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UNE GÉNÉRALISATION DU PROBLÈME DE CAUCHYQ
par Einar HILLE (Nancy et New Haven, Conn.)

1. — Introduction.

Il y a un grand nombre de problèmes que nous devons au génie
de Caucliy : le problème dont il s'agit ici est le problème des valeurs
initiales pou ries équations aux dérivées partielles. Un cas spécial de
ce problème nous sert comme point de départ pour les considérations
suivantes.

Soit donc 1̂  l'espace euclidien à v dimensions, ,y(P, /)un vecteur
à m composantes, dépendant du point P de Ry et du temps t. De
plus, soit U un opérateur différentiel linéaire indépendant de t dont
les coefficients sont des fonctions continues de P. Le problème de
Cauchy demande de déterminer j(P, t) pour chaque t positif comme
solution du système différentiel

( , ) ^(P.<)=U[j(P,Oj, < > o ,

(2) li"^(P, 0=^.(P),

oùy^P) est un vecteur donné à l'avance. Le problème est dit bien
posé s'il admet une solution et une seule.

On peut généraliser ce problème de différentes manières. Pour
plus de précision dans la généralisation suivante on se sert du langage
des espaces normes. Soit donc Y un espace complexe de Banach, U
un opérateur linéaire faisant l'application d'un sous-espace D == D[U]

(') Conférence faite au I I I e Congrès Autrichien de Mathématiciens à Salzbourg le
10 septembre i(j5'2. Cette conférence a été rédigée pendant que l'auteur avait une bourse
l'ulbrighl et une bourse de la Fondation Guggenheim.
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de Y sur un sous-espace R==R[U] et considérons le système

(3) ^C)=U[j(<)], < > o ,

W i""lh(0-j.,ll=o,
<^0

où y^ est donné à l'avance. Ici il faut que, pour chaque ( > o, y(t)
soit un élément de D[U] et que l'application t-^y(t) définisse une
fonction absolument continue dont la dérivée au sens fort existe et
satisfasse à (3).

Ce problème est étroitement lié à la théorie des semi-groupes
d'opérations linéaires et bornées(2). Soit |T(^) |o^<j un tel semi-
groupe où T(o)==I et T(<)-^I au sens fort quand t-^o et soit A
la génératrice infinitésimale de T(<). Alors on a

(5) ^[T(0^]=A[T(<)jj, <>o,

(6) Hm||T(<)^-^|[=o
i-f^O

pour tous les y^ du domaine de A, c'est-à-dire un système de type
(3)-4-(^)- H en résulte que dans le cas où U est génératrice infini-
tésimale d'un semi-groupe j T ( < ) j , une solution de notre système
est fournie par T(/)^ quand j^D[U]. Y a-t-il d'autres solutions?

C'est une question assez difficile dont la solution générale nous
échappe, mais si l'on impose une restriction convenable sur l'ordre
de croissance de la norme de y(t) les difficultés s'évanouissent dans
des cas étendus et le problème admet au plus une solution. Nous
disons que la solution y(t) est du type normal co si l'on a

(7) ^^P^logll^l^a^ oo.
t->-00 t

Cela étant on peut démontrer (3) :

(2) Cf. mon livre [i] pour tout ce qui concerne cette théorie.
(3) J'ai énoncé un théorème moins général dans un travail qui va paraître dans un autre

recueil [3] et dont la connaissance n'est pas nécessaire pour la lecture de la présente note.
Je dois à mon ami M. R. S. Phillips l'observation qu'on peut supprimer une des conditions
restrictives dans l'énoncé original en s'appuyant sur le lemme du paragraphe 3 ci-dessous.
Il s'agit de l'ordre de croissance de la résolvante de U ; en y réfléchissant je me suis
convaincu qu'on peut se débarrasser de chaque hypothèse sur l'existence ou sur les pro-
priétés de la résolvante sans modifications essentielles du raisonnement. Voir la démons-
tration du théorème 3 ci-dessous.
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THÉORÈME i. — Soit U un opérateur linéaire et clos dont les valeurs
propres ne sont denses dans aucun demi-plan 9î(X) > \. Alors, pour
chaque y^ de Y, le système (3) 4-(4) û a" pl^s une solution du type
normal.

Les conditions du théorème sont satisfaites si, par exemple, U est
un opérateur borné ou, plus généralement, si U est une génératrice
infinitésimale d'un semi-groupe T(^). Dans ce cas, T(<)^ donne la
seule solution du type normal et la solution existe pour chaque y^
dans D, mais peut cesser d'exister en dehors de D.

2. — Unicité et caractère de la solution.

L'existence d'une seule solution du type normal a des conséquences
très importantes. En effet on a :

THÉORÈME 2. — Soit U un opérateur linéaire et clos de domaine
densedans Ye( supposons que, pour chaque y ^ de D, le système (3) -4-(4)
ait une solution y{t) =-y(t ; y^) et une seule qui soit du type normal au
sens plus restreint que voici. Il y a des constantes M et w, indépendantes
de y^ telles que

(8) IK<^o)ll<M^|holl- <>o-
Alors la résolvante R(X ; U) existe pour 9l(X) > CD, U est une généra-
trice infinitésimale d'un semi-groupe T(<). et yÇt\ yo)=rî(t)y^^Y

II nous faut le lemme suivant :

LEMME i. — Soit U un opérateur linéaire et clos de domaine D.
Soit S un ensemble mesurable dans l'espace euclidien B^, x(s) une
fonction définie dans S à valeurs dans D, telle que x(s) et U \x(s)] sont
intég râblés au sens de Bochner dans S. Alors

(9) v[f,xÇs)ds\=f^V[x(s)]ds.

Dans le cas où S est borné et les fonctions x(s) et U[.z-(5)] sont
continues et bornées on peut évidemment trouver des sommes finies

SUL^(^) et SUL.U [x(s,)] = U { 2a^,) \

telles que la première soit voisine de l'intégrale de x(s) tandis que la

(4) Le théorème a est du môme caractère et découle du même principe que le théorème 5
de notre travail cité [3J. Nous en donnerons ici la démonstration pour faciliter la lecture.
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seconde soit voisine de l'intégrale de Ula1^)] dans S. U étant clos,
il en résulte que (9) est vrai. Dans le cas général on recourt au
théorème de Lusin d'après lequel on peut approxirner les intégrales
dans S par des intégrales étendues à un sous-ensemble borné où les
fonctions x(s) el U[.T(^)J sont bornées et continues. Alors la démons-
tration s'achève de la même manière.

Cela étant, nous démontrons le théorème 2 comme il suit : Avec
la solution j'(/, y^) formons la transformée de Laplace

(10) La^y)=j^ e-^y^^ y^,

qui est une fonclion analyt ique de A dans 9î(X) ^> co où elle satisfait
à l 'inégalité

(i0 ll^(>-v..)l l<M!^(>-)—^J"IN!-
L'application y ^ — ^ L ( Â ; y^ est définie dans 1) comme une transfor-
mation linéaire et bornée. D étant dense dans V , on peut prolonger
la transformation dans tout Y ; soit J Q — ^ H ( X ) J ^ l'application
prolongée.

L(^ ; jj est un élément de Y, nous verrons qu'il est aussi dans D.
Pour montrer cela, remarquons que si o < a << ^ <i oc on a

^e-^V^t^^dt-.f^-^y'Çt; y,}dl

==c-'^j(p; yj—c-^a; Jo^J^^'J^; Jo)^-

Les conditions du Icmme i étant vérifiées, il en résulte que

u5/'^-^(/;J)rf/j=^?e-/-(Li[J(/;J„)J(//.
' u g. 7 »-/ a

U étant clos. un passage aux limites nous donne enfin

(12) (A l - l J )LCÀ;^ )=Yo

pour 9î(Â) ^> œ, Jo6L). Vu que D est dense dans Y et que U est clos,
la relation s'étend à Y7, c'est-à-dire que

(i3) (>-I-U)H(A)jo=v,

pour 9i(Â) > (o, j^Y.
Jusqu'ici nous n'avons fait aucun recours à l 'unicité de la solution.

Maintenant nous remarquons que si j ( / ) est une solution de l'équation
( 3 ) pour / > o el si /y est fixe. /^ > o, alorsy^-^o) cn est une ̂ tre.
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II en résulte que y(t-^-t^', Yo)^ Jo^, est une solution, évidemment
du type normal, qui tend vers y(t^ y ^ ) quand t-^o. Mais alors il
faut que

(^) ^+<o^o)=y('î^oîyo))
parce que le membre de droite est une solution ayant les mêmes
propriétés. Cela veut dire qu'il existe une famille d'opérations
linéaires j T(<) j avec les propriétés suivantes :

(15) T(^=^;^), o«. ^çD.
( 1 6 ) T(<,+^)=T(/,)T(/,), o<^, (,< oo.
(*7 ) |[T(0|i<M^,
(I8) ro)jo-^ll-o, <-o, ^çD.
L'opération T(<) étant définie, bornée et linéaire dans le domaine D

dense dans Y, elle peut se prolonger dans tout Y en conservant ses
propriétés.

Le semi-groupe | ï (^){ possède une génératrice infinitésimale,
que nous désignons par A, dont la résolvante est donnée par

R(X ; A)y, ̂ f^ e-^(f)y,dt. 5H(-X) > co.

La comparaison avec (10) montre que

R(X;A)^=R(X)^ j^D,
d'où il résulte que l'identité est valable pour tout y dans Y. Mais
alors il faut que A=U. En effet, soit ^=:R(^; A)^=R(X)yo
un point arbitraire du domaine de A. Alors

(XI - A)z, =y, = (XI - U)., ou A^ = ILy

La proposition est ainsi démontrée.

3. — Équations d'ordre supérieur.

Si l'opérateur U engendre un semi-groupe I T ( / ) ^ , alors on a
aussi

(19) ^[i\t)y.]=^W)y^ Oo.^D^i, «=1,2,3, . . . ,

où D[L''J désigne le domaine de U".
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II est donc naturel de considérer aussi le système

(20) y^^.u^o], < > o ,
(21) \ïm\\y(k\t)—y^,\\=o, k=o, i, ..., n—\,i ^ (\

où y^ . . . , y^__^ sont des éléments donnés de Y. Ici il faut supposer
que, pour chaque t > o, yÇt) soit un élément de D^"] et que
l'application t—^y(t) définisse une fonction de t qui a des dérivées
au sens fort jusqu'à l'ordre n.

Pour ce système on a un théorème d'unicité tout à fait analogue
de théorème i.

THÉORÈME 3. — Soit U tel que U" soit linéaire et clos et tel que
les valeurs propres de U" ne soient denses dans aucun demi-
plan 9l(X) > XQ. Alors pour chaque choix de y^ ..., Jn-v dans Y il y
a au plus une solution du système (20)-{-(21) dont la dérivée
d'ordre n — i est du type normal.

Remarquons que si la dérivée d'ordre n— i est du type normal,
les dérivées d'ordre k,o^k < n — i , e n sont aussi, mais on ne peut
rien conclure sur les dérivées d'ordre plus grand que n— i.

S'il y a deux solutions du type normal de notre système, le système
(2o)-|-(2iQ) où tous les Yk sont nuls a une solution yÇt) non-nulle.
Alors

(22) L(}.,y)=Ef^e-^y(t)dt

existe pour 9tl(X) > œ, (i) étant le type de j(() défini par (7) ; et dans
ce demi-plan L(X ; y) est une fonction analytique qui n'est pas
identiquement nulle. En suivant la même méthode que ci-dessus
on voit que

f^e-ltVn[y(t)]dt=f^e-'kty(n\t')dt

^Se-^S^-1-'/^)? ^-X^e-^^

=^\f^-^y{()dt\.

En passant aux limites on trouve que
(28) (X"! - U^HX ; y) = o, 9î(X) > œ,

c'est-à-dire, pour presque chaque X dans ce demi-plan, À'1 est une
valeur propre de U" et cela n'est pas en accord avec les hypothèses
de notre théorème. Il en résulte que L(X ; y)^o, ce qui entraîne
j(<)=o et la démonstration est achevée.
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4. — Questions d'existence.

Dans le cas n > i , on n'est pas sûr, en général, de l'existence
d'une solution du problème de Cauchy. C'est seulement dans le cas
où U est borné qu'on a toujours une solution, évidemment donnée
par

W y^^'Ï S J'^^y,.
A==Om=o(/^+A;) !

Cela peut s'écrire d'une façon plus suggestive
n—l W

(a5) y{t) = S exp(ï)W)2,, Y) = e^,
A=0

où les ^ sont assujettis aux conditions

(26) "S^U^^^, A=o, i, . . . . n-i.
p=0

Ces conditions ne suffisent pas, en général, pour la complète
détermination des z^ mais on voit immédiatement que les quantités
U""^ sont univoquement déterminées

(27) V^z^i'^^-P^y^ k=o, l, . . . . n-îp=o

où les dp^ sont des constantes numériques, de sorte que la solution
y(f) est univoquement déterminée par les équations (a5) et (26).

Le cas où U est non borné mais engendre un semi-groupe
T(<)==T(<|U) est d'un intérêt considérable. Si ̂ ^[U"] la fonction
T(/[U)JQ, comme nous venons d'observer, donne une solution de
(20), la première condition de (21) est vérifiée, les autres seulement
si on a ̂ ===0^. Remarquons que T(/|U)=exp(<U) si U est borné.

D'après la relation (26), on sent d'une manière assez vague qu'il
faut avoir recours aux opérateurs T^IY^U), Â:^=o, pour aller plus
loin. L'opérateur T^IY^U) est bien déterminé si YJ^U est la génératrice
infinitésimale d'un semi-groupe fortement continu. Ici il y a deux
cas distincts : (1)^=—i, (2) y^^dr i.

Dans le premier cas n est pair, n=. 2jo, et nous avons :

THÉORÈME 4- — Si n==2p et si U et —U engendrent les semi-
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groupes Ï(^|U) et T ( < j — U ) , continus au sens fort à l'origine
a^cT(o|U)=T(o|—U)==I, alorsona

T(<|—U)T(/ |U)=:T(<|U)T(<|—U)=I.

En posant T(^[—U)=T(—/|U) pour < > o , on obtient un groupe
|T((|U)|-oo«<oo^

II suffit de montrer que T(< U)T( / |—U)=I . Pour faire voir
iela, notons que

R ( X ; -U)==-R(-X;U), 9î(X)>(^

où (î  est le type de T(<[ — U), c'est-à-dire que R(X ; U) existe dans
deux demi-plans 9fï(X) > œ, et S)î(X) < —œ^. Alors, pourchaquey
deD[U]ona

T(<|U)T(<|-U)y

=—limlim——— r"'0 r^e^^R^ ; U)R(— ^; U)yJa(û
F^^c g^oo (2TII) Jy-ip J8-(7

où y >o^, à > 0)3. Cf. [i] p. 282, formule (i i . 7. 2). Ici on peut
écrire l'intégrale double comme la différence de deux intégrales plus
simples en s'appuyant sur la première équation fonctionnelle
satisfaite par la résolvante qui prend la forme

-(X+pi)R(X; U)R(-pi; U)=R(X; U)-R(-pL; U)

dans le cas présent. Dans la première de ces intégrales on passe à la
limite avec (T en obtenant

lim-'-, r^RO; U)ydX= ' - y .
p-^oo 21:1 JY.IF 2 v
lim - —.
p^oo 21:1 »/Y-ip

La seconde donne de la même manière

II en résulte que
rî(t\V)rî(t\-V)y=y'

pour chaque yçD[U]. Mais D[U] étant dense dans Y et l'opérateur
dans le membre de gauche étant borné pour chaque t fixe, la relation
vaut pour tous les y ,

THEOREME 5. — Si n = a et si U engendre le groupe
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| T(^| U) | — QO < t < oo \, continu à l'origine oà ï(o| U) == I, alors
le problème de Cauchy pour le système (20) -[-(21) û "^ solution et
une seule dont la dérivée première est du type normal pour chaque choix
de y, dans D[U2] et de y, dans D[U] n R[U], à savoir

(,8) y(<)=^-[T(/|U)(^+^)+T(-<|U)(^-^)], Vz,=y^.

On vérifie sans peine que toutes les conditions sont satisfaites.
L'unicité de la solution serait démontrée si l'on pouvait appliquer
le théorème 3. Nous savons que le spectre de U est renfermé dans la
bande —^^ SK^)^^! d'où il résulte que le spectre de U2 est
renfermé dans un domaine bordé par deux hyperboles. L'opérateur U
étant clos, U2 a la même propriété grâce au lemme, à peine nouveau,
que voici :

LEMME 2. — Soit U un opérateur linéaire et clos de domaine
dense et admettons l'existence de la résolvante R(X ; U) pour une valeur
de X(s). Alors les opérateurs U'1 sont clos et leurs domaines denses pour
chaque n.

Donnons la démonstration pour n = 2. Posons Vx^ ==Vn, Uj^ •= z^
et supposons que x^—^x^, z^—^z^. Il est entendu que .^^[U2], il
faut démontrer que ^çD[(J2] et que U^m:^. De l'équation liant U
et R ( X Q ; U) il résulte que

ou
À;R(V. U)^:=X^+U^+K(^ U)U2^

y.==W\'. U)^--v,-R(^; U)^.

Mais alors \\my^^y^ existe et, U étant clos, il s'en suit que y^==:Vx^
En s'appuyant sur la clôture de U une fois de plus, on voit
que^çD[U], ^==Uj^, ce qu'il faut démontrer. La transformation
R(Xy ; U) donne l'application de Y sur D[U] et l'application de D [ U j
sur D^2]. D[Uj étant dense, il on résulte que D^2] l'est aussi.

Retournons au théorème 5. Alors, U comme génératrice infini-
tésimale d'un groupe, continu au sens fort à l'origine, est clos et son
domaine est dense dans Y, de plus R ( X ; U) existe en dehors de la
bande — o^ ̂  9Î(^) <^ ^r II en résulte que U2 est aussi clos et le
théorème 3 montre que la solution fournie par (28) est la seule de

(r)) L'existence de R(A,,; U) entraîne l'existence de H(X ; L') an moins dans le cercle
;X-A,|!|H(\,; U)!|< i.
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type normal. Cela est un peu étonnant parce que dans le cas où X=o
est une valeur propre de U, la quantité z^ n'est pas univoquement
déterminée. Mais lorsque Uz==o on a T(<|U)z=2 pour chaque <,
— oo < /< oo, c'est-à-dire que l'expression dans (28) ne dépend
pas effectivement du choix particulier de ^ pourvu que \!z^=y^
C'est le même phénomène d'indétermination formelle, non-réelle
que nous avons observé ci-dessus pour les opérateurs bornés. Le
théorème est ainsi démontré.

Pour n > i, le cas traité dans le théorème 5 est le seul où nous
puissions donner la solution complète du problème de Cauchy.
Remarquons que la solution (28) est tout à fait analogue à celle
donnée par (26) dans le cas où U est borné et ^==2.

Soit maintenant n > 2 et soient U et y^U, Y]^^ ±: i , les généra-
trices infinitésimales des semi-groupes T(^|U) et T^IY^U) continus
au sens fort à l'origine où T(o|U)=T(o ^V)==î. Alors T(<|U)
a nécessairement un secteur d'analyticité :

THÉORÈME 6. — Supposons que U et Y^U, Y]^^ ± i, engendrent
les semi-groupes T(<|U) et T^IY^U), tous les deux continus au sens
fort à l'origine où T(o| U) === T^ol^U) ==:I. Soit S le plus petit secteur
du plan complexe de t déterminé par les rayons arg t = o et
arg t •= îk^/n == 0^. Alors il existe un opérateur T((), analytique
dans S, tel que

(29) \imrî(rei^=rî(r\U), \im T (re^) =T (r\^V).
e-o e-^o/c

Pour chaque ^ et t^ dans S on a

(30) T(^+0=ïa)T(0.
Pour montrer cela, observons que

R(X; V)y=f\->rrî(r\V)ydr. 9Ï(X) > co,,

R(X; riftV)y=f^e-^^îW\])ydr^ 3Î(X) > œ,,

où (OQ et aï/( sont les types de T(r|U) et de T^Y^U). Mais on a

R(X; YI^^YI-^Y)-^; U),

d'où il résulte que R(X ; U) existe et est analytique dans le
domaine A, réunion des deux demi-plans 9Î(X) > œ^ et ^(ïj^X) > œ^.
Nous avons aussi S (X)| |R(X; IJ)| |^M(£) où â(X) désigne la distance
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de X à la frontière de A et â(X) ̂ £. Pour fixer les idées, supposons
que o < 0^ < il. Nous posons

(3i) T(Qy=-1-. f^R(À; U)yrfX,
^TttJ p

où ((S et F est la ligne brisée dans A sur laquelle X est constamment
à la distance S > o de la frontière, l'argument de X étant supposé
croissant sur F, On voit sans peine que T(<) est analytique dans S
et indépendant de S. De plus on a

T(OT(^=--f fe^R(X; U)R(^, V)yd\dy.{•iTti) jrwr.

=wfJ^'"^~- U)-R^IJ)]^
^-L-r ^-^R^;U)y(û=T(<,+^,

2^1 Jr«
où nous supposons que \ trace la ligne [\, S=Sp et que (A trace Fa,
S=S,, et §,>§,.

Les relations (29) s'obtiennent, en observant que pour yeD[U]
et t sur l'un des bords de S, l'intégrale dans (3i) se décompose en
deux parties, une pour chaque chemin rectiligne ; l'une de ces inté-
grales est absolument convergente, l'autre existe seulement comme
valeur principale. La valeur de l'intégrale est connue (voir [ i ], p. 282,
formule (n. 7. 2)) et est égale à T(r|U)y ou T^IY^U)^ selon le
le bord où ( se trouve. Supposons, pour fixer les idées, que la valeur
est T(r|ïî)y. Alors on peut approximer T(r|U)y, uniformément par
rapport à r dans un intervalle fini donné, par une intégrale de
(2<^:l)-lexrR(X; U)y prise le long d'une partie finie fixe de F. cette
intégrale étant la limite pour t-^r d'une intégrale approximante
de T(Qj; il en résulte que lim TÇre^y^TÇr^y pour O-^o, ce
qui prouve notre proposition.

On déduit de (3o) que

/Q \ r 1 i II^T/ ^ „ ̂  o^ sin (Q^ — 0) 4- ̂ k s111 Q
( ) ^-yT10^^ ) 1 1 ^ — — s i n 6 — — — — — ^

c'est-à-dire que T(<) est du type normal sur chaque rayon de S.

COROLLAIRE. — Si YJ^U engendre un semi-groupe fortement
continu pour trois valeurs distinctes de k et si les trois angles entre les
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directions correspondantes, arg< =. i^k^n, sont plus petits que TC,
flfor^ U ^5< u/ie opération bornée.

En effet, il résulte de la démonstration du théorème précédent que
la fonction X H ( X ; U) est holomorphe à l'infini, ce qui entraîne
que U est borné.

En conséquence, si U est non-borné, il y a au plus —n-[- i

valeurs de k, distinctes modulo n, qui peuvent donnerdes semi-
groupes bornés et continus. Ce cas se présente, par exemple, si
n = !\p et si U engendre un semi-groupe T(<|U), analytique pour
9Î(0 > o et continu pour 9î(<)^o. Dans ce cas on peut imposer
2p-|- i conditions initiales de caractère général à la solution de
l'équation (20), c'est-à-dire une pour chaque direction admissible,
mais non pas les l\p conditions demandées dans le problème de
Cauchy.

5. — Problème réduit.

Il résulte de l'observation que nous venons de faire qu'il faut
remplacer le problème de Cauchy par un problème réduit. La défini-
tion suivante semble convenable :

DÉFINITION. — Le problème aux valeurs initiales de V équation (20)
est d'ordre n et de défaut d=n—m s'il existe un entier m^n tel
qu'on peut toujours trouver une solution de (20) satisfaisant aux
conditions

(33) limI^O—^H^o, /c=o, i, ..., m — i ,
t-^O

où Vf, est un élément arbitraire de DjT""^ n R[U*j, tandis qu'on ne
peut pas disposer de la limite de y^Çt).

Cela étant nous avons :

THÉORÈME n. — Soit U la génératrice infinitésimale dun semi-
groupe T ( ^ j U), analytique dans un secteur S et continu au sens fort à
l'origine. Soit m le nombre de rayons arg / = îk^f'n contenus dans S
ou un rayon sur le bord de S est inclus seulement si T(<|U)cs< continu
sur le bord en question. Alors le problème aux conditions initiales de
^équation (20) est d'ordre n est de défaut d<; n — m.

En effet, nous pouvons poser

W) y(0=^TOTU)^,
où la sommation s étend aux valeurs admissibles de h et où les z^
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sont des éléments de DI^J à déterminer. Les conditions initiales (33)
donnent le système d'équations

(35) Jp=^Y]W^ p=o, i, . . . , m — i ,
tout à fait analogue au système (26). Par hypothèse,

^[U^] n R^j.
Alors le système (35) donne

Um-p-l;)p=SkTl*PUm-t2k, R==0, I, .... f f l——I .

Le déterminant du système étant différent de zéro pour m^.n, il en
résulte que

Um-t^=^"î>Um—^
et

(36) 2,==S,a ,̂ U^=y,.
Enfin

(37) y(t)=^[W^MV)]v,.
C'est une solution de (20) satisfaisant aux conditions (33). Est-elle
unique? Nous ignorons la réponse. Dans le cas où X==o est une
valeur propre de l'opérateur t^, l'élément Vp n'est pas univoquement
déterminé mais cela n'introduit aucune ambiguïté dans la valeur
de y(<). En effet, on peut écrire la solution sous la forme

(38) y^i'^
fc=0

+ —— r ci - <)"- [ww i u)u%]<fc' (m—i}!*7 o

où toutes les quantités sont parfaitement déterminées par les condi-
tions initiales. Il en résulte que le défaut d^n — m. Dans le cas où S
est le domaine d'existence exact de T((| U), on peut espérer démontrer
que d = n — m mais nous ne savons pas le faire.

6. — Exemples.

Nous prenons Y===L(— oo, oo) sauf pour l'exemple 5.

EXEMPLE i. — L'équation de Cauchy-Riemann sous la forme
complexe

,^ . ôw .ôw(3û) —==i—, z=x-\-iy.v y/ ôy ôo? '
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II s'agit de trouver une solution de (89) dans le demi-plan y > o
qui tende en moyenne d'ordre un vers une fonction donnée f(x)
quandy—^ o. On a U == i d / d x , opérateur clos dont le spectre ponctuel
est vide. Alors le théorème 3 dit qu'il y a au plus une solution du
type normal. Mais les fonctions f(x) de Y donnant des solutions du
type normal dont les types ne surpassent pas un nombre fixe co, ne
sont pas denses dans Y car il faut que

(40) F(0=-L= F f^e-^ds
V/airJ-oo

soit identiquement nulle quand t^ — co. Pour le voir observons que
la solution est une fonction analytique de z dans y > o, soit f(z),
alors on peut intégrer e'^fÇz), < < — c o , le long d'un rectangle
±a-|-i£, ±:a4-tB» puis on passe à la limite, a—^ oo, B-^ oo, £-^p
dans cet ordre. Il en résulte que le théorème 2 ne s'applique pas,
de plus sa conclusion aurait été fausse dans le cas présent : En effet,
la résolvante peut s'évaluer et on trouve que R(X ; U) existe dans
tout le plan sauf sur l'axe réel. Alors on conclut que i d/dxne peut pas
engendrer un semi-groupe continu dans L(— oo, oo) et le problème
de Cauchy correspondant est de défaut un, c'est-à-dire mal posé.

De plus, il y a autre chose dans certains sous-espaces de Y. Soit
(0^ o fixe et considérons le sous-espace Y^ de Y dont les éléments
sont des fonctions f(x) telles que la transformée de Fourier F(<),
définie par (^o), soit identiquement nulle pour < ^ — œ . Y^ est
complet dans la métrique de L(— oo, oo). Alors la formule

(41) w(z)=—— F e^F^dt
y^J-^

donne une solution du problème de Cauchy qui est du type ^ co
pour chaque/(a*) dans Y,.,. On voit que l'équation (89) a des solutions
de type normal de chaque type fini mais il y a aussi des solutions de
type infini (6).

(6) Soit Ett(^) la fonction entière de Mittag-Leffler. On voit sans peine que

Ea(— (x 4- ly)2^!^— oo, oo) comme fonclion de x pour chaque y fixe, si o < a << -I-,
et que 2

G, [i -4- \yW < log [|E.(- (x 4- tr)2)!! < C,[i + M2/-].
Alors on peut choisir les coefficients un dans la série

^ a,E,/,(- z2)
3

de manière que la série converge en norme pour chaque y et que la norme de la somme
croisse plus vite qu'une fonction donnée de y .
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EXEMPLE a. — Équation des ondes

w ô-2y=Av / ô<2 ôœ2

On prend U =:d/dx qui engendre le groupe unitaire

(43) T^f/j^/C.+O, -oo<«oo.
\ ax/

On trouve AI =3, m=a , d:=o etie théorème 5 donne la solution
classique

(4A) ^o=-[^4-<)+^-<)]4-1- r^(.)(fe.
-" 3 J x-t

EXEMPLE 3. — Équation de Laplace
ôS^ K'=o.

L'opérateur U peut se choisir de deux manières difl'érentes, soit

U = i , f soit U = — où le tilde signifie l'opération de conjugaison

au sens de la théorie du potentiel logarithmique. Tous deux sont
clos et leurs spectres ponctuels sont vides, par conséquent le théorème
d'unicité s'applique; mais cela ne vaut pas grand'chose parce qu'il
est bien connu que le problème de Gauchy est mal posé pour

l'équation de Laplace. L'opérateur — engendre un semi-groupe
Ct3C

mais pas un groupe, ce qui donne d^ i, ici d= i est la vraie valeur.
EXEMPLE !\. — Equation du troisième ordre

^ ^ :T^B-
L'opérateur U = - engendre le groupe (43) mais ni Y)U ni YJU,dsc
Y)=exp(îm/3), n'engendrent des semi-groupes. Alors on a n= 3,
d^2. Ici on peut démontrer que d==a par l'observation suivante.
Les combinaisons linéaires des fonctions (x —Ay;)"2 et (x—Aï))"2,
A = i , 2, 3, . . . , plus (x—Y))""1^—Y])"1 sont denses dans
L(— oo, oo). Nous proposons de trouver une solution de (^6) telle
que les trois données initiales y^ y^ y^ soient

(x—k^)-\ a (x—kr^)-\ b(x—k^-\
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où a et & sont des constantes données. La solution formelle est

a(.r4-<-^)-24-p(.^+ïl<-Aïl)-2+y(.T+ï]<-Ayl)-^

les a, (î, y étant des formes linéaires de a et 6. Si

3(a+2)ïi+(6-6)Yi-(3a+6)^o

on a ? ̂ =- o et la solution formelle n'est pas dans L(— oc, oo) quand
t=:k parce qu'elle devient infinie pour a?==o. Le même résultat
s'obtient en échangeant y; et Y) et la méthode s'applique aussi au
troisième cas. Donc il y a un ensemble fondamental de fonctions^.)
pour lesquelles on ne peut choisir ni J,(.) ni J.,(.) d'une manière
arbitraire. Alors il faut que le défaut soit égal à 2.

EXEMPLE 5. — Equation du quatrième ordre

M
^y^^y
ô<4 ôa?4'

Nous prenons Y=L^(—oo, oo), U = = - - ' Alors U engendre le
semi-groupe de Poisson (7).

«8) pw^^f^M.

La transformation de Fourier nous donne le semi-groupe isométrique
plus simple

(49) P^Fj^-'i^).
Évidemment P*(<) est holomorphe dans 9î(<) > o et continu pour
9î(<)^o, d'où il résulte que P(<) a les mêmes propriétés. Alors on
trouve

(50)

P(^)f/]=y[/^+-)+/(^--)]+y[7(^+-)-A^--)]

en calculant la fonction inverse de e'^lF^). Ici T est réel, et
J|P(IT)||=||P*(IT)||=I. Les opérateurs ^P(iT)|— oo < T < oo }
forment un groupe, avec P(o)=I, fortement continu. Alors le
théorème 7 donne AI=^, d^i et la solution du problème réduit

(7) Pour ce semi-groupe voir [ij p. 3^."). Il y a plus de détails dans [a] où la discussion
s'applique à l'espace Lp, i <^p <^ oo.
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correspondant s'obtient des formules (34) et (36) :

(51 ) y(t) == P(<)^ + P(^, + P(- it-)z _ , ,
où

2o=y[^+l'J• vvi=yt'

(5a) 2,=-^(i+i)^—^-iv,—-^-(i—(>,, ^1),=^,

2_,=-^-(l —t)7o+^- W,—^-(l+l)l\.

On objectera, peut-être, que, en remplaçant l'équation (^) par

/„. /ôy /sy
(53) W^W^'

comme nous l'avons fait, on perdra des solutions et qu'il faut aussi
considérer l'opérateur U == d/dx et le groupe (43) engendré par lui.
Cela revient à dire que la solution générale de l'équation des ondes
est une solution de (47) en supposant les données suffisamment
dérivables. Mais on peut écrire (44) sous la forme

m ^P(;<)^+iY,]+-^P(-^-iYJ. ^Y,=;y.,

ce qui est seulement un cas spécial de (5i). Alors le groupe T(<|d/(te)
n'apportera rien de nouveau au problème de Cauchy pour (47). Ce
résultat négatif rendra peut-être la conjecture d-= \ plus vraisem-
blable. Remarquons en passant que la solution générale de l'équation
de Laplace satisfait aussi à (47), c'est le terme P(<)^ de (5i). Alors,
le premier terme de cette somme vient de l'équation de Laplace,
tandis que les autres viennent de l'équation des ondes, et, si d= i
pour l'équation (47) cela découlerait du fait que d-= i pour l'équation
de Laplace.

Il est assez facile de donner des exemples où interviennent des
opérateurs non-différentiels mais ce qui précède suffit pour illustrer
la méthode.
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