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UNE GENERALISATION DU PROBLEME DE CAUCHY (")

par Einar HILLE (Nancy et New Haven, Conn.)

1. — Introduction.

Il y a un grand nombre de problemes que nous devons au génie
de Cauchy : le probleme dont il s’agit ic1 est le probléme des valeurs
initiales pour les équations aux dérivées partielles. Un cas spécial de
ce probleme nous scrt comme point de départ pour les considérations
suivantes.

Soit donc R, I'espace euclidien a v dimensions, y(P, ) un vecteur
a m composantes, dépendant du point P de R, et du temps ¢. De
plus, soit U un opérateur différentiel linéaire indépendant de ¢ dont
les coefficients sont des fonctions continues de P. Le probléme de
Cauchy demande de déterminer y(P, ¢) pour chaque ¢ positif comme
solution du systeme différentiel

(1) Sy(P )=U[y(P. 9], t>o,

(2) }i,n‘}y(P, ) =y,(P),

ou y,(P) est un vecteur donné a l'avance. Le probleéme est dit bien
posé s'il admet une solution et une seule.

On peut généraliser ce probleme de différentes maniéres. Pour
plus de précision dans la généralisation suivante on se sert du langage
des espaces normés. Soit donc Y un espace complexe de Banach, U
un opérateur linéaire faisant 'application d'un sous-espace D —= D| U]

(") Conférence faite au 111° Congrés Autrichien de Mathématiciens A Salzbourg le
10 septembre 1952, Cette conférence a été rédigée pendant que ’auteur avait une bourse
'ulbright et une bourse de la Fondation Guggenheim.
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de Y sur un sous-espace R—R[U] et considérons le systéme

® Lyn=Uh©). t>o,
(4) lim|ly (£) —y ll=o.

ou y, est donné & I’avance. Ici il faut que, pour chaque ¢ > o, y(¢)
soit un élément de D[U] et que l'application {—y(t) définisse une
fonction absolument continue dont la dérivée au sens fort existe et
satisfasse a (3).

Ce probléme est étroitement lié a la théorie des semi-groupes
d’opérations linéaires et bornées(*). Soit { T(f)jo < ¢} un tel semi-
groupe ou T(o)=1Tet T(¢)—1I au sens fort quand {—o et soit A
la génératrice infinitésimale de T (¢). Alors on a

(5) STy =A[T(y). >0,
(6) lim [T(y, — | =0

pour tous les y, du domaine de A, c’est-a-dire un systéme de type
(3)—+(4). 11 en résulte que dans le cas ou U est génératrice infini-
tésimale d’'un semi-groupe {T(¢){, une solution de notre sysitme
est fournie par T(¢)y, quand y,¢D[U]. Y a-t-il d'autres solutions?
C’est une question assez difficile dont la solution générale nous
échappe, mais si 'on impose une restriction convenable sur 1'ordre
de croissance de la norme de y(¢) les difficultés s’évanouissent dans
des cas étendus et le probléme admet au plus une solution. Nous

disons que la solution y(¢) est du lype normal w sil'on a

(1) lim sup —log [ly ()] = & < e0.
Cela étant on peut démontrer (*):

(%) Cf. mon livre [1] pour tout ¢e qui concerne cette théorie.

(%) J’ai énoncé un théoréme moins général dans un travail qui va paraitre dans un autre
recueil [3] et dont la connaissance n’est pas nécessaire pour la lecture de la présente note.
Je dois & mon ami M. R. S. Phillips 'observation qu’on peut supprimer une des conditions
restrictives dans 1’énoncé original en s’appuyant sur le lemme du paragraphe 2 ci-dessous.
Il g’agit de l'ordre de croissance de la résolvante de U; eny réfléchissant je me suis
convaincu qu’on peut se débarrasser de chague hypothésc sur Pexistence ou surles pro-
priétés de la résolvante sans modifications essentielles du raisonnement. Voir la démons-
tration du théoréme 3 ci-dessous.
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Tutorime 1. — Soit U un opérateur linéaire et clos dont les valeurs
propres ne sont denses dans aucun demi-plan R(X) > A,. Alors, pour
chaque y, de Y, le systéme (3)—(4) a au plus une solution du type
normal.

Les conditions du théoréme sont satisfaites si, par exemple, U est
un opérateur borné ou, plus généralement, si U est une génératrice
infinitésimale d'un semi-groupe T(¢). Dans ce cas, T(t)y, donne la
seule solution du type normal et la solution existe pour chaque y,
dans D, mais peut cesser d’exister en dehors de D.

2. — Unicité et caractére de la solution.

L’existence d'une seule solution du type normal a des conséquences
trés importantes. En effet on a:

TuforiMe 2. — Soit U un opérateur linéaire et clos de domaine
dense dans Y et supposons que, pour chaquey, de D, le systéme (3) - (4)
ait une solution y(t)=xy(t;y,) et une seule qui soit du type normal au
sens plus restreint que voici. Iy a des conslantes M et w, indépendantes
de y,, telles que

(8) (& yll <Me™|ly]|,  t>o.

Alors la résolvante R(X; U) existe pour R(A) > w, U est une généra-
trice infinitésimale d’un semi-groupe T (t), et y(t; y)=T )y, (").
Il nous fautle lemme suivant:

Lemme 1. — Soit U un opérateur linéaire et clos de domaine D.
Soit S un ensemble mesurable dans Uespace euclidien R,, x(s) une
Sonction définie dans S & valeurs dans D, telle que x(s) et U[x(s)] sont
intégrables au sens de Bochner dans S. Alors

(9) U%/;m(s) dsg-‘:fSU[w(s)] ds.

Dans le cas ou S estbornéet les fonctions x(s) et U[z(s)] sont
continues et bornées on peut évidemment trouver des sommes finies

Yua(sy) et ZuUlz(s)]=U{Zum(s)

telles que la premitre soit voisine de I'intégrale de x(s) tandis que la

(*) Le théoréme 2 est du méme caractere et découle du méme principe que le théoreme
de notre travail cité [3]. Nous en donncrons ici la démonstration pour faciliter la lecturc.
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seconde soit voisine de l'intégrale de U[z(s)| dans S. U étant clos,
il en résulte que () est vrai. Dans le cas general on recourt au
théoreme de Lusin d’apres lequel on peut approximer les intégrales
dans S par des intégrales étendues a un sous-ensemble borné ou les
fonctions x(s) el L’[ ()] sont bornées et continues. Alors la démons-
tration s’achéve de la méme maniére.

Ccla étant, nous démontrons le théortme 2 comme il suit : Avec
la solution y({, y,) formons la transformée de Laplace

(10) La: y‘):‘/f;m e~y (s y,)dt,
qui est une fonction analytique de 4 dans RR(A) > w ou elle satisfait
a I'inégalité

(11) By M MRA) — o] 7y 1

L’application y, —~ L(%; y,) est définie dans 1) comune unc transfor-
mation lin¢aire ct bornée. D étant dense dans Y, on peut prolonger
la transformation dans tout Y; soit y — R(A)y, lapplication
prolongée.

L(2: y,) estun élément de Y, nous verrons qu'il est aussi dans D.
Pour montrer ccla, remarquons que sio < o <Z < % ona

ﬂ@e")“Uly(l;yo)]dl: {'@e—)\ty/([. y,)dl
:C'_/'J :5 Y)—e~ /Iy(a yo)"'l'"A /[} o (;l;yo>'ll’

Les conditions du lemme 1 étant vérifiées, il en résulte que

UYL eyt patf= [ e Uy gl

U étant clos. un passage aux limites nous donne enfin

(12) (AI—=U)L(A; y,) =1,

pour R(A) > w, yeD. Vu que D est dense dans Y et que U cst clos,
la relation s’étend a Y, c’est-a-dire que

(13) L= U) Ry, =7,
pour R(A) > w, y,€Y.

Jusqu'ici nous n’avons fait aucun recours a I'unicité de la solution.
Maintenant nous remarquons que s1y(#) est une solution de I'équation
(3) pour £ > o el si ¢ esl fixe. {, >> 0, alors y({~}- ;) cn est une autre.
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{1 en résulte que y(¢t-¢,; y,), y,€D, est une solution, évidemment
du type normal, qui tend vers y(¢,; y,) quand ¢ —o0. Mais alors il
faut que

(14) Y+t ) =2t 7(43 7))
parce que le membre de droite est une solution ayant les mémes
propriétés. Cela veut dire qu'il existe une famille d'opérations
linéaires { T(¢) avec les propriétés suivantes :

(15) Ty, =ytiy). o<t yeD,

(16)  T(t, +t,)="T()T(,), o< ¢, t,< o,

(17) IT(Oli < Me,

(18) Ty, = Yol >0, t—0,  yeD.

L’opération T(¢) étant définie, bornée et linéaire dans lc domaine D
deuse dans Y, elle peut se prolonger dans tout Y en conservant ses
propriétés.

Le semi-groupe {T({)} posstéde une génératrice infinitésimale,
que nous désignons par A, dont la résolvante est donnée par

RO Ay, = [ e MT()y,dt,  RO) > o.
La comparaison avec (10) montre que

R(As A)y, =Ry, 7D,

d’ou 1l résulle que l'identité est valable pour tout y, dans Y. Mais
alors il faut que A—="U. En effet, soit z, == R(A; A)y, =R(})y,

un point arbitraire du domaine de A. Alors

(Al —A)z,=y,= (Al — U)z, ou A: =Uz,.

0 [}

La proposition est ainsi démontrée.

3. — Equations d’ordre supérieur.

Si I'opérateur U engendre un semi-groupe {T({)}, alors on a
aussi

d" Al M Al : 1
(19) -(Yt—n['l(t)yo]:b"['l(t)yoj. t>o, y€eD[U"|, n=1,2,3,...,

ou D[U"J désigne le domaine de U™,
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I est donc naturel de considérer aussi le systeme

(20) y(=U1y@®] t>o,
(21)  lim|y®(t) —y|=o0, k=o0,1,...,n—1,
>0
ol Yy, ..., Yo, sont des éléments donnés de Y. Ici il faut supposer

que, pour chaque ¢ > o0, y({) soit un élément de D[U"] et que
l'application ¢— y(¢) définisse une fonction de ¢ qui a des dérivées
au sens fort jusqu’a 'ordre n.

Pour ce systtme on a un théoréme d’unicité tout a fait analogue
de théoréme 1.

Tutorime 3. — Soit U tel que U" soit linéaire et clos et tel que
les valeurs propres de U" ne soient denses dans aucun demi-
plan R(X) > A,. Alors pour chaque choixde y,, ..., y,_, dans Y ily
a au plus une solution du systtme (20)-}(21) dont la dérivée
d’ordre n — 1 est du type normal.

Remarquons que si la dérivée d’ ordre n— 1 est du type normal,
les dérivées d’ordre k, 0 <Ck << n— 1, en sont aussi, mais on ne peut
rien conclure sur les dérivées d’ordre plus grand que n— 1.

S’il y adeux solutions du type normal de notre systéme, le systéme
(20)4(21,) ou tous les y, sont nuls a une solution y() non-nulle.
Alors

(22) L(l;y)Eﬂm e My(t)dt

existe pour R(A) > w, w étant le type de y(f) défini par (7); et dans
ce demi-plan L(A; y) est une fonction analytique qui n’est pas
identiquement nulle. En suivant la méme méthode que ci-dessus

on voit que
ﬂﬁe‘)~‘U"[y(t)]dt :ffe"“y"‘)(t)dt
n—1 [ ,
:%e—)\t 2 )\n—-i—ky(k)(t)i '—}—X"ﬁpe_)“y(t)dt
__.Ung‘/r‘ —~\t (t)dt%

En passant aux limites on trouve que

(23) A'I—UYLQ; y)=o, RA) > o,
c'est-a-dire, pour presque chaque A dans ce demi-plan, A" est une
valeur propre de U et cela n’est pas en accord avec les hypotheses

de notre théortme. Il en résulte que L(A; y)=o0, ce qui entraine
y({)=o0 et la démonstration est achevée. -
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4. — Questions d’existence.

Dans le cas » > 1, on n’est pas siir, en général, de 1’existence
d’une solution du probléme de Cauchy. G’est seulement dans le cas
ou U est borné qu'on a toujours une solution, évidemment donnée
par

n—1 o fmn+k

(a8) =3 3

Cela peut s’écrire d’'une fagon plus suggestive

Umnyk.

n—1 27

(25) y(t)= 1.2 exp(n*tU)z,, n—e",

oli les z, sont assujettis aux conditions

n—1{

(26) 2 U, =y, k=o, 1, ..., n—1.
p=0
Ces conditions ne suffisent pas, en général, pour la complete
détermination des z,, mais on voit immédiatement que les quantités
U"~'z, sont univoquement déterminées

n—1

(27) U= X “‘(n',')kU"_p—lyp, k=o,1, ..., n—1
-_—0

ol les a” sont des constantes numériques, de sorte que la solution
y() est umvoquement déterminée par les équations (25) et (26).

Le cas ou U est non borné mais engendre un semi-groupe
T(t)=T(|U) est d'un intérét considérable. Si ¥,6D[U"] la fonction
T(¢|U)y,. comme nous venons d'observer, donne une solution de
(20), la premiére condition de (21) est vérifiée, les autres seulement
sion a y, == U*y,. Remarquons que T (¢{|{U) =exp(tU) si U est borné.

D’apres la relation (25), on sent d’'une maniére assez vague qu'’il
faut avoir recours aux opérateurs T(¢|n*U), k=~ o0, pour aller plus
loin. L'opérateur T (£|*U) est bien déterminé si v*U est la génératrice
infinitésimale d'un semi-groupe fortement continu. Ici il y a deux
cas distincts : (1 )‘q —1, (2) N0

Dans le premier cas n est pair, n—2p, et nous avons:

Tukoreme 4. — Sin==2p et si U et —U engendrent les semi-
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groupes T(t|U) et T(t{—U), continus au sens fort a lorigine
avec T(o|U)="T(o|— U)=I. alorson a

T(t|— U) T(| U)="T(¢| U) T(t| — U)=1.

En posant T(¢|—U)=T(—¢|U) pour t > o, on obtient un groupe
{T(t|U)|— 0 < t < o}.

Il suffit de montrer que T(¢/U)T(¢|— U)=I. Pour faire voir
sela, notons que

R(A; —U)=—R(—2:;U), RQA)>o,

ou w, est le type de T(¢| — U), c’est-a-dire que R(A; U) existe dans
deux demi-plans R(A) > w, et R(A) < — w,. Alors, pour chaque y
de D[U]on a

TUUTE—V)y
— —limlim ——, [
f»x g>x (27”) Y-llc

fowe(“‘“"“(h U)R(—u: U)ydu.dr
d—is

ou y >Ql, &> w,. Gf. [1] p. 232, formule (11. 7. 2). Ici on peut
écrire l'intégrale double comme la différence de deux intégrales plus

simples en s’appuyant sur la premiére équation fonctionnelle
satisfaite par la résolvante qui prend la forme

—A+#)RQA; U)R(—p; U)y=R(@A; U)— R(—p; U)

dans le cas présent. Dans la premiére de ces intégrales on passe a la
limite avec ¢ en obtenant

n*{*—i‘;
lim —‘—.j R(A; U)ydh=-"y.
T—ip 2
La seconde donne de la méme maniére

0 + ig

lim»l_f B(—‘u.;U)yd{;.:—i;-y.

g>= 2T J3_is
Ilen résulte que 4
TU)T(|—U)y=y

pour chaque yeD[U]. Mais D[U] étant dense dans Y et I'opérateur
dans le membre de gauche étant borné pour chaque ¢ fixe, la relation
vaut pour tous les y.

Tukortme 5. — St n=—=2 el si U engendre le groupe
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{T(¢|U)|— oo < t < o}, continu a lorigine ot T(o|U) =1, alors
le probléme de Cauchy pour le systéme (20) - (21) a une solution et

une seule dont la dérivée premiére est du lype normal pour chaque choix
de y, dans D[U?] et de y, dans D[U] n R[U], a savoir

(38) y(O)=—[TUU)+2)+T(— Uy, —2)]. Uz,=y,.

On vérifie sans peine que toutes les conditions sont satisfaites.
L'unicité de la solution serait démontrée si I'on pouvait appliquer
le théoréme 3. Nous savons que le spectre de U est renfermé dans la
bande — w, S R(A)=w, d’ou il résulte que le spectre de U* est
renfermé dans un domaine bordé par deux hyperboles. L’opérateur U
étant clos, U? ala méme propriété grice au lemme, a peine nouveau,
que voici:

Lemme 2. — Soit U un opérateur linéaire et clos de domaine
dense et admettons Uexistence de la résolvante R(A; U) pour une valeur
de N (*). Alors les opérateurs U" sont clos et leurs domaines denses pour
chaque n.

Donnons la démonstration pour n —= 2. Posons Uz, =y,, Uy, =z,
et supposons que x,—x,, z,—z,. Il est entendu que z,eD[U’], il
faut démontrer que 2 €D[U?] et que U%c,—=z,. De I'équation liant U
et R(A,; U) 1l résulte que

MNR(A s Ue, = Az, + Uz, +R(A,: U)U’,
ou

Ya=NR(A,: Uz, — A — R(Ay: Uz,

Mais alors lim y, =y, existe et, U élant clos, ils’en suit quey, = Uz,.
En s'appuyant sur la cloture de U une fois de plus, on voit
que y eD[U], z,="Uy,, ce qu'il faut démontrer. La transformation
R(A,; U) donne I'application de Y sur D[U] et I'application de D| U]
sur D[U?]. D[U] étant dense, il cn résulte que D[U?] I'est aussi.
Retournons au théoréme 5. Alors, U comme génératrice infini-
tésimale d'un groupe, continu au sens fort & 1'origine, est clos et son
domaine est dense dans Y, de plus R(A: U) existe en dehors de la
bande — w,= R(A) << w,. Il en résulte que U® est aussi clos et le
théoreme 3 montre que la solution fournie par (28) est la seule de

(") L'existence de -R(%,; U) entraine Uexistence de R(%; U) au moins dans le cercle
A=l IR O Uyl < 1.
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type normal. Cela est un peu étonnant parcc que dans le cas ot A—o0
est une valeur propre de U, la quantité z, n’est pas univoquement
déterminse. Mais lorsque Uz =0 on a T(¢|U)z=1z pour chaque ¢,
— o0 < 1< o, c'est-a-dire que I'expression dans (28) ne dépend
pas effectivement du choix particulier de z, pourvu que Uz, =y,.
C’est le méme phénomeéne d'indétermination formelle, non-réelle
que nous avons observé ci-dessus pour les opérateurs bornés. Le
théoréme est ainsi démontré.

Pour n > 1, le cas traité dans le théordme 5 est le seul ou nous
puissions donner la solution compléte du probleme de Cauchy.
Remarquons que la solution (28) est tout a fait analogue a celle
donnée par (25) dans le cas ot U est borné et n— 2.

Soit maintenant n > 2 et soient U et n*U, n* £ =1, les généra-
trices infinitésimales des semi-groupes T(¢|U) et T(¢|1*U) continus
au sens fort  I'origine ou T(0|U)="T(o|n*U)=1. Alors T(¢|U)
a nécessairement un secteur d’analyticité:

Tutoritme 6. — Supposons que U et v*U, n* 5= == 1, engendrent
les semi-groupes T (¢|U) et T(t|n*U), tous les deux continus au sens
Jort a lorigine oi T(o|U) = T(o|n*U)=1I. Soit S le plus petit secteur
du plan complexe de t déterminé par les rayons argt—o et
argt —2kn/n —=0,. Alors il existe un opérateur T(t), analytique
dans S, tel que

(29) lim T(re®) =T(r|U), lim T(re) =T (r|n*U).
6->0 0>0x

Pour chaque t, et t, dans S on a
(30) T, 4 ¢)=T()T(,).
Pour montrer cela, observons que
R(A: Uy= [ e T(r[Uydr,  RO) >0,
R(hs 0 Uy = [ e ¥ T(r[q*U)ydr,  R() > o,
ol w, et w, sont les types de T(r|U) et de T(r|n*U). Mais on a
R(hi 1*U)=n"*R(1~*2; U),

d’ou il résulte que R(A: U) existe et est analytique dans le
domaine A, réunion des deux demi-plans R(A) > w, et R(n*A) > w,.
Nous avons aussi £ (A){{R(A; U)||< M(e) ou 5()) désigne la distance
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de A & la frontiere de A et ¢(A) =¢. Pour fixer les idées, supposons
que o < O, < . Nous posons

(31) Ty =1 fp SMR(A; Ulyd),

ot €S et [' est la ligne brisée dans A sur laquelle A est constamment
a la distance ¢ > o de la frontiére, I’argument de A étant supposé

croissant sur [', On voit sans peine que T(¢) est analytique dans S
et indépendant de &. De plus on a

Ty = [ [ #7#ROG UR(: Uy drd

=3m) RO Uy dd="T(, + 1)y,

27!1: T

o nous supposons que A trace la ligne I',, §=2,, et que p trace [',,
3=3,, et ¢, >3,.

Les relations (29) s'obtiennent, en observant que pour yeD[U]
et ¢ sur 'un des bords de S, I'intégrale dans (31) se décompose en
deux parties, une pour chaque chemin rectiligne ; I'une de ces inté-
grales est absolument convergente, 'autre existe seulement comme
valeur principale. La valeur de I'intégrale est connue (voir [1], p. 232,
formule (11. 7. 2)) et est égale & T(r|U)y ou T(rn*U)y, selon le
le bord ou ¢ se trouve. Supposons, pour fixer les idées, que la valeur
est T(r|U)y. Alors on peut approximer T (r|U)y, uniformément par
rapport & r dans un intervalle fini donné, par une intégrale de
(2mi)~'e*R(X; U)y prise le long d’une partie finie fixe de [', cette
intégrale étant la limite pour ¢{— r d’une intégrale approximante
de T(t)y; il en résulte que lim T (re®)y =T (r|U)y pour 6 — o, ce
qui prouve notre proposition.

On déduit de (30) que

L1 " <wosin(0k—0)+mk8in_0,
(33)  lim L log||T(re®)< s
c’est-d-dire que T(¢) est du type normal sur chaque rayon de S.

CoroLtarre. — Si n¥U engendre un semi-groupe fortement
continu pour trois valeurs distinctes de k et si les trois angles entre les
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directions correspondantes, argt—awkn, sont plus petlils que =,
alors U est une opération bornée.

En effet, il résulte de la démonstration du théoréme précédent que
la fonction AR(A; U) est holomorphe a l'infini, ce qui entraine
que U est borné.

En conséquence, si U est non-borné, il y a au plus ;n—}—l

valeurs de k, distinctes modulo n, qui peuvent donner des semi-
groupes bornés et continus. Ce cas se présente, par exemple, si
n=/,p et s1 U engendre un semi-groupe T(¢|U), analthue pour
N(¢) > o et continu pour R(#) = 0. Dans ce cas on peut imposer
2p + 1 conditions initiales de caractére général & la solution de
I'équation (20), c’est-a-dire une pour chaque direction admissible,
mais non pas les 4p conditions demandées dans le probléme de
Cauchy.

5. — Probléme réduit.

Il résulte de l'observation que nous venons de faire qu'il faut
remplacer le probléme de Cauchy par un probléme réduit. La défini-
tion suivante semble convenable :

Dérinition. — Le probléme aux valeurs initiales de I'équation (20)
est d’ordre n et de défaut d—=n —m s’il existe un entier m < n tel
qu’on peut toujours trouver une solution de (20) satisfaisant aux
conditions

(33) hLim|ly®(t) —y| =0, k=o0, 1, ..., m—1,
t>0

ol y, est un élément arbitraire de D[U""*] n R[U*], tandis qu’on ne
peut pas disposer de la limite de y™(t).
Cela étant nous avons :

Tuéonrime 7. — Soit U la génératrice infinitésimale d'un semi-
groupe T (t|U), analylique dans un secteur S et continu au sens fort a
lorigine. Soit m le nombre de rayons argt=— akw/n contenus dans S
ot un rayon sur le bord de S est inclus seulement si T (¢|U)est continu
sur le bord en question. Alors le probléme aux conditions initiales de
Uéquation (20) est L’ordre n est de défaut d<n—m.

En effet, nous pouvons poser

(34) y(6) = Z,T(n* | U)z,,

ou la sommation s'étend aux valeurs admissibles de & et ou les z,
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sont des éléments de D[U”| a déterminer. Les conditions initiales (33)
donnent le systtme d'équations

(35) ¥p = 2m**Urz,, p=o, 1, ..., m—1,
tout a fait analogue au systtme (26). Par hypothase,
yx€D[U"*] n R[U*].
Alors le systtme (35) donne
gr—rly, =8x»U0"'2,, p=o0, 1, ..., m—1I.

Le déterminant du syst¢me étant différent de zéro pour m=n, il en
résulte que

m—1, __ Y (m)Im—1—
Un—'z, =X,alUm " "2y,

et

(36) 2= B, 000V, Ury, =y,.
Enfin

(37) ¥() = L[ Euegid T(n*¢| U)]v,.

C’est une solution de (20) satisfaisant aux conditions (33). Est-elle
unique ? Nous ignorons la réponse. Dans le cas ou A==0 est une
valeur propre de I'opérateur U?, I'élément v, n’est pas univoquement
déterminé mais cela n'introduit aucune ambiguité dans la valeur
de y(t). En effet, on peut écrire la solution sous la forme

m—1 k

(38) Y= 3 i

+ Gy o B T’ | U) Uz s

ol toutes les quantités sont parfaitement déterminées par les condi-
tions initiales. Il en résulte que le défaut d < n — m. Dans le cas o S
est le domaine d’existence exact de T(¢| U), on peut espérer démontrer
que d—n— m mais nous ne savons pas le faire.

6. — Exemples.

Nous prenons Y =L(— o, o) sauf pour I'exemple 5.

ExemeLe 1. — L’équation de Cauchy-Riemann sous la forme
complexe
w_ dw .
(39) — =i r—=x+1y.

oy o
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Il s’agit de trouver une solution de (39) dans le demi-plan y >o
qui tende en moyenne d’ordre un vers une fonction donnée f(x)
quandy— 0. On a U =i d/dx, opérateur clos dont le spectre ponctuel
est vide. Alors le théoréme 3 dit qu’il y a au plus une solution du
type normal. Mais les fonctions f(x) de Y donnant des solutions du
type normal dontles types ne surpassent pas un nombre fixe w, ne
sont pas denses dans Y car il faut que

(ho) Fl)=—= [ f(s)e ds
VornJ—w

soit identiquement nulle quand { < — w. Pour le voir observons que
la solution est une fonction analytique de z dans y > o, soit f(2),
alors on peut intégrer e™* f(2), t < — w, le long d’un rectangle
+a-ig, == a4 iB, puis on passe ala limite, a— o0, B—> 0, e—0
dans cet ordre. Il en résulte que le théoréme 2 ne s’applique pas,
de plus sa conclusion aurait été fausse dans le cas présent : En effet,
la résolvante peut s’évaluer et on trouve que R(A; U) existe dans
tout le plan saufsur I'axe réel. Alors on conclut que i d/dxne peut pas
engendrer un semi-groupe continu dans L(— oo, o) et le probléme
de Cauchy correspondant est de défaut un, c’est-a-dire mal posé.

De plus, il y a autre chose dans certains sous-espaces de Y. Soit
w > o fixe et considérons le sous-espace Y, de Y dont les éléments
sont des fonctions f(x) telles que la transformée de Fourier F(¢),
définie par (40), soit identiquement nulle pour ¢{<-—w. Y, est
complet dans la métrique de L(— oo, ). Alors la formule

(41) w(z)_\/—mf: ¢ F (1) dt

donne une solution du probleme de Cauchy qui est du type <o
pour chaque f(x) dans Y,,. On voit quel équation (3q) a des solutions
de type normal de chaque type fini maisil y a aussi des solutions de
type infini(®).

(8) Soit E.(z) la fonction entiére de Mittag-Leffler. On voit sans peine que

Eo(— (z+ iy)?)eL(— o, ) comme fonction de = pour chaque y fixe, si 0o < a < —,

ct que
Gy [t + |yP] < log ||Ba(— (= 4 i)?)]| < Ca[x + |y[*=].
Alors on peut choisir les coefficients a, dans la série

3 anEija(— %)
3

de maniére que la série converge cn norme pour chaque y et que la norme de la somme
croisse plus vite qu'une fonction donnée de y.
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ExempLE 2. — E’quation des ondes
Oy oy
([‘2) bt‘l h— bmﬁ

On prend U =d/dr qui engendre le groupe unitaire

@ T UI=Se+), —o<i<w.

On trouve n—2, m—2a, d—o0 etle théoréme 5 donne la solution
classique

@) @ d="tet+o+ne—0+1 [ no

Exemere 3. — Equation de Laplace

(45) +

L'opérateur U peut se choisir de deux manidres différentes, soit

-~

bt”

U=: i, soit U—= (%' ot le tilde signifie I'opération de conjugaison

au sens de la théorie du potentiel logarithmique. Tous deux sont
clos et leurs spectres ponctuels sont vides, par conséquent le théoréme
d'unicité s’applique; mais cela ne vaut pas grand'chose parce qu’il
est bien connu que le probldme de Cauchy est mal posé pour

I'équation de Laplace. L’opérateur % engendre un semi-groupe

mais pas un groupe, ce quidonne d< 1, ici d=1 est la vraie valeur.

Exemere 4. — Equation du troisiéme ordre
dly _ dly
([‘6) bt! - bms '

L’'opérateur U-:_C%c engendre le groupe (43) mais ni yU ni nU,

n = exp (ani/3), n'engendrent des semi-groupes. Alors on a n—=13,
d=2. Ici on peut démontrer que d — 2 par l'observation suivante.
Les combinaisons linéaires des fonctions (@ — kn)~* et (z — kn)?,
k=1, 2, 3, ..., plus (z—n)"'(x—n)~"' sont denses dans
L(— o, o). Nous proposons de trouver une solution de (46) telle
que les trois données initiales y,, y,, ¥, soient

(x—kn)™?, a (x—kn)~?, b (x — k)™,
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ou a et b sont des constantes données. La solution formelle est

(@t — k)7 Bz 40t — kn) 7 - y(z -0l —hn) 77,

les «, B, v étant des formes linéaires de a et b. Si

3(a+a)n+(b— 6)1— (3a+b) # o

on a 35~ o et la solution formelle n’est pas dans L(— oc, o) quand
t=—=F parce qu’elle devient infinie pour z—o0. Le méme résultat
s’obtient en échangeant v, et 7 et la méthode s’applique aussi au
troisitme cas. Donc il y a un ensemble fondamental de fonctions y,(.)
pour lesquelles on ne peut choisir ni y(.) ni y,(.) d'une maniere
arbitraire. Alors il faut que le défaut soit égal a 3.

Exemere 5. — Egquation du quatriéme ordre
dy D'y
A L =2t
( l7) btb bl“

Nous prenons Y=L (— o, ), U:dz Alors U engendre le
semi-groupe de Poisson ().
t ™~ f(z d
(48) Po== [ LGEDE
La transformation de Fourier nous donne le semi-groupe isométrique
plus simple

(49) P*({)[F] =" (s).
Evidemment P*(t) est holomorphe dans R(f) > o et continu pour

R(¢) = o0, d’ou il résulte que P(¢) a les mémes propriétés. Alors on
trouve

(o) _
P(R)[f]= 1+ +f—)]+ - [fet+m) —fa—7)]

en calculant la fonction inverse de e™"I*IF(s). Ici = est réel, et
|P(i7)||=||P*(it)||[=1. Les opérateurs {P(it)]— oo <7< o0}
forment un groupe, avec P(o)—I, fortement continu. Alors le
théoréme 7 donne n—=14, d<1 et la solution du probléeme rédut

(") Pour ce semi-groupe voir [1] p. 383, Il y a plus de détails dans |2] ol la discussion
s’applique & I'espace Ly, 1 <p < .
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correspondant s’obtient des formules (34) et (36):
(51) y(&) =P(t)z, +P(it)z, +P(—it)z_,,
ou

:—L[yo-*—vz]' Uv‘:y‘,
(53) z, [‘ ( + i)y, ——iv —-—(1 —ip, Uw,=y,,

:T(l Oy, +— w -—-—( 14,

On objectera, peuti-étre, que, en remplacant 1'équation (47) par

W @)

comme nous 'avons fait, on perdra des solutions et qu'il faut aussi
considérer 'opérateur U — d/dx et le groupe (43) engendré par lui.
Cela revient & dire que la solution générale de I'équation des ondes
est une solution de (47) en supposant les données suffisamment
dérivables. Mais on peut écrire (44) sous la forme

(5) L Py +i¥]+LP(— iy~ ] LY.=y,

ce qui est seulement un cas spécial de (51). Alors le groupe T(¢|d/dx)
n’apportera rien de nouveau au probléme de Cauchy pour (47). Ce
résultat négatif rendra peut-étre la conjecture d—"1 plus vraisem-

blable. Remarquons en passant que la solution générale de 1'équation
de Laplace satisfait aussi a (47), c'est le terme P(¢)z, de (51). Alors,
le premier terme de cette somme vient de 1'équation de Laplace,
tandis que les autres viennent de I'équation des ondes, et, sid—1
pour I'équation (47) cela découlerait du fait que d — 1 pourl’équation
de Laplace.

Il est assez facile de donner des cxemples ou interviennent des
opérateurs non-différentiels mais ce qui précéde suffit pour illustrer
la méthode.
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