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SOME CHARACTERIZATIONS
OF ULTRABORNOLOGICAL SPACES*

by Manuel VALDIVIA

In this paper we show that an ultrabornological space E is the
inductive limit of a family of nuclear Fréchet spaces and we prove
also that E is the inductive limit of a family of nuclear (DF)-spaces.

The vector spaces that we use here are defined over the field
K of the real or complex numbers. With the word “space” we shall
mean “separated locally convex spaces”. Given the space E, then E’
is its topological dual. We denote by o(E , E') and u(E , E') the weak
and Mackey topologies, respectively, on E. If A is a bounded closed
absolutely convex set in the space E, then E, is the normed space on
the linear hull of A, with A as closed unit ball. If C is a compact set,
with non-empty interior, in the n-dimensional euclidean space R”,
@, is the space of all the real or complex valued functions, infinitely
differentiable, with compact support contained in C, provided with
the topology of the uniform convergence on all the derivatives of
order q, g =0,1,2,... @ is the topological dual of M, with the
strong topology. @(2) and ®'(2) are the well-known spaces of
L. Schwartz, with the strong topologies, being £ an open set of R”.

If x=(;,x;,...,x,) is apoint of R® and p = (p,,p,,...,0,),
being p; a non-negative integer, j = 1,2,...,n, then x? denotes
XUxb2 X pl=p, +p, + - +p, and dx = dx,dx,...dx,.

In [4] we have shown the following result : a) Let E be a Banach
space. If {xn} is a sequence in E, such that, for every positive integer p,
the sequence {2°" x,} converges to the origin then there is in E a
compact absolutely convex set B, so that Ey is a Hilbert space and in
Eg{x,} is a sequence such that {2°"x,} converges to the origin.

(*) Supported in part by the “Patronato para el Fomento de la Investigacion en la
Universidad”.
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We follow the same way, as we did in [4] for result a), to prove
Lemma 1.

LemMa 1. — Let E be a Banach space. Let {\,} be a strictly
increasing sequence of positive integers. If {x,} is a sequence in E,
such that, for every positive integer p, the sequence{)\;n xn} converges
to the origin, then there is in E a weakly compact absolutely convex
set B, so that Eg is a Hilbert space and in Eg{x,} is a sequence such
that {No_ x,} converges to the origin.

Proof. — Clearly, it is sufficient to carry out the proof when
x,#0,n=1,2,..., which we are going to suppose. Let f be the
linear mapping of /* into E such that

oo

fdah) =Y a, G, /lx, 1172 .

n=1

Since{)\gn x,} converges to the origin and Z )\;3 < oo, then 2 llx, Il
n=1 n=1

is convergent. On the other hand

<(X 1e, )" (% lx, )2
n=q

n=q

oo

Y a,(x,/lx, 1)

n=q

Therefore, f is well defined and maps every bounded set of /* in a
bounded set of E and, thus, f is continuous. Let g be the canonical
mapping of 1% onto l2/f_1(0). If f= h o g, then h is a continuous in-
jective linear mapping of the Hilbert space 12/f71(0) in E. If U is the
closed unit ball of /2, then g(U) is the closed unity ball of /2/f~*(0)
and, therefore,

oo

B=h(gU) =fU) =] a,c,/ix, 1" : 3 la, <1,

n=1 n=1
a, €K, n=1,2,...,,
hence Eg can be identified with Zz/f"l(b). Given two positive integers

p and r, there exists a positive integer n; such that r)\fm IIx, 12 < 1,
n=n,.Sincex,/lx,I"*€B,n=1,2,...,wehave that forn > n,
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N, x, =N, 0, [llx, 1) lx, M2 EXNElx, IM? B =
=, Il x, I"*1/HBC(/)B,

and, therefore, {'7\;,, x,} converges to the origin in Ey. Finally, B is
weakly compact in E, since U is weakly compact in /*> and B = f(U).

Q.E.D.

In [4] we have proved the following result : b) Let E be a Hilbert
space of infinite dimension. If {x,} is a sequence in E such that,
for every positive integer p, the sequence {2°" x,} converges to the
origin, then there is in E an orthogonal sequence {y,}, so that its
closed absolutely convex hull contains{x,} and {2°" y,} converges to
the origin.

We follow the same way, as we did in [4] for result b), to prove
Lemma 2.

LEMMA 2. — Let {)\n} be a strictly increasing sequence of positive
integers. Let E be a Hilbert space of infinite dimension. If{x,} is a
sequence in E, such that, for every positive integer p, the sequence
{)\fm xn} converges to the origin, then there is in E an orthogonal
sequence {u,} >0 that its closed absolutely convex hull contains{x,}
and {)\Zn u,} converges to the origin.

Proof. — Since E has infinite dimension, we can choose a se-
quence {y,} in E, y, # 0, n = 1,2,..., with infinite dimensional
linear hull, such that the closed absolutely convex hull of the se-
quence {y,} contains {x,,}, and so that, for every positive integer p,
the sequence{)\;n ¥,} converges to the origin. By induction we select
an increasing sequence of positive numbers {nq} setting

1,2,...}

Ny, I =suwp{liy,ll:n

il

IIy,,qI|=sup{I|y,,II:n ng_ytling_ +2,..},q>1.

Letz,=(,/lly,ID IIynq lhn=n,_ +1,n,_;+2,....n,,q=12,...,
n, = 0. The closed absolutely convex hull of the sequence {z,}
contains {xn}, Wz, =z, I, n=1,2,..., and, for every posi-
tive integer p, the sequence {\), z,} converges to the origin. We
construct, by induction, a family of sequences in E,{z_,},¢=1,2, ...
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Wesetz,, =z,,n=1,2,... We suppose the sequence {zqn}already
constructed. Let z,, .y be the first non-zero element of this sequence.
If H, is a hyperplane in E, orthogonal to Zgn(q) » Passing through the
origin, we represent by z a+)n the orthogonal projection of Z4n ONtO

H Clearly, we can choose a positive integer p, such that S‘ )\ po a <L
n= 1

If

= poq(“zn(q)”/nzqn(q) ) Zan(q) >
then the sequence {u,} is orthogonal. Given any positive number r we
obtain a positive integer r, such that n(ry) <r <n(r, + 1). We can
set

o

Z, = ..al Aq2qn(q) = 2 b u
q=

If (x,y) is the inner product of any two elements x, y €E, then
(z,, uq) = bq(uq S uq), and so

p
1bg | < liz, I/lltg Il = 112, /N0 12, gy 1D <
N ENSN 1 cTERINESD W
and, therefore, if vEE' and (v, u,)<1,n=1,2,...,then

o o

[,z < Y 1by (v, u) < S 3,70<1,

d Po4q

hence the closed absolutely convex hull of {u,} contains z, and,
therefore, it contains {x, }. Finally, for every pair of positive integers
p and q, we get

IAD, g Il = A0, X

pq “q Pq p q “Zn(q) < )‘(p +pg)q e

o pora 12411 =
__ \P*Pg
- }‘(p+po)q ”Zq I

and, therefore, the sequence {A? u } converges to the origin.

pn u,

Q.E.D.

Markushevich proves in [1] that every separable infinite-

dimensional Banach space has a basis in the wide sense, (see also [2]

p. 116). In Lemma 3 we shall give a more general result than the one
given above. We shall need it later.
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LEMMA 3. — Let E be an infinite-dimensional space, with
E'[0(E', E)] separable. Suppose that there is in E a bounded coun-
table total set. If E is sequentially complete there is a Markushevich
basis {x, , u,} for E, such that the sequence {x,} is bounded.

Proof. — Let {y,} be a bounded total sequence in E. Let f be
the linear mapping from /2 into E such that, if {q,} € /%,

fa,h)=2 nta,y,
n=1

If g is a continuous seminorm in E, thenq(y,)<c,n=1,2,...
and, therefore,

n~'la,lq(y,) <

8

q( ) n“anyn) <
nTm

n=m

<c< Z n—2)1/2 (Z lan|2)l/2 :
n=m n=m

from here, and being E sequentially complete, it follows that fis well-
defined and it is bounded and so it is continuous. If B is the closed
unit ball of /> and A = f(B), then E, can be identified with the Hilbert
space 1?1~ (0). If {v,} is a total sequence in E'[0(E",E)] whose
elements are linearly independent, then {v,} is total in

(Ep) [0((EL) ,EDT,

and applying the Gram-Schmidt process we obtain an orthonormal
sequence {u,} in (EA)'[u((EA)',EA)]. If x, is a continuous linear
form on (E,) [6((E,)', E))], such that (x,,u,)=1,{x,,u,)= 0,
n#m, n, m=1,2,..., then {x,} is total in E, and, there-
fore,{x, , u,} is a Markushevich basis for E, such that{x,} is a bounded
sequence in E.

Q.E.D.

THEOREM 1. — Let F be a sequentially complete infinite-dimen-
sional space with the following properties :

1) There is in F a bounded countable total set.

2) There is in F' [0 (F', F)] a countable total set which is equi-
continuous in F.
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3) If u is an injective linear mapping from F into F, with closed
graph, then u is continuous.

If E is an infinite-dimensional Banach space then E is the induc-
tive limit of a family of spaces equal to F, spanning E.

Proof. — According to Lemma 3 we construct a Markushevich
basis {x,, u,} for E so that the sequence {x,} is bounded. Since in
the proof of Lemma 3 we chose the sequence {v,} with the unique
conditions that it is total in F'[o(F', F)] and linearly independent,
we can suppose, according to property 2), that{«,} is in the linear
hull of an equicontinuous set in F. We determine a sequence{A,} of
positive integers, strictly increasing, such that the sequence {)\;1 u,}
be equicontinuous in F. Let M be the o(F', F)-closed absolutely
convex hull of {)\;l u,}. Let 8 be the family of all the sequences of
E holding the two following properties : «) If {y,} € $ then, for
every positive integer p, the sequence {7\1’;" »,} converges to the origin
in E. B) If {y,}€ 8 and{a,},{d,} are two different bounded sequences

oo

of K then Y a,y, and }' b,, are different points of E.
n=1 n=1
Given an element {y,} = s€ § we define a linear mapping f;
from F into E so that, for every x €F,

fi() = i (x,u,)y,

n=1

Let M° be the polar set of M in F. We have that i \;? < and
n=1

II)\,3,yn l<e, m=1,2,..., being ||yl the norm of every y €E.

Thus, if x € M°, it results that

¥ Ax,u)y,

n=1

=
e

n=1

NN ) Iy, < e Y N2,
n=1

from here, f; is well-defined and transforms M°, which is a neigh-
bourhood of the origin in F, in a bounded set of E, hence f is
continuous. According to property ) the mapping f, is injective.
Then, if E; = f,(F) we can give to E a topology @, , finer than the
induced topology by E, such that E [®,] can be identified with the
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space F. Let us see now that E is the locally convex hull of the family
of spaces {E [®,] : s€8}. Let U be an absorbing absolutely convex
set in E such that, for every s €38, UN E_ is a neighbourhood of the
origin in E[®_]. Let us suppose that U is not a neighbourhood of the
origin in E. We take z, €E, |Iz, || = A\{'. Let w, be an element of
E' such that (w,,z, )= 1. Supposing constructed {w,,, z,,}m-; SO
that <(w,,, z,,) = 1, (wm,zp)= Oom+#p mp=1,2,...,n, let

H,= A w,'(0). Since UNH, is not a neighbourhood of the

n

origin in H,, , for the induced topology by E, we choose z,,, €H,,

2,0, €U, iz, Il = x(‘:jl*)‘;, and in E'w,,, such {w,,, ,2,,,) =1

and (w,,,,2,>)=0, m=1,2,...,n If y, =X\, z, the sequence
r ={y,} belongs to & and, therefore, UNE, is a neighbourhood of
the origin in E_[®,]. The sequence {\, 1xn} converges to the origin
in F, from here the sequence {f,(A\; ' x,)} ={\,'y,} ={z,} converges
to the origin in E, [®¥,] and, therefore, there is a positive integer 7,
such that z, EUNE,, for n 2 n,, which is a contradiction. Given a
point zE€E, z # 0, the sequence {z,} can be constructed so that
z, = (\,/lzIl)z and, therefore, E = U{E, : s€8}. Let us see now
that the family {E, : s €8} is directed by inclusion. Let s, and s, be
two elements of $ so thats, ={y,}, s, ={y,}.Weputs,, , =Ny,
t, = )\,21 v, n=1,2,... For every positive integer p, the sequence
{\),, t,} converges to the origin in E. Let A be the closed absolutely
convex hull of the sequence {¢,}. If y € B there is a element x of F
such that

(x,u,)y,
1

s

<
Il

n

and, therefore,

N2 x ) ty,
1

s

y:

n

On the other hand )’ )\;2<°° and [{x,u ) <a,n=1,2,...,
n=1

hence if follows that y is in the linear hull of A. Reasoning in an

analogous way for the case when y is in E32, we have that the linear

hull of A contains E, UE, . By Lemma 1 there is in E a weakly

compact absolutely convex set B such that Ep is a Hilbert space
and in EB{tn} is a sequence so that, for every positive integer p,
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{)\5,, t,} converges to the origin. By Lemma 2 we find an orthogonal
sequence {q,} in Ey which has the property «) and its closed abso-
lutely convex hull contains{7,}. Let s, ={q,}. Since {q,} is ortho-
gonal in E; we have that {q,} has the property ), from here s; €S.
Let us see now that Es3 D ES; ) Es2 ; it is sufficient to prove that

Es3 contains the closed absolutely convex hull P of the sequence

{q,}. If z€P it is obvious that

p— %l
2=Y ¢, q,, Y lc,I<1
n=1 n=1

Since {x,} is a bounded sequence in the sequentially complete space

F, then Y ¢, x, belongs to F and, therefore,

n=1

C,qn =z€Es3
1

s

CpXp, Up)q, =
1 n

s

=
1l

Finally, if s, r€8 and E; CE,, let u, be the canonical injection
from E [% ] into E. The mapping u, is continuous and so its graph
is closed in E [®,] x E [%,]. According to property 3) it results
that G, induces in E a topology coarser than G, .

Q.E.D.

THEOREM 2. — If E is an ultrabornological space, then E is the
inductive limit of a family of nuclear Fréchet spaces, spanning E.

Proof. — If the topology of E is the finest locally convex topo-
logy, then E is the inductive limit of the finite-dimensional sub-
spaces of E. In the other case, E is the inductive limit of a family of
infinite-dimensional Banach spaces spanning E, and, therefore, it is
enough to make the proof for the case that E is an infinite-dimensional
Banach space. We take F, in Theorem 1, equal to @, which is nuclear
and separable, and its topology is defined by a countable family of
norms, and so properties 1), 2) and 3) of Theorem 1 hold, hence E
is the inductive limit of a family of spaces equal to @, spanningE.

Q.E.D.
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THEOREM 3. — If E is an ultrabornological space, then E is the
inductive limit of a family of nuclear (DF)-spaces, spanning E.

Proof. — It is analogous to the proof of Theorem 2, changing
@ to its strong dual D¢.
Q.E.D.

THEOREM 4. — If E an infinite-dimensional Banach space, then E
is the inductive limit of a family of spaces equal to D (K2), spanning E.

Proof. — Let {w,,} be a linearly independent sequence in ®'(£2),
whose elements are the monomial functions x? with p; any non-negative
integer, j = 1,2,...,n. The sequence {w,,} is total in D'Q). If
w,, =xP™ let v, = w,.m - PMI-n-1 If , € D(Q) there exists a
positive integer m, such that the support A of ¢ is contained in the
ball with center O and radius m,. If m = m; we have

— I—n—1
[{v,, , )| = m~Ip(mi=-n

f @ (x) xPt™ dx
A

< m-lpm)i-n -1 m(‘)P(m)l'UI sup l¢(x) | < m-—1! sup |¢(x) |

xXEA xEA
hence {v,} converges weakly to the origin in @'(2) and, therefore,
{v,} is equicontinuous in @ (£2).

Let C be a compact set in £ with non-empty interior. Then @
is a subspace of M () and {vn} is total and linearly independent in
My, being also equicontinuous in M. We apply now Lemma 3 and we
obtain from {v,,} a Markushevich basis {x,, , u,} for @, such that
{x,,} is bounded in @, and also in M(L2). Obviously {u,} is total in
@' (£2). On the other hand if u is a linear mapping from D(£2) into
@(S2), with closed graph, then u is continuous, (see [3], p. 17).
Following now the same method as in the proof of Theorem 1, the
conclusion of the theorem is obtained.

Q.E.D.

COROLLARY 1.4. — If E is an ultrabornological space such that
o(E',E) # u(E',E), then E is the inductive limit of a family of
spaces equal to M (K)), spanning E.

COROLLARY 2.4. — The space ®'(2) is the inductive limit of a
family of spaces equal to @ (S2), spanning @' (S2).
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