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IDELE CHARACTERS
IN SPECTRAL SYNTHESIS ON R/2-rrZ

by John J. BENEDETTO

Introduction.

The starting point for this paper is Malliavin's construction
of real-valued absolutely convergent Fourier series <p on
T == R/27rZ having a non-synthesizable zero set, Z<p (§ 0.1
will contain relevant definitions and background in spectral
synthesis). The construction of such a cp by Richards [7]
has led us to consider families of functions parameterized by
5 == a + ^T e C, o- > 1, and having the form

(1) F{s, x) = 1 e^ln5

n=l

that is, for fixed s, a > 1, the corresponding y = <p^ is
9^) == Re F(^, x). The Dirichlet series (1) are discussed in
§ 1 and the results concerning the corresponding non-synthe-
tiza.ble 9 are proved in § 2. Because of these results we pose
the « abscissa of spectral synthesis » problem at the end of
§2.

Since the above construction of non-synthesizable 9,
involves no arithmetic properties of the k^ it seemed reaso-
nable to investigate properties of cp^ when the corresponding
F was generated from an idele character. We've only consi-
dered Jo (see § 0.2), and have shown that those <p^ gene-
rated by « slow growing » idele characters have synthesizable
zero sets (§3) . We could have expressed the arithmetic pro-
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46 JOHN J. BENEDETTO

perties for ideles over Q in a, less idelic way, but our proce-
dure produces analogous results in a much more general
algebraic number theoretic setting;^ and we hope tha.t Jp
will serve as a prototype technique to generate some examples
in synthesis.

The next problem we pose is that of « analytic continua-
tion )). We move left across a = 1 and construct pseudo-
measures T,, 0 < a ^ 1, associated with certain F(^, x)
generated from idele characters. The method to construct T^
involves counting solutions to diophantine equations, being
careful on the one hand in estimating upper bounds to ensure
that T, is a. pseudo-measure, and on the other hand providing
specific lower bounds (when this is possible) to guarantee that
T, is not a measure. The spectral synthesis properties of such
pseudo-measures are the subject of forthcoming work, but
generally the following types of results evolve :

a) T, generated by « fast growing» idele characters are
synthesizable;

b) T, generated by « slow growing » idele characters are
non-synthesizable;

c) <p, generated by «fast growing» idele characters are
non-synthesizable.
(The terminology « fast growing », etc. is clarified in § 3.)

Note that with our original non-synthesizable 9,, the
/ I \pseudo-measures T, we obtain in a £ (-^-? 1 ) are not only
v ^synthesiza.ble but L^T) functions since n \—>- k^ is injective

for this case.
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0. Preliminaries.

0.1. Preliminaries from spectral synthesis.

A(T) is the Banach space of absolutely convergent Fourier
riesseries

9 Or) = W-

where | | (pl[=S[aJ. The dual of A(T) is A'(T) the space
of pseudo-measures. A'(T) is the subspace of distributions
with bounded Fourier coefficients and the canonical dual norm
|| I) ̂  on A'(T) is

||Tl|^-sup|t(n)|.

The Radon measures M(T) are canonically contained in
A'(T). If EcT is closed, A'(E) = {T e A'(T): supp Tc E}.
9 6 A(T) (resp., TeA'(T)) is synthesizable if for all S e A'(Z<p)
(resp., for all + G A(T) with suppTgZ^) <S, 9> == 0
(resp., <T, 4') == 0). E is a synthesis (S) set if for all
9 e A(T) with 9 = 0 on E and for all T e A'(E),
<T, 9> == 0.

We say that a real-valued 9 e A(T) satisfies condition
(M,) if

V/c < r + 1 3Ck > 0 such that Vu e R11^11^ ^ w-^
Clearly (M^) implies (M() if r ^ t. The following is Mal-
liavin's operational calculus technique and we refer to [2,
§ B.I] for details, remarks and generalizations.

PROPOSITION 0.1. — If real-valued 9 e A(T) satisfies (M^)
for some r > 2 then Z9 is not an S set.

Remark. — In the proof of the above result we use (Mr)
to construct T e A'(T) such that

(0.1) <T, 9> ^ 0, T92 = 0.
Then by an argument which uses Wiener's result on the
reciprocal of ^ e A(T) we show [1, Theorem 3.15 d] that
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S6 == 0 implies 6 == 0 on supp S; thus <p == 0 on supp T
and so Z<p is non-S by (0.1).

We record some routine properties of the || H A ' norm.

(0.2) V9eA(T)cA'(T), |H|A' ^ IHIA
(0.3) V9 <=A(T), |<p| ^ 1, either |H|̂  < 1

or
<p(a;) == a exp ikx, k e Z and |a| ==1.

(0.4) The map A(T) -> R
Th—llTI^

is continuous.

(0.5) V<pe=A(T), V/ceZ\{0}, MA- - ll?^

where 9^) = 9 (/err).

0.2. Preliminaries from number theory.

References for the material in this section are [4, Chapters 2
and 15; 5; 8].

For each prime number p = 2, 3, 5, . . . let Q^p be the
non-zero elements of the p-adic completion of Q,. Thus

/ 00 \

Q^ = } S ^./P7: 0 ^ Oj < p, dj 6 Z, some Oy ^= 0, M ^ 0^
(j==-n )

With the p-adic valuation | |p, Q^p is a locally compact
group under multiplication and is totally disconnected. The
compact and open subgroup of units Up for Q^ is

Up-Si ^p^Q^ ^o ^oi-
{ 0 )

Let Q,̂  == R\{0}. Define Jp to be the set of all sequences
a == {a?: p == 0, 2, 3, 5, . . .} where a? e Q^ and with the
property that, for all but a finite number of p = 2, 3, 5, . . . .
oLp e Up. Next, consider sets

B = n B p c j ^
p

where Bp c Q^ is open for all p = 0, 2, . . . and Bp === Up
for all but a finite member of p == 2, 3, .. . . Such sets B
form a basis for a topology on Jp. As such, with component-
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wise multiplication, Jp is a locally compact abelian group,
the idele group corresponding to Q,.

It is standard to prove that c e Jp, the dual group of Jp,
if for each p = 0, 2, . . . there is Cp e Q^ such that for all
a == {a?} e Jp

c(a) = n Cp(ap)
p

and Cp(Up) = 1 for all but a finite number of p. When
^p(Up) = {1} we say that Cp is unramified.

For each p = 2, 3, . . . define Pp c Q^ to be

Pp== {apS^-. Np < 1}

and pp = Pp n Z. Clearly

pp-ii ̂ ^^i-
v. i 5

and so pp is the multiplicative ideal in Z\{0} each of
whose elements is divisible by p. A neighborhood basis of
1 e Qp in Up is {1 + Pp} where 1 + P° = Up. It is
standard to check that if Cp e Q^ then there is a smallest
integer rip ^ 0 for which

Cp{l + PpP) = {1}.

Now, if c ejp with corresponding « projections » c? e Q^
then there are only finitely many primes p = 2, 3, . . . such
that the corresponding rip > 0; this follows since Cp(Up) == 1
for all but finitely many p. As such, given c we form a
multiplicative ideal fe in Z, called the conductor of c,
defined by

fc-HP^
n^>0

Recall that the fractional ideals in Q, are singly generated.
Then, for example, if pi, . . ., pr are the primes for which
npj > 0, fc is generated by p^i ... p^r = h. We let G,;
be the set of multiplicative fractional ideals A c Q^ gene-
rated by n = q^ . . . ^d, m, e Z, such that each ^ is prime
and for all /, k, qj ^ pj,. For A e G^ generated by n as
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above, we define a = {<Xp} ej$ by

a? \ ̂  P ^ qj
W. P=qj-

Then the Hecke character associated with c is a multiplicative
homomorphism

X c : G , - > T
given by

Xc(A) = cj^<) ... c^(^).

The mapping c ->• ̂  is injective.
Observe that we can imbed Q>< into Jp by the map

9i "> (?? 9? • - • ) • c e Jo ls an idele class character if c{Q^X) = 1.
Idele class characters are needed in algebraic number theory
to obtain functional equations.

Preserving the above notation between n and A we
define the Hecke L series associated with ^ to be

L{s,c)= 2 ̂
(n^=l ^

(for the definition of L we consider only n e Z, recalling
that n could be rational in the definition of G<.). Now, f^
is trivial (i.e., rip = 0 for all p) if and only if for each
p = 2, 3, ...

^p) = N^
where tp is determined mod 27r/logp. Thus for each c ejp
with trivial conductor there is a unique set of integers
{kp : p = 2, . . . } such that

(0.6) L(5 ,c)= ^Aexp.S m,k,
i n 9

where n == Tlq^, the prime decomposition of n. Conversely
given {kp : p = 2, . . . } c Z there is a unique c e Jo defined
i^y

c{n) = II exp irriqkq

where Hq^ is the prime decomposition of n.
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Finally, if we are given {kp : p = 2, . . . } g Z and extend
additively by

^n = ̂ p + kq if n == pg
then (0.6) becomes

(0.7) L(^c)=i^-exp^.
i n

1. Pseudo-measure norms and Dirichlet series.

The real part of F defined in (1), considered as a function
of x for fixed s, a > 1, is

oo ^
^(x) = F,(^, ^) === S —o- [cos ̂  cos (T ̂ g n)

n=l n

+ sin k^x sin (r log n)].

Because of condition (My.) in § 0.1 we shall consider

exp iu^^) = TT exP— [cos ̂ nx cos (T l°g n)
n=i yl

+ sin k^x sin (r log n)].

As such we define the auxiliary functions
m iu(1.1) ^u,^,(rr) = ]J exp -^ [cos k^x cos (r log n)

n==l ^
4- sin k^x sin (r log n)]

and

(1-2) 9u,m,^) == exp lu [cos a; cos (r log (m + 1))

+ sin x sin ^T log \m 4- I))]-
Observe that

(L - === tb Q^+iTU,CT+I,.'? TU, m,s"v,, m, s*

Using (0.4) and (0.5) Richards [7, Lemma 1; 2, Theorem
B.6] has made the following key observation concerning the
growth of || 1| A'.

PROPOSITION 1.1. — Given {^, 6^ : u e R} c A(T)\{0}
and assume u i—>• 4'n? u j—^ ^a are continuous functions. Then

VR > 0, Vs > 0, 3/c e Z, k > 0,
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such that
y\u\ < R

\\Wh' < (l+^ulMiej^.
Fix {sfc} so that e/, > 0 and 11(1 + e/c) ^ 2. Also for

each c > (1 + \/^)1^ let Be c C be the closed rectangle
[1 + 1/c, c] X [— c, c]. Define an increasing function
c: N —> R, c(m) == R, such that

00

\^JB,= { s e C : a > i}.
1

Using Proposition 1.1 and a uniformity argument we obtain:

PROPOSITION 1.2. — Given {e/J and c as above. There is a
sequence of integers k^ n == 1, 2, . . ., increasing to infinity,
such that

V5 e C, a > 1, 3K^ > 0
such that

Vm ^ K<, V|u| ^ c(m)
(1.3) Hk,.+ijA- < (l + sj Uk,.jA- lie^.,11^.
Naturally, it may happen that for some 5, or > 1, and some

m, (1.3) is not true for all \u\ < c(m).

PROPOSITION 1.3. — Given {e^} ayzrf c 05 above. Then

V^ e C, (T > 1, 3K^ > 0
such that

Vm ^ K^ V|M| ^ c(m) Vn ^ m

(1.4) 1[^1[^ ^ 2n H9uj..llA-
j=m

Proof. — Take Kg as in Proposition 1.2 and fix m ^ K<j;
thus we have (1.3) for all |u| ^ c(m).

Arguing iteratively, and using (0.3) and the definition of s^,

(1.5) Ilk/JlA- ^ 2 n neaj.JlA-
J=m

for all k > m and all |^| < c(m).
(1.4) follows by taking lim's in (1.5) and invoking (0.3)

again.
q.e.d.
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PROPOSITION 1.4. — Given {e^} and c as above and form
the corresponding F of'(I). Take any closed interval IcR\{0}.
Then

3p e (0, 1)
such that

Vs e C, a > 1, \n e Z\{0} Vu/(m + 1)" e ± I,
(1.6) IKmjA. ^ P.

Proof. — From (0.3) and (0.5) there is pa,^,,e (0, 1) such
that

VneZ\{0}, 1|6S,,JA. <S Pa.̂ .

For n fixed, the function ai—^Q^m,s from I-> A(T) is
continuous, where a == u/(m + 1)^.

(1.6) follows since continuous functions achieve their maxima
on compact sets.

q.e.d.

2. Examples of non-S sets.

In light of Proposition 1.3 and Proposition 1.4 we shall see
that the key to Theorem 2.1 is to choose c so that for all n

(2.1) TT1^)1^ - c(n + 1)^ ^ A^^ + 1))
Y)-1^)1^ - (n + 2) ^ /*(c(yi + 1))

for some T] e (0, 1) and some « relatively quickly increasing »
f.

THEOREM 2.1.—Let c(n) = e71 and form the corresponding F
o/*(l). Then for all s e C, cr > 1, ^ro 15 Mcr > 0 ayirf 8<y > 0
suc/i tAat

(2.2) Vu e R, ll^^llA. ^ M^-8^^

In particular (Mp) is satisfied for all r > 2 and Zcp, is
non-S.

Proof. — Take K^ as in Proposition 1.2 for a fixed s.
Let I = [7], 1] where 0 < T] < 1/e.

Choose the corresponding 0 < p < 1 from Proposition 1.4.
Without loss of generality we do the calculation for u ^ 0.
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Take u ^ e^ where riy > Ky and ^+1^ > n<j + 2; and
let n ^ riy have the property that

c(n + 1) ^ ^ ^ ^(^).

From Proposition 1.3

(2.3) n î̂  < 2niie^iiA.
n-H

for all \u\ ^ c(M + 1) and m ^ n 4- 1.
For our fixed u and a we now want to count which /'s

have the property that

(2.4) u/(l + j'r e I.

If c{n + 1)̂  ^ 1 + / then u/(l + /y ^ 1 and if

7^(1 + /) < c{n)1^ then T] ^ u/(l + /y.

Because of (2.3) and these inequalities the number of /'s for
which (2.4) holds is estimated by

(2.5) YT1^)1^ - 1 - max (n + 1, c{n + l)̂  - 1)

(note the resemblance to (2.1)).
Since c{n) == e", (2.5) is

(2.6) e^^-^ — e1^) = re^ > re^u110.

Combining (2.3), (2.6), and Proposition 1.4 we have (2.2) since
p = e-y, p > 0.

q.e.d.

Remark. — Let us see how much generality we have in
choosing c so that Theorem 2.1 is valid. c(/c) must grow
faster than k so that (2.5) is positive. If c(/c) grows like a
polynomial the technique of Theorem 2.1 will not work for all a
and this leads to the abscissa of convergence problem below.
If c(/c) grows too fast (e.g., c(/c) = exp k log k) the procedure
again fails since (2.5) again becomes negative.

Example 2.1. — For the choice of {k^} in Proposition 1.1
and Proposition 1.2 it is desirable to choose the smallest possible
^rn+i > 0 given /fi, . . . , k^ > 0. Thus, given £1, c(l), and
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A-i == 1 we find /Cg. Using Schafli's integral form for Bessel
functions we compute

VN, S lki,.M =2 S 1-W1
|m|>N m>N

<;2 v ^Vy î)" \
,̂  2 ^iyr!(m-t-r)!;

/^I^X /rf^^"1 /< 2 exp (^ 5 (c^) An!.
\ " / m > N \ z / /

From the proof of Proposition 1.1 we now take k^ = 2Ng
where Ng^ is the smallest N for which

S(y)7.!<^exp(-^^(1)V"/ , £, / C(l)2

-A— 1 m\ < -L exn ( — -J—/-
m > N \ ^ / / ^ \ ^ ^

Abscissa of Spectral Synthesis Problem. -— Given specified F
of (1) our calculations [3] indicate that Z9, becomes more
non-spectral as or -^ 1 -[-. We would like to determine those
F for which there is an abscissa o- = GQ of spectral synthesis,
i.e.,

VCT > (TO, Z<p^ is S
Vl < CT < (TO, Zy, is non-S.

3. Spectral synthesis functions and idele characters.

For the remainder of the paper assume for convenience that
c e Jo has trivial conductor, and consider the Hecke L-series
characterized by {/Cp}cZ, where p = 2, 3, 5, . . . . Given
L(«, c) we associate the Fourier series F(^, x) (of (1)) for
fixed 5 , o > l ; and ZFgT is {x: ¥(s, x) = 0}, where s
is fixed.

Remarks. — 1. If c is an idele class character then the
corresponding Hecke character ^ is precisely a classical
Dirichlet character (for Dirichlet L-series); consequently the
corresponding Fourier series F(s, x) is a trigonometric poly-
nomial for each 5, cr > 1. In particular Zy, is finite and
thus S.

2. The terminology « fast growing » etc., from the introduc-
tion indicates that {kp} tends to infinity at certain rates.
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PROPOSITION 3.1. — Given c sjp with trivial conductor and
corresponding {kp} c Z.

a) If kp == C^p*), p -> oo, /or some a > 0 ^n

VCT > 1 + a, F(s, ^) e C^T).

b) If kp == 0 (log p), p -> oo, (/i^n

Vcr > 1, F(s, rr) e C^T).

c) -For eac/i o/* the above cases, ZF is S.

Proof. — c is clear from the Beurling-Pollard result.
a) Differentiating F with respect to x

00 ;L °° |L. Is^.'1-^^
we need only check that \kn\|n<x' is bounded for a > 0. If
n == n?"

|/cJ ^ KiSrp" < KgSp^ ^ K3na.

fc) Arguing in the same way we need only check that for
P > 0, l /CnI/y^ is bounded.

If n = n?7'
1/cJ ^ KSrlogp = Klog n

and log TZ/nP is bounded.
q.e.d.

In order to generalize the synthesis result in Proposition 3.1
we say that {kp} c Z4' or the corresponding c e Jp is
r-bounded, r ^ 0, if

V(3 > r 3Mp such that Vn, A^/riP ^ Mp.

Thus, for example, /c? === 0(pa), p -^ oo, a > 0, is 0-bounded.

PROPOSITION 3.2. — Given c ejp with trivial conductor and
{/c^cZ"1". If c is r-bounded then 'for each a > 1 + r?
F(s, a?) is a function of bounded variation and ZF is S.

Proof. — The fact that ZF is S if F has bounded varia-
tion is standard [6, p. 62]. The bounded variation follows
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classically once we observe that

^ |F(5, x+h)- F(5, ̂ | dx = 0(h), \h\ ̂  0.

By direct computation the integral is bounded by
KI/ilSj/cJ/y^; and so setting a = 1 + r + y we let
P = r + Y/2 and apply the r-boundedness.

q.e.d.

In order to generate non-S Z<p in § 1 and § 2 the sequence
{/?„} was chosen to have a certain lacunarity. We now observe
that no matter how fast lim \kp\ tends to infinity the sequence
{/<•„}, generated by the corresponding c e Jp, has no lacuna-
rity properties.

Example 3.1. — Given c eJo with corresponding {kp}.
Let kp > 0, kp increasing to infinity. If {k^} were lacunary
then k^^/k^ > 8 > 1 for all m. Suppose this is the case.
Then for all m

"'2m _ "'2OT ^m—l "'m+1 ^ ^m
k k k k '"•m "^m—l /t•2m—2 •^m

On the other hand
k^m _ A | "'2
//. ~ r L
"m ""m

so that since kp —> oo, {/c^} can not be lacunary.

4. Idelic pseudo-measures.

Given c e Jp with trivial conductor, and corresponding
{/c^}cZ and F. Our problem is to find conditions in order
that

T, - ^ -^ e1^, 0 < a ^ 1
n n

represent an element of A'(T) for a fixed 5, 0 < CT ^ 1;
by this we mean that we wish to find conditions on {kp}
for which

(4.1) &,(n)= S -L' H(n)={m:/c,=n},
m e H(n) m
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is a bounded sequence. When the sequence { f c , ( n ) : n e Z }
is bounded we say that c determines the pseudo-measure T\.

Clearly Dirichlet characters do not yield pseudo-measures
in this way. As a generalization of this fact, we have.

PROPOSITION 4.1. — Given ceJo with corresponding
{kp} sZ^. If {kp} is bounded c does not determine a pseudo-
measure for any s, 0 < a ^ 1; further, there is n ^ 1 such
that

S A-
OT6H(n) m

diverges.

Proof. — Assuming 1 ̂  kp ^ B we find n such that

JL"^
diverges. Let C == 1/(B + 1).

a) We first observe that

3n e [1, B] such that V/c ^ 1,
(4.2) N,/(/ - k) ^ C

for infinitely many / ^ /c, where

N, == card {kp= n: p^ p ^ p^}

and JD, is the /-th prime.
fc) Choose n from a. Then

j 1 ^ 1
S ——— ^ S ——— - log P;/Pj-N,+l

Pro CT=;-xN^.+l PmCT==a
P^eH(n)

by the integral test. Consequently from the prime number
theorem

(4'3' .4 ^'^-N^l^-N^l)
PmeH(n)

^»g7 -̂r
We apply (4.2) which yieldi / - N, + 1 s j(l-C)+l+ Ca
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and so the right hand side of (4.3) is greater than or equal to

log(l/[(l-C)+4-+C^]).

Now choose K, a > 0 such that log (!/[(! — C) + K]) > a$
and then take /' large enough so that

(1 _ C) + -1 + C 4- < 1 - C + K.

Letting a == a; we define a;+i = j + I.
Thus starting with Oi = 1 we form {aj and

\ 4 oo a,+^ A oo

S — ^ S — - S 5 —^a-^ .
meH(n) rn P^eH(n) ?„, i=i m==af Pm 1

Pm€H(n)

q.e.d.

PROPOSITION 4.2. — Given c e Jp wi(/i corresponding
{kp} c Z+ increasing to infinity. Then

Vn, card H(n) < oo.

Proo/*. — Given n == n?7*; to show card Hf/cJ < oo.
Choose a prime q = p^ such that kq > k^, by hypothesis.

For each / < k choose rj e Z such that rjkp^ > kq,
and define

^o = n p?'-
Then J-l

Vm ^ mo, /c^ ^ kq > k^

and so H(/cJ is finite.
q.e.d.

We now give a procedure to find c e Jo which determine
T, e A'(T)\M(T).

00

LEMMA. — Let T ~ S c^ e A' (T). If
i

S Cn/n diverges
i

then T e A'(T)\M(T).
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Proof. — If T e M(T) then

V<(rr)= S <V""
Inl^N

S ^n|< UTL |ML.
1"1<N

Take a^ ^ 0 for n > 0, {a^} decreasing to 0, and set
On == — a_n for n < 0.

N
Recall, ^ a^ sin nrc ^ A(TT 4- 1) it na^ ^ A.

For such a^,

S ^n| < ||T||i2A(7r+l)S ^n^
l l"KN

and so ^ ^^n converges.
i

For technical convenience we now let s = i.
q.e.d.

PROPOSITION 4.3. — Given c e Jp wi(A corresponding
{k,} c Z+. jy

(4.4) k, = 0 (log2 p), p -̂  a)

(^yi T iGA ' (T ) ; and Ti ^ M(T) ^

S ti(^)^

d^erges.

Proof. — The fact that Ti ^ M(T) follows from the Lemma.
Assume {kp} increases ot infinity and k^ > 0.

Let II(r) be the set of all integers

n = II PV^ ^ ̂  °-y=i
We first observe that if

^ - 5 l/p^
& = = 'S l/^,

m e n(r)
then

(4.5) 6° — 1 < b < e20 — 1.
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This follows since
r / 1 I \i + 6 = n ( i + j - + ± + . . \

\ n T\— i
.7=1 \ Pj Pj J

and
el/p <i+^-+Ji+-=1+^.1+^-<^.

Set

H»,r= S J-
weHOOnnO*) m

We use (4.4), (4.5), and Mertens5 estimate

S -1- = log log ^ + C + 0(l/log x), x -^ oo,
P<.c P

to calculate

(4.6) H,,, ^ S 1/m ^ exp 2 ^ 1/p,
men^) l

^ C (log p^ ^ K k^ < Kk^ (l - ——^V K ^ 1,
-" \ Pr+l — 1/

for all n.
Note that

n(r+ l) = n(r) u p^n(r) u p^n(r) u . . . ,
a disjoint union. Thus,

00

H(n) n n(r + 1) = U (H(n) n p^n(r))y=o
is a disjoint union.

If m e H(n) n n(r + 1) then k^= n and m == ^+1,
u e n(S,). Thus

^u = ri - //c, /c = kp^
Consequently,

s. i/^= s I/W+^-^H,^,,,
meH(n)nP^+in(r) oeH(n-jfc) Rr+1» G n(»*)

and so

(4.7) H,,,,, = H^ + -J- H,_^ + -4- H,_^ , + . . . .
Pr+l Pr+1

5
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From (4.5) there is M ^ 1 such that

VM, H^i ^ M.

Since &i(n) == sup H^ we'll prove that if n is fixed then
r

H^ r ^ MKkp^ for each r.

Using (4.6) and (4.7),

H.,,<H.,,+M(^)

(MKA" (1 - pr̂ r) + MKI'" (p î)= MK*'.-
We argue similarly for any H^ ̂

q.e.d.

Example 4.1. — Condition (4.4) determines many pseudo-
measures. We note that kp = [log p] also determines a pseudo-
measure by appropriate technical refinements. In order to
give specific examples of T e A'(T)\M(T) determined by
c ̂ Jo we now use kp = [logp], /Cg = 1 (for technical conve-
nience only). If n is given and k ^ n then from the prime
number theorem {pj ^ / log / , / -> oo) the number of primes
in [e\ ^+1) is estimated by e\k{e ~ 1) — l)fk{k + 1) == N^.
Thus there are approximately N/, primes p for which kp = k.
Therefore we write

n m (where k^ = n)

n==l+ l+ . . .+ l m=2
: (4.8-2) =/c3+l+. . .+ l =3-2^

= ^<n) = p(n)

where p(n) is the largest prime p for which kp = n. Conse-

quently the sum S —— for those m listed in (4.8) is bounded
TTL

below approximately by

(4.9-2) i- V 1 ( k - t } (e - i ) - i
' e ̂ ^ 2s {k - i)k

a^O
fc^a
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We rewrite (4.9) as

1 )t-1 1 (n-q)(g-l)-i
e ^,2'' (n-o)(n+l-a)

and estimate it by

(^0-2) -1-+,7-1-^T+^1 ^ + » - + 1
n ' 2(n - 1) ' 22(n - 2) ' • 2"-1

(we can also estimate the integral

e- r-^^v, p^
Ji ^

For the next steps we form (4.8-3), ..., (4.8-p), ... where if m
is listed in (4.8-p) and k^ = n then

m = ql^3 . . . p^

where q is a prime or 1 and if Og + • • • + ^p-i > 0 then
Op > 0. We form the corresponding sum (4.9-p) by again
counting the number of primes q in the allowable (that is,
Op > 0 and n == kq + ag/Cg + • • • + ^p) intervals [6^, e^4-1).
Consequently, we form a sequence of finite sums (4.10-p)
whose total sum over p is a lower bound b{n) of Ti(yi)
and check that ^ b(n)jn diverges.

i

Example 4.2. — If E g Z is lacunary (e.g., Example 3.1)
then E is Sidon [6]. Sidon sets are a special case of A[t)
sets for all t e (0, oo). y^) sets E, for ( e (1, oo), are
characterized by the property that

{(i e M(T) : Vn ^ E, il(n) = 0} c L^T).

Given c e Jo with corresponding kp (let {/c?} increase to
infinity with /Cg ^ 1). ^(n, {kp}) is the number of represen-
tations of n as a sum of ( elements, possibly repeated, from
{kp}. When {kp} is not A(2() for any ( then

W, supr^n, {kp}) = oo.
n

Consequently, such c e Jp which further satisfy (4.4) are a
natural source in which to find T e A'(T)\M(T).
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