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EXISTENCE THEOREM FOR n-CAPAClTIES Q
by M. BRELOT.

1. For the study of inequalities in his theory of capa-
cities [I], Choquet needed the existence of n disjoint compact
sets of capacity 1, whose union is of capacity arbitrarily close
to n$ the capacities are in this case defined with respect to a
fixed domain and its Green's function. While the existence
proof is easy in the case of the whole F^ space (r ^>3), or in the
case of a Euclidean domain whose boundary is « sufficiently
regular » (in a sense to be defined), this is not so in the general
case, which is treated here on Choquet's request. We will
generalize somewhat on the conjectured theorem and deal
with an arbitrary Green space ^05 (that is, a space of type(2) ^
which has a Green's function, including in particular, the
hyperbolic Riemann surfaces). Reference is made mainly to
the paper [2] dealing with these spaces.

2. Consider a set E; let us denote its boundary by E,
and its closure by E. Also, we introduce an Alexandroff
point A) of So by means of which a compact space So ls

obtained. We shall use normaly the topology of ^o ^d
occasionally some notions in fc>o such as the boundary E',
and the closure E' of a set E. Certain obvious properties of
the Dirichlet problem in open subsets Q of ^o with the topology
of 60 w1^ he utilized.

( ' ) This research was supported by the United States Air Force through the oliice
of Scientific Research of the Air Research and Development Command.

(2) We recall [2] that to every point P of the Hausdorft' space 8 there correspond
an open neighborhood T'p and a homeomorphism from Tp onto an open set of R'
(which is the Euclidean space compactified by a point at infinity) with a conformal
(r =-= 2) or isometric (r ^> 2) structure.
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We recall that if H? is the solution corresponding to a
function f given on the boundary [.)/, then the restriction of
Hp to an open subset co is equal to the necessarily existing
solution Hj? with respect to the function ^ defined as follows :

-===^ on &tnu/

' (Hy on &nQ

We derive from criterion B, No. 15, of [2] the

LEMMA 1. — Suppose that K is a compact subset of So-
Then the inward flux into any regular (3) open set containing
K is non-negative for every solution u == H^0""^ where f
vanishes on A and is non-negative on K.

We recall that the equilibrium potential of K in 8,) is equal,
outside of K, to the solution U == Hj0""^ where f vanishes at Ao
and is equal to 1 on K; the extension of this function U,
defined by assigning to it the value 1 on K, is a quasi-super-
harmonic function, equal, except at points at which K is thin,
to a G-potential (Green-potential) of masses (JL ̂  o situated
on K, and whose total is the capacity of K. Except for a
numerical factor, this capacity is therefore also equal to the
flux of U passing into any regular open set containing K.

Let us now recall Lemma 9 of No. 22, article [2].

LEMMA 2. — Suppose that K^ is a compact subset, varying
in a fixed domain Dp of fy (where Dp is defined by Gp>^).
If the equilibrium potential of K^ tends to zero at P, then the
capacity tends to zero.

From this the following fundamental lemma is obtained :

LEMMA 3. — In S>o consider an increasing sequence 0^ of
domains tending to &o as limit, such that each_ Q^ is relatively
compact in 80 (that is, such that the closure Q^ of eachQ^n^o
is compact). We note that the set Dp, where Gp^-X, is not
necessarily compact.

It follows from the hypothesis that the capacity of the
compact set a^ == D^ n (]„ tends to zero, and the capacity of
the compact set K^ == Dp n Q^ tends to 1/X.

(3) Cf. [2] for precise definition.
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We remark that in (^—Kn) the function 1/X. G^ is the
solution of the Dirichlet problem for boundary values vanishing
at A), equal to 1 on (Dp n QJ and less on o^ than a constant h > 0
independent of n (for n sufficiently large). Hence:

eq. pot. of K^ <: 1/X Gp <, eq. pot. of K.n + h. (eq. pot. of o^)

Analogous inequalities hold, in the same order, for the respec-
tive quantities of flux entering an open set containing K^ by
virtue of lemma 1. Thus :

cap. Kn <; I/A ̂  cap. K^ + h. cap. o^. Kn <; 1/X ̂  cap. Kn + h. cap. o^

We shall show that the capacity of cx.n tends to zero; in view
of lemma 2, it will be sufficient to show that the equilibrium
potential Vn of a^ tends to zero at each fixed point.

Now, set (^ == D} n CQ^ (this set contains aj and denote by co^
the connected component of C(^ which contains P. V^ is
dominated by the solution Wn of the Dirichlet problem for co^
respective to boundary values which vanish at A^, and are equal
to 1 elsewhere. Now, we may prove easily, for instance, by
application of theorem G'-IS (No. 16 of [2]), that the quantity
(Gj°—Gp'") is equal to the solution of the Dirichlet problem
in co^, respective to boundary values vanishing at A and equal
to Gj° elsewhere; thus, this quantity dominates \w^ The
proof is completed by observing that G^" tends to Gj°.

3. The simplest method of establishing the proposed
theorem seems to involve the following result obtained
independently by N. Aronszajn and K. T. Smith.

LEMMA 4. — If Ko is any compact set (not containing any
point at infinity of So when T ̂ . 3) (4), and if \ is a non-negative
number not exceeding the capacity yo °t Ko, then there
exists a compact subset of Ko whose capacity equals \ (°).

By means of sufficiently small neighborhoods of each point

(4) A point at infinity of 89 (T ̂  3) forms a set of strictly positive capacity;
this necessitates the elimination of such points.

(5) Choquet has pointed out that the following proof can be extended to any
numerical function / (K) ^> 0 (of a compact set K) which is continuous on the
right, subadditive and such that / (K) === 0 for any finite K.

Choquet has proved also that if K is any compact set of greenian capa-
city X > 0, for every p. such that 0 < (A < \ there exists a family with the power
of continuum, of compact subsets whose capacity is equal to p..
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of Ko, this set may be covered with a finite number of compact
sets a^, each of capacity less than £, where £ is an arbitrarily
preassigned positive number. We may then form a finite
sequence of some intersections (Ko n a,), taken in arbitrary
order, whose union possesses a capacity just exceeding y.
This union is a compact set whose capacity lies between X and
(X + s). From this compact set we can then obtain in the
same manner another one contained in it, whose capacity lies
between ^ and (X + £/2), and so on. We thus form a decrea-
sing sequence of compact sets K^ whose intersection is indeed
a set of capacity y. This follows from the « continuity on the
right» of the capacity, which may be proved, for instance,
by using the well-known « continuity from inside » of the solu-
tion of the Dirichlet problem.

Instead of Lemma 4, we may also use the following lemma
which permits the choice of a simple form for the compact
sets of the proposed theorem.

LEMMA 5. — (G) Every open set (Oo of capacity yo > 0 (least
upper bound of the capacities of all compact subsets of coo)
eontains a compact set of pre-assigned capacity X (0 < X < yo)
such that this compact set is « simple », i. e., is the union of
finitely many disjoint compact sets which may be assumed
« elementary » in the following sense : each of them is contained
in a neighborhood °0p and its image in Vp is a closed sphere
or disc in the case of isometric structure; in the case of
conformal structure, it is a domain whose boundary is a Jordan
analytic curve.

Let us consider first for the case of a 2-dimensional space
(r == 2) a very regular (7) open set (Oi and an open set (03,
relatively compact (8) in ^o, such that oi)i c (OQ, 0)4 c cog and that
the capacity y^ of (Oi exceeds X. By covering the boundary 5)^
with a finite number of neighborhoods "Op which are dealt
with in succession, we form a simple set E which does not meet
&2? and which cover &i except for a set e of length less than a
prescribed number l ( 9 ) ,

(6) In this lemma the points at infinity cause no difficulty. By eliminating
them, the capacity of the open set under consideration is not changed.

(7) For exact definition see [2] No. 6.
(8) i.e., whose closure in 80 is compact.
(9) In the case of conformal structure, this length is defined in a pre-assigned

metric, the definition of which is given in [2] No. 5.
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Now the equilibrium potential of E is a majorant for the
solution of the Dirichlet problem in 8—(Oi for values vanishing
on Jb and e, and equal to 1 elsewhere. On co^, this solution is,
for I sufficiently small, arbitrarily close to the equilibrium
potential V of 6)1, by virtue of the nature of the harmonic
measure in 6—oji. Thus, the elementary compact sets of E
can be chosen in such a way that on &g the equilibrium potential
of their union exceeds 0V, where 0 <^ 1 is arbitrarily close to 1.
Hence by virtue of Lemma 1, E may be chosen in such a way,
that its capacity is greater than yi — £, with £ > 0 arbitrarily
prescribed.

Thus, a simple set E whose capacity exceeds X can be
obtained.

Let us consider the elementary compact sets of such an E
in any fixed order; we terminate the sequence as soon as the
total capacity obtained is not less than ^.

Let us examine the non-trivial case when the total capacity
of our partial sequence X actually exceeds it. Denoting the
last set of ^ by So, we consider So on its local image. If the
image is not a circle, then we consider a variable compact set
S contained in So, such that, under the conformal mapping
of So on an circle, S corresponds to a circle of radius p, concentric
with the one on which So is mapped. It is easy to see that the
capacity of the union of ^—So and the variable compact set
is a continuous function of p. The continuity on the right
(S considered decreasing) is obvious (in view of the continuity
on the right of the capacity, or of the continuity from inside
of the solution of the Dirichlet problem). As regards continuity
on the left, (S considered increasing to So, S c So) we observe
that the global equilibrium potential, which is maj orated by
the equilibrium potential of H, is an increasing superharmonic
function whose limit is 1 in the interior of So, and hence on
its boundary (as well as on the remaining elementary compact
sets). It follows that this limit is a majorant for the equilibrium
potential of S, and hence is equal to it. It is obvious that the
respective capacities converge correspondingly. The conti-
nuous dependence on p makes it possible to choose the variable
compact set in such a way that the global capacity is exactly X.

In the case of a T-dimensional space (r ̂  3), the choice of
the elementary compact sets which almost cover &^ is more
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difficult. However, we can take for coi a union of spherical
domains, eliminate a sufficiently small neighborhood of the
intersection of their surfaces, and cover almost all the remainder
of &i by means of small spheres orthogonal to the preceding
ones. The rest of the argument is as before.

EXISTENCE THEOREM. — Given a positive integer N, and
£ > 0, then there exist in ^ N mutually disjoint compact sets^
each of capacity 1, such that the capacity of their union d i f f e r s
from N by less than e, and these compact sets may even be chosen
to be simple.

Let us consider an increasing sequence of domains Q^
tending to @o? ^d assumed relatively compact in So-

Recall the notations : Dp denotes the domain in which Gp > X $
Sp denotes its boundary, on which Gp == X; Dp denotes the union
of these two sets, that is, the closure of Dp. We choose a
first value of X, say, \. We note first that the capacity
of Dp' n Q^ or of its boundary (Sp1 n Q^) u (Q^ n Dp1) tends to
1/Xi as _that of (Q^ n Dp1) tends to zero. Hence the capacity
of £p n £)„ exceeds 1 for n sufficiently large.

In (£p n [)„) we may choose in accordance with Lemma 4 a
compact set a, of capacity 1, provided that X, has been chosen
so that Zp' does not contain a point at infinity.

We choose an Q^ containing ai; the ratio of the values of
a variable positive harmonic function in Q^ taken at P and at
an arbitrary point of o^ is always between two positive numbers
ri and l/r^i < 1).

Observe now that (1/Xi. Gp) is a majorant for the equilibrium
potential of a,.

We then choose \ small enough to satisfy:
a) \ < £0^1 ? ^2 <1 ̂ i (^ arbitrarily chosen > 0)
b) Dp contains (}„,
c) ^p' does not contain a point at infinity.

Consider n sufficiently large so that (Sp2 n QJ is of capacity > 1;
in this set we fix a compact set a^ of capacity 1. On this set,
the equilibrium potential of a, will be less than £o; and its
own equilibrium potential will be equal to ^3 at P, hence
will be maj orated by -2 < £o on a^.

r!

In like manner ^3 may be found, such that on Sp3 a compact
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set 03 of capacity 1 can be chosen, whose equilibrium potential
is less than £o on a^ and o^, while the equilibrium potentials
of <Xi and o^ are less than £o on a?,*

Thus we successively form N compact sets of capacity 1,
such that each of them has equilibrium potential less than £o
on each of the other sets. Therefore, the sum of the equili-
brium potentials is on each of them quasi-everywhere between
1 and (1 + (N — l)so). The value of this sum lies therefore
between the equilibrium potential of the union and the quantity
obtained by multiplying this potential with (1 + (N—l)£o) -
It follows from Lemma 1 that the capacity of the union differs
from N by less than N(N — !)£,.

To prove the existence of simple compacts the above reaso-
ning must be slightly modified. Instead of choosing a compact
set (x.^ on S^' we shall consider the open set on which ̂  <^ Gp << X^,
and its intersection with one of the 0,,, choosing \[ and ^
close to AI < 1, and n sufficiently large; in the open set thus
obtained we choose a compact set in accordance with Lemma
5, etc.

EXTENSIONS. — 1). The reasoning can easily be modified
to extend the results somewhat: It is possible to form a sequence
of compacts K^ (even simple compact sets) each of capacity 1,
with the following property : given £ > 0, there exists an index HQ
such that the union of any number N of compact sets of the
sequence with indices >7Zo is a compact set of capacity lying
between N and (N—Ne) , or even, according to an improvement
of N. Aronszajn, between N and N — £.

We can choose the )<, and compact sets K( of capacity 1
on S '̂ or between two surfaces S^ and E^ (with X^ and ^/ close
to Xf), in such a way that, on each K^, the equilibrium potentials
of all the other K( have a sum smaller than the term £„ of an
arbitrarily given sequence of positive numbers with finite sum.

In order to obtain the result of Aronszajn, we must use his
more subtle argument, as follows : Let [JL be the capacitary
distributions of the systems S of N compact sets K^K^... K^,
and a^. the capacitary distributions of the compact K^..

If IP denotes the Green's potential of v, we may write

/U^S d^ == fV^id^ = /SU^rfpi.
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The first integral is obviously equal to N$ the last one is not

greater than » <^pt. + S ( ^d^. The first term is equal to N.
J S (==1 J ^ni

Now, on K^. the total amount of m is not greater than the
capacity of K^, i. e. 1. (Compare, for instance, the equili-
brium potential of S and of K^. in the neighborhood of K^.;N cone may use Lemma 1 or a similar one.) ^ ( ^mdy- is the-

N y. i=iJ^ni

refore not greater than ^ £^ -^ ^ £p which is arbitrarily
i=-i l p=ni

small when n^ is large enough.
2) An obvious modification of the reasoning extends the

results to compact sets K( of capacity not equal to 1 but to
an arbitrary number 9 > 0.

3) We may also consider capacities which are not necessa-
rily equal, and we may form, for instance, N disjoint simple
compact sets having given positive capacities, and such that
their union is of capacity arbitrarily close to the sum of the
capacities.
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