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HOLOMORPHIC FUNCTIONS ON LOCALLY CONVEX
TOPOLOGICAL VECTOR SPACES

II. Pseudo convex domains (*) (**)

by Scan DINEEN

In this article we investigate the problem of when pseudo-
convex domains are domains of holomorphy. This problem was
originally posed for infinite dimensional locally convex spaces by
Bremmerman ([4], [5], [6], [7], [8]). The problem has been solved
in the affirmative for tube domains [5], for open subsets of C"
(n = countable infinity) [18], for Riemann domains over C" [27]
and for open subsets of a Banach space E with a basis whose inter-
section with each finite dimensional subspace of E is Runge [16].
We use the method of Hirschowitz [18] to circumvent the problem of
having no continuous norm and show that if U C E is pseudo convex
and p is a continuous semi norm on E such that{^, p ( y ) < 5} C U
then V + {y , p(y) = 0} = U. In this way the characterisation pro-
blem on U can be transferred to a space on which there exists a
continuous norm. By this method we are able to prove generalisa-
tions of the Cartan-Thullen-Oka-Norguet-Bremmerman theorem in a
variety of cases which include the following :

00

a) U open in J~T E^ , E^ a Frechet space with a basis for each
"=i

n and U H F Runge for each finite dimensional subspace F of E.
00

b) U open in ^ E, where each E, is a Frechet space with a
i= i

basis and U 0 F is Runge for each finite dimensional subspace F ofE.

(1) A number of the results containedin this paper were announced in C.R. Acad.
Sc., Paris, t. 274, 544-547 (1972).

(2) Part I has appeared in Ann. Inst. Fourier, t. 23, 1 (1973).
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c) U an open subset of a nuclear space and U H F Runge for
each finite dimensional subspace F of E.

It has been shown in [19] that the theorem does not hold
in its full generality for all locally convex topological vector spaces.
Although complete results on this problem are not yet available
an examination of the results obtained here suggest that the follow-
ing properties of the locally convex space E will have some bearing
on the final solution :

1) Countability conditions on E (e.g. is E separable, Lindelof).

2) Geometric position of E/p'^O) in E (p is a continuous
semi-norm on E) (e.g. is E/p'^O) complemented topologically in E ?)

3) Geometric properties of (E/p'^O),?) (p is a continuous
semi-norm on E) (e.g. does (E/p'^O),?) have a basis ?).

Unless otherwise stated our notation is the same as [15]. For back-
ground information on pseudo-convexity and plurisubharmonic func-
tions we refer to [18], [9], [24], [26], [31], [33].

I thank Phillip Boland and Phillip Noverraz for many helpful
conversations and correspondance.

1. The Cartan-Thullen-Oka-Bremmerman-Norguet theorem.

We consider the following properties on an open subset of a
locally convex space E.
(HI) U is a domain of existence of a holomorphic function (i.e.
there exists fe 96 (U) such that there is no Ui , U^ connected open
in E, 0 ̂  IJ2 C Ui H U , Ui <? U, and /i e ^(U^) such that

AJ ÎU,)-

(H2) For each sequence, (^)^i» of elements o/U, {„ -> ^ f e 5U
(6U is the boundary of U in E) there exists fe 96(11) such that
sup |/(SJI = °°.

M

(H3) U is a domain of holomorphy (ie. there exists no U^ , U^
open connected in E such that 0 ̂  U^ C U^ H U , U^ <f. Vand for
each fe 9e(U) there exists f^ e9€W^ such that /Jy =/|y .
(H4) U is holomorphically convex (i.e. the holomorphic hull(1).

(1) A / y ^ will denote the holomorphic hull of A with respect to ^(U).
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of each compact subset of U is a precompact subset of U(1).
(H5) U is holomorphically convex and if K is a compact subset
of U and V is a balanced open neighbourhood of 0 in E such that
K + V C U, then K^^ 4- V C U.
(H6) U is a plurisubharmonically convex (i.e. the plurisubharmonic
hull of each compact subset of V is a precompact subset of U)
(H7) U is pseudo convex fie. U 0 F is pseudo convex for each
finite dimensional subspace F of E).
(H8) U is polynomially convex (i.e. the polynomial hull of each
compact subset K of U, K^gy is a precompact subset of U).
(H9) U is finitely polynomially convex if U 0 F is polynomially
convex for each finite dimensional subspace F of E).

It shall be necessary to consider locally convex spaces which
may not be Hausdorf, however, if F is the closure of 0 in E and

E
TT denotes the quotient mapping of E onto — then (H,) 0' = 1 , . . . , 8)

is true for an open subset U of E if and only if the same is true of
7r(U)(2). Thus we restrict ourselves to Hausdorff locally convex spaces
in the proofs but use the fact that the results proved are valid for
non-Hausdorff spaces.

If E is a locally convex space such that each open subset of
E which satisfies H(7) (resp H(9)) also satisfies HO) 0- = 1,2,3,4,5)
(resp satisfies H(0, i = 1,2,3,4,5,6,8) then we say E is a CTONB(i)
(resp CTONBR(i)) space. The following proposition can be combined
with CTONB(i) (resp CTONBR(i)) spaces to prove the usual Cartan-
Thullen-Oka-Norguet-Bremmerman ( . . . . . Runge) theorem.

PROPOSITION 1.1. — For any Lc.s. E and any open subset U of
E we have the following :

(1) K is a precompact subset of U if it is a precompact subset of E and there
exists p a continuous semi-norm on E such that inf p(x — y ) > 0.

xeK
y^W

(2) This can easily be proved by using the techniques we develop in the remainder
of this section.
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(HI) =» (H2) =» (H3) ^ (H4) ^ (H5) ^ (H6) ^ (H7)

(H8) => (H4) and (H9) => (H7).

A-oo/ — (H1)=^(H2) can easily be proved by using Cauchy's
inequalities (see [12] for Banach spaces).

(H5) ^ (H4) =» (H6) ^ (H7), (H8) =» (H4) and (H9) ^ (H7)

are either trivial or well known ([9] , [31]).

Suppose (H3) is not true then there exists L^ , U^ open connected
in E such that (H3) fails to hold for the pair U^ , U^.

LetVi = { ^ E U n U i ,/Oc)=/i(;c)forall/G9e(U),

f, ege(U,) such that/I^ =/Jy}

By definition U^ C V\. Since all holomorphic functions are conti-
nuous V\ is a closed subset of U H U^. By using the Taylor series
expansion and the fact that analytic continuation is unique we find
that Vi is an open subset of U H U^. Let V be the connected
component of V^ which contains U^. We now consider V as an open
subset of Ui. V is not a component of U^ since U^ is connected
and V\ <fL U. Since E is a l.c.s. this implies that V is not sequen-
tially closed in Ur Let (^,)^ be a sequence in V,

x^ -> x e Ui n eu
Since x ^ V C U H Up x ^ U. Hence x G 6U. Now /i is conti-
nuous at x (since x G U^). Hence

i.e. Urn /(^) = lim f, (xj = /i(x)v^^ A^i* j ^ \-^n^
n->w n-9-oo

exists and is finite
sup \f(x^)\ < oo for all / E 96(U).

n

Thus (H2) =» (H3).

(H3) => (H4). Suppose (H4) is not true. Let K be compact in U
and x^ E K^^, x^ -> 5U(1) as a -> oo (this is possible since K is

(l) XQ, -> 6U if (Xy\^ is a precompact subset of E and inf p ( x ^ - y ) = 0
O[€A

for each continuous semi-norm on E. v^- u)
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contained in the convex hull of K and hence is always a precompact
subset of E). Let p be a continuous semi-norm on E such that

d ( K , e U ) = inf p ( x - y ) = 8 > 0
JCGK
yeeu

Let y e E, p(v) < §. Choose 6^ > 1 such that

KI = K + { X ^ | | X | < 6 ^ } C U

(hence K^ is also a compact subset of U). Let W be a convex balanced
neighbourhood of 0 such that

l ^ " K ^ w = M < o o

for a given preassigned fe ge(U). For any a, X E C , |X| < 1 and
^ cW we have

^/(xj
n\

(\y + co) WOO
^!

(^ + CJ)
I JCGK

'sup 1 / /(^X.^^))
xfEK 27r ^ 1 ^ ^ 1 = 6 ^ X^l

Now x + Xi Xj/ + \ a; G B K + {ay , |,a| < 6J + 6^ W and this im-
plies

rfV(^) Ma- (\y +€ . ) )< sup |/(x)|. 6r" < --""P U '.-'•-'I • "1 ^ ——
x<=K-t{\y,\a\<6^}+V/ 6^n\

Hence S
n=0

d"f(x^
n\ (\y + co) M . S - <

n=0 5̂ "

Since a, \ and c^ were arbitrary we have

y ^"/(^q)
n=0 I "' {A.^ , |A. |< l}+W

< o°

which means that the Taylor series of / at x^ converges in a W-
neighbourhood of y. Choose Xy such that dp (x^,eU) < 6/2 then
if

?(x + x ^ ) = S d"f(x^)
n=0 "i

(X)



160 S. DINEEN

/<w
/is holomorphic in a p. neighbourhood of x^ .

Let V be a convex neighbourhood of x^ contained in

un{x,p(jc-^)<5}.

Taking V = U^ and U^ = { x , p(x - x^) < 8} we find that (H3) is
not true. Hence (H3) => (H4), (H4) ^ (H5).

If (H5) were not true then there would exist K compact in U
and y £ E such that K^ = K + {\y^ |X| < 1} C U and is compact
there but K + {\y^\ \\ < 1} (? U. The method used to show (H3) ̂  (H4)
can now be used to show K^ is not a precompact subset of U. This
contradicts (H4) and hence (H4) =» (H5).

Remark. — If E is quasi-complete then we can replace the condi-
tion "precompact set" by "compact set" in proposition 1.1.

The remainder of this section will be devoted to showing certain
spaces are CTONB(i) or CTONBR(i) spaces. We first consider locally
convex spaces for which we can prove the required result directly
and then proceed to investigate certain kinds of projective limits
of CTONB(i) and CTONBR(i) spaces.

LEMMA 1.1. — Let V be a connected pseudo convex open subset
of E, E an arbitrary l.c.s. Let p be a continuous semi-norm on
E such that {y , p ( y ) < 6} C U for some 8 > 0 then

U = U + { ^ p O Q = 0 }

Proof. — Let x E U and y e E , p ( y ) = 0, be arbitrary. Since U
is connected there exists a finite dimensional subspace F of E such
that

i) x , y e F
ii) 0 and x belong to the same connected component of U H F.

F is finite dimensional and hence every semi-norm on F is conti-
nuous. By definition U H F is pseudo-convex since U is pseudo
convex and hence the connected component of U 0 F containing
0 say Up is again a pseudo convex subset of F.
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Let "p denote the restriction of p to F.

Hence U^ D {a? € F , p(^) < 5} •

The method used in [18] can now be applied to show

. Ui + { o ; e F , ^ ( G ; ) = = 0 } = U ^

Hence x + \y G l^ C U for all X E C.

Since ^ and y were arbitrarily chosen this implies

U + { ^ p ( ^ ) = 0 } = U .

Remark. — If TT denotes the quotient mapping from E onto
E/p'^O) then the proceeding lemma is equivalent to showing

U=7^- l(7^(U)).

LEMMA 1.2. — Let TT be a linear mapping from the vector space
E onto F. Let U be an open (1) subset ofE such that U = 7^-1(7^(U))
then 7r(U) is pseudo convex (resp. TT(U) H F^ is Runge (2). /or ^acA
finite dimensional subspace F^ o/ F), z/ U ^ pseudo convex (resp.
U H G is Runge for each finite dimensional subspace G of E).

Proof. — It suffices to show that if F^ is a finite dimensional
subspace of F there exists a subspace G of E such that TT ;

u n G ->• TT(U) n pi
is a linear isomorphism.

Suppose Pi is spanned by $1 , . . . , ̂ - Choose T^ , . . . , ̂  E E
such that Tr(^) = $, for / = 1 ,. .. , n. Hence TT ; G -> Fi is an
isomorphism where G is the ^-dimensional subspace of E spanned
by T?i , . . . , T^ (linear mapping of one n dimensional subspace onto
another is always an isomorphism).

(1) For vector spaces we say U is open if and only if U 0 F is open in F for
each finite dimensional subspace F of E.

(2) U is Runge if the polynomials on E are dense in 3€W) when ^(U) is endowed
with the compact open topology.
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Now U n G C U and U 0 G C G, hence

TT(U n G) c 7r(U) n TT(G) = TT(U) n FI .
n n

Conversly if y € 7r(U) H F^ ,y = ^ a,^.. Letx = S ^.77, then
1=1 i=i

^ £ G and 7r(x) = j^. Hence x £ Tr-^TrOJ)) = U and thus x G U n G.
This means TT(U H G) = 7r(U) H F^ and we have completed the proof.

We now restrict ourselves to specific locally convex spaces.

DEFINITION. — A basis(1), (U^)^p in L.C.S. E is a strong basis
if there exists a set of continuous semi-norms on E, (^a)aeA ^ic^
defines the topology of E such that

Pa(S ^U,)= Supp,(S a,U,)
n=l n /=!

for each a E A.
Any basis in a barrelled locally convex space is a strong basis.

In particular any basis in a Frechet space is a strong basis. We let
E" (resp. E^) denote the closed vector space spanned by U^ , . . . , U^
(respOJ,);^).

PROPOSITION 1.2. — A metrizable locally convex space E which
has a strong basis is a CTONBRd) space.

The proof is rather long and is divided into a number of lemmas.
Let U denote a finitely polynomially convex subset of E. Let

(U,,)^ be a strong basis in E and let (pn)°n^\ denote the correspond-
ing family of semi-norms. Without loss of generality we can suppose
(pn)00^ is an increasing family of semi-norms and by lemma 1.2 we
can also assume that

U = TT-^TTCU))

where
T^E^E/p^W^TKE).

( l ) A basis is always taken to be a Schauder basis (i.e. the projection onto
each coordinate is continuous).
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if p is a continuous semi-norm on E we denote by? the corresponding
semi-norm on 7r(E). (Note that .̂ is a continuous norm on 7r(E)
for each; and (p-)°l, defines the quotient topology on ?r(E).

LEMMA 1.3. - Let x = a^ + a^ G TT(E) where a^ E 7r(E'1) and

^^)

then Pj(p(.^)<p^x) for each positive integer 7.

Proof. - Choose ^ e E" , ̂  G E^ such that 7r(^.) = c .̂ for

7 = 1,2.
Let 7 E E be chosen such that

P i ( j S i - 7 ) = = 0

Hence 7 - ̂  = -^ + ̂  where 7?^ G E" and 77^ E E^,

p ^ ( ^ ) = 0 and p i ( r^ )=0 .

This means that p (7 — 17 — jS^) = 0 and

^(T-^)-^ +^)<^.(^ +7^ +^)=p,(7)

Hence p,.(ai) = inf. ^.(7)
^GTr-^apnE".

Now suppose 7 E E , 7 = 71 + 72 , 7i e E" , 72 E E^ and

PiOSi +^2 -7i -72)= 0.

We then have pi(j3i - 7i) = 0 and p^^ - 72) = °

Hence p^) < p;(7i) ^P/(7i +72) which implies

?;.(^) < inf. ^.(7^ + 7^) = ^.(7r(^ + ^)) = P,(^).
'y = 'y^ + 'y^ ̂  E
7e7r-i(^+^)

LEMMA 1.4. — Z^ P &^ a continuous polynomial on 7r(E") then
there exists a p^ continuous polynomial on E, Q, such that

Q(x + y ) = Q(x) for all x € E" , y E E^ (1)

P o TT |̂  = Q |̂  (2)
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Proof. - Define Q on E" by Q = P o TT| „. Now extend Q to
E to get Q by

Q (x=1 a/U,) = Q (1 a,U,)
1=1 i=i

(1) and (2) are immediately satisfied. It remains to show Q is a
p^ -continuous polynomial on E.

Let (^)°°^ € E be arbitrary and suppose p^ (x^) -^ 0 as m -> °°
For each w, x^ = y^ + z^, ̂  E E", z^ G £„. And ^(^) -> 0 as
w -> °°.

By construction

Q(^) = Q(^) = (P o 7T) (^) = P(7T(^))

Now p^ is a continuous norm on TT(E) and hence its restriction to
Ti^E") is also continuous. Hence P is ̂  continuous on 7r(E") and
since p^(7r(jc)) <p^(x) for all x G E this implies P(TT(^)) -> 0 as
m -> °° whenever pi(>'^) -> 0 as m -^ °°. Hence Q is p^ conti-
nuous on E. This completes the proof.

Now suppose P is a continuous polynomial on TT(E"). Let Q be
the p^ -continuous polynomial on E associated with P in the previous
lemma.

We define P on TT(E) in the following manner,

PQc) = QtTr-1^)) for all x G TT(E).

P is well defined for if y , a; G 'JT~l(x) then Tr(y) = 7r(a?) == x i.e.
7r(y — co) = 0.

Since Q is pi-continuous on E we have Q(z + (y — a?)) = Q(z)
for all z E E.
Hence Q(y) = Q(c;).

Also if y^ G 7r(E) , p ^ ( V n ) "̂  0 as n "^ 00 then there exists
z^ G E , 7r(zJ = ̂  and p^(z^) -> 0 as ^ -> oo Hence Q(z^) ^ Q(0)
as n -> <», this implies that P(y^) = Q(^^) -^ Q(0) = (0) as n -> oo and
we have shown that P is ̂  continuous on TT(E).

LEMMA 1.5. - An open subset U of a separable metrizable l.c.s.
E is the domain of existence of a holomorphic function if and
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only if there exists (V^)^^ an increasing sequence of open subsets
of U which covers U and is such that V^ is bounded away from
the boundary of U for each n.

Proof. — (see also [12]). Let (p^)^, be an increasing sequence
of continuous semi-norms on E which defines the topology of E.
Suppose U is the domain of existence of / For each K compact
in U choose 7^ a positive integer and a^ > 0 such that

l l^K+2aK<^;P, 00<l) < °°'

Since E is separable we can choose (K^)^ a sequence of compact
subsets of U such that G (K^ 4- a^ {x, p- (x) < 1}) D U. By

n = 1 yi / *-w
using Cauchy's inequality and the fact that U is the domain of
existence of / we find that

inf. p ^ ( x - y ) > inf. c^.
xew^ 1=1,...,N l

y^ e\j

where W^ = ̂  K, + {x , p,^ (x) < a .̂}

and N = sup /^
1=1,...,N ^

The sequence (W^)°°^ has all the required properties. Conversely sup-
pose (V,,)00 was an increasing sequence of open subsets o f U which
covered U and was such that V^ was bounded away from the boundary
of U for each n.

Let M be a countable dense subset of U and let (Sn)^, be a
sequence of elements in M containing each point of M infinitely
often. For each £„ let A^ = {x E E , d(x , {„) < d(^ , <°U)

where d(x, ,) = f 1 ^x - ̂
„=! n1 1 + p^x - y)

Let C^ = V^.
Choose z^ G A^ H CV^. Choose ^ such that V^ D C^ U {z^}

and let Cg = V^ and so on by means of an obvious inductive process.
For each n there exists/,, E 9£(U) such that



166 S. DINEEN

11/Jv <-^ and \fn^n^\>^^ryLfi^n.Y)\kn 2n 1=2

00

The function / = ^ /„ C. !}€(U) and has U as its natural domain
n=2

of existence (l).

LEMMA 1.6. — Let U be an open subset of a metrizable locally
convex space E and let F be a closed subspace of E. If TT^ denotes
the quotient mapping of E onto E/F and U = TT'^TT^U)) ^Ae^ U
is the domain of existence of a holomorphic function if the same is true
of the open set TT^ (U).

Proof. — Now E/F is metrizable and lemma 1.5. implies that if
7Ti(U) is the domain of existence of a holomorphic function then
there exists /^^(^(U)) such that l l / l lvnu = o o for any °^
subset V which intersects 6(7r(U)).

Let g = / o TT, then g E 36(11)).
Now if ^ G 3U and W is a neighbourhood of ^ in E then

E
7Ti(W) is an open subset of "p which contains 71-1 (^) E 6(71^ (U)).

Hence l l ^ l l w n u = o o

This implies that U is the domain of existence of g.

Proof of proposition 7.2. — Let U be a connected open pseudo-
convex subset of E. By lemma 1.1. we can suppose U = ^"^(^(U))
where TT is the quotient mapping from E onto E/pj^O). By lemma 1.6.
it suffices to show TT(U) is the domain of existence of a holomorphic
function.

For each compact subset K of 7r(U) contained in TT(E") for
some n and each integer 7 such that

(1) An examination of the construction we have used shows that if Ui is any
open subset of E such that

U^ n $ U ^ 0 then ll/lly^ =^.
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A(K)= inf ^ ( x - y ) > Q
' x^K J

yGe(7T(V))

we let K^ == K +{y , ^.(y) < - ̂ .(K)}

The set of all such K^'s forms an opening covering of 7r(U). Since
E has a basis it is separable and hence we can subtract from the
set of all K^'s a countable open covering of TT(U), say (K,. .)̂  .

fTt

By lemma 1.3 it suffices to show U K. is bounded away
w = l in "

from the boundary of TT(U) for each m. If this were not so there
would exist O^ E TT(U), ^ -> ^ E 5(7r(U))

and sup |/(^)| < ||/|| m
U K.

yi=l In

for all / E ge(7r(U)).

By the same procedure as used in [16] we can suppose S = 0
00

and ^. E U E" for each integer 7./ w=l

Let

0 = sup. fi
1=1 , . . . ,W

Choose M a positive integer such that

(a) KfCEM for z = 1 ,. . . , m.

(b) there exists ^ ^ ( Q K. ) n E^

for which ^(^) < i- inf. .̂ (K,) = a/4.
4 1= 1 ,. . . ,772 •

Let P be a continuous polynomial on ^(E1^) and let P denote
the extension to 7r(E) of P which we have previously discussed.

Hence |P(^)| = |P(^)| < sup. ||P||^
n=l,...,w ^fn

Now if c^o E K,, coi E ^(E1^) , 0:2 G ^(GM) and
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P^+c^)<^(K,)

then P(cjo + o?i + c^) = P(o;o + c^)

and by lemma 1.3

1̂ ) <P^ + c^) < ^- ^(K,)
Hence

'^^.^""'^n.CEM).

Now

^ (A K^nTrCE^1)

> inf. ^ (K,. H TTCE^)
1=1, . . .W /1

> inf. ^ , (K,n7^(E M ) )=^a .
1=1,...w /1 4

Since ^C^) < a/4 this contradicts the fact that TT(U) n ^(E1^)
is pseudo convex and hence holomorphically convex (we need the
fact that "PQ was a norm on TT(E) in order to insure that K. H ^(E^
was a compact subset of a finite dimensional space)

Remark. — If there existed a continuous norm on E or if we
knew that ?r(E) had a strong basis then the proof of proposition
1.2 could be considerably shortened and would in fact be more
or less the same as that given for Banach spaces with a basis in [16].

An examination of the final part of the proof of proposition
1.2 shows that we have in fact proved the following result.

PROPOSITION 1.3. — A metrizable space with a strong basis is
a CTONBR(8) space.

LEMMA 1.1. - If V is an open subset of a Lindelof(2) L.C.S.
with a strong basis E then E can be endowed with the structure of
( 1 ) d^(x)= ^Oc,0) = ^(x)
(2) A topological space X is Lindelof if every open cover ofX contains a countable

subcover.
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a locally convex semi-metrizable space with a strong basis weaker than
the original topology on E such that U is open with respect to the
new structure.

Proof. — Let (po)a(=A ^e ^le set °^ c011^11^1^ semi-norms on
E associated with a strong basis. For each x € U choose c^ E A
such that V^ = x + {y , p^ (y) < 8^} C U for some 5^ > 0. U V^
is an open covering of U.

Since E is Lindelof U is also Lindelof and hence we can choose
(x )°° , a sequence of elements of U such that U V = U. Noww^=i ^ n==i ^
(E, (p., ) ° ° ) is a semi-metrizable Lc.s. with a strong basis and—ff yi—1
and U is open in (E, (p^ )°°,). This completes the proof.

PROPOSITION 1.4. — ^4 Lindelof space with a strong basis is a
CTONBR(2) and a CTONBR(8) space.

Proof. — Let U denote a pseudo convex open subset of E such
that U H F is Runge for each finite dimensional subspace F of E.
Let m denote the topology of E and let i(m) denote the semi-
metrizable topology on E as constructed in the previous lemma. It
is immediate by proposition 1.3. that U is polynomially convex
and hence E is a CTONBR(8) space.

By proposition 1.2 U is the domain of existence of a hole-
morphic function when U is endowed with the i(m) topology. Now
if Xn G U , Xn m^ x G 5U then x^ '^ x and hence there exists
/E9e(U) such that sup |/0cj| = oo. Hence E is a CTONBR(2) space.

Examples of spaces which satisfy the condition of proposition
1.4.

1) E Lindelof, barrelled and possessing a basis.
00

2) E = ̂  E^, where E .̂ is a Frechet space with a basis for each i
1=1

We now consider CTONBR(4) spaces.

PROPOSITION 1.5. — If E is a Lc.s. such that for each compact
subset K of E there exists a closed complemented subspace of E
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which contains K and is a CTONBR(4) space then E is a CTONBR(4)
space.

Proof. — Let U be an open finitely polynomially convex subset
of E. For K compact in U choose E(K) a closed complemented
subspace of E which is a CTONBR(4) space and which contains K.
Hence K is a compact subset of U H E(K) and thus

^ A

^(EOC)) = ^(E)

is a precompact subset of U. This completes the proof.
Examples of spaces which satisfy the criterion of proposition 1.5 :

1) E an arbitrary IP space, (1 < p < o°) (note, E need not be
complete nor separable)

00

2) E == ^ E,, where A is an arbitrary indexing set and E, is
ieA

a Frechet space with a basis for each i.

We now consider projective limits of various kinds.
Let (E,.)^^ be a set of l.c.s. spaces.
Let E be a vector space and let TT, be a linear mapping from E

onto E, for each / E A. We say E is the protective limit of (E,),^
by means of the mappings OTi),eA tf ̂  ^as t^le ^^kest locally convex
topology for which all the functions TT, are continuous. We write
E = lim (E,, TT,). The protective limit is said to be directed if A

j'eA
is directed and for each i , 7 E A there exists k E A ,k > i , k > f
and continuous linear mappings TT^ , TT? such that the following diagram
is well defined and commutative
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Lim (E,, TT,) is said to be an V-profective limit if it is directed and
I'GA

for each i the mapping TT, , E -> E, is open. The following lemma
can be proved easily.

LEMMA 1.6. - The directed protective limit lim (E, , TT,) is an
i'eA

l^-profective limit if and only if the mapping ^ is open for each
k , i e A , k > i .

A semi-metric d ou E a L.C.S. which has the form

^.y)=p^1 \P^-^-
n=2 n2 1 + p^(x - y)

where ?„ is a continuous semi-norm on E for each n is said to be
a suitable semi-metric.

The following properties of a suitable semi-metric d are easily
checked ;

1) d is continuous on E and generates the same locally convex
structure on E as the sequence of semi-norms (p^)°°^ .

2) {x G E , d(x) = 0} is a closed vector subspace of E.

LEMMA 1.7. — Let U be a pseudo convex open subset of (a)
Lc.s. E. Suppose d is a suitable semi-metric on E such that

{ y , d ( y ) < £}C U

for some e> 0 then U D {y , d(y) < (3} where j3 = sup {d(y), y E E

and there exists x E E , d(x - y) = 0, \x E U for | X| < 1}.

Proof - Let a? E E , rf(o;) < j3, cjy G E , d(cj - G}y) = 0 and

\cjy E U for all X G C , | X| < 1.

If a? and ojy are linearly dependent then a? G U trivially and the
lemma is proved. Hence we suppose that the vector space spanned
by a; and (jjy, V, is 2-dimensional. Let

5y^(z, ojy) = sup {X , z +^ EU n V for \^\ < X}
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Then -log Sy^y^ (jjy) is a plurisubharmonic function on U H V
and hence - log 6^^(\(cj - o^y), <^y) is a subharmonic function
of X for X G C.

Now rf(o) - <^y) = 0 and hence 70^ + X(o? - <^y) C U for all
sufficiently small 7 and all X G C. This implies that

- ̂  8vw(x^ - ̂ )

is bounded above and hence constant. For X == 0 we have Xco e U
for | X| < 1. Hence - log Sy^CO , 0}y) < 0 and so (co - ̂ y) 4- c^ E U
i.e. a? G U. This completes the proof.

LEMMA 1.8. — Let V be a pseudo convex open subset of the
^-projective limit Imi (E,, TT,) then U is ir^-open for some i G A.

iGA
(i.e. for each x G U ̂ ^ ^x^^ V^ open in E, ^cA rt^r

x E TT-^V^) C U).

Proof. — Without loss of generality we can suppose 0 E U and
that V open in E, is such that Tr^CV) C U (use the fact that we
have a directed projective limit).

Let W =={x E U| there exists V^ open in E, and

x 4- TT-^V^) C U}.

W is non empty and open in U. Suppose W ^= U then since E is locally
convex there exists ̂  E W ,x^ - > ^ G U n (°W. Choose /' E A , / > i
and q a continuous semi-norm on E. such that

y + { x G E , ^(77y(x)) < 6} C U for some 6 > 0.

Let (p^)^2 ^e a sequence of continuous semi-norms on E, such
that

^ +{x E E , p^(7T,(x)) < 6^} C U.

Under the open mapping TT^ there exists p^ a continuous semi-norm
on Ef such that

7^ ({x G E^., q(x) < 5/4}) D {x G E,, p,(x) < a}

Let d be the suitable semi-metric defined on E, by (p^)°°^
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^s/

We now define the suitable semi-metric d on E by

- , , , , , ,, . v 1 P^OO-^OO)^^^w^))^ ^ I-^O,Q<)-^))
=d(7r(;c),irOQ)

/•^

By construction we see that each x^ contains a d ball in U and
d > pi. We now have

^'(jc G E^, q(x) < 8/4) D {;c e E, , p(x) < a} D {x G E, , d(x) C a}

Let 72 be a positive integer such that

q ^ f ( x ^ - y ) ) < 8 / 4 (1)

d(y - x^) < all (2)

Hence x^ + { x G E , <y (7r,(jc)) < 36/4} C U (3)

If a? €E E and rf(c^) < a then d(7r,.(C(;) < a. This implies that

7r,(^) e TT^X EE, , q(x) < 5/4}

and hence there exists c^ E E such that

7rJ(7ry(a;)) = 7r,(o?) and q (^ (a?)) < 6/4.

Hence ^,(^1) = ^,(<^).

By (3) ^ + 0^1 G U.
/^/

Since TT, is linear TT, (d? — o?i) = 0 and hence d(a} — 0:1) = 0
By lemma 1.1.

U + { ^ , d ( ^ ) = 0} = U
/^^

since x^ contains a d neighbourhood in U. Since x^ + co^ € U this
implies ̂  + a; C U i.e. ̂  + { x e E , J(;c) < a} C U. By (2)

y + {x E E , ?(x) < a/2} C U

which implies y E W i.e. U = W.
This completes the proof.
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PROPOSITION 1.6. — The ^-projective limit of CTONB(i) (resp.
CTONBR(i)) spaces is a CTONB(i) (resp. CTONBR(i)) space for
i = 1,2,3.

Proof. — Our method of proof is the same for CTONB(i) spaces
as for CTONBR(i) spaces so we restrict ourselves to the former.
Let U be a pseudo convex open subset of E. By lemma 1.8 there
exists / G A such that U = ^(^(U)).

Now suppose E, is a CTONB(l) space for each i. Hence 7r,(U)
is the domain of existence of a holomorphic function / This implies
that / ° TT, is defined on U. The Riemann domain, U, associated
with / o TT spread over E can now be constructed and shown to be
pseudo convex. Since this domain contains U it must also be E,
open. If U =^ U then there exists a > 0 such that

u ^ = { x , i 7 o o i < ^ } < ? u
where / denotes the extension of/o TT, to U. Hence / can be factored
through a domain spread over 7r(U) and this contradicts the fact
that / has TT(U) as its domain of existence (1). The same method can
be applied to show that the N-projective limit of CTONB(3) spaces
is a CTONB(3) space. Now suppose E, is a CTONB(2) space for each
/. If ^ C U , ̂  -> ^ ^ E 6U then 7r(^.) G 7r(U) and Tr(^) -> 7r(S)

7T($) G 6(7T(U))

hence there exists/^ 96 (7r(U)) such that siy |/(TT(^))| = oo. Since
/ o TTE ge(U) this implies that E is a CTONB(2) space.

Examples

1) Y]C is a CTONB(l) space for any cardinal number a;.
a?

2) n^ is a CTONBR(i) space for / = 1,2,3 whenever E, is
U}

a CTONBR(i) space and a; is arbitrary, (in particular if E, is Frechet
with a basis)

( l ) Since U C E it is also possible to complete this proof for CTONB(l) spaces
without constructing a Riemann domain (similarly for CTONB(3) spaces).
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PROPOSITION 1.7. - A directed protective limit of CTONBR(8)
spaces is a CTONBR(8) space.

Proof. - Let E = Inn (E^, TT,) where each E, is a CTONBR(8)
»eA

space and let U be a finitely polynomially convex open subset of E.
For each / G A let V, be the largest z-open subset of U.

Let vl == KG^(V.) ^(E) where 3<^v/) denotes the set of all
compact finite dimensional subsets of V, and K / . is the polyno-
mial hull of K in E. Since U is finitely polynomially convex it is
immediate that V, C V, C U. Now suppose x G V, then there exists
K G9^C(V,.) and p a continuous semi-norm on E, such that

x G K +{y € E , p(7r,0.)) < a} C V,

for some a > 0.

For y € E,p(7T,(^))<a

Ky = K + {ojy, M < 1} C ^(V,)

Hence K^ +{a^ ,M < 1}C Ky^ C V,

Thus x -h {y , y E E , p0r,(j0) < a} C V, which means V^ = V,.
By construction V, is finitely polynomially convex.
By hypothesis V, is a polynomially convex subset of E.

Let K be compact in U. Hence K is a compact subset of some V,.
Hence K /g. is bounded away from the boundary of V,. This im-
plies immediately that K^g. is a precompact subset of U. Hence
U is polynomially convex.

Example 1. — A nuclear space is a CTONBR(8) space (if E is
nuclear then E is the directed projective limit of semi pre-Hilbert
spaces).

COROLLARY 1.1. — A finitely polynomially convex open subset
of a Frechet-Nuclear space is the limit of an increasing sequence of
domains of existence of holomorphic functions.

Example 2. — A Lc.s. with a strong basis is a CTONBR(8) space.
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00

2. Holomorphic functions on open subsets of ^ C.
1=1

It can easily be seen by means of the methods of the last section
00

that ^ C is a CTONB(2) space. In this section we give an alternate
1=1

proof of this fact and we also show that if E is an infinite dimensional
Lc.s. on which every G-holomorphic fonction is holomorphic then

00

E is linearly isomorphic to ^ C. (In I) we showed that every G-
00 1=1

holomorphic function on ^ C was holomorphic).
1=1

PROPOSITION 2.1. — Let U be a pseudo convex open subset of
00

^ C (= E) and let E^ be a finite dimensional subspace of E then
1=1
each f E 3€.(\J H E^) can be extended to a holomorphic function
on U.

Proof. — Immediate by using the corresponding finite dimensional
result and extending the function to all of U by induction. Since
the extension is G-holomorphic it is holomorphic.

00

PROPOSITION 2.2. - ̂  C is a CTONB(2) space.
1=1

00

Proof. — Let U be a pseudo-convex open subset of ^ C.
1=1

If x^ E U , Xn -> x G 6U then there exists E^ a finite dimensional
00

subspace of ^ C such that x^ € E^ for all n. Since U H E^ is
1=1

pseudo convex there exists/G 3e(U 0 E^) such that sup 1/(^)| = °°.

An application of proposition 2.1. completes the proof.

PROPOSITION 2.3. - Let E be an infinite dimensional L.C.S. such
that each G-holomorphic function on E is holomorphic then E is

00

linearly isomorphic to ^ C.
1=1
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Proof. - Let (^)aeA be a Hamel ^sis for E.

Then E is algebraically isomorphic to ^ C. Suppose now
aeA

that the cardinality of A was uncountable. Let {x^} be the 1-dimensional
space spanned by x^. For each n let

fn-n2^ S J^...,^.
II,...,̂ A 1

ly^i^for/^fc

where y ^ , . . . , y^ ; ^ {^ ^ ^ ^ ̂  ^-homogeneous polynomial
aGA

^ ,. . . , y^ ( S a,x,) = ̂  ,. .. , a,̂
l£A

00

Let / = ^ /„. It is easily checked that / is a G-holomorphic
n=i

function on E and hence it is holomorphic on E. Since the direct
sum topology on E induced by the algebraic isomorphism form

2j {x,} is finer than the original topology on E we see that /is
ieA

holomorphic on 2^ {x,} with the direct sum topology. Hence
(GA

there exists V open convex and balanced in S {^,} such that
ieA

11/Jv^1

for each n (since ———— = /„ ) .

Since A is uncountable there exists 5 > 0 and (c^)^ a se-
quence of distinct elements of A such that

{\x , | X| < 6} C V for each n.
n n

Hence ^ 8/n x^ E V for each n.
1=1 l
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^.5"
for each n

Since this is impossible we have that A is countable. We order
A as an increasing sequence. Let W be a convex balanced open subset

00

of ^ {x^}. There then exists (8,,)00, a decreasing sequence of
1=1

positive numbers such that {Xx^ , |X| < 6^} C W. For each n let

fn ' S ̂ x^ "̂  ^ be the mapping such that
1=1

a" .(2")"
fn(I.^}=---

\,= i / 6

Then / = ^ /„ is a G-holomorphic function on E and hence holo-
w = i

morphic. Let V be a neighbourhood of 0 in E such that 11/Jly^ 1
for each n. We show V C W and this completes the proof.

00

Let x = ^ OfXf E V then for each n,
i^l

^ • (2T
6W.

1.

c
Hence |a^|<-"- Now j3^x^ G W for each ^ when |j3^|

Since W is convex

S - ̂  e w^ 2" "" "
(where all but a finite number of jS^'s are zero)

Letting ^ = a,, • 2"

°° 1
we have that V — • a- • 2" • x G W

(=1 2" "

i.e. x £ W.
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Hence V C W and so the direct sum topology on E is weaker
than the original topology. This means they are equal.

00

Hence E ^ ^ C algebraically and topologically.
1=1

3. Runge's theorem in locally convex spaces.

DEFINITION. — A Lc.s. E is said to be p-Runge if the poly-
nomials on E are dense in S^U) with the compact open topology
for every open polynomially convex subset U of E.

PROPOSITION 3.1. - A l.c.s. E with a strong basis is p-Runge.

Proof — Let U be a polynomically convex open subset of E.
Let K be an arbitrary polynomially convex compact subset of U
and / be an arbitrary element of 96(11). Choose p a continuous
semi-norm on E associated with a strong basis such that

1 ) r f p ( K , e u ) > 0
2) there exists a p-neighbourhood of K , co, contained in U

such that //a? is p continuous. We can now apply the method
used for Banach spaces with a basis to get the required result ([13]).

PROPOSITION 3.2. - The ^-protective limit of p-Runge spaces is
a p-Runge space.

Proof. - Let E == Imi (E, , TT,) and let U be a polynomially
<GA

convex subset of E. Since U is pseudo convex and open in E lemma
1.8 implies that U is 7r,-open in E for some ; E A. Now let / G 3e(U)
then there exists x G U and V a neighbourhood of 0 in E. for some
/' > i such that

"Ac^(V)=M<o°

and x + TT-^V) C U.

For each positive integer greater than or equal to M
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let ¥„ = { ; C E U , |/(;C)|<^}

V^ is a pseudo convex open subset of U and an application of
lemma 1.8 implies that V is Tr.open in E for each n.

Since U V == U this means that / is bounded in a E.-neighbour-
Tl ̂  M '

hood of each point of U. For each x G 7r.(U) let f(x) = /(^) where
^/(S) = x. If 7r.($) = 7r.(7?) = x then 7r.($ — 77) = 0 and hence

/(^/a+^-S))-/^)

which implies that /is well defined. Now if a? G 7T.(U) then there exists
W open in 7Ty(U) containing a? such that

llfll < °°
"-'"ir.-lOV)

Hence
ll^llw = ̂  IA^)1 = S^ |/(S)| = ll/ll̂ .,̂  < oo

"jW=X
jcew'^—M/

We thus have that J € ^^.(U)) and 7 o .̂ = /.

Now E. is a p-Runge space and 7r.(U) is polynomially convex
in E.. Let K be compact in E and / > / be arbitrary then TT.(K) is
a compact subset of Ey.

Hence there exists P € %(Ey) such that

ll7 - PII^K) < £

This implies that ||/ o TT. — P o TTy ||̂  < £

i.e. ||/- Po7r , | | ^<c

This completes the proof since TT, is linear and hence P o TTy is a
continuous polynomial on E.

COROLLARY 3.1. — A Frechet space with a basis is p-Runge.
An examination of the proof of the previous proposition shows

that we have recovered a generalisation of a result of Nachbin [48].

PROPOSITION 3.3. — Let U be an open subset of the ^'projective
limit E = Urn (E, , TT,) then each element of S^U) can be factored

i^A

through some E^., i E A.
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(i.e. if / E ge(U) , 31 E A, U^ op^ in E^ ^zd /, G 96(11,) ^cA r/z^
/ = A o^.lu, and^W^^V).

Proof. — In proposition 3.2 we have proved this result for U
pseudo convex. If U is not pseudo convex it is possible to find the
envelope of holomorphy of U (which may not be univalent) and
to apply the same method of proof.

The following result is also immediate by means of the methods
we have developed in § 1 and in this section.

PROPOSITION 3.4. — Let U be an open subset of the ^-projective
limit of metrizable L.C.S. with a stong basis such that U 0 F is
Runge for each finite dimensional subspace F of E. Then

V={xeE,xE^^

"where K ranges over all compact finite dimensional subspaces of E}
is the envelope of holomorphy of U.

4. Concluding remarks.

In generalising to various Lc.s. the known results on Banach

spaces with a basis and on open subsets of N C we have concen-
ts i

trated for the most part in removing countability requirements on
E and in overcoming the frequent lack of a continuous norm on E.
A different approach has been taken by M. Pr. Noverraz who concen-
trates for the most part in removing the basis requirements on E
and with replacing them by various "approximation requirements".
He also generalizes various sections of the CTONB theorem to par-
ticular kinds of Lc.s. (eg. to the duals of Frechet-Schwaftz spaces).

While his approach is different from ours, his results are compli-
mentary and many of his results may be applied (and conversely)
to strengthen the results obtained in this work.
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Added in proof.

Since completing this article the following papers have been
written and are intimately related to the problems we have discussed
in I and II :

1. S. DINEEN, Holomorphically complete locally convex topological
vector spaces, S^minaire Leiong, 1972-73.

2. S. DINEEN, Sheaves of holomorphic functions on infinite dimen-
sional vector spaces (Math. Ann., 202, 337-345, 1973.

3. L. GRUMAN, The Levi problem in certain infinite dimensional vector
spaces (to appear).

4. L. GRUMAN and C.O. KJSELMAN, Le probleme de Levi dans les es-
paces de Banach a base, (C.R. Acad. Sc., Paris, t. 214,
1972, 1296-1298.

5. Ph. NOVERRAZ, Sur la pseud o-convexite et la convexite polynomiale
en dimension infinie, (to appear in Annales de I'lnstitut
Fourier).

BIBLIOGRAPHY

[1] H. ALEXANDER, Analytic function on Banach spaces, Thesis,
University of California at Berkeley, 1968.

[2] J. BOCHNAK, J. SISIAK, Fonctions analytiques dans les espaces
vectoriels reels ou complexes, C.R. Acad. Sc., Paris, t. 270,
(1970)643-646.

[3] J. BOCHNAK, J. SISIAK, Analytic functions in topological vector
spaces, Studia Math. 39, 1, (1971).

[4] H. BREMMERMAN, Complex Convexity, Trans. Amer. Math. Soc.,
82, 1, 17-51, (1956).

[5] H. BREMMERMAN, The envelope of holomorphy of tube domains
in infinite dimensional Banach spaces. Pac. Jour. Math.
10, 4, 1149-1153, (1960).



HOLOMORPHIC FUNCTIONS, II. 183

[6] H. BREMMERMAN, Holomorphic functionals and complex conve-
xity in Banach spaces, Pac. Jour. Math. 7, 1, (1957),
811-831.

[7] H. BREMMERMAN, Construction of the envelopes of holomorphy
of arbitrary domains. Rev. Math. Hispano Americana, (1957),
4, 17, 1-26.

[8] H. BREMMERMAN, Pseudo Convex domains in linear topological
spaces, Proc. Conf. on Complex Analysis, (1964). Minneapolis,
Springer-Verlag 1965.

[9] G. COEUR&, Fonctions plurisousharmoniques sur les espaces
vectoriels topologiques, Annales de FInstitut Fourier, t. 20,

[10] S. DINEEN, Holomorphic functions on (C^,^) - Modules,
Math. Annalen, 196, 106-116, (1972).

[11] S. DINEEN, Topologie de Nachbin et prolongement analytique
en dimension infinie, C.R. Acad. Sc., Paris, t. 271, 643-
644, (1970).

[12] S. DINEEN, The Cartan-Thullen theorem for Banach spaces,
Annali Scuola Normale Sup., Pisa, 24, 4, 667-674, (1970).

[13] S. DINEEN, Runge's theorem for Banach spaces Proc. Royal Irish
Acad., 71(A), 85-89, 1971.

[14] S. DINEEN, Convexite holomorphe en dimension infinie. Seminaire
Leiong, 1970-71.

[15] S. DINEEN, Holomorphic functions on locally convex topological
vector spaces 1, Locally convex topologies on 96 (U). (to
appear in Annales de FInstitut Fourier).

[16] S. DINEEN, and A. HIRSCHOWITZ, Sur Ie theoreme de Banach-Levi,
C.R. Acad. Sc., Paris, t. 272, (1971), 1245-1247.

[17] M. HERVE, Analytic Continuation in Banach Spaces, International
Conference on several complex Variables, University of
Maryland, 1970, Springer-Verlag, Bd. 185, 1971.

[18] A. HIRSCHOWITZ, Remarques sur les ouverts d'holomorphie d'un
produit denombrable de droites, Annales de VInstitut.
Fourier, t. 191, 1, (1969), 219-229.



184 S. DINEEN

[19] A. HIRSCHOWITZ, Sur Ie non-prolongement des varietes analytiques
Banachiques reelles, C.R. Acad. Sc., Paris, 269, 844-846.
(1969).

[20] A. HIRSCHOWITZ, Bornologie des espaces de fonctions analytiques
en dimension infinie, Seminaire P. Leiong, 1970, Springer-
Verlag, Bd. 205, 1971.

[21] A. HIRSCHOWITZ, Diverses notions d'ouverts d'analyticite en di-
mension infinie, Sem. P. Leiong, 1970, Springer-Veriag,
Bd. 205, 1971.

[22] A. HIRSCHOWITZ, Sur les suites de fonctions analytiques, Ann.
Inst Fourier, 20, 2, 1970.

[23] A. HIRSCHOWITZ, Prolongement analytique en dimension infinie.
Ann. Inst. Fourier, t. 22, 1972, p. 255.

[24] L. HORMANDER, An introduction to complex analysis in several
variables. Van Nostrand 1966.

[25] P. LELONG, Recent results on analytic mappings and plurisubhar-
monic functions in topological linear spaces, Internat. Conf.
on several complex variables, Univ. of Maryland 1970.
Springer-Veriag, Bd 185, 1971.

[26] M.C. MATOS, Holomorphic mappings and domains of holomorphy,
Thesis, University of Rochester 1970.

[27] M.C. MATOS, Sur Fenveloppe d'holomorphie des domaines de
Riemann sur un produit denombrable de droites, C.R. A cad.
&., Paris, t. 271, 727-728, (1970).

[28] L. NACHBIN, Holomorphic functions, domains of holomorphy,
local properties. North Holland, (1970).

[29] L. NACHBIN, Uniformite d'holomorphie et type exponentiel, Sem.
Leiong, (1970-1971).

[30] L. NACHBIN and J.A. BARROSO, Sur certaines proprietes borno-
logiques des espaces d'applications holomorphes, Colloque
d'Analyse Fonctionnelle, Liege, 1970.

[31] P. NOVERRAZ, Fonctions plurisousharmoniques et analytiques dans
les espaces vectoriels topologiques complexes, Annales de
Hnstitut Fourier, 19, 1, 1969, p. 419-493



HOLOMORPHIC FUNCTIONS, II. 185

[32] P. NOVERRAZ, Sur la convexite fonctionnelle dans les espaces
de Banach a base, C.R. Acad. Sc., Paris, t. 271, 990-992,
1970.

[33] P. NOVERRAZ, Pseudo Convexite, Convexite Polynomiale et Do-
maines d'Holomorphie en Dimension Infinie. Notas de Ma-
tematica 3, North Holland, 1973.

Manuscrit re^u Ie 11 septembre 1972
accepte par M. Brelot

Sean DINEEN
Department of Mathematics

University College Dublin
Belfield, Dublin (Ireland)


