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ON ABSOLUTE STABILITY
by Roger C. McCANN

It is well known that absolute stability of a compact subset
M of a locally compact metric space can be characterized by
the presence of a fundamental system of absolutely stable
neighbourhoods, and also by the existence of a continuous
Liapunov function V defined on some neighbourhood of
M == V^O), [1]. Here we characterize the absolute stability
of M in terms of the cardinality of the set of positively
invariant neighbourhoods of M.

Timjmghout this paper R and R^^ will denote the reals and
non-negative reals respectively. A rational number r is
called dyadic if and only if there are integers n and / such

that ri > 0, 1 ̂  / ^ 2", and r = -̂ .
2n

A. dynamical system on a topological space X is a mapping
TT of X X R into X satisfying the following axioms (where
x-Kt = 7r(.r, ()) :

(1) xnO = x for x e X.
(2) {x-n:t)ns == xn{t + s) for x e X and t, s e R.
(3) TT is continuous in the product topology.
If M <= X and N <= R, then MrrN will denote the set

{xnt: x e M, t e N}. A subset M of X is called positively
invariant if and only if M^R^- = M. A point x e X is called
a critical point if and only if rroR == {x}. A subset M of X
is called stable if and only if every neighbourhood of M
contains a positively invariant neighbourhood of M.

A Liapunov function for a positively invariant compact
subset M of X is a continuous mapping V of a neighbour-
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hood W of M into R4- such that V-^O) == M and
'V{xnt) < V(a;) for a; e W and (e R+.

Absolute stability is defined in terms of a prolongation and
is characterized by the following theorem, [1].

THEOREM. — Let M be a compact subset of a locally compact
metric space. Ther^ the following are equivalent:

(i) There is a Liapunov function V for M.
(ii) M possesses a fundamental system of absolutely stable

neighbourhoods,
(iii) M is absolutely stable.

LEMMA 1. — Let A <= R be uncountable. Then there exists an
x 6 A such that every neighbourhood of x contains uncountably
many elements of A.

Proof. - [4, 6,23, III].
The following is a consequence of Lemma 1.

LEMMA 2. — Let A <= R be uncountable. Then there exists
an re e A such that the sets {y e A : y < x} and {y e A :
x < y} are uncountable.

LEMMA 3. — Let S and T be relatively compact sets of a
locally compact connected metric space X and 3) a family of
open sets of X such that

(i) for every U e 3 ) , S c = U c : l [ J c : T ,
(ii) if U, V e ®, then either U c= V or V <= U.

Then there is a W e ® such that the sets {U e 3): U <= W}
and {U e 2): W <= U} are uncountable.

Proof. — Since X is connected, the boundary ^)U of
U e 2) is nonempty. If U e 2), then bU is compact since T
is relatively compact. Let d be a metric on X and define f:
3)->R+ by 7(U) = rf(S, ?)U). If U, V e 3) with U c V,
then /'(U) < f(V). Let A be the image of 2 under f.

Then f is a one-to-one order preserving mapping of 2)
onto A* A is uncountable since 3) is such. By Lemma 2
there is an x e A such that the sets {ye A: x < y} and
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{y e A : y < a;} are uncountable. Set W = />~•l(^). It is
easily verified that

{ U e 2 ) : UcW}=-{^ (y ) : y < x},
{ U € 3 ) : W c = U}={^(y) : o ;< y),

and that both sets are uncountable.

THEOREM 4. — A nontrivial compact subset M of a locally
compact connected metric space is absolutely stable if and only
if M possesses a fundamental system 9 of open positively
invariant neighbourhoods such that

(i) for each U e 9, the set {V e 3?: V <= U} is uncoun-
table,

(ii) if U, V e 9?, then either U <= V or V c U.

Proof. — Since X is connected, no nontrivial subset of X
is both open and closed. If M is absolutely stable, then
there is a continuous Liapunov function V for M. Set
9 === {V^O^O, r)] : r in the range of V}. It is easily verified
that 9 possesses the desired properties. Now assume that
9 is a fundamental system of open positively invariant
neighbourhoods of M with properties (i) and (ii). For each
dyadic rational we will construct a set U(r) e 9 such that
U(r) <= U(S) whenever r < s. We first obtain from 9 a

fundamental system of neighbourhoods ]U (7^): n a non-
( \ 2 /

negative integer} such that U(_^ ) <= U / — ) and the set

( / 1 \ / 1 \ )j A e 9 ? : U f ^ ) <= A c: U ( - ^ ) [ is uncountable. This is

done by induction in the following manner. Let N; be a
countable fundamental system of neighbourhoods of M. Let
U(l) <= NI be an element of 9 which is relatively compact.

Suppose that U ( — ) has been defined. By Lemma 3 and
v / ( / 1 \ )property (ii), there is a B e JW e 9: W <= U (-^ )[ such that

B c: N^i and both {W e 9 : V c= B} and

iWe3?: B c V c: vf—
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are uncountable. Set U(,.-,) === B. Now extend this system

to one with the desired properties. For example, we chose

U ( -Y ) to be any element C of 9 such that the sets

S w e 9 ? : U f 1 ^ <= V <= C? and {W e 9: C c: V c= U(l)}
( \ L / ^ ^ )
are uncountable. This is possible by the properties of the sets

U^ 1 ) and Lemma 3. Now define V: U(t) ^R+ by

V(o;) = inf {r: x e U(r)}. Evidently 'V{x) = 0 if and only if
x e M. If x e U(r) and t e R4", then xnt e U(r) since U(r)
is positively invariant. Therefore,

V{x) = int {r: x e U(r)} ^ inf { r : x^t e U(r)} = V(^7rt).
The continuity of V is proved as in the proof of Urysohm's
lemma. Thus we have constructed a Liapunov function for M,
M is absolutely stable.

Example. — Let X == [— 1, I], M == {0}, and n be the
dynamical system indicated by the following diagram where
the points ± 2""", n a non-negative integer, are critical points.

- L I .1 i
-1 . ' 2 '< o < 2 1

Clearly M is stable. The only open positively invariant
neighbourhoods of M are X and intervals of the form
(— 2~"1, 2~") where m and n are non-integers. There are
only countably many such neighbourhoods. Hence, M is
not absolutely stable.

PROPOSITION 5. — L e t X be the plane and p an isolated
critical point. If each neighbourhood of p contains uncountably
many periodic trajectories (cycles), then p is absolutely stable.

Proof.— Let W be a disc neighbourhood of p which con-
tains no critical points other than p. A cycle C is a Jordan
curve and, hence, decomposes the plane into two components,
one bounded (denoted by int C) and the other unbounded.
If C is a cycle, then int C contains a critical point, [3, VII,
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4.8]. Hence, if C is a cycle in W, then C is the boundary
of a neighbourhood (necessarily invariant) of p. It can be
shown (the proof is almost identical with that of Proposition
1.10 of [6]) that if Ci and Cg are distinct cycles in W,
then either int Ci <= int Cg or int Cg c: int Ci. Theorem 4
may now be applied to obtain the desired result.

Another characterization of absolute stability of compact
sets is found in [5]. Non-compact absolutely stable sets are
characterized in [3].
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