Completeness and existence of bounded biharmonic functions on a riemannian manifold

<http://www.numdam.org/item?id=AIF_1974__24_1_311_0>
COMPLETENESS AND EXISTENCE
OF BOUNDED BIHARMONIC FUNCTIONS
ON A RIEMANNIAN MANIFOLD

by Leo SARIO (1)

A.S. Galbraith has communicated to us the following intriguing problem: Does the completeness of a manifold imply, or is it implied by, the emptiness of the class H^2B of bounded nonharmonic biharmonic functions? Among all manifolds considered thus far in biharmonic classification theory (cf. Bibliography), those that are complete fail to carry H^2B-functions, and one might suspect that this is always the case. We shall show, however, that there do exist complete manifolds of any dimension that carry H^2B-functions. Moreover, there exist both complete and incomplete manifolds not permitting these functions, and, trivially, incomplete manifolds possessing them.

We attach a Bibliography of recent work in the field.

1. Let C be the totality of complete Riemannian manifolds M, characterized by an infinite distance of any point of M to the ideal boundary. Denote by $\mathcal{E}_{H^2B}^N$ and $\tilde{\mathcal{E}}_{H^2B}^N$ the classes of N-manifolds, $N \geq 2$, for which $H^2B = \emptyset$ or $H^2B \neq \emptyset$, respectively.

Theorem 1. - $C \cap \tilde{\mathcal{E}}_{H^2B}^N \neq \emptyset$ for every N.

Proof. - Take the N-cylinder

$$|x| < \infty, \quad |y_i| \leq 1, \quad i = 1, 2, \ldots, N - 1,$$

with each face $y_i = 1$ identified with $y_i = -1$, so as to obtain a covering space of the N-torus in the same manner as a conventional cylinder is a covering surface of the torus. Let T be this N-cylinder with the Riemannian metric

(1) The work was sponsored by the U.S. Army Research Office-Durham, Grant DA-ARO-D-31-124-71-G181, University of California, Los Angeles.
\[ds^2 = \mu^{-2}(x) \, dx^2 + \mu^{4/(N-1)}(x) \sum_{i=1}^{N-1} dy_i^2 \]

where
\[\mu(x) = (2 + x^2)^{\frac{1}{2}} \log(2 + x^2). \]

To see that \(T \in C \), it suffices to show, in view of the symmetry, that
\[\int_0^\infty \mu^{-1}(x) \, dx = \infty. \]

The verification is immediate:
\[
\int_0^\infty (2 + x^2)^{-\frac{1}{2}} \log^{-1} (2 + x^2) \, dx > \frac{1}{2} \int_0^\infty (2 + x)^{-1} \log^{-1}(2 + x) \, dx
\]
\[= \frac{1}{2} \int_0^\infty \log \log(2 + x) = \infty. \]

We introduce the function
\[u(x) = \int_0^x \mu^{-3}(t) \int_0^t \mu(s) \int_0^s \mu^{-3}(r) \, dr \, ds \, dt. \]

The Laplace-Beltrami operator \(\Delta = d\delta + \delta d \) gives
\[\Delta u = -g^{-\frac{1}{2}} (g^{-\frac{1}{2}} g^{xx} u')' = -\mu^{-1}(\mu \mu^2 u')' = -\mu^{-3}(r) \frac{\partial}{\partial r} \]
and
\[\Delta^2 u = -\mu^{-1}(\mu \mu^2 (-\mu^{-3}))' = 0. \]

Thus \(u \) is nonharmonic biharmonic.

To see that \(u \) is bounded it suffices to show that it is so for \(x > 0 \). For all \(s > 0 \),
\[\int_0^s \mu^{-3}(r) \, dr = \int_0^s (2 + r^2)^{-3/2} \log^{-3}(2 + r^2) \, dr = o(1), \]
and for all \(t > 0 \),
\[\int_0^t \mu(s) \int_0^s \mu^{-3}(r) \, dr \, ds < c \int_0^t (2 + s^2)^{\frac{1}{2}} \log(2 + s^2) \, ds
\]
\[< 2c \int_0^t (2 + s) \log(2 + s) \, ds
\]
\[= c \left[(2 + t)^2 \log(2 + t)
\]
\[- \frac{1}{2} (2 + t)^2 + \text{const.} \right]. \]
Here and later c is a constant, not always the same. We let $[]$ stand for the expression in brackets and obtain

$$u(x) < c \int_0^x (2 + t^2)^{-3/2} \log^{-3}(2 + t^2) [\] \, dt.$$

The dominating term in the integrand is majorized by

$$\frac{1}{2} t^{-3} \log^{-3} t \times (2 + t)^2 \log(2 + t).$$

The integral from 1 to $x > 1$ is bounded, and consequently so is u for all x.

This completes the proof of Theorem 1.

2. The following simple example, valid for $N \geq 3$, is perhaps also of interest. Let

$$T : \quad |x| < \infty, \quad |y| \leq \pi, \quad |z_i| \leq 1, \quad i = 1, \ldots, N - 2,$$

with the metric

$$ds^2 = dx^2 + e^{-x} \, dy^2 + e^{(2e^x - x)(N-2)} \sum_{i=1}^{N-2} dz_i^2,$$

the opposite faces again identified by pairs. Clearly $T \in \mathbb{C}$.

The function

$$u = \cos y$$

belongs to H^2B. In fact,

$$\Delta u = -e^{-e^x + x} (e^{e^x - x} e^x) (-\cos y) = e^x \cos y,$$

and

$$\Delta^2 u = -e^{-e^x + x} [(e^{e^x - x} e^x)' \cos y + e^{e^x - x} e^x (-\cos y)] = 0.$$

Thus $T \in \mathbb{C} \cap \tilde{\mathcal{O}}_{H^2B}$.

3. The reason that we are only interested in nonharmonic biharmonic functions is, of course, that completeness is known not
to exclude bounded harmonic functions (Nakai-Sario [6]). For \(N \geq 3 \), we insert here a simple proof of this fact.

Take the \(N \)-cylinder

\[T: \quad |x| < \infty, \quad |y| < 1, \quad |z_i| < 1, \quad i = 1, \ldots, N - 2, \]

with the metric

\[ds^2 = dx^2 + e^{2x^2} dy^2 + \sum_{i=1}^{N-2} dz_i^2. \]

Trivially \(T \in C \). The function

\[h(x) = \int_0^x e^{-t^2} \, dt \]

is harmonic,

\[\Delta h = - e^{-x^2} (e^{x^2} e^{-x^2})' = 0. \]

It also is bounded and, in fact, even Dirichlet finite:

\[D(h) = c \int_{-\infty}^{\infty} e^{-2x^2} e^{x^2} dx < \infty. \]

4. We return to nonharmonic biharmonic functions.

Theorem 2. \(- C \cap \hat{\Theta}_{H^2 B}^N \neq \emptyset \) for every \(N \).

Proof. The Euclidean \(N \)-space \(E^N \in C \). Every biharmonic function \(u \) has an expansion in spherical harmonics \(S_{nm} \)

\[u = \sum_{u=0}^{\infty} \sum_{m=1}^{mN} (a_{nm} r^{n+2} + b_{nm} r^n) S_{nm}. \]

If \(u \in H^2 B \), then

\[\int_{|x|=r} u S_{nm} d\omega = c (a_{nm} r^{n+2} + b_{nm} r^n) \]

is bounded in \(r \), hence \(a_{nm} = b_{nm} = 0 \) for all \(n \), except for \(b_{01} \). Therefore \(u \) is constant.

5. In view of \(u = r^2 \in H^2 B \) on the Euclidean \(N \)-ball, we have trivially \(\hat{C} \cap \hat{\Theta}_{H^2 B}^N \neq \emptyset \) for every \(N \), with \(\hat{C} \) the totality of incomplete Riemannian manifolds. It remains to show:
THEOREM 3. — $C \cap \Omega_{H^2_B}^N \neq \emptyset$ for every N.

Proof. — Let E_a^N be the N-space $0 < r < \infty$ with the metric

$$ds = r^\alpha |dx|,$$

α a constant. It is known (Sario-Wang [19, 21]) that if $N > 4$, $E_a^N \in \Omega_{H^2_B}$ for every α ; $E_a^2 \in \Omega_{H^2_B}$ if and only if $\alpha \neq -1 \pm n/2$, $n = 1, 2, \ldots$; $E_a^3 \in \Omega_{H^2_B}$ if and only if $\alpha \neq -1 \pm \left[\frac{1}{2} n(n+1) \right]^{1/2}$.

On the other hand, $E_a^N \in \mathcal{C}$ for every α, hence the theorem.

The author is sincerely indebted to Professor Cecilia Wang for a painstaking checking of the manuscript.

BIBLIOGRAPHY

COMPLETENESS AND EXISTENCE OF BOUNDED BIHARMONIC FUNCTIONS

Manuscrit reçu le 22 mai 1973
accepté par M. Brelot.

Leo Sario
Department of Mathematics
University of California
Los Angeles, Calif. (USA)