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HOLOMORPHIC FUNCTIONS ON LOCALLY CONVEX
TOPOLOGICAL VECTOR SPACES

II. Pseudo convex domains (*) (**)

by Scan DINEEN

In this article we investigate the problem of when pseudo-
convex domains are domains of holomorphy. This problem was
originally posed for infinite dimensional locally convex spaces by
Bremmerman ([4], [5], [6], [7], [8]). The problem has been solved
in the affirmative for tube domains [5], for open subsets of C"
(n = countable infinity) [18], for Riemann domains over C" [27]
and for open subsets of a Banach space E with a basis whose inter-
section with each finite dimensional subspace of E is Runge [16].
We use the method of Hirschowitz [18] to circumvent the problem of
having no continuous norm and show that if U C E is pseudo convex
and p is a continuous semi norm on E such that{^, p ( y ) < 5} C U
then V + {y , p(y) = 0} = U. In this way the characterisation pro-
blem on U can be transferred to a space on which there exists a
continuous norm. By this method we are able to prove generalisa-
tions of the Cartan-Thullen-Oka-Norguet-Bremmerman theorem in a
variety of cases which include the following :

00

a) U open in J~T E^ , E^ a Frechet space with a basis for each
"=i

n and U H F Runge for each finite dimensional subspace F of E.
00

b) U open in ^ E, where each E, is a Frechet space with a
i= i

basis and U 0 F is Runge for each finite dimensional subspace F ofE.

(1) A number of the results containedin this paper were announced in C.R. Acad.
Sc., Paris, t. 274, 544-547 (1972).

(2) Part I has appeared in Ann. Inst. Fourier, t. 23, 1 (1973).
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c) U an open subset of a nuclear space and U H F Runge for
each finite dimensional subspace F of E.

It has been shown in [19] that the theorem does not hold
in its full generality for all locally convex topological vector spaces.
Although complete results on this problem are not yet available
an examination of the results obtained here suggest that the follow-
ing properties of the locally convex space E will have some bearing
on the final solution :

1) Countability conditions on E (e.g. is E separable, Lindelof).

2) Geometric position of E/p'^O) in E (p is a continuous
semi-norm on E) (e.g. is E/p'^O) complemented topologically in E ?)

3) Geometric properties of (E/p'^O),?) (p is a continuous
semi-norm on E) (e.g. does (E/p'^O),?) have a basis ?).

Unless otherwise stated our notation is the same as [15]. For back-
ground information on pseudo-convexity and plurisubharmonic func-
tions we refer to [18], [9], [24], [26], [31], [33].

I thank Phillip Boland and Phillip Noverraz for many helpful
conversations and correspondance.

1. The Cartan-Thullen-Oka-Bremmerman-Norguet theorem.

We consider the following properties on an open subset of a
locally convex space E.
(HI) U is a domain of existence of a holomorphic function (i.e.
there exists fe 96 (U) such that there is no Ui , U^ connected open
in E, 0 ̂  IJ2 C Ui H U , Ui <? U, and /i e ^(U^) such that

AJ ÎU,)-

(H2) For each sequence, (^)^i» of elements o/U, {„ -> ^ f e 5U
(6U is the boundary of U in E) there exists fe 96(11) such that
sup |/(SJI = °°.

M

(H3) U is a domain of holomorphy (ie. there exists no U^ , U^
open connected in E such that 0 ̂  U^ C U^ H U , U^ <f. Vand for
each fe 9e(U) there exists f^ e9€W^ such that /Jy =/|y .
(H4) U is holomorphically convex (i.e. the holomorphic hull(1).

(1) A / y ^ will denote the holomorphic hull of A with respect to ^(U).
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of each compact subset of U is a precompact subset of U(1).
(H5) U is holomorphically convex and if K is a compact subset
of U and V is a balanced open neighbourhood of 0 in E such that
K + V C U, then K^^ 4- V C U.
(H6) U is a plurisubharmonically convex (i.e. the plurisubharmonic
hull of each compact subset of V is a precompact subset of U)
(H7) U is pseudo convex fie. U 0 F is pseudo convex for each
finite dimensional subspace F of E).
(H8) U is polynomially convex (i.e. the polynomial hull of each
compact subset K of U, K^gy is a precompact subset of U).
(H9) U is finitely polynomially convex if U 0 F is polynomially
convex for each finite dimensional subspace F of E).

It shall be necessary to consider locally convex spaces which
may not be Hausdorf, however, if F is the closure of 0 in E and

E
TT denotes the quotient mapping of E onto — then (H,) 0' = 1 , . . . , 8)

is true for an open subset U of E if and only if the same is true of
7r(U)(2). Thus we restrict ourselves to Hausdorff locally convex spaces
in the proofs but use the fact that the results proved are valid for
non-Hausdorff spaces.

If E is a locally convex space such that each open subset of
E which satisfies H(7) (resp H(9)) also satisfies HO) 0- = 1,2,3,4,5)
(resp satisfies H(0, i = 1,2,3,4,5,6,8) then we say E is a CTONB(i)
(resp CTONBR(i)) space. The following proposition can be combined
with CTONB(i) (resp CTONBR(i)) spaces to prove the usual Cartan-
Thullen-Oka-Norguet-Bremmerman ( . . . . . Runge) theorem.

PROPOSITION 1.1. — For any Lc.s. E and any open subset U of
E we have the following :

(1) K is a precompact subset of U if it is a precompact subset of E and there
exists p a continuous semi-norm on E such that inf p(x — y ) > 0.

xeK
y^W

(2) This can easily be proved by using the techniques we develop in the remainder
of this section.
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(HI) =» (H2) =» (H3) ^ (H4) ^ (H5) ^ (H6) ^ (H7)

(H8) => (H4) and (H9) => (H7).

A-oo/ — (H1)=^(H2) can easily be proved by using Cauchy's
inequalities (see [12] for Banach spaces).

(H5) ^ (H4) =» (H6) ^ (H7), (H8) =» (H4) and (H9) ^ (H7)

are either trivial or well known ([9] , [31]).

Suppose (H3) is not true then there exists L^ , U^ open connected
in E such that (H3) fails to hold for the pair U^ , U^.

LetVi = { ^ E U n U i ,/Oc)=/i(;c)forall/G9e(U),

f, ege(U,) such that/I^ =/Jy}

By definition U^ C V\. Since all holomorphic functions are conti-
nuous V\ is a closed subset of U H U^. By using the Taylor series
expansion and the fact that analytic continuation is unique we find
that Vi is an open subset of U H U^. Let V be the connected
component of V^ which contains U^. We now consider V as an open
subset of Ui. V is not a component of U^ since U^ is connected
and V\ <fL U. Since E is a l.c.s. this implies that V is not sequen-
tially closed in Ur Let (^,)^ be a sequence in V,

x^ -> x e Ui n eu
Since x ^ V C U H Up x ^ U. Hence x G 6U. Now /i is conti-
nuous at x (since x G U^). Hence

i.e. Urn /(^) = lim f, (xj = /i(x)v^^ A^i* j ^ \-^n^
n->w n-9-oo

exists and is finite
sup \f(x^)\ < oo for all / E 96(U).

n

Thus (H2) =» (H3).

(H3) => (H4). Suppose (H4) is not true. Let K be compact in U
and x^ E K^^, x^ -> 5U(1) as a -> oo (this is possible since K is

(l) XQ, -> 6U if (Xy\^ is a precompact subset of E and inf p ( x ^ - y ) = 0
O[€A

for each continuous semi-norm on E. v^- u)
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contained in the convex hull of K and hence is always a precompact
subset of E). Let p be a continuous semi-norm on E such that

d ( K , e U ) = inf p ( x - y ) = 8 > 0
JCGK
yeeu

Let y e E, p(v) < §. Choose 6^ > 1 such that

KI = K + { X ^ | | X | < 6 ^ } C U

(hence K^ is also a compact subset of U). Let W be a convex balanced
neighbourhood of 0 such that

l ^ " K ^ w = M < o o

for a given preassigned fe ge(U). For any a, X E C , |X| < 1 and
^ cW we have

^/(xj
n\

(\y + co) WOO
^!

(^ + CJ)
I JCGK

'sup 1 / /(^X.^^))
xfEK 27r ^ 1 ^ ^ 1 = 6 ^ X^l

Now x + Xi Xj/ + \ a; G B K + {ay , |,a| < 6J + 6^ W and this im-
plies

rfV(^) Ma- (\y +€ . ) )< sup |/(x)|. 6r" < --""P U '.-'•-'I • "1 ^ ——
x<=K-t{\y,\a\<6^}+V/ 6^n\

Hence S
n=0

d"f(x^
n\ (\y + co) M . S - <

n=0 5̂ "

Since a, \ and c^ were arbitrary we have

y ^"/(^q)
n=0 I "' {A.^ , |A. |< l}+W

< o°

which means that the Taylor series of / at x^ converges in a W-
neighbourhood of y. Choose Xy such that dp (x^,eU) < 6/2 then
if

?(x + x ^ ) = S d"f(x^)
n=0 "i

(X)
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/<w
/is holomorphic in a p. neighbourhood of x^ .

Let V be a convex neighbourhood of x^ contained in

un{x,p(jc-^)<5}.

Taking V = U^ and U^ = { x , p(x - x^) < 8} we find that (H3) is
not true. Hence (H3) => (H4), (H4) ^ (H5).

If (H5) were not true then there would exist K compact in U
and y £ E such that K^ = K + {\y^ |X| < 1} C U and is compact
there but K + {\y^\ \\ < 1} (? U. The method used to show (H3) ̂  (H4)
can now be used to show K^ is not a precompact subset of U. This
contradicts (H4) and hence (H4) =» (H5).

Remark. — If E is quasi-complete then we can replace the condi-
tion "precompact set" by "compact set" in proposition 1.1.

The remainder of this section will be devoted to showing certain
spaces are CTONB(i) or CTONBR(i) spaces. We first consider locally
convex spaces for which we can prove the required result directly
and then proceed to investigate certain kinds of projective limits
of CTONB(i) and CTONBR(i) spaces.

LEMMA 1.1. — Let V be a connected pseudo convex open subset
of E, E an arbitrary l.c.s. Let p be a continuous semi-norm on
E such that {y , p ( y ) < 6} C U for some 8 > 0 then

U = U + { ^ p O Q = 0 }

Proof. — Let x E U and y e E , p ( y ) = 0, be arbitrary. Since U
is connected there exists a finite dimensional subspace F of E such
that

i) x , y e F
ii) 0 and x belong to the same connected component of U H F.

F is finite dimensional and hence every semi-norm on F is conti-
nuous. By definition U H F is pseudo-convex since U is pseudo
convex and hence the connected component of U 0 F containing
0 say Up is again a pseudo convex subset of F.
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Let "p denote the restriction of p to F.

Hence U^ D {a? € F , p(^) < 5} •

The method used in [18] can now be applied to show

. Ui + { o ; e F , ^ ( G ; ) = = 0 } = U ^

Hence x + \y G l^ C U for all X E C.

Since ^ and y were arbitrarily chosen this implies

U + { ^ p ( ^ ) = 0 } = U .

Remark. — If TT denotes the quotient mapping from E onto
E/p'^O) then the proceeding lemma is equivalent to showing

U=7^- l(7^(U)).

LEMMA 1.2. — Let TT be a linear mapping from the vector space
E onto F. Let U be an open (1) subset ofE such that U = 7^-1(7^(U))
then 7r(U) is pseudo convex (resp. TT(U) H F^ is Runge (2). /or ^acA
finite dimensional subspace F^ o/ F), z/ U ^ pseudo convex (resp.
U H G is Runge for each finite dimensional subspace G of E).

Proof. — It suffices to show that if F^ is a finite dimensional
subspace of F there exists a subspace G of E such that TT ;

u n G ->• TT(U) n pi
is a linear isomorphism.

Suppose Pi is spanned by $1 , . . . , ̂ - Choose T^ , . . . , ̂  E E
such that Tr(^) = $, for / = 1 ,. .. , n. Hence TT ; G -> Fi is an
isomorphism where G is the ^-dimensional subspace of E spanned
by T?i , . . . , T^ (linear mapping of one n dimensional subspace onto
another is always an isomorphism).

(1) For vector spaces we say U is open if and only if U 0 F is open in F for
each finite dimensional subspace F of E.

(2) U is Runge if the polynomials on E are dense in 3€W) when ^(U) is endowed
with the compact open topology.
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Now U n G C U and U 0 G C G, hence

TT(U n G) c 7r(U) n TT(G) = TT(U) n FI .
n n

Conversly if y € 7r(U) H F^ ,y = ^ a,^.. Letx = S ^.77, then
1=1 i=i

^ £ G and 7r(x) = j^. Hence x £ Tr-^TrOJ)) = U and thus x G U n G.
This means TT(U H G) = 7r(U) H F^ and we have completed the proof.

We now restrict ourselves to specific locally convex spaces.

DEFINITION. — A basis(1), (U^)^p in L.C.S. E is a strong basis
if there exists a set of continuous semi-norms on E, (^a)aeA ^ic^
defines the topology of E such that

Pa(S ^U,)= Supp,(S a,U,)
n=l n /=!

for each a E A.
Any basis in a barrelled locally convex space is a strong basis.

In particular any basis in a Frechet space is a strong basis. We let
E" (resp. E^) denote the closed vector space spanned by U^ , . . . , U^
(respOJ,);^).

PROPOSITION 1.2. — A metrizable locally convex space E which
has a strong basis is a CTONBRd) space.

The proof is rather long and is divided into a number of lemmas.
Let U denote a finitely polynomially convex subset of E. Let

(U,,)^ be a strong basis in E and let (pn)°n^\ denote the correspond-
ing family of semi-norms. Without loss of generality we can suppose
(pn)00^ is an increasing family of semi-norms and by lemma 1.2 we
can also assume that

U = TT-^TTCU))

where
T^E^E/p^W^TKE).

( l ) A basis is always taken to be a Schauder basis (i.e. the projection onto
each coordinate is continuous).
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if p is a continuous semi-norm on E we denote by? the corresponding
semi-norm on 7r(E). (Note that .̂ is a continuous norm on 7r(E)
for each; and (p-)°l, defines the quotient topology on ?r(E).

LEMMA 1.3. - Let x = a^ + a^ G TT(E) where a^ E 7r(E'1) and

^^)

then Pj(p(.^)<p^x) for each positive integer 7.

Proof. - Choose ^ e E" , ̂  G E^ such that 7r(^.) = c .̂ for

7 = 1,2.
Let 7 E E be chosen such that

P i ( j S i - 7 ) = = 0

Hence 7 - ̂  = -^ + ̂  where 7?^ G E" and 77^ E E^,

p ^ ( ^ ) = 0 and p i ( r^ )=0 .

This means that p (7 — 17 — jS^) = 0 and

^(T-^)-^ +^)<^.(^ +7^ +^)=p,(7)

Hence p,.(ai) = inf. ^.(7)
^GTr-^apnE".

Now suppose 7 E E , 7 = 71 + 72 , 7i e E" , 72 E E^ and

PiOSi +^2 -7i -72)= 0.

We then have pi(j3i - 7i) = 0 and p^^ - 72) = °

Hence p^) < p;(7i) ^P/(7i +72) which implies

?;.(^) < inf. ^.(7^ + 7^) = ^.(7r(^ + ^)) = P,(^).
'y = 'y^ + 'y^ ̂  E
7e7r-i(^+^)

LEMMA 1.4. — Z^ P &^ a continuous polynomial on 7r(E") then
there exists a p^ continuous polynomial on E, Q, such that

Q(x + y ) = Q(x) for all x € E" , y E E^ (1)

P o TT |̂  = Q |̂  (2)
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Proof. - Define Q on E" by Q = P o TT| „. Now extend Q to
E to get Q by

Q (x=1 a/U,) = Q (1 a,U,)
1=1 i=i

(1) and (2) are immediately satisfied. It remains to show Q is a
p^ -continuous polynomial on E.

Let (^)°°^ € E be arbitrary and suppose p^ (x^) -^ 0 as m -> °°
For each w, x^ = y^ + z^, ̂  E E", z^ G £„. And ^(^) -> 0 as
w -> °°.

By construction

Q(^) = Q(^) = (P o 7T) (^) = P(7T(^))

Now p^ is a continuous norm on TT(E) and hence its restriction to
Ti^E") is also continuous. Hence P is ̂  continuous on 7r(E") and
since p^(7r(jc)) <p^(x) for all x G E this implies P(TT(^)) -> 0 as
m -> °° whenever pi(>'^) -> 0 as m -^ °°. Hence Q is p^ conti-
nuous on E. This completes the proof.

Now suppose P is a continuous polynomial on TT(E"). Let Q be
the p^ -continuous polynomial on E associated with P in the previous
lemma.

We define P on TT(E) in the following manner,

PQc) = QtTr-1^)) for all x G TT(E).

P is well defined for if y , a; G 'JT~l(x) then Tr(y) = 7r(a?) == x i.e.
7r(y — co) = 0.

Since Q is pi-continuous on E we have Q(z + (y — a?)) = Q(z)
for all z E E.
Hence Q(y) = Q(c;).

Also if y^ G 7r(E) , p ^ ( V n ) "̂  0 as n "^ 00 then there exists
z^ G E , 7r(zJ = ̂  and p^(z^) -> 0 as ^ -> oo Hence Q(z^) ^ Q(0)
as n -> <», this implies that P(y^) = Q(^^) -^ Q(0) = (0) as n -> oo and
we have shown that P is ̂  continuous on TT(E).

LEMMA 1.5. - An open subset U of a separable metrizable l.c.s.
E is the domain of existence of a holomorphic function if and
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only if there exists (V^)^^ an increasing sequence of open subsets
of U which covers U and is such that V^ is bounded away from
the boundary of U for each n.

Proof. — (see also [12]). Let (p^)^, be an increasing sequence
of continuous semi-norms on E which defines the topology of E.
Suppose U is the domain of existence of / For each K compact
in U choose 7^ a positive integer and a^ > 0 such that

l l^K+2aK<^;P, 00<l) < °°'

Since E is separable we can choose (K^)^ a sequence of compact
subsets of U such that G (K^ 4- a^ {x, p- (x) < 1}) D U. By

n = 1 yi / *-w
using Cauchy's inequality and the fact that U is the domain of
existence of / we find that

inf. p ^ ( x - y ) > inf. c^.
xew^ 1=1,...,N l

y^ e\j

where W^ = ̂  K, + {x , p,^ (x) < a .̂}

and N = sup /^
1=1,...,N ^

The sequence (W^)°°^ has all the required properties. Conversely sup-
pose (V,,)00 was an increasing sequence of open subsets o f U which
covered U and was such that V^ was bounded away from the boundary
of U for each n.

Let M be a countable dense subset of U and let (Sn)^, be a
sequence of elements in M containing each point of M infinitely
often. For each £„ let A^ = {x E E , d(x , {„) < d(^ , <°U)

where d(x, ,) = f 1 ^x - ̂
„=! n1 1 + p^x - y)

Let C^ = V^.
Choose z^ G A^ H CV^. Choose ^ such that V^ D C^ U {z^}

and let Cg = V^ and so on by means of an obvious inductive process.
For each n there exists/,, E 9£(U) such that
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11/Jv <-^ and \fn^n^\>^^ryLfi^n.Y)\kn 2n 1=2

00

The function / = ^ /„ C. !}€(U) and has U as its natural domain
n=2

of existence (l).

LEMMA 1.6. — Let U be an open subset of a metrizable locally
convex space E and let F be a closed subspace of E. If TT^ denotes
the quotient mapping of E onto E/F and U = TT'^TT^U)) ^Ae^ U
is the domain of existence of a holomorphic function if the same is true
of the open set TT^ (U).

Proof. — Now E/F is metrizable and lemma 1.5. implies that if
7Ti(U) is the domain of existence of a holomorphic function then
there exists /^^(^(U)) such that l l / l lvnu = o o for any °^
subset V which intersects 6(7r(U)).

Let g = / o TT, then g E 36(11)).
Now if ^ G 3U and W is a neighbourhood of ^ in E then

E
7Ti(W) is an open subset of "p which contains 71-1 (^) E 6(71^ (U)).

Hence l l ^ l l w n u = o o

This implies that U is the domain of existence of g.

Proof of proposition 7.2. — Let U be a connected open pseudo-
convex subset of E. By lemma 1.1. we can suppose U = ^"^(^(U))
where TT is the quotient mapping from E onto E/pj^O). By lemma 1.6.
it suffices to show TT(U) is the domain of existence of a holomorphic
function.

For each compact subset K of 7r(U) contained in TT(E") for
some n and each integer 7 such that

(1) An examination of the construction we have used shows that if Ui is any
open subset of E such that

U^ n $ U ^ 0 then ll/lly^ =^.
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A(K)= inf ^ ( x - y ) > Q
' x^K J

yGe(7T(V))

we let K^ == K +{y , ^.(y) < - ̂ .(K)}

The set of all such K^'s forms an opening covering of 7r(U). Since
E has a basis it is separable and hence we can subtract from the
set of all K^'s a countable open covering of TT(U), say (K,. .)̂  .

fTt

By lemma 1.3 it suffices to show U K. is bounded away
w = l in "

from the boundary of TT(U) for each m. If this were not so there
would exist O^ E TT(U), ^ -> ^ E 5(7r(U))

and sup |/(^)| < ||/|| m
U K.

yi=l In

for all / E ge(7r(U)).

By the same procedure as used in [16] we can suppose S = 0
00

and ^. E U E" for each integer 7./ w=l

Let

0 = sup. fi
1=1 , . . . ,W

Choose M a positive integer such that

(a) KfCEM for z = 1 ,. . . , m.

(b) there exists ^ ^ ( Q K. ) n E^

for which ^(^) < i- inf. .̂ (K,) = a/4.
4 1= 1 ,. . . ,772 •

Let P be a continuous polynomial on ^(E1^) and let P denote
the extension to 7r(E) of P which we have previously discussed.

Hence |P(^)| = |P(^)| < sup. ||P||^
n=l,...,w ^fn

Now if c^o E K,, coi E ^(E1^) , 0:2 G ^(GM) and
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P^+c^)<^(K,)

then P(cjo + o?i + c^) = P(o;o + c^)

and by lemma 1.3

1̂ ) <P^ + c^) < ^- ^(K,)
Hence

'^^.^""'^n.CEM).

Now

^ (A K^nTrCE^1)

> inf. ^ (K,. H TTCE^)
1=1, . . .W /1

> inf. ^ , (K,n7^(E M ) )=^a .
1=1,...w /1 4

Since ^C^) < a/4 this contradicts the fact that TT(U) n ^(E1^)
is pseudo convex and hence holomorphically convex (we need the
fact that "PQ was a norm on TT(E) in order to insure that K. H ^(E^
was a compact subset of a finite dimensional space)

Remark. — If there existed a continuous norm on E or if we
knew that ?r(E) had a strong basis then the proof of proposition
1.2 could be considerably shortened and would in fact be more
or less the same as that given for Banach spaces with a basis in [16].

An examination of the final part of the proof of proposition
1.2 shows that we have in fact proved the following result.

PROPOSITION 1.3. — A metrizable space with a strong basis is
a CTONBR(8) space.

LEMMA 1.1. - If V is an open subset of a Lindelof(2) L.C.S.
with a strong basis E then E can be endowed with the structure of
( 1 ) d^(x)= ^Oc,0) = ^(x)
(2) A topological space X is Lindelof if every open cover ofX contains a countable

subcover.
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a locally convex semi-metrizable space with a strong basis weaker than
the original topology on E such that U is open with respect to the
new structure.

Proof. — Let (po)a(=A ^e ^le set °^ c011^11^1^ semi-norms on
E associated with a strong basis. For each x € U choose c^ E A
such that V^ = x + {y , p^ (y) < 8^} C U for some 5^ > 0. U V^
is an open covering of U.

Since E is Lindelof U is also Lindelof and hence we can choose
(x )°° , a sequence of elements of U such that U V = U. Noww^=i ^ n==i ^
(E, (p., ) ° ° ) is a semi-metrizable Lc.s. with a strong basis and—ff yi—1
and U is open in (E, (p^ )°°,). This completes the proof.

PROPOSITION 1.4. — ^4 Lindelof space with a strong basis is a
CTONBR(2) and a CTONBR(8) space.

Proof. — Let U denote a pseudo convex open subset of E such
that U H F is Runge for each finite dimensional subspace F of E.
Let m denote the topology of E and let i(m) denote the semi-
metrizable topology on E as constructed in the previous lemma. It
is immediate by proposition 1.3. that U is polynomially convex
and hence E is a CTONBR(8) space.

By proposition 1.2 U is the domain of existence of a hole-
morphic function when U is endowed with the i(m) topology. Now
if Xn G U , Xn m^ x G 5U then x^ '^ x and hence there exists
/E9e(U) such that sup |/0cj| = oo. Hence E is a CTONBR(2) space.

Examples of spaces which satisfy the condition of proposition
1.4.

1) E Lindelof, barrelled and possessing a basis.
00

2) E = ̂  E^, where E .̂ is a Frechet space with a basis for each i
1=1

We now consider CTONBR(4) spaces.

PROPOSITION 1.5. — If E is a Lc.s. such that for each compact
subset K of E there exists a closed complemented subspace of E
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which contains K and is a CTONBR(4) space then E is a CTONBR(4)
space.

Proof. — Let U be an open finitely polynomially convex subset
of E. For K compact in U choose E(K) a closed complemented
subspace of E which is a CTONBR(4) space and which contains K.
Hence K is a compact subset of U H E(K) and thus

^ A

^(EOC)) = ^(E)

is a precompact subset of U. This completes the proof.
Examples of spaces which satisfy the criterion of proposition 1.5 :

1) E an arbitrary IP space, (1 < p < o°) (note, E need not be
complete nor separable)

00

2) E == ^ E,, where A is an arbitrary indexing set and E, is
ieA

a Frechet space with a basis for each i.

We now consider projective limits of various kinds.
Let (E,.)^^ be a set of l.c.s. spaces.
Let E be a vector space and let TT, be a linear mapping from E

onto E, for each / E A. We say E is the protective limit of (E,),^
by means of the mappings OTi),eA tf ̂  ^as t^le ^^kest locally convex
topology for which all the functions TT, are continuous. We write
E = lim (E,, TT,). The protective limit is said to be directed if A

j'eA
is directed and for each i , 7 E A there exists k E A ,k > i , k > f
and continuous linear mappings TT^ , TT? such that the following diagram
is well defined and commutative
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Lim (E,, TT,) is said to be an V-profective limit if it is directed and
I'GA

for each i the mapping TT, , E -> E, is open. The following lemma
can be proved easily.

LEMMA 1.6. - The directed protective limit lim (E, , TT,) is an
i'eA

l^-profective limit if and only if the mapping ^ is open for each
k , i e A , k > i .

A semi-metric d ou E a L.C.S. which has the form

^.y)=p^1 \P^-^-
n=2 n2 1 + p^(x - y)

where ?„ is a continuous semi-norm on E for each n is said to be
a suitable semi-metric.

The following properties of a suitable semi-metric d are easily
checked ;

1) d is continuous on E and generates the same locally convex
structure on E as the sequence of semi-norms (p^)°°^ .

2) {x G E , d(x) = 0} is a closed vector subspace of E.

LEMMA 1.7. — Let U be a pseudo convex open subset of (a)
Lc.s. E. Suppose d is a suitable semi-metric on E such that

{ y , d ( y ) < £}C U

for some e> 0 then U D {y , d(y) < (3} where j3 = sup {d(y), y E E

and there exists x E E , d(x - y) = 0, \x E U for | X| < 1}.

Proof - Let a? E E , rf(o;) < j3, cjy G E , d(cj - G}y) = 0 and

\cjy E U for all X G C , | X| < 1.

If a? and ojy are linearly dependent then a? G U trivially and the
lemma is proved. Hence we suppose that the vector space spanned
by a; and (jjy, V, is 2-dimensional. Let

5y^(z, ojy) = sup {X , z +^ EU n V for \^\ < X}


