw,(z)) z2€ Q — {0}.
From the known regulanty of w, g e H'"(w). Furthermore
1 1
Bl = Ael) = — [, zeo
g(z) =0 zel' No
Since — -%l—f(z) > 0 in B(z), we may conclude that a

conformal mapping ¢ of G={|t| <1, Im¢ > 0} onto ®
which maps — 1 <t < 1 onto I' N & has boundary values
in Ct* for every 7, 0 < 7 < 1.

Taeorem 6. — Let F e CY(R2) satisfy o 2F e C1(R?2)
and
inf p—2F > 0
F, >0

F(0) = F,(0) = 0.

Then there exists a domain Q and a function u e Hf;o(R?)
such that

(6.1) — Au = p7'F, in Q
(6.2) u=20

. do on T
(6.3) uy=—F 7 &
(6.4) w(0) = v

where v s the outward directed normal vector and s 1is the
arclength of T' and v > 0 s given.

Proof. — Given F, define f(z) — — Yi F(z) and observe

p2
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that sup f < 0 and (p*f), < 0 in R2 Denote by r, w e K,
the solution to Problem (*) for f and define

u(z) = y(1 — ew.(z)) z€ R

Then, in view of Corollary 3.2, we Hle(R?) and satisfies
(6.1) (by Lemma 4.1), (6.2), and (6.4). Moreover,

Q = {z: u(z) > 0}.

According to Theorem 5, T' has a C* parameterization
t - ¢(¢), t real, where we may assume that

p: {t: Im¢t >0} > Q

1s a conformal mapping. It is known that o'(t) # 0 a.e,
— ® < t < oo. In a neighborhood of any ¢, for which
9'(ty) # 0, the tangent angle to I' 1s of class C%*. From
this one checks that u, is continuous in a neighborhood of

®(t,) in Q, e.g., by use of conformal mapping. Now Lemma
4.1 (1i1) may by applied to verify (7.3) on this neighborhood
of o(t) in T.
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