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THEORY OF BESSEL POTENTIALS. PART IV.
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WITH SINGULARITIES OF POLYHEDRAL TYPE
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Introduction.

This is the fourth (and last) part of the series of papers on
Bessel potentials [I], [2] and [3]. At first this part was inten-
ded to treat Bessel potentials on manifolds with singularities.
It was then noticed tha.t the notion of manifolds with singula-
rities is best introduced by a more general notion of subcar-
tesian spaces. The notion was actually developed with this
motivation and led to results in different directions quite
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apart from applications to Bessel potentials. We should
mention [11] and [12], [13] where the notion was introduced
independently.

In section 1 we give a brief account of the theory of subcar-
tesian spaces, their singularities and singularities of poly-
hedral type. The proofs are omitted to shorten the presen-
tation, they will be given in a forthcoming paper [6] and they
do not have an essential bearing on the main part of the paper.
This section as well as the second put the main result of the
paper in a proper perspective.

In section 2 we define local Bessel potentials on subcartesian
spaces and prove some of their elementary properties. The
general definition is not intrinsic since it is based on the possi-
bility of local adequate extensions of the functions in the image
spaces of charts (which define the subcartesian structure
of the space). Our main aim in this paper is to give an intrinsic
characterization of the local Bessel potentials; we were able
to achieve it only in the case of spaces with singularities of
polyhedral type. The main results were obtained already in
the late 1960s but the publication was delayed by an attempt
to obtain the results in the more general case of spaces with
singularities of conical type (1); this attempt was not successful
and we have an impression that in order to treat the conical
singularities one would have to consider more general classes
of functions, which would require an additional study ana-
logous to one given for Bessel potentials in the proceeding
parts.

Sections 3 and 4 are preliminary to section 5 where the
main result is given.

In section 3 we reduce the main problem in the case of poly-
hedral singularities to the problem of extending a function
given on a polyhedral set (2) in some R" to a potential of
given order on R\ We give the first incomplete definition
of compatibility conditions which form necessary and suffi-
cient conditions for possibility of such extension.

Section 4 gives the main tools for the proof of the main

(1) To describe it vaguely, singularities are of polyhedral type if the space is
locally diffeomorphic to a (variable) polyhedron, they are of conical type if it is
locally diffeomorphic to a (variable) rectilinear cone.

(2) Union of a finite number of geometrical polyhedra.
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theorem in section 5, and the precise definition of the notion
of abstract restriction. This definition allows us in section 5
to complete the description of compatibility conditions
outlined in section 3 and to prove the main theorem asserting
that the complete set of compatibility conditions is necessary
and sufficient for existence of a desired extension.

In section 6 we illustrate the preceding results by a few
examples. One of these refers to an application of our results
which was used without proof in [7].

The Appendix at the end of the paper contains some remarks
pertaining to the notion of abstract restriction and to the
possibility of a generalization of the main theorem.

In the first draft of this paper the main result was proved
by using an extension operator of the kind considered in [10] $
the present version, however, seems to do more justice to the
properties of different notions used in this w^ork.

1. Subcartesian spaces.

We begin with a summary of facts and definitions concer-
ning C^-subcartesian spaces which are relevant for the
remainder of the paper. A complete account in a much more
general setting will be given in [6]. The results and definitions
as given here are adapted for the sake of expedience to the
special C30 situation and may not be valid, as stated, in the
more general setting.

It is convenient to consider the spaces R", n •===- 1, 2, . . .
as forming an increasing sequence R1 c R2 <=- • • • with
canonical inclusions

(x^ . . ., 0 e R" -> (^, . . ., rr,, 0, . . ., 0) e R^ m > n.

We denote by C^R", R^ the class of C°° functions
with open domains in R'1 and values in Rm and by (^({R^)

00

the union [_j C^R", R^). Homeomorphisme in (^({R^})
n.fc=l

with inverses in this class are referred to as diffeomorphisms
in {R"}. For f eC^R^ R"1) we sometimes write n == n^
m == m .̂
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Let X be a metrizable topological space; a sub-J^-atlas
on X (of type C00) is a collection 0 of homeomorphisms 9 :
U<p -> R"? referred to as charts subject to the following
conditions :

(1.1) {U<p; 9 e O} is an open cover of X.

(1.2) For every p e X and any two charts 9, ^ e 0 with
p e U® n U<{, there is an open neighborhood G of <p(p)
in R", n > max (n^, n^) and a diffeomorphism h in {R"},
such that

^ == G and ^|Gn?(Uyni4) == ^ ° ^''^Gn^Uynu^.

A in (1.2) is referred to as a local extension about <p(p)
of the connecting homeomorphism ^ o <p-1.

A subcartesian space or a sub-H space is a metrizable space X
with a sub-R atlas 0. 0 is also said to define a sub-R
structure on X.

Remark 1.1. — If X is a sub-R space with structure given
by an atlas 0 and X^ <= X is any subset, then the atlas
^jx, == {^ jx^nu ; 9 e ^, Xi 0 U<p 7^ ^} is a sub-R atlas on
Xi giving on Xi the induced structure. Thus any subset
of a sub-R space is a sub-R space with the induced structure.
In the case X == R" with the obvious atlas {R", identity}
we conclude that any subset Xi ^ R'1 is a sub-R space
with the canonical structure given by the inclusion X^ <= R".
We shall refer to this structure as the (canonical) inclusion
structure.

Remark 1.2. — It is possible to define the notions of equi-
valent atlasses, charts compatible with a given atlas 0 and a
maximal atlas containing 0. This is done in the same way
as in the theory of manifolds.

Remark 1.3. — If M is a C°°-manifold with the manifold
structure given by an atlas $, then 0 defines on M a
sub-R structure. We shall say that a space X with a sub-R
structure given by 0 is a manifold if there is an atlas on X
compatible with 0 defining on X a manifold structure.

A function f: Q^ <== X -> R^ is of class C°° (X being a
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sub-R space) if Qf is open in X and for every p e Qf
there is a chart <p in the maximal atlas giving the sub-R
structure on X such that p e Uy and f o <p-1 can be exten-
ded to a function in (^{R"}.

PROPOSITION 1.1. — For every open cover W of a 5U&-R
space X there exists a C°°-partition of unity on X subor-
dinate to ^; i.e. a family ^ of C00-functions on X such
that a) g(X) <= [0, 1] for every g e ̂  6) {g-i((0, 1])} is
a locally finite cover of X and for every g e ^, supp g c U
for some LJ e ̂ , c) ^ g(p) == 1 /or every p e X.

^
If X is a sub-R space then for every p e X we define

the local dimension of X at p as dim? X = min {yiy$
9 e 0, p e U®}, where 0 is the maximal atlas defining the
sub-R structure on X; a chart 9 at p e X is tangential if
n^ = dim? X. The function p e X —> dim? X is upper semi-
continuous and the set {p; dim^ X = dim? X for all q in
some neighborhood of p } is referred to as the homogeneous
part of X; this is clearly an open dense subset of X. The
complement of the homogeneous part is the nonhomogeneous
part of X, the points in the homogeneous part of X are
points of homogeneity.

A point p e X is a regular point of X if there is a neigh-
borhood G of p such that G with the structure defined
hy {9)0? ? ^ ^} is a C°° manifold (see remark 1.3). Equi-
valent conditions are : there is a chart 9 at p in the maximal
atlas such that <p(Uy) is an open subset of R"? or that there
is a tangential chart 9 at p defining on U^ a manifold
structure. The collection of all regular points is the regular
part of X; it is an open, possibly empty, subset of the homo-
geneous part of X, and if nonempty, it is a union of disjoint
open connected manifolds. The complement of the regular
part is the singular part of X.

The following considerations allow one to define tangent
space at each point of a sub-R space (and also the « tangent
bundle » over such space).

Let A c R" be an arbitrary set and x e A. We define
the (C00) tangent space to A at x by setting

^A == n {N^,); fe C^R", R1), f\^ = 0},
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where T)f(x) denotes the differential of f at x considered
as linear function D/*(^) ; R"-> R1, N^a;) denotes its null
space, x + ^aA ls then the tangent plane to A at x. It
can be shown that dim ̂ A = dim^A; also if P : R" -> ̂
is a projection, then for some neighborhood G of x in R71,
PIcru followed by a suitable linear isomorphism is a tangential
chart about x. Also %^A is independent of the choice of
the space R'1 containing A.

If X is a sub-R space with a maximal atlas 0, p e X,
then we let for every 9 e 0 with p e Uy, ̂  o === ^(p^Uo)-
the tangent space in R'1? to 'p(Uy) at 9(p).

If ( p ^ ^ ^ ^ P ^ U o n LL and A is a local extension of
the connecting homeomorphism ^ " <p~1 then ^ ->• DA(9(p))^
is a linear isomorphism of ^p,e(p) onto ^p^p) which is
independent of the choice of the local extension h. We denote
this isomorphism by D(^ ° P"1)^?))-

It is easy to verify that the relation ^ ^ T] provided that
D(^ o ^-^(^(p))!; ==7] is an equivalence relation in the
disjoint union of the spaces ^pc, 9 e 0, p e LL. The space
of cosets of this relation, provided with the natural vector
space structure is then the tangent space ^pX. to X at p.
We refer to the space ^p.o as the representative of ^pX
in the chart 9.

Remark 1.4. — It can be shown, using the tangential chart
indicated above, that in the condition (1.2) the local extension
h of ^ o 9~1 can be taken as a diffeomorphism in R" with
n == max (^y, n^).

In this paper we are interested in sub-R spaces with singu-
larities of polyhedral type or, to abbreviate, spaces of polyhe-
dral type. The definition follows.

A polyhedral set in R^ is a set of the form

K = U{S, Se^f},

where Jf is a simplicial complex in R"; i.e. a finite collec-
tion of simplices with the properties: a) if S 6 Jf* then
all the faces of S belong to Jf, b) for S and Si in ^f
S n Si is either empty or is a common face of S and Si.

A ^-dimensional closed polyhedron P (briefly-closed
polyhedron) in R" is a polyhedral set of dimension k at
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every point, lying in a /c-dimensional plane L <= R" (the
plane of P). A polyhedron is the difference of a closed poly-
hedron and a polyhedral set of smaller dimension. The interior
and boundary of a polyhedron rel. to its plane are called the
inside and the border of the polyhedron.

A (C00) sub-R space X is of polyhedral type if for every
p e X there is a chart 9 at p, in the maximal atlas <E>
defining on X the sub-R structure such that

9(U,) - Q, n K,

where Ky is a polyhedral set in R"? and Qg, is an open
cube in R"? with center at <p(p). Equivalently we could
stipulate existence for each p e X, of a chart 9 e O and an
open set U, p e U <= U c Uy such that <p(U) is a poly-
hedral set.

Any polyhedral set in R'1 is a sub-R space of polyhedral
type (with the canonical inclusion structure). As other simple
examples we could mention a lens obtained by intersection of
two closed balls or union of two or more intersecting, nontan-
gential spheres.

Let X be a sub-R space of polyhedral type and consider
a component X,, of the homogeneous part of X, dim? X = n
for p e X^. Then for every p e X^ there is a neighborhood
Vp <== X^ of p and a chart 9 e 0 with the following pro-
perties : a) Vp c: U^ c: X,, b) 9(V^) = Ky is a polyhedral set
in RV If g r e U y and ^ y is the representative of ^ X
in the chart 9 then necessarily dim ^ o = n and Kcp
is a union of maximal closed polyhedra of dimension n with
disjoint insides. The point p is then a regular point of X
if and only if 9(p) is an inner point of one of these polyhedra.

The preceding remark implies that the regular part of a
subcartesian space X of polyhedral type is dense in the homo-
geneous part of X and therefore in X. We note that the
regular part of X may be strictly included in the homoge-
neous part; e.g. if X = {(x, y) e R2; \y\ ^ \x\} then X
coincides with its homogeneous part, the regular part of X
is {{x, ? / ) £ R 2 ; \y\ < \x\}.

If X is of polyhedral type then it is easy to show that the
singular part X<^ of X with the induced structure is also
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of polyhedral type and by the preceding remarks its regular
part is an open and dense subset of X^. We can thus write
a sequence

(1.3) X == XW ^ X<1) => X<2) =3 ...

with the property that X^"^ is the singular part of X0.
The sequence (1.3) is locally finite in the sense that for every
point p e X there is a neighborhood U of p such that
U => X^ n U ^ X<2) n U => • • • is finite, and the last
element of the latter sequence consists of finite number of
points.

Since X^ is a singular part of X(1), X^\X^ is a
union of disjoint connected manifolds, which is locally finite,
i.e.

(1.4) U n (X^X^)) == U ̂
./:==^

The following examples illustrate formulas (1.3) and (1.4).

Example 1. — X == Si u Sg where Si, Sg are nontan-
gential intersecting spheres in R3. In this case

X\X<1) = (Si u S2)\(Si n S^)

is the union of 4 open components of Si\(bi n Sg), i = 1, 2;
X^ == S^ n 82 is a circle and the singular part of X^
is empty.

Example 2. — X == B^ u Bg where B^, Bg are nontan-
gential intersecting closed balls in R3. Then X^ is the
boundary b(Bi u Bg) of Bi u Bg, the singular part X<2)

of X^ is the circle ?)Bi n bBg and X^> is empty.

Example 3. — X == A^ U Ag U A3 <= R3 where Aa is
a closed tetrahedron, A^ is a closed triangle with

Ag n A3 == one-dimensional common face of A^ and A3,

and AI is a closed segment [pi, p^\ perpendicular to Ag,
pi being an inner point of A^ and [pi, ?2] n ^3 == 0.

Then X\X^ == A^8 u (A^\{pi}) u A^8, X^\X^ is
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the union of {pi}, {p^}^ ^e insides of 2-dimensional faces
of A 3 and of the insides of edges of Ag disjoint from Ag.
X^NX^ is the union of insides of edges of A3 and the vertex
of Ag not in Ag. X^ consists of vertices of A3.

2. Local Bessel potentials on subcartesian spaces.

We denote by PP(R71) the space of Bessel potentials of
order (3 on R" and by ^S its exceptional class (see [1]).
We introduce the notion of the Bessel potentials of reduced
order a and of corresponding exceptional classes as follows

PW(R-) == P^/2(Rn^ a + -̂  > 0,
2i

^ == {A; A e 84^ for some n, 2oc + n > 0}.

The basic theorem about restrictions and extensions of Bessel
potentials can be stated as follows (see [1]).

THEOREM 2.1. — Let n, k be integers^ a be real and suppose
n > k > — 2a. Then for every A e §l^>? A. <= R", we have
A r\Rk e ̂ y Also P<a>(Rn)|^ == P<a>(Rfc) and there is
a linear bounded operator of extension

Eo,: P<a>(Rfc) -> P<a>(Rra)

such that E^IR* === u for e^ery u e P^^R^").
Similarly one could restate the theorem about pointwise

differentiability of functions in P^ in the form: if
u e P^R") and X is an n-index such that

«-H+-|L > o

then D^u exists exc. 3I<a-|Xj> and belongs to P<a-lxl>(Rn).
Let X be a sub-R space with the structure given by an

atlas 0 and a be real. We define the class 3l<a>,x as
the collection of all sets A <= X with the property that for
every 9 e 0, <p(A 0 Uy) <= $(<a>? the condition being void

for a < — —p-. It follows from the known properties of the
2t
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exceptional classes 3l̂ > that if the condition above holds
for some atlas 0 defining on X a C00 structure then it
also holds for every atlas equivalent to 0.

Theorem 2.1 allows us to define the space P^fX) as
f t-, A 10C\ /follows.

A function u: X -> C defined exc. 3l<a>,x is in P^(X)
zff for every p e X there is an open neighborhood U <= X
of p and <p e 0, Uy => U and a function u^ e P<a>(Rn?)
such that u^ ^u) = u ° P"1)^).

It is clear that if the condition is satisfied for some chart
<p e 0 at p then it is also satisfied for any chart at p
compatible with O.

We shall list now some properties of spaces P^(X) which
are direct consequences of the definition.

P^(X) is a saturated linear class rel. 8l<a>.x. Theorem 2.1
and Remark 1.1 imply immediately the first statement of
the following

PROPOSITION 2.1. — If X is a C^-sub-R space and X^ c= X
then for every u e P^(X) the restriction u\^ belongs to
P^(XJ. Also if ^eP^(Xi) and X^ is closed in X
then there exists u e P^(X) such that u jx = ̂ .

Proof, (of the second statement). — If v e P^(X^) then
by the definition there is for every p e Xi a chart 9^, p e IL ,
<pi in the maximal atlas containing 0|^ such that 9 o (p-i
can be extended to a function p in P<a>(Rn?l). There also
is a chart 9 e O (assuming 0 maximal) such that

U, n X, c: u,,.

If h is a local extension of 9 o cp^-1 about <pi(p) and ^
is extension of ^ in P<a>(Rn/.) (Theorem 2.1) then ^ o h-1^
is an extension of ^ o 9-1 in P<<X>(R^?). Thus for every
p e Xi there is a chart 9 0 0 with p e Uy and a function
^e^R^) with ^o9Ju^=^n^ exc. 8I^x,. Denote
this chart by (9^ Up) and let ^ <p == ,̂. Since X^ is closed,
for any p ^ X^ we can find a. chart 9 e 0 such that p e IL and
Uy n Xi == ^. Again denote this chart by 9^ set IL == U
and let ^p == 0 on RY Let ^ be a locally finite open refi-
nement of the cover {Vp}pex of X and assign to each
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U e ^U a chart 9u <= ^ and a function ^u e P<a>(Rnu) by
setting 9u = cpp|u, ^u == ^p for some p such that Up => U.
Let ^ === {g} be a C^ partition of unity subordinated to %
(see Proposition 1.1) and assign to each g a chart 9 6 $
and a function ^ e P<a>(R^) by setting 9^ ==90, ^ == ^u
for some U e ^ such that supp g <= U. Define

u= S g-^0 ̂
^

with understanding that g.(^ o 9^) = 0 whenever g = 0.
We omit the straightforward verification that the function u
defined above has the desired properties.

PROPOSITION 2.2_ — Suppose that 9 e 0, V c: V <= LL
is open in X ^nrf V is compact. Let IL = V anrf 9^ === 9Jv.
Then for e^ery u e P^(X) the function u^ = u o 9,-1 Aa^
an extension Ui in P^^R"?).

Proof. — For every point p e V there is a neighborhood Vp
of p in Uy such that the function up = u o 9^ has an
extension ^ in P<a>(Rn?), 9? denoting the chart 9? = 9[y .
Denote by Gp an open set in R"? such that Vp === 9pl(GpJ.
Since 9(V^ c: R"y is compact, a finite number of the sets Gp
covers 9(V) and if hp denotes a subordinate C°° partition
of unity on 9(V) then SAp^ is the desired extension u^.

It follows from Proposition 2.2 that if X is locally compact
then P^(X) can be endowed with a locally convex topology
given by the family of pseudonorms

(2.1) |H^ == inf {[l^llpW^; u? e P<a>(Rra,),
^|y(u,)= ^°y-1},

where 9 0 0 are restricted by the following two requirements
a) Uy is compact;
b) there is a chart 9 e 0 such that

Uy <= U^ and 9]^ = 9.

It is understood that in order to make the above statement
meaningful we should consider P^ as a space of equivalence
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classes of functions equal exc. 2l<a>.x rather than a space
of functions.

It is easy to check that if X is locally compact and o-
compact then P^(X) with the above introduced topology
is a Frechet functional space rel. 9l<a>,x.

If X is compact then P^(X) is a Banach functional
space rel 3l<a>.x with a norm given by

(2.2) ll^ll<a>.x^=S{||u||^,;<peO}

where 0 is a finite atlas defining the structure on X and
satisfying a), 6). Different such atlasses give rise to equivalent
norms. The normed space P^(X) will be referred to in
this case as the space of (global) Bessel potentials on X
and will be denoted by P<a>(X).

The definition of spaces Pf^(X) given above is by its
very nature extrinsic and it is of considerable interest to
obtain an intrinsic characterization of functions in P^(X),
which would allow one to determine whether a given func-
tion is in P^(X) from the properties of the function alone
and without necessity of looking at its extensions. This is
clearly a local problem which is equivalent to the following one.

Given a set X <== R", a > 0, and a function u: X -> C,
find necessary and sufficient conditions in order that u be
extendable to a function u e P^(R"). The space of all
functions u on X <= R" of the form u = u|x, u e P^R")
is denoted by P^X). Thus the above problem could be
restated as that of finding an intrinsic characterization of
functions in P<a>(X) for X <= R\

The above problem is difficult unless some additional restric-
tions are imposed on the set X.

Assume for instance that X is compact and is a union
of a finite collection Jf of open disjoint manifolds of diffe-
rent dimensions, such that for any IT^, Wg e Jf, W^ n 'TTCg
is contained in the intersection of the borders of W^ and TUg
and is itself a union of manifolds in o?T.

In this case existence of a function u implies that

^m = ̂ 1^ = ̂ Lm ^ P^W
(see [3]), also if W e Jf is the intersection of the borders
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of TTC,, then ^Tlibn = ^m (provided dim W > — 2<x) and
all the nontangential derivatives of u^ of any order m
such that 2m — 2<x < dim 'TH satisfy on 'TTO a system of
linear homogeneous relations resulting from the fact that they
are all expressible as linear combinations of the restrictions
D^j^. These relations are referred to as compatibility condi-
tions, they are clearly necessary for existence of u.

The objective of this paper is to give a complete list of the
compatibility conditions in the case when X is a polyhedral
set and to prove that in this case the conditions are not only
necessary but also sufficient for existence of an extension u.
The result solves the problem of characterizing intrinsically
P^(X) in the case when X is of polyhedral type.

The main result of the paper, described above, does not
depend on the notion of subcartesian spaces; however, this
notion puts the result and its implications in a proper
perspective.

3. Compatibility conditions for polyhedral sets.

We proceed now to a description of the compatibility
conditions satisfied by functions in P^X) where X <= R"
is a polyhedral set.

We recall first (see [2]) that if D <= R\ is open, a > 0,
a == [a] + P then P^D) denotes the space of restrictions
to D of functions in P^R7') (with restriction norm) and
P^D) denotes the space consisting of all functions u in
P{^(D) with finite norm [^|a.D given by

(3.1) |<n= S (l|D^||i.(i»+^,D(D^))
l)J^a

where

^P.D^) = f f_ \x - yl-^Krr) - p(t/)|2 dx dy for [3 > 0
1 »/ D »/ D

and C^.D(^) == 0 for [B == 0. ^p,n(^) is referred to as the
Dirichlet integral of u of order P. The norm (3.1) is equi-
valent to the norm introduced in [2].

We have P^D) => P^D) and it D is sufficiently regular
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(see [2]) then there exists a bounded linear extension operator
from P^D) to P^R^); in particular in such a case we have

(3.2) P^D) = P^D).

(3.2) is valid for instance if D is the interior of a polyhedron
(see 7), section 12, [2]).

Even though a function u e P^D) has infinitely many
extensions in P^R"), all these extensions coincide on D;
it is thus meaningful to speak of restrictions of u to subsets
of D which are not in 31̂ .

In the considerations below (e) will denote a set of ortho-
normal vectors, (e) = (^, . . . , e^) in R", D^)U the partial
derivative of u taken in directions of vectors (e), i.e.

D^u = D^ . . . D^,

with the understanding that the length of the multi-index X
is determined by the length of (e).

If W is the inside of a polyhedron and u e P^^^HI) then
u and its derivatives of order m have well defined restric-
tions to the faces of TIT of dimension larger than 2(m-a).
Let K <== R" be a polyhedral set, u be a function defined
on K exc. 81̂  and suppose that u e P^R"), U J K = u.
Consider the decomposition (1.3) of K = X^.

(3.3) K == XW => XW ^ ... ^ ̂  X^) = 0,

where for each k = 0, . . ., N, X^\X^+^ = Y^ is a dis-
joint union of insides of polyhedra TIH, referred to as compo-
nents of Y^, such that the components of Y^° are single
points.

Observe that if ITT is a component of Y^\ k = 0, . . ., N
then

(3.4) u\^ e P<a>(cnr) if dim W > — 2a,

otherwise u\^ is not defined.
For fixed k and Wa component of Y^ denote by

Wi, . . . , W^ all the components of Y^ whose borders
contain W. Let {e) be an orthonormal basis in the ortho-
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gonal complement in R" of the plane L of TO and (e)1

be orthonormal bases in the orthogonal complements of L
in the planes L, of TO,, i == 1, ...,;. For every multiindex X

1
such that a — | X| > — -y dim W we can write

(3-5) D^|^= ^ c^
IN=|/J

where u^ = D^u|^, c^ are constant coefficients determined
by the configuration of {ITCJ and choice of bases (e), (e)1

and Ui = u|̂ ..

Remark. — (3.5) could also be written with bases {e) and
(e)1 replaced by orthonormal bases in R" and L; respec-
tively; the resulting set of identities (which would involve
derivatives in directions in L) would be a consequence of
those appearing in (3.5).

The above consideration could be summarized as follows :
if a function u defined on K has an extension u e P<a>(Rn)
then for every component TC of Y^, k = 0, . . ., N we
have a) u\^ satisfies (3.4), and b) for 111 e YW and every m
such that a — m > — — dim ITC the system of equations

(3.5) with \\\ == m and the unknowns u^ e P<a-w>(<:^t)
has a solution. We shall say that a function u on K with
property a) satisfies on TO the compatibility condition of
order m if u has the property fe).

If u satisfies these conditions on TO then a solution of
(3.5) can be written in the form

(3.6) u^ = 5 s y!\D^ul̂
|XI=m i=i

where y!\ are constant coefficients which in general are
not uniquely determined but will be fixed for the remainder
of the considerations. n

In the case when a — m = — — dim TO (3.5) (which
A

actually could be written formally for any m) thus far is
meaningless since D^yu|^ are undefined; this case is referred
to as the exceptional case and in § 4 we shall define the notion
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of abstract restriction which also in this case will make (3.5)
/[

and (3.6) meaningful. For a — m < — — dim TTC the conditions
2t

of order m do not appear on ^ITC.
It is clear from the above that in order that a function u

on K be extendable to u e P^R") it is necessary that u
satisfy (3.4) and for each component W of Y^ the compa-

1tibility conditions of all orders m < a + — dim TC. It will
Z

be shown in § 4 that also in the exceptional case

1
a — m == — — dim TTC

2i

the conditions are necessary. The objective of this paper is to
show that the conditions above are also sufficient for the
existence of an extension u e P^R") of u.

We shall make now a few remarks concerning the concept
of compatibility conditions.

The compatibility conditions for u on ITC of order m
are equivalent to a unique, possibly empty system of linear
homogeneous equations with constant coefficients to be satis-
fied on "WL by {Q^i^^^mj hence they can be expressed
in terms of u alone.

The compatibility conditions are in an obvious way invariant
with respect to the choice of the bases (e) and (e)1. They
could also be stated in terms of arbitrary, not necessarily
orthonormal bases.

If u satisfies the compatibility conditions on every compo-
nent ^ of Y^ (i.e. compatibility conditions of all orders w,
a — m > — dim Ttl) then it satisfies these conditions on all
the components of Y^, 1 < k ^ N.

4. Auxiliary results and abstract restriction.

To prove the sufficiency of compatibility conditions Wt;
have to define the notion of abstract restriction and prove
several lemmas which will be based essentially on results in [2].
Since we will be interested in very special geometric confi-
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gurations in R" we will prove the lemmas and produce the
notion of abstract restriction in very special cases even though
many of the results could be extended to much more general
configurations. We will introduce the following notations:
For a function u e P^(D), D being an open set in an I-
subplane L of R'1 and F an arbitrary set in L, we will
write :

(4.1) ^^^-Xr^^^D r^x)

where ry{x) = distance from x to F. The integrand is
considered = 0 when u{x) = 0. The integral may be finite
or infinite.

For u e P^D) we write further

(4.2) J%.D.p(u)= S ^-m>.D,F(D^),
IXKa-^/2

D^u are understood as running through derivatives
of u in directions of vectors in an orthonormal basis
in L (D^u == D^)U — in notations of § 3, where {e) is an
orthonormal basis in L). In [2] the quadratic form J was
introduced for I == n^ D and F being open sets in R",
and also the non-reduced order of potentials was used, so that
the form J<X,D,F meant, in the present notation, J^Ln/g), n. F.
In the integrals (4.1) we will call I the dimension and a
the order of the integral. In the present development we will
consider mostly D to be the whole Z-plane or the inside of
an Z-dimensional simplex in L, whereas F will be a closed
set.

For two closed non-empty subsets F and Fi of L and
for any s > 0 we introduce, as in [2], the open sets U^(F, Fi)
in L called the s-angular neighborhoods of F\(F n Fi) rel.
FI (in abbreviation s-neighborhoods of F rel. Fi), by

(4.3) U^(F, Fi) - [x e L : r^x) < srp^)].

For F and Fi bounded and e < 1, U^ is bounded. For
any D open in L, U^D, ?)D) = D for e < 1.

As very special cases of Theorems in § 9 and 10 of [21,



44 N. ARONSZAJN AND P. SZEPTYCKI

we get the following two propositions which we will use
often :

PROPOSITION 4.1. — If ueP^(L) and u vanishes on an
l-dimensional simplex D, then J^>,L,?)D(^) < co-

PROPOSITION 4.2. — Let D be an open l-dimensional
simplex in L and F^, i = 1, . . ., 5 &e k-dimensional faces
of D, 0 ^ k < 1. Suppose that u e P^(D) is such that
J%.D,F,(^) < oo, i == 1, . . ., 5. TT^n /br ^ery s, 0 < s < 1,
there is an extension u e P^(L) of u vanishing outside

I s \
U^ \ D, L J Pi j. Jn particular, for any l-dimensional simplex D^

\ 1=1 / _ _
in L, such that Di n D = F; /or ^ome i there exists such
an extension vanishing on Di.

As corollaries we obtain :

COROLLARY 4.1. — If D is an open simplex in L and
u e P^(D) then J^D,5D(^) < °° implies that there exists
an extension of u, u e P^L) which vanishes outside of D.

This is immediate since for s < 1, U^(D, ?)D) == D.

COROLLARY 4.2. — If u e P^(L), D is an open simplex
in L and F is a k-dimensional face of D, k < Z, <Aen
J^a>,D,p(^) < °o implies J^.L.F^) < oo.

Proof. — By our assumptions and Proposition 4.2 for any
open simplex Di in L satisfying D^ o D == F there
exists an extension of UJD) u e P^(L) vanishing on Di.
Also, u -— u vanishes on D. By Proposition 4.1

J^.L.F(U) < J%,L,,D/5) < 00

and similarly, J%).L,F(^ — u) < oo, thus J^),L.F(^) < °°-
As in [2] we will use the following two propositions.

PROPOSITION 4.3 ([5]) (3). — Let K{x, y) > 0, x, y e (0, oo),
be a symmetric kernel homogeneous of degree — s, s + 2
such that j K(l, t) dt < oo. Suppose that u and 9 are

(3) This proposition, in a more general setting, can be found in [4].
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measurable functions on (0, oo) such that

1 ^ f^ f^ K^ ^K^) - ̂ )12 ̂ ^ < oo
^^71 :

a) if s < 2 ^?n J^ (|u(^)|2 + |^)|2)^-^ ̂  ^ const I,
b) if s > 2, there exists a unique WQ e C ^uc/i riW

J^ (\u(x) — wo|2 + |^) — Wol2)^-^1 & < const. I.

If u and v are continuous at 0 then WQ = u(0) = ̂ (0).
The constants depend only on K.

PROPOSITION 4.4 [Hardy s Inequality [8], p. 246). — If F
is absolutely continuous for a < x < b < oo f/i^n /or o^ery

^>i
r|A^)-/'(a)|2(.r-a)-2T^

»/a
/ 1 \-2 /»&

^ ( Y ~~ -9- ) f It^)!2^ - ̂ -2T+2 dx.
\ zi / J a

Our main purpose in this section will be to establish condi-
tions under which J^>,D.F(^) is finite. To simplify our proofs
we will use affine mappings to transfer the configuration of
^-dimensional simplex D and its /c-dimensional face F into a
special position. We should notice that the affine transfor-
mation does not change the class of potentials (the norm
being transformed into an equivalent one). The derivatives of
order [X| are transformed into linear combinations of deri-
vatives of the same order with constant coefficients (determi-
ned by the affine mapping). The quadratic forms J are trans-
formed into equivalent quadratic forms, all the constants
depending only on the affine mappings and not on the function
u. In particular, when we have an ^-dimensional simplex D
with /c-dimensional face F, k < I, we can always transform
it by an affine mapping of the whole space R" into the
following situation : F = D^ c: R^ and there is a sequence
of simplices D^, . . ., D^ such that Dj is an open simplex in
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R-' which is a face of D .̂i such that the orthogonal projection
of D^i on R7 is Dj and for ^l/+l) e Dy^i, we have

^D ̂  (^ ̂ )

with ^ e Dj and 0 < .r^i < rp^). In these conditions,

assuming that I — k ^ 2 and a + — ^ 1 (4) we have.z

(4.4) I^n,,p(u) < 2I^,p(u) + y+^I^^,? /^V
\oa;(/

To prove this inequality we write for a^0 e D(, a^0 == ( '̂-1), a;;),
u(^) = u( '̂-1), 0) + (u(^) - u '̂-", 0)). Then

lu^0)]2 ^ 2|u(.r<'-1)), 0)|2 2|u(^-l>, a;,) - u^'-^ 0)|^
rp( '̂))'+2tl " rF^'-1))^2' 1 rF( '̂-l>)'+2a-2a•2

Since a + — > 1 the function u on D( has first deri-
2t

vatives in L2(D;); hence for almost all .̂ '-1) as a function
of a;; it is absolutely continuous. We can therefore apply on
each of these lines Hardy's inequality which gives, by using

the fact 0 < Xi < rp '̂-") and that rp(^'-1)) ^ 1 ^(a^),
V2

r Î T d^ < 2 r w-^w-^) ̂JD, rrW+^ a^ " /' j^ rp( '̂-l))'+^

±^2(l/2)-2 r &^-1
' 2-<(+!!a-2)/2 JD, rF(^)'+2«-2 aa>

which gives the required inequality.
We will consider the integrals I in three cases : when the

order a < — —, == — — and > — -^ The distinction

between these cases is that in the first case the function and
its derivatives have no restrictions whatsoever to F, in the
second case the function has no pointwise restriction but has

(4) a + V2 is the non-reduced order of u on D^ and a + Z/2 ^ 1 means that
it has first order derivatives belonging to P^/^^D,).
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an abstract restriction to F (a, notion to be introduced later
in the third case, the function and its derivatives D^u

k|X| < a + - o ^ have pointwise restrictions to F.
kFirst Case, a < — —: By applying (4.4) successively we

will evaluate I^>.D/,F(u) by a linear combination of integrals
I^IXD.D^D^U) for / = k + 1 or k + 2 < / < I and

0 < a - | X | + ^ - < 1. If j=k+i then [X| = 0 since

otherwise the potential D^u on D^ would be of order

.+'^l-M<--|+A-l-l-N<o. if

a- j x | +y=0

the integral I^-IX.DD^D^U) is the square of the L^norm
of D^u over Dy which is finite, hence we can restrict our
considerations to the cases where

0 < a - |X| + -^ < 1. Put (B = a - |X[ + —,

hence 0 < (3 < 1. We can extend D^u from Dy to the
whole R7 as a potential v of order p. The Dirichlet inte-
gral d^w^) is then finite. We can write then

(4,5) co>^)^^W^

^ r rfp,R/-».(^(^, z</-k))) d^
U R*

where we have written for ^ e R<^, ^ === (r^^, z(•/-/c)),
^y-fc) ̂  (^^, . . ., ^) and in the last integral the Dirichlet
integral is taken on the (/ -- k) -dimensional space of z^-^ (5).
Considering the part S of R^-^ composed of points with

(5) By inadvertent omission the last inequality in (4.5) was not stated in Bessel
Potentials, Part I, Ch. II, § 8 where it should belong after Propositions 1) and 2).
The proof can be easily obtained by Fourier transforms. A more elementary proof
in the more general case of potentials of LP-functions can be found in [9], p. 344.
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3} > 0, k < i < /, we can write

a,^, ,o->)) = rrte^__^ ̂ y.
U S »/ S j *^ ^/| •

Introducing polar coordinates x = p6, y == p^O,,

| e |== |6 , |==i
we get

d^W\ z^)))
== rr r r K^p^-^^pxQi)!2

JJi9i=i9.i=iJo Jo Ipe-piQ^-^
(Ppi)-'-'1-1 (^P rfpirf6d9i

> c c r r î  p6) ~ ̂ ^^ p^^i2" Ji9i=Jie.i=Jo Jo (p+piy-^p
(pPl)7-'1-1^^!^^!.

Since the kernel K(p, pi) = p v-fc+2B satlsnes tae requi-

rements of part a) of Proposition 4.3 (because 0 < 2p < 2
for /' > k + 2 and 2(i = 2ac + / < 1 for /' = /c + 1) we
get immediately that

^^),^)),cJ;^^2^)

> p r K^^T -̂.)^ Js r^r^^rfz( •
where C is a constant dependent only on / — k and p.
Restricting R^ X S to Dy and replacing there v by D^u
we obtain finally from (4.5) that I^LI^D.^D^) is finite.

By an affine mapping we now translate the obtained result
into.

LEMMA 4.1. — For an arbitrary I-dimensional simplex D
with a k-dimensional face F, k < I, if u e P^D) for

If
a < — — then I^D.F^) < oo and J^a>,D r(^) < oo.

/c
Second Case, a == — -o- : We use again (4.4) to obtain

successive evaluation of I^.^D^F^). But now, by virtue
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of Lemma 4.1 the problem of finiteness will be still uncertain
only for integrals of the form I^/a^ p(^) and that finally
will be reduced to the case I^I^D^F^). On the other
hand, if I^0.^),^,?^) is finite then by virtue of Lemma 4.1,
J^/2>,D^F(^) is finite. Hence, by Proposition 4.2 we can
extend u to a function u e P^/^R') which vanishes
on any fixed open simplex Di <= R^ such that Di n D^ == F.
We can choose Di so that Di n R^1 be a (k 4- ^-dimen-
sional simplex. Thus, restriction of u to R^ will vanish
on Di n R^1 and thus I^^D^F^) < oo by virtue of
Proposition 4.1.

Again by affine mappings, using also Corollary 4.2 and
Lemma 4.1 we transform our result into.

LEMMA 4.2. — For an arbitrary relatively open l-dimensional
simplex D with k-dimensional face F, and an arbitrary
{k + ^-dimensional simplex D' <= D with face F, if

u e P<-W(D),

then the four quantities I^.fc^.D,?^)? J^/2).D.F(^)9

I^>.D-,r(u) and J^^p(u)

are all at the same time finite or infinite.

kThird Case, a > — — : In this case we will assume thatJj
all derivatives D^u which have pointwise restrictions to F

ki.e. of order |^[ such that a — |X| > — — have a vanishing
2i

restriction to F. In addition, for those derivatives D^u
kfor which a — | X| = — — we assume that the integral
2i

I^).D,F(D^)

is finite. By (4.4) we reduce again the consideration of finiteness
to the case of integrals I^-I^D^D^) where either

/ = = / c + l or k + 2 ^ / ^ I

1 kand 0 ^ a — | X | + - A - < l . If a — | X | < — - ^ - then the integral
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kif finite by Lemma 4.1. If a — |X| == — —, by Lemma 4.2
z

the integral is finite if and only if I^-S/^>, D^, F (D^u). But
this integral is finite by the same lemma and our assumption
I^-^D^F(D^) < °o- Therefore we can restrict ourselves

kto cases when a — | X[ > — — and then if / ^ k + 2
• JU

we cannot have a — |X[ + — < 1- Therefore, we can restrict
L

ourselves to the integrals I^Y^D^.F^U). Again by
using Lemmas 4.1 and 4.2 we can reduce our consideration
to the case when the non-reduced order (3 of the potential D^u

k k + 1 1in D^+i is > — — + ——— == -7.-- In this case D^u has
2i 2i 2t

a vanishing pointwise restriction to F. Then if (3 ^ 1 we
can write :

r _|D^W_
A,, rp^+W-l^ aa;

< r r^ iD^^.^-DM^o)!2 ^ ^>
^ i. J, ————.^W-IXD-i,^——— dx^ ̂

where a; == (a^, a;^+i) and 0 < a^-n < z^^) < ^(a^^). By
Hardy's inequality we obtain the maj oration by the integral

-^ &^:-DMa;?•rk+l)/- /•̂ ";) |&a;̂  v ; ^J

JD,JO rpOT"-^^-!^
't+i________L AT A^y)—;/,,..,,—, , „ - r ^ ~ : M'̂ ti,_i_i Uo/'t+1

,p /' ID^'^ul2 ,
<4ci._,rF(.)-^^

i.e. by the integral I^L1^ ̂ ^^(D^'^^)) where

1^1 - l^l +1.

By repeating this reduction we get down to an integral of the

form Î '|> D,,, F (D^u) with (B == a - |X[ + k+^ satis-
1 ' . .tying — < (B < 1. At this stage we apply again (4.5) by
jt

extending D^UJD^ to a potential ^ e P^R^1) and get the
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finiteness of the integral J^ ̂ R'^a^, x^)) d^^. But

rfp.R(^),;r^))

> r r'^a;ft+l) ~ ̂ yk+l)? dx dv
Jo Jo (^ + ̂ )^ tt'k+l dyk^k+l ^yk+l'

The kernel K{x^ y^) = {x^ + t^+i)1^ satisfies the
conditions of case b) of Proposition 4.3. For ^k) e D^,

(/(^), 0) == Dxu(^, 0) = 0.

Therefore we obtain :

r r^W | D (̂̂ ), ̂ ^)|2 , „,,
— — — 2 6 dx^ d^ < co

^D&t /O ^k+1

which means that I^i^.Dk+i^D^u) < oo. So, under our
assumptions on u and its derivatives we have

J%),D,.F(^) < 00.

On the other hand, the finiteness of J^.Df,F(u) implies, by
Proposition 4.2, all our assumptions. Transforming this result
by an affine mapping we get:

LEMMA 4.3. — Let D be a relatively open l-dimensional
simplex with k-dimensional face F, k < 1. If u G P^D)

k
with a > — -- then the finiteness of J^a),D,p(^) is equivalent

' L
to the fact that all derivatives D^u with a — [X[ > — —

JL
have vanishing pointwise restrictions to F and for derivatives

ksatisfying a — |X| = — -^-, ^.(^^(D^u) < oo.

The last lemma suggests the following definition.

DEFINITION 4.1. — If D is a relatively open l-dimensional
simplex or subplane of R71 and F a finite union of
k-dimensional simplices, k < Z, lying in D we will say that
u e P^^D) has a vanishing abstract restriction to F,
u|^==0, if I^.^D,F(^) < oo.
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With this definition we could rephrase Lemma 4.3 to say
that J^a>,D,F(^) < oo is equivalent to vanishing on F of
all derivatives D^u with restrictions (pointwise or abstract).
By Lemma 4.2 we see that if u e P^^D) and u\^ =0
then for any extension u of u, u e P^2^!)), we have
u\^ = 0. Also, for any restriction of u to a simplex with
face F the abstract restriction to F will be 0.

DEFINITION 4.2. — For two functions u e P^^D)
and u' e P^^D') where D and D' are two relatively
open simplices with k-dimensional proper face F we say
that u and u' have the same abstract restriction to F,
u\j- = u'\^ if for any extensions of u and u! to a common
simplex or plane D with reduced order — /c/2, we have
(u — u')\^ = 0. We write then u\^ === u ,̂ which is clearly
an equivalence relation.

By Lemma 4.2 the equality of abstract restrictions does
not depend on the choices of the extensions. The abstract
restrictions to F, defined as the equivalence classes of the
relation above, form a vector space, which can be realized as
the algebraic quotient space P^^DYP^^D), where D
is any simplex with face F and

P^/2)(D) = [v e P<-W(D) : ^ = 0}.

Note that PQ-WD) is dense in P<-W(D) but not closed.
Our definition of equality of abstract restrictions is extrinsic
in nature since it uses extensions of functions even though
it is independent of the extensions. To make it more intrinsic
we will restrict the functions u to a (k + l)-dimensional
simplex D with face F. If we have then u and u' defined
on two such simplices we can restrict them further to smaller
simplices D and D7 which are transformed, one into another,
by a rotation in a (/c + 2)-dimensional plane L keeping
the plane of F invariant. By this rotation T we will transfer
the function u' on the simplex D7 to a function

u'{x) == u't^x)

on the simplex D. The intrinsic characterization is then
given by the proposition.
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PROPOSITION 4.5. — u|^ == u7)^ if and only if
(^(Ta;)-u(^))[^=0 (*).

Proof, — It is enough to show that u'\j< = u'j^. We
can obviously assume that D7 + D. Consider in the plane
of D, the simplex D" symmetric to D rel. the /c-plane
of F, let TI be the rotation transforming D" onto D7.
Then the functions u ' ^ x ) on D and u'CT-^x) on D" are
symmetric and are in P^D) and P^D77) respectively.
They form a function u^ on D U D" and a simple evalua-
tion of the Dirichlet integral rfi/2,DUD"(^i) shows that

ui e P^(D u D').

Hence, it can be extended to a function u i e P^L). There
exists a (/c + l)-plane L^ separating D from D' U D"
and containing the A'-plane of F. Consider now in L a
homeomorphism S which is the identity on the side of L^
containing D and on the other side is the affine mapping
leaving L^ invariant and transforming D' onto D". The
mapping S is Lipschitzian on the whole of L. Therefore
the function u-^{Sx) is still in P^L). We have ^(S^ID^^T^)
and u^(Sx)\j)' == u'{x). These two restrictions have the same
abstract restrictions to F which finishes the proof.

In the next proposition we will be dealing with the follo-
wing situation : we will have an Z-dimensional relatively open
simplex D in R". By [e) we will denote an orthonormal
system of vectors (<°i, . . . , e^-k) orthogonal to D. For a

reduced order a > — — we will consider all derivatives D^)
2i

for a — |X| ^ — —• For each such D^) with
JL

.-w>-^
we will be given a function f^ e P^I^D). For each X

satisfying a — | X j == — —» if they exist, we will be given
2i

a function ^ e P^^R").

(*) In rather special circumstances conditions of this kind were considered
in [14] and [15] under the name of integral compatibility conditions (see also [4]).
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PROPOSITION 4.6. — With the notations explained above
there exists always a function u e P^R") such that

.4.6) D^u|n==^ for oc -H > - ̂ -,

(4.6A) D^ - g^ /or a - |X| == - ̂ -.

Remark 4.1. — It is clear that condition (4.6A) has a mea-
ning only for 0 ^ I < n and will be required only in this
case.

Proof of Proposition 4.6. — If there are no X with

.-l^l=-y

we extend each /tx to /rA € P^-^I^L), where L is the plane
of D. Then, by a well known construction (6) we find the
desired function u e P^R") satisfying

(4.6-) D^=f\

If there are X with a — |X[ = — — we extend L to

an (I + 1)-dimensional plane Li '= R"+1 containing a vector
parallel to ^+1 = (0, . . ., 0, 1) e R»+1. Then each /"^ we
extend to /tA 6 P<a-l)tl>(Ll) and each ^ to

g\ e P<-W(R»+i).

The restriction g^j^ exists and by the same construction
as above we obtain a function u e P^R'^-1) satisfying

(4.7) D f̂i|L. = ̂  for a - |X| > - y

Wk-^li, tor a - |X | =-^.

It follows then immediately that u == u\^n is our desired
function.

(6) Such constructions were given in [1] and [3]; still another construction was
.^iven in [10].
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5. The complete formulation of the compatibility conditions
and their sufficiency.

In order to use the developments of § 4 we change slightly
the setting for the compatibility conditions of § 3. We repre-
sent the polyhedral set X as a disjoint union

X = U{D; D e j f }

where jT is a simplicial complex (see § 1) whose elements
are relatively open. We write JT = Jfo u t:?f! u • • • u ^N
where Jfo == {D e jf$ D is not a face of any D' e Jf} and
for k > 0 Jffc = |D e ̂ \fLJ^; D is not the face of

» s<k

any D' e JT\/[_jjf^. We remark that e^ is a finite
\ ^<k / )

set of points, Jf\ = 0 for /c > N.
With these notations we have the decomposition analogous

to (3.3)

(5.1) X==K= K^ =3 K<1) ^ ... => K<N), K^\K^1) = U D
DeJC/

Consider now a fixed D e Jf^, A* ^ 1 and denote by
Di, . . . , D^ all the simplices in Jfo which have D for a
face. As in § 3 denote by (e) and (e)1 orthonormal bases
in the orthogonal complements of the plane determined by D
in R" and in the planes determined by Di, i == 1, . . ., r,
respectively. Let u be a function on K such that

u|DeP< a>(D), D e J f o

and consider, with the same notations as in § 3 with TIT,
W; replaced by D, Di, the systems of equations :

(5.2) D^n= S ^M l̂ -m,
iM=m

JLa — m > — -^ dim D, i •== 1, . . ., r
2t

(5.2') D^u^= S c^p^,|X|==m,
4

a — m = — -^ dim D, i === 1, . . ., r.
^
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The compatibility condition of order m for u on D
requires by definition that (5.2) or (5.2') be solvable with

^
solution ^ e P<a-m>(D) if a — m > — — dim D or

2i
^ ^ P<-S/2>(Rn)

1 .for dim D == s and a — m === — -y dim D. If the condition is

satisfied then a solution of (5.2) or (5.2') can be written in the
form

(5.3) ^= ^ S T^D^u,|n,|^| =m,
|)J=m i==f

a — m > — -^- dim D,
2i

or

(5.37) ^= S S T^D^|^|pL|=m,
m=w i=^

a — m == — — dim D.
A

We remark that if u has an extension u e P^R4) then
for every D e Jf\, k ^ 1, u satisfies on D the compatibility

1condition of all orders m ^ a + "77 dim D, the solutions of
^j

(5.2), (5.27) being given respectively by ^ == D^^ID tor

jp,| < a + 1 dim D and ^ = D^u if |(Ji| = a + i dim D.
Z 2t

The compatibility conditions as stated above are equivalent
to those in § 3$ in fact, if D e «3f\, k ^ 1 and D is contained
in one of the components of Y^ then they amount to the
same as conditions in § 3, if D is not contained in any of the com-
ponents of Y^, k ^ 1 then D is contained in a component
of Y^ and the conditions are automatically satisfied.

All the remarks in § 3 concerning compatibility conditions
remain valid also in the present setting.

THEOREM 5.1. — In order that a function u defined on K
be extendable to a function in P^B^) it is necessary and
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sufficient that u e P^D) for every D e jfo and that for
every D e jT\jTo M satisfy the compatibility conditions of

j[
aM orders m ^ a -)- — dim D.

^j

Proof. — It was already remarked that the conditions
are necessary.

To prove sufficiency we will construct by induction on
decreasing k ^ 0 functions w^ £ P^(R") with the property
that for every k < N + 1 and D e ^f\ the functions

1
{D^yWfc|D}[tx!==m9 m ^ ~Q dim D + a, form the solution of

(5.2) or (5.^) given by (5.3) or (5.3').
For k = N + I? -^N+I == 0 and we let w^+i == 0. Suppose

that Wj, is constructed for some / c . l ^ / c ^ N + l - To
define w^-i let D be any simplex in ^T/c-i-

For brevity's sake we will say restriction, meaning pointwise
restriction as well as abstract restriction.

By hypothesis, if D7 is on border ?)D, D' e Jf\, all the
derivatives D^ji^ figuring in the compatibility condition
for D7 have the same restriction to D' as D^iW/,. It
follows that for the derivatives D^y figuring in compati-
bility conditions for D all the functions D^f(^ —- w^)
have restrictions to D which together with their normal
derivatives (as far as they exist) vanish on c)D. By (5.3)
we obtain then that ^ — D^^ln vanish together with
all their existing normal derivatives on ()D. By Proposition
4.6 we construct now ^ ^ P^R") so that ^ID = ^|o,

/i
D^ID = ̂  — D^(e)^|D tor a — ((JL | > — — dim D and,

Zs

D^ - ̂  - D^j^
^

for a — |pi| = — — dim D. We define the open sets Ug(D)
2i

in R" by U,(D) == Ur(D, OD) for dim D > 0 and

U,(D) == {xe R": |.r- D| < c}

for D a single point. We choose s > 0 small enough so that
all the Ug(D) for D e ̂ -i be mutually disjoint (s must

4
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be < 1). Then we choose for each D with dim D > 0
an n-dimensional open simplex D c Ug^D) with face D.
By construction, all existing derivatives D^PD in directions
orthogonal to a face D' of D have restriction 0 to D7.
Hence all derivatives D^o with restriction to bD have
there restriction = 0. We take ^ID and apply Lemma 4.3
and Proposition 4.2 to obtain an extension ^ of ^ID?
<4» e P^R") and ^ vanishing outside of

U^(D, OD) c: Ug(D) (7).

If D is a single point we take a function 90 = 1 on
Ug/3(D) and •== 0 outside of Ug^D) and put PD = PD?D.
It is then clear that the function

(5.4) Wk-z = w^ + S ^D
DeJ^-i

satisfies our requirements.
Obviously, the function WQ is the function required in

our theorem. The last step of induction leading from w^
to WQ is completely similar to the other steps except that on
D e Jfo there are no compatibility conditions and we define
PD by the requirement that (^ID = (u — W^ID, D^ID == 0
for all existing derivatives in directions orthogonal to D.

6. Examples.

We will give here two examples to illustrate the notions and
procedures used in Theorem 5.1.

Example 1. — Let X be the union of I distinct 2 dimen-
sional spheres Si, . . . ; , S^ in R3 intersecting in a circle

co = n s/,
k=l

We remark that the regular part of X is X\Co, the singular

(7) We use here the following general statement pertaining to angular neigh-
borhoods in arbitrary metric space M : If Fg = U^jF,, F) then

UM(F,, F) <= UM^(F,, F).
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part, X^ = Co, is a manifold. In particular, the decom-
position (1.3) is of the form

x = x^ ^ x<1) ^ x(2), x<2) == 0.
For every point p e Co we have to construct a chart

whose image is a polyhedral set. To this effect we consider
the point po e Co diametrically opposed to p and consider
the inversion mapping T in R3 defined byTx=]^. (—?.)+p..
Putting Uy == X\(po); 9 = T|u,, we obtain a chart with the
property that y(Co\(po)) = L where L is a straight line
in R3 passing through p and <p(S/,\(po)) = Q/c where Q/,
are 2-dimensional planes containing L. The image <p(U<p)
is not strictly speaking a polyhedral set or contained in one
since it is unbounded but obviously we could restrict the
neighborhood U® to a smaller neighborhood of p so that the
image will be a polyhedral set presenting on the line I a
relatively open segment Io centered at p and on each plane
Q^ two relatively open equilateral triangles, Q^ and Q2,
on the two sides of L with common face Io. The given
function u on X is transferred by the chart to a function ^

/
on the polyhedral set K == I J (Q^ u Q^). It is quite clear

k=l
that all the compatibility conditions will be satisfied if they
are satisfied on Io which belongs to JT^ (in the notation
of § 5).

To describe the compatibility conditions on Io we can
choose the coordinate basis (^i, e^ e^) in R3 so that ^3 e L,
the origin being at p. On each plane Q^ we choose a vector
ek _L ^3. We put ek = 6^1 + r^g and write the compati-
bility conditions on Io of order m:

(6.1) D^l^li. = D^li.
m

= S W^-^'"-^-!^, ...,l
;A=O

^
0 ^ m < a + -FT*

2i
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and

(6.r) W^\t = W^\t = s m^-^-^
[Ji=0 ^

k = 1, 2, . . ., I, m == a + y

The equality of the two first terms in each of these equations
means simply that the function ^ I Q ^ U Q J G P^Qi u QiO-
This is obviously a necessary condition which we can accept
from the start as satisfied so that in the above formulas we
will need only the first term and the third term.

The nature of the compatibility conditions depends obviously
on ( and a. Let us consider a few cases.

1I = 2, a < — -,.- There are no compatibility conditions
L

and there exists always an extension.
1; = 2, a = — -7.-- No compatibility conditions of order
2i

> 0. For m = 0 the condition is ^|Qi|^ = ̂ Q1!^-
1 1 .( == 2, h — -^- < a < h + -^-; h being a non-negative
Zt JL

integer. The only compatibility conditions will be of orders
0 ^ m ^ /fc. Only equation (6.1) is to be considered. For
m = 0 they mean that ^ J Q ^ I I , = ̂ \q^\- For m ^ 1 equa-
tions (6.1) are always solvable. Hence only the conditions for
ra = 0 are relevant.

1 .I = 2, a == h + -q-» h being a non-negative integer. We
2i

have compatibility conditions for orders 0 ^ m < h 4- 1-
For m = h + 1 ^he equation (6.1^) is to be considered. As
in the last case, only the condition for m = 0 is relevant.

1I = 3, a < — - - • No compatibility conditions.
Zi

1I === 3, a == — — Only compatibility conditions of order
2i

m = 0 exist and they mean that ^[Qi|i^ is independent of
i = 1, 2, 3. ^ ^

;==3 , / ^ — — < o c < A + -?p ^ being a non-negative
Z 2i

integer. As previously, in the similar case, only conditions of
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orders 0 ^ m ^ h exist and are given by (6.1). The only
conditions for which there may not exist solutions are of
orders m = 0 and m = 1. For m = 0 the conditions
mean that ^ I Q ^ I I ^ is independent of i. For m == 1 they
mean that the over determined system (6.1) with three equa-
tions and two unknowns has to be solvable.

^
1=3, a == h + -a-? h being a non-negative integer. Only

Zi

compatibility conditions for 0 ^ m ^ h 4- 1 exist (for
m = h + 1 they are of the form (6.F)). Only for m = 0,1
we have actual restrictions on p which are the same as in

j[
the preceding case except when a = —? when the compati-

2i
bility conditions for m = 1 is given by the over-determined
system (6.F) dealing with abstract restrictions.

For I > 3 it is clear now what the situation will be :
/j

for orders m ^ a + -o- the system of equations (6.1) (or
Zj

(6.17)) will give an underdetermined, determined, or overdeter-
mined system of equations for the m + 1 unknowns ^'m-^.
The first two cases present themselves when m + 1 ^ I
and the equations are solvable; whereas in the third case
where m + 1 < I the compatibility conditions actually
give some linear relations between the restrictions to Io of
the different D^P^, k = 1, . . . , ; .

It is easy to transfer the compatibility conditions back to
the original subcartesian space X. If S/,, instead of being
spheres, were C^-compact submanifolds of dimension 2 in R^
intersecting along a C^-submanifold Co so that no two S/,,,
S^/, k' + V are tangent at any point of Co, the same proce-
dures will give us the compatibility conditions. The only
difference will be that the chart transforming a neighborhood
of p e Co onto a polyhedral set will be much more compli-
cated to write explicitly.

Example II. — Let X be a closed n-dimensional polyhe-
dron in R\ If a function u is given on X and we want u
to be extendable to u e P<a>(R^) it is obviously necessary
and sufficient that u\^ e P<a>(X lnt) and on all faces ITC
of X, u\3n, == ^[xHcm. We could write also the compatibility
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conditions among which most will be redundant and the
remaining will reduce to the conditions which we just wrote.

A seemingly different problem which arises in the study
of boundary value problems for differential equations is the one
where we want to find a function u e P^X1111) giving its
values and the values of all its normal derivatives on all
(n — l)-dimensional faces 'HI of X, the derivatives being

of orders m < a + —o— so that the normal derivatives
Zi

have a pointwise restriction to CW.. In these conditions we
can write formally all the compatibility conditions as if the
function u was defined also on X1"1 and we notice then
that the compatibility conditions on the faces of dimension
n — 1 do not exist (since u actually is not defined on X1111)
and that all compatibility conditions on faces of dimensions
< n — 1 can be expressed in terms of the function and its
normal derivatives on the faces ^ of dimension n — 1.
Therefore, we can apply our inductive procedure from the
proof of Theorem 5.1, constructing the functions w^ down
to and including k -== 1. The function w^ e P^R") gives
then the required function u = Wilx101.

We will illustrate this procedure by a simple example
where in the plane R2 with variables x^ x^ we put

X === [̂ i, x^: 0 ^ x^ ^ Oi, 0 ^ x^ ^ 03].

We will consider the case a = 1. This is the case which was
used in [7] where the compatibility conditions were given
without proof. The compatibility conditions here have to be
written only for the faces of dimension < 1 which means
the four vertices of X. The configuration, by an affine map-
ping, can be transformed into itself with any given vertex
being mapped onto any other given vertex. It is therefore
enough to consider the compatibility conditions at vertex
(0, 0). Considering the two adjacent 1-dimensional faces 'Hti
and TITg in the direction of the rri-axis and the rcg-axis respec-
tively, we know that the normal derivatives are to be taken
of orders 0 and 1 and we have the necessary conditions that

u ,^6P<^), -u-
OXs-k

e PW^) for A- = 1, 2.
.̂
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The compatibility conditions of order 0 reduce themselves to

^(0, 0) = u|^(0, 0).

The compatibility conditions of order 1 mean that

^u A _ ^u\ A ^ A __ <>u( A

l̂ ̂ l 1(0, 0) ^11 .mj(0, 0)' ^2 OVL, (0, 0) <^2 1 ̂  (0, 0)

The formulas written in [7] are just an intrepretation of the
last relations by the use of Proposition 4.5.

Appendix.

We shall give here some additional results and remarks
related to the material in the preceeding sections. The proofs
will be omitted or only briefly outlined. We will use, without
further explanations, notations introduced in sections 3, 4
and 5.

We recall that the class P<a> was defined only for mani-
folds of dimensions larger than — 2a which excluded from
considerations potentials of (non-reduced) order 0, i.e.
functions in L2. This is due to the fact that /c-dimensional
manifolds in R" are exceptional for the class P<-W and
functions in P<-W have in general no pointwise res-
trictions to such manifolds.

It is conceivable however, that a function u given on a
polyhedral set X in R" may be defined a.e. as a measurable
function on some of the polyhedra W,0 or simplices in JT
of dimension — 2oc. In such a case it is natural to ask if,
and in what sense, this property is preserved by the exten-
sion u e P^-^ given by Theorem 5.1.

Let ^ e P^^I^), n > k and L be a plane in 1̂
of dimension larger than k. We denote by ^,L the Lebesgue
correction of the restriction (^IL, defined by the condition
lim Ig HL(^ + ry) — v^{x}\ dy = 0, where B is any open
r->0 J

bounded set in the subspace parallel to L such that 0 e B;
^cL does not depend on choice of B. Recall that

^{x) = (.exc. 31<_^(L).
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Since any /c-dimensional subplane of L is in Sl<-/c/2>(L)
^(.L may not exist at any point of such a subplane and, even
if it exists there, it does not have to be even in L2.

Let F be a /c-dimensional simplex in R'1 and
^ ^ P<-W(R^ n > k.

PROPOSITION A.I. — If ^ |^==0 then for every plane L
in R'1 such that F <= L and dim L > k, Vci{x) == 0 for a.e.
x G F (rel. to k-dimensional Lebesgue measure).

A proof is given in [10] in the case when dim L == k + I?
the same idea works also in the general case.

With the same notations as in Proposition A.I we also have :

PROPOSITION A.2. — Suppose that for some plane L^:D F ^cL/^)
exists for a.e. x e F. Then the same is true for every plane
L ^ F, dim L > /c, and P<.L ̂  ^cL, ^ ' ^ ' on F.

In the case when dim L = dim Li == k + 1 the result is
an immediate consequence of Proposition 4.5 and Propo-
sition A.I. Otherwise,-it is easy to see that it is sufficient to
establish the statement in the case when

| dim L-dim Li| = 1 and L <= Li or L.i c L.

Assuming as we may that the two planes are R/ and R^"~1

we define for an arbitrary w e P^^R^), r > 0 and x e F :

0^) = ̂ J^,<,J_>(2/S Vt)\ ̂ ^/;

^(x)=r-1^ ̂ J^/,0)]^;

( /» pr >./.././ ., 2 \1 /2
0^) = r-'^ C f 6W^' ^ ̂ ') •

J\x-r\<rJ-r °yi ]

With these notations we have the inequalities

0,(^) ^ <D;(^) + <I>^)

and O^rc) ^ ^r^) + ^'rW' Using Lemma 4.1 one can show
that 0^) -> 0 ^^ on Ae plane determined by F. The
result is now obtained for L^ ^ L by using the first inequa-
lity and for L ^ Li by using the second, in each case with
w(y) replaced by w(y) == ^{y) — ^,L,(^).

Propositions A.I and A.2 justify the following definition.
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DEFINITION. — If u e P^/^R") then the abstract restric-
tion u\^ is realized by a measurable function f (or f is the
realization of u\i) if for some (and therefore every) plane
L ^ F, dim L > k, we have u^{x) == f{x) a.e. on F.

PROPOSITION A.3. — Every finitely valued measurable func-
tion f on R^ is a realization of u\^fc for some u e P^^R"),

In the proof we assume, as we may, by Proposition A.2,
that n = k + 1 and take advantage of the following two
facts :

a) every function in L^R71"1) is a realization of the abstract
restriction of a function in P^R") (extension operators of [3]
or [10]);

h) P^n-^R") = {v e P^R"); v\j,n-i -===. 0} is dense in

pl/2(Rn).

Let {Ap}pLo be a sequence of mutually disjoint compact
\ / °° \

sets in R"-1 such that /'JA is bounded and R^^t_JA?)
p \\ p=o /

is of n-1-dimensional measure 0; denote by fp the func-
tion fp(x) = f(x) on Ap, fp{x) •==- 0 on R^^Ap. Consider
any strictly decreasing sequence, pp ̂ \ 0, p —> oo, such that

i p-i \
min)r^(x)^ x e^J A,[ ^ 3pp. Let 9? G C^R71) be such

( p A-=0 ^

that 9p = 1 on Bp^(Ap), pp == 0 outside Bp^(Ap) where
Bg(A) denotes the s-neighborhood of A in R71. Let

Vp e P^^R'1)

be such that Vp\^i-i is realized by fp (note that fp e L^R'1"1)
and use a)). By b) we can find Wp such that

hp(^--^)llp^(R") < ^l/291pi^-p

(co^ = the volume of the unit ball in R") and Wp|^-i = 0.
Then Up === <?p(vp — Wp) has the property that Up\^n-i is

oo

realized by fp (Proposition A.I), and we define u == ^ Up.
p=-o

Clearly u e P112^) and the point is to show that u\^n-i
is realized by f. To this effect we consider for fixed p a point
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x e A.p such that (up)^(x) = fp{x). The last property means
that for every m there is r^ > 0 such that for r ^ r^,
r^ j^_y^^\Up{y) — fp{x)\ dy < 2-7"; the following argument
shows that the same inequality remains valid with Up replaced
by u, 2-^ replaced by 2~m+l provided that r ^ p^ where
I is the least index ^ max (m, p) such that p^ ^ r^. This,
of course, will complete the proof.

For r ^ p^ choose i ^ 0 such that p^n-i < r ^ p^
and write

^ S\.-y\<My^ - W\ ̂  ^ ̂  f\.-y\<r ^^(2/) - fpW ^

+r-n^ ^_^\u^)\dy.
s^i+i+r

The second sum is estimated by 2~m by Cauchy Schwartz
inequality applied to each term. On the ball {y ; \x — y\ < r}
the sum appearing in the first integral is by construction equal
to Up which completes the argument.

We shall next give an example showing that the converse
of Proposition A.I is false, in particular that two abstract
restrictions may be different even if they are both realized by
the same function.

Example. — We indicate the construction of a function f
on R1 with the following properties :

a) fe L^R1), f{x) = 0 for x < 0,
b) f{x) + f{— x) e P^R') equivalent by a) to

f\^ G P^(R1,), f{x) + f(- x) e C(R^), AO) = 0,

c) fi: P^R^, equivalent by a), b) to f\^ + 0.

In particular, the correction of f at 0 is 0 but

fW ^ °-
The function f is given in terms of its Fourier transform :

f(s) ̂  _______1_______
/ ̂  (3 + i^) (log (2 + i^'

considered as extended to an analytic function of ^ 6 C1
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regular in €^{1 + ^R1-} determined by the requirement
that it be positive on the halfline i — iR^. Note that for real S

- -j- ̂  arg (2 + i^) = - arg (2 - ̂ ) ^ -|- TT.

It is immediate that f e L^R1) and that its extension
converges to 0 for |^| -> oo in the lower halfplane of C1.
Hence f satisfies a).

Property b) follows from the finiteness of the integral
F^ [^) 4- ^(_ ^)|2(i ^ ^1/2 ̂  ^hich is checked by a

simple computation. Furthermore f(^) +/*(— ^) lsm L^R1)
and has the integral equal to 0.

To prove c) we check that f^ \f^}\\t + ^2)112 d^ = oo.
It should be noted that by extending the function f given

above in a suitable way we could obtain for an arbitrary
n ^ 1 a function ^ e P^R^) such that ^n-i ^ 0 but
^|^"-1 is realized by the function 0.

We shall next make some comments on the compatibility
conditions and Theorem 5.1. First of all, if all the data appea-
ring in (3.5) or respectively in (5.27) have realizations then the
compatibility conditions on 'TTI^0 (or D) are satisfied in
pointwise sense provided that they are satisfied in the sense
of abstract restrictions (Proposition A.I). The converse of
course is false. Furthermore, the solutions of (5.2') given by
(5.3') are also realized by functions and it is clear from the
proof of Theorem 5.1, Propositions A.I and A.2 that the exten-
sion u has the property that for every D e Jf^, I > 0 where
the abstract restrictions of u, or of its derivatives, are reali-
zed by functions, the same is true for u and realizations are
preserved.

On the other hand, if the reduced order a = — /c/2 then
in the setting of section 5 the simplices D of dimension
^ k are ignored. In the case when for some D e jTo with
dim D == /c, u[n is a measurable function it is still possible to
construct the extension u in Theorem 5.1 in such a way
that u\^ is realized by u\j).

To end this section we mention briefly a,n extension of the
concept of compatibility conditions and the content of
Theorem 5.1 to the setting when the function u given on a
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polyhedral set X <= B/1 has the property that

u|^o) e P^ri^),

where o .̂ are not necessarily all equal. It is then natural to
ask for an extension of u to R'1, say u, such that for each
W^ u e P<a/> on an open neighborhood in R^ of TO^.
The necessary compatibility conditions become somewhat
more cumbersome since on each Td^0, I > 0 conditions (3.5)
of different orders may involve different sets of W^-s,
containing W^0 in their borders. An exact analogue of
Theorem 5.1 remains valid with a similar proof except that
additional ca,re has to be taken in the choice of the extension
operator in Proposition 4.6; in particular, operators E:
p<a>(R/) _ pW(R^) with the property that for every f
on R1 Ef e C°° on R^supp /, are suitable. For instance,
extension operators considered in [10] have this property.
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