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Introduction.

Global solutions of nonlinear first order partial differential equa-
tions have been an object of inquiry since 1950-51, when for the
particular equation

u^ + uu^ -= 0 (1)

E. Hopf [16] and J. Cole [2] first succeeded in constructing
"weak solutions" —solutions in a distribution sense— in the half-
plane t > 0 with bounded, measurable initial values. Their methods,
which were similar but independently arrived at, after some years
were accomodated to other equations than (1) and additional ap-
proaches developed. At present, several ways are known to construct
global weak solutions with prescribed initial values of fairly general
types of scalar first order equations, including equations of Hamilton-
Jacobi form

^ 4- f(x , t , grad u) = 0 (2)

and quasilinear "conservation laws"

u, = f —-A,(x,^) = C ( x , t , u ) . (3)
i - l oxi

Here, x = (x^ , x ^ , . . . , x^) ̂  E", u(x , t) denotes a scalar func-
tion, grad u == (u^ , u^ ,. . . , u^ ), ^. = Qu/Qx^, u^ = 9u/9t. A be-
ginning has been made with scalar equations in two independant va-
riables of the form (f(u)\ + (g(u))^ = 0 (D.P. Ballou [1]), and
weak solutions of certain hyperbolic systems of quasilinear equations
also have been obtained (see P.D. Lax (28], J. Glimm [14], Glimm
and Lax [15], J.A. Smoller [32], J.L. Johnson and J.A. Smoller [19], ( ])
and the bibliographies in these papers). Nevertheless, global theory
today is incomplete, and often it is complex and delicate. Hence, it
seems worthwhile to continue to explore the scalar case, to which
this paper is devoted.

(1) See also J.A. Smoller and C.C. Conley [1-6] and the included references.
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Our methods are based on the idea of approximating weak so-
lutions by functions that are built up out of strict C1 solutions in
appropriately narrow domains. This kind of construction seems to
have been first suggested in principle by B.L. Rozhdestvenskii [31]
(1961) and was first carried out by N.N. Kuznetsov [27] (1967).
I hit upon it later and outlined its application to equations (2)
and (3) in an A.M.S. lecture(1) in 1968, not knowing that Kuznetsov
had already introduced it. In this paper, the original methods are
greatly broadened and developed.

The principal estimates needed in this approach are, as Kuznetsov
also stresses, suitable a priori inequalities for strict solutions —solutions
of class C1— of the given partial differential equations. Besides these
inequalities, a smoothing transformation S of C^E") into itself is
required under which the inequalities are preserved. Supposing we
have S, we can describe the idea as follows. Let u^x) denote the
prescribed initial data. The first step is to find, in a suitably thin layer
0 < t < h, a strict solution u^(x , t) satisfying the initial condition
u^ {x , 0) = Su^OO. The second step is to find in the layer h < t < 2h
a strict solution u^(x , t) such that u^(x , h) = Su^(x , h). The third
step is to find in the layer 2h < t < 3h a strict solution u^(x , t)
such that u^(x , 2h) = Su^Qc, 2h), and so forth. The sectionally
continuous, sectionally smooth function

u(x , t ) =u^x , t ) for 0 < t < h,

= u^(x , t) for h < t < 2h,

= u ^ ( x , t ) for 2h^t<3h,

we call a layered, or stratified, solution. It obeys inequalities depend-
ing on u^ that derive from the estimates originally established for
strict solutions. It is of course not a weak solution of the original
problem, but under appropriate conditions a sequence of layered
solutions will approximate a weak solution if the smoothing per-
formed is made finer and finer with h accordingly tending toward zero.

( ] ) The existence of weak solutions of first order partial differential equations,
an invited address before the Eastern Sectional Meeting of the American
Mathematical Society at Johns Hopkins University, October 26, 1968.
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A large class of smoothing operators, including arithmetic and
other types of averaging as well as quite different kinds of trans-
formations, exists with which layering works comparatively simply
for equations of forms (2) and (3).
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CHAPTER 2

GENERALIZED SOLUTIONS OF QUASILINEAR CONSERVATION
LAWS WITH BOUNDED, MEASURABLE INITIAL DATA

Global weak solutions of multi-dimensional quasilinear conser-
vation laws were first constructed by E.D. Conway and J.A. Smoller
[4], who confined their efforts to equations of the form

n auf + y ^-A,(^) =o.^^i
For equations

n 3
^ + S .— A,(x . t ^u) = C(x , t , u) (A)o

i 1 oxi

that depend explicitly upon x and ^ similar results were then ob-
tained by K. Kojima [20], extending Conway's and Smoller's finite
difference methods, and by N.N. Kuznetsov [27], who used a
layering procedure. Finite difference schemes in relation to the two
equations ^ + V . P(u) = 0 and ^ + V . P(u) = v^u have been
further elucidated by D.B. Kotlow [21].

These writers required the initial data to be of bounded varia-
tion in a sense of Tonelli and Cesari, but recently new estimates in
conjunction with the "viscosity" method have made it possible for
S.N. Kruzhkov [25, 26] to dispense with all demands upon initial
data other than boundedness and measurability. In the same papers,
Kruzhkov also has presented a new definition of "generalized so-
lution" under which generalized solutions of (A)o are weak solutions
but, almost regardless of the nature of the A,, depend uniquely and
continuously (in L1) upon their initial data(1). In the one-dimensional
case, Kruzhkov's generalized solutions satisfy the "entropy" or ana-
logous conditions that hitherto have served as the basis of uniqueness
theorems.

Ideas closely related to Kruzhkov's were presented by E. Hopf
[18]. For sectionally continuous solutions, B.K. Quinn [1-5] has
provided an elegant alternative to Kruzhkov's methods.

( !) P.A. Andreyanov [1-2] recently has extended Kruzhkov's methods and ideas
to problems with just locally bounded initial data.
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Viscosity methods like Kruzhkov's are of interest in themselves,
as Kruyhkov stresses, but procedures not involving parabolic equa-
tions doubtless also are worthwhile. Such a procedure, which leads
relatively easily to Kruzhkov's existence theorem, is to approximate
the given initial data by functions of locally bounded variation (in
the sense of Tonelli and Cesari) and then to pass from solutions that
have these data to the solution with the data desired by means of a
limit process based on Kruzhkov's theorem on continuous dependence
alluded to earlier. (Kuznetsov [27] used a method somewhat like this
for equations of the form u^ + ^ (A,(M))^. = 0). In this approach,

i
incidentally, second instead of third order differentiability of the A,
and C suffices.

This chapter is devoted to a direct approach, by means of layer-
ing, to the problem of bounded, measurable initial data and also
provides a pattern for our discussion of the case of initial data of
bounded variation (Chapter 4) and our treatment of Hamilton-Jacob!
equations (Chapter 5). The lack of a needed estimate (an appropriate
generalization of Theorem 3) restricts present considerations to
conservation laws of the form

u! + 1 — — A , ( r , M ) = C ( r , M ) (A)
i - l ^i

without explicit dependence upon x. Initial conditions

u(x,0)=u^(x) (B)

with bounded, measurable u^ are imposed.

1. Notation, assumptions, aims.

For an arbitrary point x = ( J C j , . . . , x ^ ) of real Euclidean space
E", we write

M-ff.?r
b=i J
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If v is a bounded function ofx on £", we write

My = sup^ b00| ;

if v is a function of x, r for jc G E" and t > 0, and ^(» ,0 is bounded
for fixed t, we write

M,(r) = sup |y0c, r)|.
jcGE"

Similar notation is used for vector functions.
Let C(E") denote the class of functions that are bounded and

continuous on E", and for v €= C(E") write

Ho == ^P 1^001.
jcGT:"

For a vector /=( / ; , . . . , / „ ) with /,. <E C(E") 0- == 1, . . . , ^), we
write

[ " 1 1/2

^•lo = S /? o -
« = 1 J

For T > 0, M > 0, a < b, h > 0, and positive integers m, define

Z(T) = {(x . t) : x e E" , 0 < / < T},
Z(a,b) ={(x. t) : x e E" ,a <t<b},

Z^ =Z^=Z((m- Dh.mh),
Z'n, = { ( x , t ) : xGE" ,(m - \)h <t<mh} ;

Z(T ; M) = {(x , t . u) : x £ E" , 0 < t < T , \u \ < M},
Z(a, b;M) ={(.x. t . u ) : xe E" , a ^ t ^ b , \u\<M},

Z(T ; M) = {(x . t) : 0 < / < T , \u | < M}.

If Z represents any domain, by C*(Z) we shall mean the class
of functions that are bounded and continuous and have bounded,
continuous partial derivatives on Z of orders up to k(1). By C^(Z)
we mean the subclass of C*(Z) consisting of the functions that have
compact support in Z. Here, k denotes any nonnegative integer. If

(1) The conditions of boundedness will be dropped in Section 3, Chapter 3, and
thereafter.
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/G C^(Z), we write |/| ,^ to mean, as is usual, the sum of the
least upper bounds in Z of the absolute values of / and of its partial
derivatives of orders up to k. By L1 (Z) we mean the class of Lebesgue
summable functions on Z, and by |/| i the usual norm of / in

L (Z)
that space,

For all positive constants M, T, we assume

C €= C1 (Z(T ; M)) , A, G C^ZCT ; M)), i == 1, 2,. . . , n.

We also assume UQ to be bounded and measurable in E". Follo-
wing Kruzhkov [26], we shall say that a bounded, measurable
function u on the set Z(T) is a generalized solution of (A)g, (B) if
for all real constants k and all nonnegative functions/E C^(Z(T))
with f(x , 0) = 0, we have

ft,Z(T)
\u -k\f, + sign(^ - k ) . ^ [ A , ( x ^ t ^ u ) - A,( ;c ,^fc)]

» = i

+ sign (u - k) • |c(;c, t , u) - ̂  A,^. (x , t , k)\ f dxdt
L 1 = 1 J

> 0 ; (3a)

here, f^ = Qf/Qt, /^. = 3//3.Y,. In addition, it is required that a subset
^ of [0, T] of measure zero exist such that for every ball

S(r) ={x C E" : 1^:1 <r}

lim f \u(t.x) - u^x)\ dx = 0, (3b)
t->0 S(r)

where during the limit process 0 < t < T and t f S>. As Kruzhkov
proves, generalized solutions are weak solutions. Furthermore, all
generalized solutions of an equation for which the A, and C
are of class C1, and the first derivatives of the A, with respect to x
and t are Lipschitz-continuous, for (x , t , u) G Z(T , M) with arbitrary
M, depend uniquely and continuously (in L1) upon their initial data.
(See also B.K. Quinn [1-5]).
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For our purposes, we add to the previous assumptions the
following growth condition upon C : f o r x ^ E " and t > 0

sup |CO^)|<E(w),
M<w

where E is a nonnegative, nondecreasing function defined for w > 0
such that

/»°° dw
j ~cT~~. = °° tor a > 0.<, E(w)

Our principal aim in this chapter is to prove the following
result :

THEOREM A. — Under the assumptions stated, a generalized so-
lution of (A) and (B) exists.

To employ stratified solutions in constructing the solution demand-
ed, we must first establish certain properties of strict solutions and
also suitable smoothing operators. The latter will be discussed in detail
in the next chapter, from which we shall borrow as required. We now
turn to the former.

2. Strict solutions of equation (A ).

By a strict solution of a partial differential equation we mean
a continuously differentiable solution in the ordinary sense. In this
section, we shall discuss strict solutions of first order conservation
laws of the form

" 3
^ + L .— ̂  ft f u) = c(x f t fu)' ^oi=i ^i

where C G C1 (Z(T ; M)), A, G C^ZCT ;M)) for i = 1,. . . , n. We
suppose a generalized form of the previous growth condition to
hold : for x E E" and / > 0,

su? S A,̂ . (x, r, v) - CQc, r, v)\ < E(w),
\v |^w j =1
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_ 3A,
where A, ̂  - _— and E, as before, is a nonnegative, nondecreasing

/»00 (J\A)

function defined for w > 0 such that / —— = °° for a > 0 An
< E(w)

initial condition of the form

u{x, t^ = w(x) (1)

is assumed, where w is an arbitrary bounded, continuously differen-
tiable function with bounded gradient :

MO ̂  wo ' l̂ ^ ^lo < w!'

WQ and w, being constants. Standard theory will provide positive
constants A and a independent of w, such that u exists in the layer

ZOo^o + l/(AWi +fl))

and will furnish an upper bound pertaining to this layer for M^(Q.
Well known methods will also enable us to show that u -a strict
solution of (A)o and (1)— is a generalized solution in an appropriate
sense. Finally, we shall prove u to be mean continuous (in the L^
sense) with respect to x, uniformly with respect to w,. This infor-
mation is the main content of the following three theorems.

THEOREM 1. A strict solution u o/(A)o, (1) exists in the layer
^o » ^ o + /!)' h = V(Aw, + a), where the constants A and a may
depend upon Wp, the bounds assumed for the first derivatives of C,
and those for the second derivatives of the A,. This solution u is
subject to a bound described as follows. Define the function

by the condition

00) = 00 ; to , w^)

0(0 dvf = t - in.
wo E(r) °

(Under our growth assumption, 0 exists and is an increasing, abso-
lutely continuous function for t > t „). Theno"

M^(f) < 0(? ; ty , Wo) for t^ < t < ty -;- h. (2)
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THEOREM 2. - Let u be a strict solution of (A)y in Z(^ , ^),
where t^ < ^, d72rf suppose f^. (^(Z^o , ^)) ^o vanish identically
for \x | > r, r &^m^ .̂y positive constant. Then for any constant k

\\u-k\f, +sign ( ^ -^ ) . ^ [A,0c,^)
'^o^i) ^ ^izcrn.r.) (

- A, (jc, r , fe)] /,. 4- sign (u - k) • [C (x , t , u)

- ^ \^(x.t^k)}f\ dxdt
i = ] ' l )

= f |^- A;|/rfjc '1 .
J E" ^ ^o

THEOREM 3(1). - Let u be a strict solution of (A) in a layer
Z(^o , t\) (^o < r!^ ^ wA/c/2 |M(JC , t)\ < M. Z^^

^^(^^rs o^/a^i^.
With SEE" a^rf T > ̂  , rf(?no^ 6^ D(r ; ̂  , T) r/ze horizontal disk

D(t ; ̂ , T) = {x : he - ^1 < N(T - r)}

c^^ out of the plane with ordinate t by the back horizontal cone
with vertex (S , T) and "slope" N. Then for any z e E" and for
ty < t < ^ , we Aai^ :

J |^(x+z, r) - u(x , r)| rix
D(^,T)

< exp [Ci (r - t^)] • f \u(x + z , ̂ ) - u(x , ro)|rfx
DC/O^^)

Here, C, = sup^^^ |CJ.

Proof of Theorem 1. — For strict solutions, equation (A)o is
equivalent to

( ]) Kuznetsov [27] gives such a result in the case in which C = 0.
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n
^4- ^ a, (x , t , M) ̂ . = cQc , r , u), (3)

i = i

yi

where .̂ = QA^Qu and c = C - ̂  (3A,/9^,). The coefficients in (3)

satisfy the following conditions :

i) For all positive constants M, T,

c^,G C^ZCnM)) , i = 1 , . . . , ^ ;

ii) in terms of the function E previously defined, c satisfies
the condition

sup |c(;c, t , v)\ < E(w)
\v \^w

for ^ E E" and t > 0.

We use the method of characteristics as follows. For an arbi-
trary point ^ of the initial plane ^ = 0, let the n 4- 1 functions

U ( r ; { ) , x , ( r ; { ) , / = 1 , 2 , . . . , ^ , (4)

denote solutions of the differential equations

d U / d t = c(x ̂ , U) , dx^ldt = ̂  (x , ̂  U), / = 1, 2,. . . , ̂  (5)

satisfying the initial conditions

UOo ; $) = w0) , x,0o ; ^) = { , , 7 = 1 , 2 , . . . , ^ . (6)

We shall find an a priori bound for U in any interval

I : ^ < t < t, Oo < t,)

within which, for fixed ^, the solution (4) exists and is of class C1.
By (5),

UO ; £) = H/O) + r ^(^ (^ ; S) ,5 , V(s , {)) dx for t € I.
o

Assumption (ii) implies that
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U O ; S ) < M o + / f E ( | U ( ^

< W o + / E( |U^;$) |)^,

U O ; S X M o + / E(|U(^)1)^

< W o + / E( |U^;$) |)^,

where, as required, H^ is a constant such that

MO ^^o-

Since 0 satisfies the condition 0'(0 = E(0(0) almost everywhere
and 0(^o) = ^(p ^ satisfies the condition

0(0 = Wo + / E(0(5)) A,
^o

and reasoning such as is used for Gronwall's inequality shows that

|UO;^ ) |<0 ( r ) for ^ < r < r i . (7)
Therefore, in particular, |U(^ , S ) 1 ^ 0 ( ^ i ) » and standard theo-

rems show that the values r such that the solution of (5), (6) exists
for tQ < t < T have no finite least upper bound. Hence, this solution
(4) will exist for t > t^ By well known theorems, this solution also
is of class C1 with respect to t , $ for ^ € E", t > ^.

For fixed ^, consider the transformation

x = ^ ( r ; S ) . (8)

We can invert (8), say as

^ ^ ( x . t ) (9)

in any layer

x e E", ^ < r < ^o + 5 (10)

in which the functional determinant

nt)==](t'^)= 9M/aa)
exceeds a positive constant. In such a layer, Cauchy's theory says
that the function

^ ( x , 0 = U ( r ; S ( x ^ ) )

in a solution of (3) and the only solution that satisfies the initial
conditions (1). Furthermore, the functions
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P f ( t ' ^ ) = U ^ ( x ( t ' ^ ) , t ) , / = 1, 2 , . . . , ^

which are the derivatives of u regarded as functions of t , {, satisfy
the differential equations

n
dp^ldt = - ̂  (a, ^.p, + a^ p,p^ + c .̂ + c^p,. (11)

i = i

These show that positive constants a and j3 depending on the first
derivatives of the ^ and c exist such that

| rfp, /A|<a(p(r)+^)2 ,

where

p ( t ) = p ( t ;$) = max, lp ,0 ;S) l .

By reasoning similar to that which led to (7) w e have

P(t ;S)<^0) ,

where q(t) is the function that satisfies the differential equation
dqldt = a(q + j8)2 and the initial condition q(to) = w^ > p(to). Conse-
quently,

^4-^(^4-^^^)
1 - a(w^ + ft) (t - t^)

the right hand side in fact being q(t). This shows, in particular, that
if the transformation x = x(t ; ̂ ) can be inverted as $ = {(jc, t) in
a layer

^ E E " , tQ<t<t^8 (12)

with

6 < l/[2a(Wi + /5 ) ]= /2 .

then in that layer

p(t)<2w^ +j8. (13)

We shall now exhibit a positive lower bound for J(Q = ] ( t ; ̂ )
in this layer. It is well known -and easily proved from (5) and (11)-
that
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d l / d t = ^ (a , ,+^,^)J .
i = i

(14)

It follows from this that

\ d ] / d t \ < ( a p + 7)J for ^o^^^ 5 (15)

with the same a as before and 7 a bound for ^ a, ^ . In view of (6),
i

we have J(^) = 1, and the homogeneous differential equation (14)
implies that J > 0. By (15) and (13),

logJ >- [a(2wi + j 3 ) + 7 ] / z

= - ̂ tt̂ rL^Ltr
2a(vi^ + ft)

j-aft1 -
2aw^ + 2ap

~7n,
where

7o
1 if 7 < a^3

7 + aj3
if 7 > a(3 .2a^

Thus,

J 0) > ^-/0 for to<t<tQ ^ 8. (16)
But 5 is any positive number not exceeding h such that the equations
x = x(t ; $) can be solved for ^ in the layer (12). Hence, in view of
this estimate for the Jacobian of the transformation, the least upper
bound of such 6 must be A. This implies that the inversion (9) can
be performed in the layer Z(/o , ̂  + h\ and Cauchy's theory now
guarantees that U( r ;$ (^ , t)) is a solution of (1), (3) in this layer.
In view of (7), the absolute value of this solution is not greater than
^( r ; ^o ' ^o)' as th^ theorem states. Thus, this theorem is wholly
proved.

Proof of Theorem 2. - Since k is a constant, we have
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{u-k\-^ ^ (A,(x,r,^)-A,^,r.^
i = l

=C(^ , r ,^ ) - t A,^,(jc,r,/;)==C*. (17)
i=i

Let S denote any maximal subdomain of the cylinder

Z ' = { ( ; c , 0 : \x\<r, t^<t<t,}

within which u ̂  k ; by continuity, u — k has constant sign in S.
Letting S' denote the part of the boundary of S on which t =^= ^,
t ¥= ^, and \x\ < r , we have by maximality

u - k = 0 on S'.

We intend to show that

/ {(u - k)f, + S(A,(JC, r, M) - A,(^, r, A;))/^.
s i

+ C^ffdxdt = f /(M - A:) ̂  sl , (*)
^E" SQ

S'Q denoting the part of the boundary of S on which t = IQ and S'/
the part on which t = ^. (Either or both of these parts may be empty).
Since sign (u — k) is constant in S, when (*) is justified it will imply

f{ / jM-fc|+sign(^ - fc ) . L4.(A,(jc,r,^)-A,(x,^fe))
s '

+C*/]}AcA=f f\u-k\dx s^
"E" SQ

Then summing the relations of this form for all domains S as described
will give

f^^ft^- ̂  +sign(M-fc) . [(A,(jc,r,^) - A,(x,t,k))f^

^C*f]}dxdt= [ f\u-k\dx rl ,
^ vft -f—i-E t~to

as claimed, since / is zero for \y \ > r.
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We have still to justify (*). Let Sy be an open subset of S with
piecewise smooth boundary Sy, v = 1 , 2 , . . . , such that Sy U Sy C Sy^

and U Sy = S. We require in addition for any point P of S,,
v=i

dist (P, S') < ad^ , rf, = inf^^ dist (Q , S'),

where a is a constant greater than 1, and for an arbitrary set V

d i s t ( P , V ) = = inf^v |P - R|.

(Sy might be, for instance, a union of open cubes of edge 2~v~ln~ll^,
covering the part of S that is removed from S' by at least the distance
2-^, with a = 2). Set

S* = Z ' \ S , S^=Z' \S, ,

and define the functions

V == u in S, Vy = u in Sy,

== fe in S*, = A: in S^.

By our previous remarks, u is Lipschitz continuous in Z ' , say with
Lipschitz constant 7.

For ^ = 1 , 2 , . . . , let ^ (;c, 0 be a function 4n C^E"'"1) such

that ^> 0, ff ^ d^ = 1,

U^ t)=0 for M2 +^2>(^/2)2 ,
and

\D^(x.t)\<P/d^

where j3 is a suitable constant, D represents differentiation with
respect to t or a component of x, and the integration with respect
to x and t is over En+l. The continuously differentiable functions

uv= ^v^^v^ ] ] ^(x ~ Y ^ l ~ s) ̂  (^ ' 5) ̂ d5

then have the following properties :
a) Uy = k at all points nearer S' than the distance rf^/2 ;
b) lim Uy = u and lim Du^ = Du in S ;

•p -+oo y -»,;»
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c) the derivatives Du,, are bounded uniformly with respect to v.
Properties (a) and (b) are clear. To justify (c), we write

^ == ?. * u + ?, * (u, - u) = Y + Z.

The first derivatives of Y are uniformly bounded, because V is
Lipschitz-continuous. Since Tly = "u in S* U Sy, we have

DZ == J^g D^ (^ - y , ^ - s) [k - M (>/ , s)] dyds,

and by the assumed estimates

|DZ| < (^f,) 7arf, f d^b == c^y/i (S\S,),
"sXs^

1̂ referring to Lebesgue measure in m + 1 dimensions. Conse-
quently, DZ -> 0 as i/ -^ °°, and we conclude, in particular, that
the derivatives DUy are uniformly bounded, as asserted.

For this reason, if Lu^ is the expression obtained by replacing
u by Uy in the first member of (17), then Ltiy is bounded uniformly
with respect to v. In addition, by property (b), lim Luy = C* in S.v-^o
Therefore, Lebesgue's theorem gives :

lim [ fLu^dxdt = [ fC^dxdt.
v-,oo^s v ^s

On the other hand, partial integrations in the usual way result in
the relation

fLu^dxdt = - /J (^ - k) f, 4- H f^ [A^x , t , u,)f.
- A , ( x , t ^ k ) ] dxdt + ff(u^ - k) dx s^,

^
other boundary terms disappearing because of (a). Letting v -> oo
in this condition results in (*), completing our proof of Theorem 2.

A different proof is given by Kruzhkov [25].

Proof of Theorem 3. — Our aim is to prove that each strict
solution of (A) is mean continuous in x , uniformly with respect to t.
Let /G C^Z^o , ^)), and suppose / to vanish for \x\ > r, where r
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is some constant. We multiply both sides of equation (A) by /',
integrate over the layer Z(^,^) , and then integrate by parts to
obtain :

4 .̂) (ftu + s fx- A' + fc)dxdt = ̂  fudx ̂  •

An analogous relation will also hold in which / is replaced by
g = T_,/, T, denoting the translation defined by the condition
T,f(x , t) = f(x + s , t) for s E E". Since, for instance,

f^ (T.,f)udx=f^ f(T,u)dx,

we can write this second relation as

^,rp^T^+I:4.T,A,+/T,C)ri^=^/T^^ tl .
i t~^tQ

Subtracting it from the first relation, we obtain :

/z(ro,ri) S W u - u ) ^ - I:/,/T,A, - A,) + /(T,C - C)j dxdt
\ i 1

(18)
^1
t^tf)

=f^f^s^-^dxt
ynJ v ^ - I ^ T Q

The rest of the argument depends upon a proper choice of /.
Let

^^ \ sign(^ + 5 , t,)- u ( x ^ t , ) ) for \x - S I < N ( T - t,)
\0 for \x - $|> N(T - ^i)

and let w^, m = 1, 2 , . . . . be continuously differentiable functions
on E" such that

\^m\< 1 - ^ = 0 ^r 1^- S I > N ( T - ^ ) + 1/m,

and lim w^ = w almost everywhere. (For instance,

,00 = m" /,,„ k(m(x - x ) ) w(x')dx'w^(x) = mn J ^ k(m(x - x ' ) ) w \
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with continuously differentiable kernel k such that k > 0, k(x) = 0
for \x\ > 1,J A:(x)rfx = 1). Soon we shall show that we can
choose / so that

f^ - ^l) = ̂ ) - \f^ - ^0)1 < ̂ (rl-ro),

f(x , ^o) = 0 for |̂  - ^1 > N(T - ̂ ) + 1/m,

and the left member of (18) vanishes, b denoting a constant. Then
it will be clear from (18) that

J^ ̂  (T, u - u) dx = f^_^ /(T, u - u) dx.

Since the right side of this equality is not greater in absolute value
than e•<"-><.^lT.•'-Bl•tl'3't•
where U^ = T + 1/m, letting m -^ °° gives the required result.

To justify our choice of/, note first that

T,C(r, u) - C(t,u) = C(t ,u(x + s , t)) - C(r ,^0c, 0)

=(u(x +^^)-^(x,^))C y (x^^) ,
where

C'(x , t , s) == /'C^O , ̂ (^ , t) + 6 (^(^ + s , 0 - M (x , D) d0.

More briefly,

T,C-C=(T^- -^C\

and, analogously,

T, A, - A, = (T,M - ^) A;., i = 1, . . . , n,

C' and A^. all being continuously differentiable in the domain consid-
ered. Schwarz's inequality applied to the integral expressions for the
Aj shows that

^ ( A y < N 2 . (19)
/ -i
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Substituting from the previous results, we can write the expression
in curly brackets in (18) as

(T, u - u) Lf,

where

L / = / , + S A ; / , + C 7 ;

and we determine / by the condition Lf = 0,

/(^i)=H^).

Condition (19) and the nature of the support of w^ show that
/Cv, to) vanishes as required. The inequality stated for /Oc,^) ,
with b a bound for |CJ in the layer considered, follows from
the assumption that In^ l^s 1. Thus, all the conditions demanded
of / are met, and Theorem 3 is proved.

This theorem can also be handled by such means as Kruzhkov
[25] employed to show that generalized solutions depend uniquely
and continuously upon the initial data. But those methods are as
involved for strict as for generalized solutions, simplifications appar-
ently not occuring in the case with which we are concerned.

3. Stratified solutions of initial value problems
for equation (A).

In constructing stratified solutions of this problem, we shall
smooth by means of averaging operations. Let k(x) be a function
of class C3 in the cube

C : \x,\ < 1, i= 1 , . . . , n .

Assume that k > 0, that / kdx = 1, and that k is an even function
"c

of each individual coordinate x^ of x = ( x ^ , . . . , x^) when the other
coordinates are held fixed. Then if, say, /E C(E") -recall that C(E")
consists of the bounded, continuous functions on E" —define for £>0

K,f(x) = (K,/) (x) =/ k(S;)f(x + £$) d^
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This operator has the following properties :

|K,/lo<l/lo, (1)

f^^f\^<f^^^\f\dx (2)

IgradK./K^e-1!^, (3)

where k^ is a constant depending on the function k ( ' ) . Properties (1)
and (2) are immediate, and property (3) follows from the obvious
generalization to n dimensions of the following computation. Suppose
x to be a scalar quantity (i.e., n = 1). Then

/ I /»x+c
K, f(x) = _^(f) f(x + £S) dS; = e-1 J^ ^ k((y - x)/e) f(y)dy.

and
(d/dx)K,f(x) = £-1 [k(\)f(x + £) - k(- 1) f(x - e)]

/»jc+e

"^.e ^(0^ - ̂ )/£)/(^)^

while the integral on the right is equal to

£-1 / l^(S)/Oc4-^)dS.

Therefore,

|(rf/^)K,/lo<[|/;(l)|+ |^(- Dl+^lfe'^lrf^e-1!/^

justifying (3) in this case.
Four more properties of K^ will be used. In the notation

f(x) =l/(x)|,

the fourth property is that

\K,f(x)\<K,f(x). (4)

The fifth, referring to the translation operator T^ defined for z G E"
by the rule T,f(x) = f(x + z), is :

K,T, = T,K,. (5)
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The sixth property is that for any constant k,

K , / + f e = K , ( / + f c ) . (6)

These are all trivial. The seventh property pertains to the order of
weak approximation o f / b y K ^ / : for all g E C^(E"),

\f^S^f-f)dx <C, \g\^n)\f\,a(e\ (7)

where C^ and the function a(e) depend only upon n, and

lim £~1 a(e) ^ 0.
e-»0

This property will be justified in the next chapter.
Kuznetsov used averaging operators such as K^, but required

the kernel k to belong to C^(E").
Let T > 0 and 0 < h < 1/2 a with T/h an integer. (The constant

a is that of Theorem 1, Section 2). We shall construct a stratified
solution of (A), (B) in Z(T) with layer thickness A . Smoothing will
be performed with K^, where

£ = 2 A ^ 0 ( T ; 0 , \u^)h.

The resulting stratified solution v will be subject to the estimate

'^(Z^T))^0^051^). (8)

For convenience, set 0W = 0(r ; 0 , l^l^). Since

Igrad K, u^ < ̂  e-1 |̂  < ̂  e-1 0(T),

Theorem 1 of Section 2 shows that a strict solution u^ of (A) satisfying
the initial condition

u,(x,0)=K,u^x)

exists in a layer of thickness

1 2h
Ak, E-1. 0(T) + a 1 + 2ah 9

since A < l/2a, this thickness is > A, and u exists, in particular, in Z, .
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Furthermore,

l ^ i l c ° ( Z i ) <0W-

To proceed inductively, let m be an arbitrary positive integer < T//z,
and suppose u^ to belong to C^Z^) and to satisfy the condition

'^(z )<0<m/^)• (8^' w '

Since 0(m/z) < 0(T), considerations like those in the case w = 1
show that a strict solution u^^ of (A) exists in Z^.n and conforms
to the restriction

l^m+iLo.z ^ ^ ^((m + 1) / ! ;m/z ^m)'^ ^w+l^

where w^ = (j>(mh). To complete the induction, it suffices to prove
that

0((m + l ) /z ; m / z , w^) = 0((m + l) /z) .

For this purpose, define the sequence

^ = l ^o lo ^m ̂ (^ 'Am - \)h , F ^ _ i ) , m = 1, 2, . . .

By definition of 0,
f^-
J dv/E(v) = h for ; = 1 , . . . , m.
'^-i

Summing gives us

/ m dv/E = mh
v v

^0

while, again by definition,
mmh)

J dv/E = mh.
^o

It follows that F^ = 0(m/z), as contended. Thus, the induction is
complete and inequality (8)^, in particular, proved.

We now define a stratified function v in Z(T) as

v=u^ in Z^ for m = 1, 2, .. . , T//z,

inequality (8)^ implying inequality (8). We shall also denote v by v^.
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4. Precompactness of stratified solutions.

Let SO), r > 0, denote the sphere,

S(r)={x : x E E " ,\x\<r}

in E" of radius r. In this section, we shall prove the following result:

PRECOMPACTNESS THEOREM. A bounded, measurable function u in
Z(T) and a null sequence {hj) exist such that, for r > 0, for t = 0,
and for almost all t in the interval (0 , T),

lim f \ v , ( x , t) - u(x , t ) \ d x = 0.
fc-»oo ^(r) k

Our demonstration is in several steps. Let v = v^ denote a
stratified solution, as constructed in Section 3, with arbitrary h. Let
/ E C^(E"), and for 0 < t < T set

VW=V,(t)=f^v^x,t)f(x)dx.

We intend to show that the variation

var V

of V in the interval 0 < t < T is finite with a bound that is indepen-
dent of h. Since v^ is stratified, V is continuous except for possible
jumps at h, 2/z,. . . , T — h, and its continuous variation in (0 , T)
is given by

T//I r*mh
^ J \V'(t)\dt.
^i <'"-l>/•

We can obtain an upper bound on |V'|. The stratified solution v = v^
being continuously differentiable for (m — \)h < t < mh and satis-
fying equation (A), we have

V'(0= f(9v/Qt)fdx

=f(C-^9A,/9x,)fdx
i

=/(c/+l:/.,A,)^.x,
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Therefore,

IVKc'l/l^,

where c is a constant depending on 0(T ; 0, | t<olo) and the support
of /, and the continuous variation of V in (0 , T) does not exceed

CT^^-
We estimate the discontinuous variation of V from the formula

\{mh 4- 0) - V (mh - 0) = f^ (K,u^(x , mh) - u^ (x , mh)) f(x)dx,

in which u^ is as defined in the previous section. By property (7)
of Section 3,

\V(mh + 0) - \{mh - 0) |< C^ \f\c2^ 0(T ; 0 , j^lo) ̂ ).

Since £ is proportional to /z, and a(e) is of higher than first order
in £, summing these inequalities for m = 1 ,2 , . . . , T//z gives us as
upper bound for the discontinuous variation of V in the interval
considered

const. |/|̂ ^ 0(T;OJ^|o).

Combining this with our previous estimate of the continuous var-
iation of V now gives a bound for var V that is uniform with res-
pect to h, as desired.

It follows that a null sequence {h^} exists such that the sequence
{V^ (t)} has a limit as k -^ oo for every t in the interval (0 , T) (see
Natanson [29]).

Furthermore, if fj G C^(E"), / = 1 , 2 , . . . , by a diagonal pro-
cess we can find a null sequence, which we again denote by {/^},
such that the limits as k -> o° of the functions

^^L^-^^^
exist for all 7 = 1 , 2 , . . . , and all t in the interval (0 , T). As ^ we
can choose a sequence dense in L^E"). Since the v^ are uniformly
bounded (see (8), Section 3), we thereby arrive at the following fact :
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PROPOSITION \. — If f is any bounded, measurable function on
E" with compact support, then

L^(^)/M^J^n "k - ' f " v '

converges as k -> o° /or 0 < t < T.
The next step is to prove :

PROPOSITION 2. — Let t be a fixed value in (0, T), and consider
any subsequence {h^} of {h^}. A subsequence {h^..} of {h^} and a
bounded, measurable function w on E" exist such that

^\r^.(.,t)-w\^=0

for every r > 0.

Proof. — The main step in justifying this statement is to show
that for arbitrary r and t as indicated, the integrals

f \v^(x + z , 0 - v^x, t)\dxv v.fy\-S(.) rh

converge to zero uniformly with respect to h as |z | -> 0, z E E".
A result of M. Riesz [30] then will imply that a function w G L^SC/-))
and a subsequence {h^} of the sequence { h^} exist such that

^m|^,,(.^)-w|^^=0.

A diagonal procedure will produce a further subsequence {h^-} of
{h^} and a function w bounded and measurable in E" that satisfy
the conclusion of the proposition.

Let
S,̂  = {x : x G E" , \x\ < N(T - t) + 5 + R},

and set

l^t)=l,(t,z ,v) = ̂  |y(x + z , 0 - v(x, t)\dx

f \T:,v-v\dx
s^6
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where R > 0, 6 > 0, z E E", 0 < t < T, and v = ^ as above. It
suffices for the previous argument to prove that for arbitrary R and t

lim IQ (t, z ; v^) = 0 uniformly with respect to A. (1)
|z | ->0

Theorem 3, Section 2, shows that

W^e^'^-^Wm-^h) (2)

for (w- \)h^t<mh, m = 1, 2,. . . , T//z.

(T is arbitrary in Theorem 3 ; we replace it at present by T 4- R/N).
In addition, we can estimate 1̂  (m/z), m = 1,. . . , T//z, as follows.

On the plane t = mh, by definition of v,

v =K,^_i ;

therefore,

T^=T,K^_, =KJ^_,

on this plane, and we have for 8 > 0

k(mh)=f^ |T,K^_i-K^_Jd;c """
"CT/1,6

'^^IK^T^.,-^^)!^ t=mh

^s_,,,,,JT^_,-t^_,|dx
^^.s+e-11^'"-'-1*"'-!

= lim Ig^O,
t-nnh -0

£ where e' = e -\/w. This and inequality (2) imply that

\(mhXeclh ̂ ^,((m-\)h) for m = \,.. . , T/h.

It follows that if qh < / < (q + l)h, then

W < ̂ ^^"^ I^(^) < e^ ^.(OXe^ \^(0),

or, in other words,

lo(t.z ;^)<I(^)» (0,z •,K,UQ)eclt for 0 < ^ < T.
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This estimate justifies (1) and thus completes the proof of Propo-
sition 2.

Propositions 1 and 2 enable us to prove :

PROPOSITION 3. - Suppose that for all r > 0

J \^h .(x ' ̂  ~ w(x)\ dx -> 0 as k' -> oo,S(/') k

where w is a bounded, measurable function on E", t is a fixed value
in (0 , T), and {h^} a subsequence of{h^}. Then if fis any bounded,
measurable function on E" with compact support

lim L f(x) ( y , ( x , t) - w(x)) dx = 0. (3)
fc-*°° h k

Proof. — Taking r so large that S(r) contains the support of/,
we have immediately

lim ff(x) v . , (x , t) dx = f f(x) w(x) dx,
JC'-^M v K

the domain of integration in each case being E". By Proposition 1,
however,

lim ff(x) r. (x , t) dx^oo ̂ v ' "fc

exists, and the conclusion stated is obvious.
We can now finish proving the theorem. At most one function

w can satisfy (3) for all admitted /. Hence, the function w in Propo-
sition 2 -a different function for each t- is unique and independent
of the subsequence {^/i..}. Thus, every subsequence of v^ (• , t)
contains a subsequence of itself that converges to w in LKSO*))
for r -> 0. This means that every subsequence of the sequence of real
numbers

'V^--^'^))^1-2-—
contains a null subsequence of itself. It follows that the sequence
itself has the limit 0, and this implies that for r > 0 Cauchy's
condition
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^m|^(.,r)-^ (.,^^=0
fi->00

is satisfied with any t in (0 , T). Integrating gives us for the cylinder

C(r ,T) = { ( x , r) : |x| <r , 0 < r < T}

the relation

lim IP.. — p. | ,
fc-.oo "fc "rL^C^T))

^T

^ '/0 ''^•'^"'^•''^(SCr))1=^f^\(•'t)-v''^•'t^^dt

= 0.

By completeness, a function W £ L^CO- , T)) exists such that

lim |v. -W| , = 0.
fc-»«> ''k 'L^C^.T))

Hence, for a suitable subsequence {h^} of {Aj^}

^I'V'0-^-'0^^0
^*->oo *' L (S(r))

for almost all t in (0 , T). On the other hand, for each such t, a
function w(- , t) —that previously denoted by w— exists such that

^|^(.,r)-w(.,o^^=o.

It follows that for almost all t in (0 , T), the functions w(. , t)
and W(- , t) are equivalent members of L^SO-)) and thus may be
identified. Therefore, for almost all t in (0 , T)

^m|^(.,0-W(., 01^^=0.

This being true for arbitrary r, W can be regarded as the restriction to
C(r ,T) of a bounded, measurable function u on Z(T), and this u
obviously satisfies the demands of the theorem.
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5. The existence of a generalized solution of (A), (B).

We shall now conclude the proof of Theorem A, Section 1. In
the last section, we obtained in an arbitrary layer Z(T) a bounded
measurable function u such that for all r > 0

lim | Vy, — u | . = 0^ ^ 'L^C^T))

{h^} being a suitable null sequence and the v^ stratified solutions
as described. Our aim is to prove u to be a generalized solution of (A),
(B) under the definition in Section 1. Choose arbitrarily a constant
k and a function /G C^(Z(T)), and let r be so large that the cylinder
C(r ,T) contains the support of/. Theorem 2, Section 2, says that
for each h = hj

f^fi \VH- k\ + sign (v, - k ) ^ f^ (A,(^, ̂ )

- A,(r,A:))+/C dxdt= ̂  -^ :::-„.
Summing over i gives us

^ L \v, - k\ + sign (^ - ^) •rS/.^A,^, .,) (1)x
- A,0, ^)) + /c| d.vrfr + f^f(x , 0) |^(^ , 0) - k \dx = R^

J fc

where
T/h r r iR/* = H ^ ̂  ̂  - //z) '^(;c .ih-0)-k\- i^(;c, ̂  + 0) - ̂ | \dx.
1 = 1 L J

If k -^ oo, the left member of (1) tends toward the left member of
inequality (3), Section 1. Hence, u will certainly be a generalized
solution of (A), (B) if lim inf R,, > 0. To discuss this, seth^o n

fW = f(x , ih) , v(x) = v,(x , //? - 0).
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Then
^(;c, ih + 0)=K^Oc) ,

and we have

\v^(x,ih ^ 0)-k\= \K,v-k\= \K,(v - k)\ < K,(\v - k\).

For the z — th term in R^,

ff(\v -k\- \K,v - k\)dx >ff(\v -k\- K,(\v - k\))dx

^-l/l^^))^^'051^) + I^D ^ (c )

by property (7), Section 3 ; the bound (8) in that section also has
been used. Multiplying the last expression by T/h gives a lower bound
for R^. Since h is proportional to € and e~1 a(e) -> 0, it follows that
the lower limit of R^ as h -> 0 is nonnegative, and condition (3a),
Section 2, follows.

To justify the second condition (relation (3b), Section 1) for
generalized solutions, consider again stratified solutions v^ with
layer thickness h^ such that lim v^ == u almost everywhere. Denot-

fc-+0 k

ing by 8> the set of t in [0, T] for which this limit relation fails to
hold for almost all x , we have 71 & = 0. We first prove UQ to be the
weak limit of the y^(- , t) as t approaches 0 in the complement of S.
This is meant in the following sense :

PROPOSITION 4. - Iff(x) is bounded, measurable, and has compact
support in E", then

lim f^ f(x) u (x , t) dx = (^ f(x) UQ (x) dx,
t-^o »•- h

the prime indicating that t while approaching zero is positive and avoids
the null set g.

Proof. — Since u^ and u are bounded, it suffices to prove the
lemma for /E C^(E"), which henceforth we shall assume. If v(x , t)
is a strict solution of (A) in a layer Z(IQ , ^i), integration within this

layer of the condition / [v. + ^L (—L) - c) == 0 and integrationv i v^^ / /

by parts give us
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f^f(x) v ( x , t ) d x ̂  =f^^ S/., A, +fC)dxdt.

We apply this result to the layers of a stratified solution v^ . Summing
over the layers that are contained within Z(0 , t), where t is an arbi-
trary ordinate such that 0 < t < T, we obtain :

Len Ax) (y^ (x, t) - S^ Mo (x)) dx =

X(0,,) & -̂  A' + ̂ c) dxdt + R^'

where e^ is proportional to h^ (Section 2), and as noted previously

|RkO)l< l /L2^n^ t with l im^=0 .c ( . • - ' ) k-^Q

The integral on the right side can be estimated by c \f\ ̂  „ r,
c depending on upper bounds for the |A,| and |C| and on the support
of /. Denoting the support of / by Sp we have also

\f,nf^-S^U,)dx <\f\^^C^

where c^ = J \UQ - S^ u^ \ dx -> 0 as k -> oo. Hence in sum,s/ k

\f^n fW (y^{x , t) - u,(x)) dx < \f\^^ ^ + b, + c,).

For t ^ S, letting /; -> oo gives

I ̂ ^/(x) (u(x ,/) - ̂ ,(^)) dx < \f\^^ ct,

from which Proposition 4 follows in the case in which / E C^. As
observed, the entire proposition follows from this case.

Now consider any null sequence {r^} of positive values not in §.
Theorem 3, Section 2, insures that a subsequence {t^} and a bounded
measurable function u*(x) exist such that

lim |^(. ,r^) - ̂ * L i _ ~ 0 for r>0.
w ->00 L (S(r))

This and Proposition 4 imply that f^ f(x) (u*{x) - u^ (x))dx== 0
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for arbitrary bounded, measurable / with compact support, and we
conclude that u* = UQ almost everywhere. Therefore,

lim \u(' , t^,.) - M o l , = = 0 for r > 0.^-,o v ) w ^ O'L^S^))

Since the original sequence {t^} was arbitrary, we conclude that

lW|^( . , r ) - -^ | , = 0 for r > 0 ,
t->0 L (^v))

which is (3b), the final condition to be justified.
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CHAPTER 3

METHODS OF SMOOTHING

In this chapter, we first derive formulas for the modifications
in an arbitrary function produced by averaging (Sections 1 and 2).
These lead us immediately to the estimate applied in Chapter 1
(inequality (7), Section 3) ; Kuznetsov [27] had used a similar ine-
quality, which he proved differently. In Section 3, we go to other
smoothing methods of interest in connection with solutions of finite
variation, which will be discussed in Chapters 4 and 5.

1. Symmetric averaging operators.

Let

C^ ={x : x = (^i , . . . ,^), |x,| <£ , i = 1, . . . ,n}

denote the cube in E" with center at the origin and edges of length
2£ (e > 0) parallel to the coordinate axes. Suppose k to be in L^C^)
and to be an even function with respect to each argument Xp
i = 1,. . ., n. For convenience, we also assume :

k>O^L k(S;)df; = 1 .
-e

If u denotes an arbitrary bounded, measurable function on E", we
define the average of u with kernel k to be the integral

Ku(x) = (Ku) (x) = f fcO) u(x + S) dS.
^c

For the deviation of u from its average we shall prove that

K u - u = J ^ D^J , , (1)
i = i

where J , , . . . , ^ denote bounded, measurable functions defined al-
most everywhere on E" such that
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U J < £ 2 l^lo ^ = = 1 , . . . , ^ (2)

and D, = 9/3jc, in the distribution sense. If u G C^E"), each J,
admits the differentiations indicated, and formula (1) holds literally.

Through integration by parts, this formula implies inequality (7),
Sections, Chapter 1, with a(e) = e2.

Our proof of (1) is based on the one dimensional case, in which
case x = jc, and we define

] , ( x ) = J ( x ) = ^M(H) u(x 4- s)ds

where for 0 < r < £,

M(r) === fdr'f k ^ ' ) dr\

The formula in this case asserts that Ku - u = d 2 1 / d x 2 . It suffices
to establish it for u G C1 (E"). Writing

J(;c) = f°M(- s)u(x + s ) d s + FM(S)U(X 4- 5)rf5,
»/-c »/0

we obtain

DJ = dJ/dx == [ M(- 5) M'(A: + s) ds + f M(s) u^x 4- 5) A
*'-c ^O

= f M'C- 5) u(x + 5) d5 - rM'C?) ^(^ 4- 5) A
J-c ^0

and by similar manipulations

D2; = d ^ l / d x 2 = 2M'(0) u(x) 4- f° M"(- s) u(x 4- ^) d5
^-c

4- f M'7^) M(^ 4- s)ds = - i/(x) 4- Ku(x),
^o

since M" = /;, which is even. Thus, (1) is justified in the one dimen-
sional case ; inequality (2) is immediate.

A change in notation will help in extending this result to n di-
mensions. Still with x = x^ and D = d / d x ^ , define

]k(x)=-Mf(\x\)= r. k ( y ) d y ,v \-x.\
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and let 6 denote Dirac's point distribution. The formula in one di-
mension we have just proved can be written :

D2 j^12k(y)'u(x + y ) d y == jT0 k(y) u(x -h y ) dy

- j ^ 8 ( y ) u ( x ^ y ) d y

^/W- 6 ( y ) ) u ( x + y ) d y .

If the integral

Ak= f k ( y ) d y

is not necessarily normalized to be 1, as we previously required, by
considering k/Ak in place of k we have, more generally,

D2 f l 2 k ( y ) • u ( x + y ) d y = F (k(y) - b(y) (Ak))u(x + y)dv.(3)
-c ^-e

To prove (1) in the general case, let

\k(x)= f,^i,...,x,_, , s , x ^ , , . . . , x ^ ) d s ,
i.*ii

A,k(x) = f _ ^ k ( x ^ . . . , x , _ , ,5,^i,. . , ,^)&, i== l , . . . , ^ ,

and

/ J \k ^ = k ,^. = ^ n A,) k , f = 1 , . . . , ^ .

Then A,k is independent of the z-th coordinate, kj is independant of
the first j coordinates, and k^ == 1. Formula (3) shows that if V/.
is an arbitrary function -or distribution- on C^, but independent of
the z'-th coordinate, we have

D2/ I?W- ^i(y)u(x ^ - y ) d y
" €

=^ l k ( y ) - S ( y , ) A , k ( y ) ] ^,(y) u(x-¥ y ) d y .

Replacing k by k,_^ and V/,00 by n 8(y^) gives us the following

formulas we shall need :



LAYERING METHODS 179

^iL ^^(y)1!! 8 ( y ) u ( x - ^ y ) d y
^e q=\

r i-\
"J. l^-i(^)- 8(y,)k,(y)] U 6 ( y ) u(x + y ) dy^ i = 1, . . . , n (4)

^e q=l l/

Now to prove (1), we represent the left side as a telescoping
sum :

Ku(x) - u(x) =fk(y)u(x + y) dy

-fk^(y) h 6 ( y ^ ) u ( x ^ y ) d y

= f [ k ( y ) - k , ( y ) 6^\)]u(x-^-y)

+/[^i (y) - k^(y) 6^)] 5(^) u(x + y)dy

^/[^O) - ̂ (y) 60.3)] 60^i) 6(y^)u(x + ̂ ) ̂

+ , . .

^[^-lOO-^OO 50n)] V 6(^J^(X +^)^,
q=l lf

all integrations being over C^. Formula (1), i.e.,

KM-M=^D?J, ,
/

with

^W^f ^^(y)1!! S ( y ) u ( x - ^ - y ) d y , (5)
^e < 7 = 1 l<

results, m view of (4). Since I,fe,_^ < _ A,A:,_^ = k , / 2 and fe, is

independent of the first i coordinates, we have I2^. , < — l.k. < £ fc.• » — i ^ i i ^ i
and

IJJ < £2 Mo A ̂ .i. . . ̂  = e2 l^ lo»
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the last integration being over the domain \y | < £, p = i + 1, . . . , n.
Thus inequality (2) is proved.

Later in this chapter, we shall need an estimate we now derive
concerning D^.J,. For fixed f = l , . . . , n , consider the rectangular
portion of hyperplane

H, = { (^ i , . . . , x^) : x, = c, , ̂  < Xj, < by,

for k = 1,. . ., n, but k ^ i},

where c .̂ and the a^ and 6^ are constants with a^ < 6^. Obviously,
H, is contained in the rectangular parallelepiped

Q^ = { ( ^ i , . . . , x^) : \x, - c, | < £ , ̂  - c < ̂  < ̂  -h c

for /: = 1, . . . , n, but ^ =^ 0.

The estimate we shall require is that for u G C1 (Qp,

/ 1D,J,|^;<(£/2)/JD,^|^, (6)
H! Q,

where rfjcj = dx^. . . dx^_^ dx^^ .. . dx^ is the element of volume
in H,. To obtain this, we first differentiate J, with respect to x^ under
the sign of integration and use again the inequality

I^-.i <c^/2
to obtain

|D,J,(x)|<(£/2)f k,(y) n1 6(^)!D, u(x + y)\ dy
^c q=\

= (£/2)/^(y)(/^ |D,^(^ +^)| dy,) 'n1 8(^)^,

all j^^ with k ^ i being integrated over the domain \y^\ < £. Integrat-
ing with respect to x and y gives

f^ \D.J,\dx'.

< A £ /^O^) 'n 60,) [/ (f \D,u(x + y)\ dy,) dx'^ dy',,
L q=l ^ H ^ ^ - e ' J
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while the integral in square brackets is < j ^ |D,^| dx. Inequality (6)
Q/

follows at once.

2. Radially symmetric averaging operators.

An averaging kernel k is radially symmetric if k(x) is a function
of \x\, say

k(x)= R(|^|).

In that case, we also call the operator K radially symmetric. For
radially symmetric averages, a more elegant deviation formula than
the previous (equation (1), Section 1) can be given, as follows.

Let
S, ={x : x E E " , M<£}

denote the ball in E" with center at the origin and radius e > 0.
Suppose k to be in L^S^) and to be radially symmetric. We also
assume :

k > 0 , f k(x) dx = 1.
"Se

If u denotes an arbitrary bounded, measurable function on E", we
define the average of u with this kernel k to be the integral

Ku(x) = (Ku)(x) =/ k(y)u(x ^ y) dy.s^
For the deviation Ku — u we shall prove in this case that

Ku(x)-u(x)= A/ M(\y\)u(x ^ y) dy, ( 1 )

n
where A = V ^2/^^? in the distribution sense, and for r > 0

i'=i

^^{^-r^r^}^
w^ denoting the surface area of the unit sphere |;c| = 1 in E". If
i^GC^E"), the differentiations indicated can actually be carried
out, and formula (1) holds in the strict sense.
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The function M is the solution of the second order singular
differential equation

(M'OO r"-1)' ^^-^R^) (2)

satisfying the initial conditions

M(£) = 0 (3)
and

M'(c) = 0. (4)

Verifying these statements is straightforward, the condition

f k ( x ) d x = w ^ FR^r"-1^ = 1
"Sc "O

being used in connection with (4). Two other important properties
of M are :

lim r"-1 M(r) = 0 , w^ lim r"-1 M^r) = - 1. (5)
r -»0 r -+o

It suffices to prove (1) for ^EC^E"). For such M, define

J (x )=^ M(M)^(x + ^ ) r f y .

In spherical coordinates, we have

JOO ==H^ Fu^)^-1 u(.x, r)dr,~ o
u(x , r) denoting the mean value of u on the sphere with center x and
radius r :

^^^^i^^^5^0'

By dS^ is meant the element of area of the sphere JT?| = 1 over which
the integration takes place. Since u is continuous, we also define

u(x , 0) = u(x) .

It is known (see Courant-Hilbert [5] Vol. II, p. 699) that

/-"-1 A u ( x , r ) == (r"-1 u,(x,r)\,
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A being the Laplacean operator with respect to x, x and r being
regarded as independent variables (in all, n + 1 variables), and the
subscript r indicating partial differentiation with respect to r. Using
this formula, we have

AJ^^H^J^M^)^-1 Au(x , r ) d r == w^ M(r) (r"-1 ^,(;c, r)),dr.

Integrating by parts gives us, in view of (3) and (5),

AJ(x) = - w^ f'M^r) r^1 u, (x , r) dr.

Again integrating by parts and using (4) and (5) we obtain

AJ(x) = - u(x , 0) 4- ̂  f (^-1 M\r))' u ( x , r) dr

=-u(x) 4- H^/'ROO^-1 u ( x , r ) d r

=-u(x)+f R(\y\)u(x + y ) d y .
s€

Thus, formula (1) is proved.

3. Other methods of smoothing.

Averaging is only one kind of process meeting the rather delicate
requirements —such as inequality (7), Section 3, Chapter 1— of strat-
ified solutions. Additional ways of smoothing and otherwise mod-
ifying functions while satisfying the requirements will be described
below ; it is believed that some will be of interest in other problems.

These more general processes pertain to functions of locally
finite variation in the sense of Tonelli and Cesari, although in this
section we shall keep to the class C^E"). (From now on, we revert
to the usual meaning of C^(E"), dropping our previous requirement
that the derivatives of orders up to k of a member of this class be
bounded). If /G C^E") and D is a domain of E", we define the
TC-variation o f / o n D to be

V(/-;D)= ^ f \9f/Sx,\dx.
1=1
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Our criterion pertains to a system of grid points in E" that
must be selected in advance. Changing our previous notation, here let

x ==(x< 1 ) , ̂ .....y^))

denote an arbitrary point in E". For f = 1,. . . , n, divide the x^ -
axis by partition points

yO') 7 = 0 + 1 + 9Ay , J f —— U, -!- 1 , 3- Z, . . . ,

where

• • • <^ <^° < 4° <^°< 4° <.. .
and

^ -» — oo ^ ̂ 0 -^oo as /;-><».

The grid points

^=(x;;),^),..,^")),

in which / stands for the multi-index (/i , / 2 , . . . ,/„), are the vertices
of the rectangular parallelepipeds

C, ={x :^><^)< x9\, for i=\,.^,n}.

For any multi-index / = ( / , , . . . ,/„) and for k = 1,.. . ,n,
define the translation

Tfc/ = (7 i , . . . ,7'fc-i ,7'fc + 1 , 7 ' f c + i , . . . ,7^).

For any quantity .̂ indexed by 7, define

^^ = ^T^/ >
for a function / on the grid points x. define

T^/) = /(T^,),

and so forth.

Let Q be a rectangular parallelepiped in E" that is the union
of certain Cy, say

Q - { x : x ^ < x ^ < x W , i = 1, . . . ,^},

where 7^ > 1\ + 2. Let
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Q, = {x : xj\\, < x < < > < ̂ _, for i = 1,.. . , n},

Q , = { x : xy - £ < x<° < JC^P + £ for z = 1,. . . , ^},

and

|A|Q = max Oc \̂ - xj^) , (A)^ = min (x)^ - x^),

the maximum and the minimum being with respect to ; and /, such
that ]\ </, <f/, i = 1 , . . . , ^ .

Using some of this notation, we now state the basic result of
this section. It takes the form of a condition that a function v
approximate zero in a certain sense.

THEOREM oi4' APPROXIMATION. — Let v E C1 (E"), and let Q denote
a parallelepiped as previously defined. Suppose that for each C. in
Q a set of n real numbers Biy, B^y, . .. , B .̂ exists such that

f vdx= f (T,-I)B,,, (1)
/ k ^ l

where I denotes the identity. Suppose also that

I I IB^.KcVO. ;Q,)|AIQ, (2)
f c - i /

Q
where £ and c are constants, and ^ indicates summation over such

/
] that C, C Q. Then

f ^\v\dx<(l + 2c)V(v ;Q,) lAI^ (3)

fl^d far /E C^E") w'r/z/ = 0 m r/z^ complement of Q,

l/^/^ < (1 + 3c) V(. ; Q,) |/|̂ ^ |A|^ (4)

(It would suffice to assume v E (^(Q,)).
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To prove this, we introduce the step function

1 /•
^^A^ =^ J ^ v(y)dy =Vj for ^ec,°,ir i ^r'S-1 c/

where Ĉ ° denotes the interior of C, and |C,| its measure. We shall
first show that

-7 '— '"71

f \v^-v\dx^\(y ;Q)|A|Q. (5)"Q
Indeed, we have

/» Q
^ 1^ - v\ dx = ̂  ̂  |̂ . - p(^) | ̂"— ^i f^

/ c/
while

f^ \v(x)-v,\dx=f ——L^W-v(y))dy - v(y)) dy\dx^ ' "^lic,!^,

^~\cTLL \^W-v(y)\dxdy.'s'1 s" c /
Since

\f(x)-f(y)\ < |/(x<1) ,x<2),. . . ,x^) -/(^<1), ̂ 2),. . . ,̂ )|

+ 1/^(1) , X^\ . . . , ^(")) - /(^(D, y^\ . . . , ^("))|

+...

+ l/^10,. . . ,^-l), x^) -/(^(l\ . . . ,^"))|,

we easily see that

f \vW-v^\dx<\A\ QV(r ;C,) ,
"/

^•1 l̂ A '̂  |^IQ V ̂  , ̂ .̂

and (5) follows by summing over f.
Inequality (3) now results from the decomposition

f^ H dx ^ f^ 1 ^ - ^1 dx + f^ \v^\dx = G, + G,,
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since G^ is given by (5) and G^ by the calculation :

Q» /. Q- | „ Q* „
G. = S /,. 1^1 ̂  = I /,^ = S /,^/ s -

187

Q* I " Q n
= S S (T, - I) B,, < 2 ̂  ^ |B,,|

/ f c = i / f c = i

< 2cV(r ;Q, ) |AIQ.

To prove (4), we write

^fvdx =f^f^dx +f^ (f-f^vdx - Ji + J,.

Since \f - f^\ < |/| i |A|y in Q, we have from (3)

1 ^ 1 < |/|̂ i |AIQ f^\v\ dx < (1 + 2c) l/l̂ i V(v ; Q,) |A|̂

C1 abbreviating (^(E"). Since J , /^^ — ^A^^ == ^' we also obtain

^ = £ ^ ^ ^ = 2 ^ i (T.-DB,,,
' 7 ^ = 1

where f. denotes the value of f^ in Cy. Thus,

J i = £ t ^ (T , - I )B^// f c - i

=-f f (I-T^)/,^,,
/ f c - i

/. being zero outside Q». Therefore,

|JJ<|A|^|/|^ ^ ^ |B,,|
f c = i /

<c|/ |^V(y ;Q,) |A|^,

inequality (4) following from this and the previous estimate of J^.



188 AVRON DOUGLIS

Notice that if /€ C^Q) with / = 0 in the complement of Q,
and v E C^Q), then

|^A^-^)^ IA^V(^Q)IA| 2 .C^Q) (6)

In fact, the left member of (6) is equal to

|JQ Cf-4) (^ - v^)dx < |A|Q |/|̂ ^ ̂  |, - ,J^,

and (5) applies.

In using the Approximation Theorem just proved, we replace v
by the deviation u - Su of an arbitrary function u from a presumed
approximation Su. So applied, this theorem covers, in particular,
the averaging operators K of Sections 1 and 2. To verify this, we
derive from the representation (1) of Section 1 for an arbitrary func-
tion u E C1 (E") the relation

f^(Ku-u)dx= 1 f^DlJ.dx

^^T^^^^-4.0^^
where

C^,={x:x^=x^,xj^x^<x^, for i ^k} .

This is of the form (1), with Ku - u = v and

Bk/ ̂ c^"^4-
Furthermore,

Q Q
^ Y» V^

1:S1B./1<$:U l̂ l̂k f k I ' • kk i k I

i'K

- 2 S / ID.JJ .̂
k 'k^'k .̂/ik
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where

H, , == {x : x^x^ , x^ < x^ < xW for i ̂  k}.
^ ' I k ' k /i /i

Hence, by inequality (6), Section 1,

SflB./K^Sl |D^|^=^cV(^;Q,)
k j z k -€ z

provided

c < 1/2 min^ Oc^ - jc</°).
'k k

Thus, condition (2) holds with c = — •
4

We now give an example of a smoothing process that is not aver-
aging in the sense we have considered, but falls under the previous
Approximation Theorem. The effect of this process is to approximate
an arbitrary C' function —more generally, a function of locally bounded
variation in the sense of Tonelli and Cesari— by what we shall call a
"weathered" step function, i.e., a smooth function coinciding with a
step function except near the discontinuities of the latter. Let {x^}
be a system of mesh points such as we have described, and relative
to this system define the operator B^ on the space of bounded,
measurable functions v on E" by

B^=^ .

Let Q denote a parallelepiped of the previously indicated type, and
choose £ such that

0 < £ < 1 / 2 ( A ) Q .

Let K^ denote an averaging operator, of the kind discussed in Sec-
tions 1 or 2, over a cube or ball of respective edge or diameter 2£.
The smoothing operator we wish to mention here is defined by :

S.=K,B^.

We apply this operator to functions u € C^E"). Since

/ B^udx = / udx,
^Cy ^C,
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we have

f (S,u-u)dx = f (K,B^u - B^u)dx^. v^ ^ ^^ ̂  , Y*^

/
 c/

while the last integral can be expressed in the form

S (T,-I)B,, ,
k ^ l

where

SS IB^K^eV^ ; Q * ) . (7)
* /

Q* being the parallelepiped

Q*=^:^^<^)<^;^ for / = 1 , . . . , ^ } .

This is a consequence of the fact that averaging operators are subject
to the Approximation Theorem, which however we have proved
only if u G C1. We extend that theorem as follows. Requiring
0 < 17 < (A)o/2, define the approximations w = w - K u^. Rather
tedious calculations like the previous enable us to show that

V ( w ; Q , ) < V ( ^ ; Q * ) .

On the other hand, w being in C1 satisfies a condition of the form

f (K,w-w)dx=^ (T^-I)B^
'c-

' k

where

QI* /^ S IB,/1 < (^ ) EV(w ; Q,) < (^) £V(M ; Q*).
I, , ^ L

As 17 -> 0, by means of expression (5), Section 1, we can verify that
the B^. pertaining to w have limits. These limits, again called B^.,
must satisfy (7) and the condition

Jc, ̂ A - ^A) dx = S (T, - I) B^..
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This outcome justifies our use of the Approximation Theorem, and
we may conclude that

^ (S,u-u)dx=^^-l)^,
1 k

as asserted.
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CHAPTER 4

CONSERVATION LAWS WITH INITIAL DATA
OF BOUNDED VARIATION

The condition of bounded variation early became prominent
in the one-dimensional theory of nonlinear conservation laws and
was first used in several dimensions, in the sense of Tonelli and
Cesari, by Conway and Smoller [4]. K. Kojima [20] extended their
methods and results to conservation laws that might depend upon x ;
we excluded such ^-dependence from equation (A), Chapter 2. N.N.
Kuznetsov [27] used the bounded variation property in his stratifying
approach. In this chapter, we wish to justify a variety of stratifying
methods based on the smoothing procedures of Chapter 3 when the
initial data are of locally bounded variation in the sense of Tonelli
and Cesari.

1. Functions of bounded variation
in the sense of Tonelli and CesarL

Let x = (^ ,. . . ,x^) be an arbitrary point of ^-dimensional
real Euclidean space E", let x^ denote the point in E"~1 that is ob-
tained by suppressing the k-ih coordinate of x : for instance,

•^ 1 \^y,9 - • • ? ^n^ 9^2 ~ '̂1 » ^3 ? • • • 9 - ^ n ) '

For Z C E" and for any function / on E", define

Vi(/ ;Z;^)==sup^ \f(s^x\)-f(s,_, ,x[)\,
1 = 1

taking the supremum with respect to all finite increasing sequences
of real numbers 5,, i = 0, 1,. . . , p , such that

( s , , x [ ) ^Z for / = 0, l , . . . , p

and also with respect to all positive integers p. We call Vi(/; Z -,x[)
"the variation of/ with respect to x ^ , for fixed x\, outside Z". For
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k = 1,. . . , n, we define "the variation of/ with respect to x^, for
fixed x^ outside Z" analogously, and denote it by V^(/;Z;^).
A function / defined in E" is said to have bounded TC-variation
—bounded variation in the sense of Tonelli and Cesari- if a set
Z C E" of measure zero exists such that

V^ ( / ;Z ;4 )GLi (E" - 1 ) for k= 1 , 2 , . . . , ^ .

For such a function, we set

V(/)=inf^ /V^(/;Z;4)rf4,
k=\

the infimum being over all subsets Z of E" of measure zero, and
the integration being over E"~1. We call V(/) the TC-variation of
/ on E".

A function / defined in E" has locally bounded TC-variation if

VC/Xp) < °° for any cube Q C E",

where for any set E C E" \^ denotes the characteristic function
of E :

X^Oc) = 1 if x € E,

= 0 if x ^ E.

If /E C^E") with I/I < M, and Q is a cube in E" with edges of
length s, then

Vt/x^^^^M+VC^Q),

where V(/;Q) denotes the TC-variation of / on Q as defined in
Section 3, Chapter 3.

To H. Federer [8], E. de Giorgi [12, 13], W.H. Fleming [ I I ] ,
and K. Krickeberg [22] (see also H. Federer [9], Section 4.5)) is
due the following criterion of precompactness.

PRECOMPACTNESS THEOREM. - Let G denote an infinite family of
locally integrable functions defined on E". Assume that any cube
Q C E" determines constants M and N such that, for any /EG,

|/0c)| < M for x € Q
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and
V(/XQ)<N.

Then a locally integrable function f^ and a sequence / E G ,
n = 1, 2, . . . , exist such that

lim / \f^-f\dx = 0
^00 Q

/or every cube Q C E". 77^ limit f^ has locally bounded TC-variation

2. Suitable smoothing operators.

Let B denote the class of functions defined on E" that are
bounded and have bounded, continuous first partial derivatives. For
/ C B, let

l/lo= sup \f(x)\ ;
JcEE"

i f / is a member of B with continuous derivatives of orders up to k,
.et |/|̂  analogously denote the supremum of the moduli of the deri-
vatives of / of order k at points of E".

We permit here families of smoothing operators S^, c > 0,
that map B into B and satisfy seven conditions, pertaining to an
arbitrary / G B, as follows :

i) Pointwise bounds are preserved : |S^/| < |/| .
ii) Sharp gradients are blunted : Igrad S^/|^ < C, |/|^/£, where

C, is a constant independent of/ x, and c.
iii) I f / denotes the function defined by /Oc) = |/(x)|, then

|S,/(^)|<S,7(;c) for x E E " .

iv) The smoothed function approximates the original weakly to
better than first order in £. More precisely, for all 0 E C^(1),

f^n 0(S,/-/)^<CJ0|^(s),

(1) C^ here denotes the class of functions that are of class C2 in E" and have
compact support.
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where a ( ' ) is a function independant of 0 and / such that

E;"1 a(e) -> 0 as e-> 0,

and C^ is a constant independent of 0 and e, but possibly depending
on |/|̂  and V(/;supp 0), where supp 0 denotes the support of0.
The last three conditions pertain to an arbitrary cube

Q == {x : a, < x, < 6,, z = 1,. . . , n}

with edges parallel to the axes. Let

Q, = {x : a, - £ < x, < & , + £ , f = 1 , . . . , n}

denote the £-neighborhood of Q. We require for any such cube Q
and / C B :

^JQ IVI^ ^^Q ̂ dx ^ CYe IA)' c! bem^ a constant in-
dependent of / and £, but depending upon Q ;

vi) j^ \S^f-f\dx < c^e, where the constant c^ may depend

upon Q, |/|^, and \(f ; Q^), but otherwise is independent of /and e;

vii) V(S, / ;Q)<V(/ ;Q,) .

These hypotheses are satisfied by the averaging operators of
Sections 1-2, Chapter 3, and also by additional smoothing operators
such as are described in Section 3 of that chapter. Smoothing ope-
rators that lead to "weathered step functions", in particular, satisfy
these hypotheses.

3. The TC-variation of strict solutions of first order
quasi-linear equations.

Conway and Smoller first showed that the TC-variation of an
arbitrary weak solution of a first order conservation law behaves
regularly, and their result was apparently new even in the case of a
solution that is strict. Kuznetsov first proved the analogous thing
for strict solutions of first order quasi-linear equations, applying
his result to weak solutions of conservation laws by a method of
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stratifying. In this section, we give our approach to these problems
treated by Kuznetsov. Our calculations are essentially like his, but
show to advantage, for instance, in the following special case. For
convenience limiting ourselves to three independent variables, consider
the partial differential equation

u, + f(u)u^ ^ g(u)Uy = 0, (1)

where / and g are of class C1 for all real values of their argument u.
With t^ > 0, we take an initial condition of the form

u ( x , y , t^) = w ( x , y ) , (2)

assuming w to be of class C1 and to have compact support. We shall
prove that V(u) = V(w) on every plane t = constant in the layer
within which u is a strict solution of (1). More precisely, our result
is as follows :

THEOREM 1. — Under the previous assumptions, a strict solution
u (x , y , t) of (1), (2) exists in the layer

t^ < t < ^ -4- h,
where
h = l/[2|Vw|^ max ^/f\s)2 +g(5)2],

H^MQ

|Vw|o = sup v/w^(x^)2+ W y ( x , y ) 2

x . y

The solution has compact support in this layer and satisfies the
conditions

| M ( - , - , r ) | o < | w | ^ (3)

and

f\u^(x , y , 0| dxdy = f \w^(x , y)\ dxdy,
(4)

J \ U y ( x , y , t)\dxdy = j\Wy(x , y)\ dxdy,

the integrations being over the supports of the functions involved.
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Proof. — The method of characteristics gives us a formula for
the solution as follows. For an arbitrary point ($ , T?) of the initial
plane t = t^, let

x(t) = x(t ; ̂  , T?) , ̂ (0 = ̂  ; ̂ ) , U(r) = U(r ; ̂  , T?)

denote solutions of the characteristic differential equations

^/(U),^TO,^0A dt dt

satisfying the initial conditions

^o) = ^^0)=^ , U O o ) = W(S,T?) .

We have immediately

U a ) = U a ; ^ 7 ? ) = w ( $ , 7 ^ ) .

Therefore,

x(t) = ̂ (r; ^ , T?) = S + /(w(S , T?)) (r - ro),
(5)^(Q^^O;^^) =77+^(w($ ,7?) )a- ^0).

For each fixed t, consider the transformation

x = x(t ; { , T?) , y = ^ (r ; $ ,7?). (6)

For the Jacobian determinant

, 9 ( x , y )

"aoT^'^-^
of this transformation, an explicit calculation shows :

J = 1 + (Aw) ̂  + ^'(w) ̂ ) (t - t^.

Hence, with h defined as above,

J > - if 0<t-tQ<.h.

This implies that the transformation (6), in which t is to be regard-
ed as a parameter, is invertible in the layer 0 < t - ̂  < h. We
denote the inverse transformation by
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S = SO^J^ rt , 7? = r ] ( x , y , t).

Cauchy's theory says that the function

u(x , y , t) = H^(X , ̂  , r), r](x , ̂  , r))

is a solution of (1), (2) in the layer 0 < t — to < h and also that
this solution is unique.

It is clear that u has compact support and satisfies condition
(3). Conditions (4) will result from the relations

u^ = J"1^ , Uy == J~1^, (8)

which we now justify. To prove the first of these relations, we write

^ = w^x+ H^

and make the substitutions

^J^-J^O +^(HOH^-^))).

^=-i~'y^ —.r^OiOH^a - ̂ ),
The result is the first formula of (8), and the second is obtained in a
similar way.

By the first formula of (8), we have

f\u^x,y. t)\dxdy = f\w^ , r?)| J-1 dxdy =/|w^0 , T?)| rffrfr?,

giving the first formula of (4). The second formula of (4) is obtained
from the second formula of (8). Thus the theorem is proved.

The idea just employed in the special case of an equation of
the form (1) can be extended to the more general equations

n/

u^ + ^ a^x , t , u) ̂ . == c(x , t , u) (9)

under assumptions (i) and (ii) formulated in the proof of Theorem 1,
Section 2, Chapter 2. Concerning the initial condition

M ( ^ , ^ ) = w W , (10)

we assume, as in the earlier section, that w and grad w are bounded
and continuous in E". Thus, in particular, (iii) w has locally bounded
TC-variation.
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Repeating the proof of the theorem referred to, we find that
a strict solution of (9), (10) exists in a layer Z(^, ^ + h), where /;
is an arbitrary positive number not greater than 1/(A Igrad W\Q 4- a) ;
a and A are constants depending on the coefficients in (9) and on
HQ, but not otherwise on w. Furthermore, the solution is subject
to the bound

\u(x , t)\ < 0(^ t^ , |w|o) < 0(ro + h, tQ , Mo)
for ( ^ , r ) e z 0 o , ^ +/?) . ( ID

Let

M' — rv i\l12
1N "^Oo^o^^o^^o^lo)) ^^l *

With r, > ^ + /z, ^, G E", and N > N', define the disk

D, ={x : \x-x,\<^(t, - t)}.

Since N > N', as is well known -and follows from the proof of the
theorem in Chapter 2 to which we have been referring- the values
of u(x, t) for x E D^ and ^ < r < ^ + h are determined by the
values of w on Dy . Our aim is the following estimate, essentially
first given by Kuznetsov :

THEOREM 2. - Under the indicated hypotheses, the solution of
(9) and (10) satisfies a condition of the form

V(u ;D,) ̂ e^-^ V(w ;D, ) + b^-^ - 1),

where b =- (c^AON"(^ - r^, and B depends upon bounds for
the first derivatives of the coefficients in (9 ) . Here, a? represents
the area of the unit sphere in E".

Proof. - We continue to use the terminology and results of
Section 2, Chapter 2. Let

PW = \(u ; D,) = / ^ \u^ (x , t)\ dx.

Changing from x to ^, we have in terms of the quantities P, == p . ] ,
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P(0=,f S h,(^)UO;S)^=^ SlP^;S) l^
^0 » ^0 ,

for ^ < r < IQ + /^, J being positive in that layer.
Our aim is to estimate the last expression with the help of

the expansion

P,a ; $) = P,0o ; S) + /' P,(^ ; S) &, (12)
^

where P, = rfP,/rfr. We have P , = p , J + ^ , J , and by substitution
from equations (11) and (14) of Section 2, Chapter 2,

P, = S [̂  P, - ̂ ,PJ + ^P, + c^l,

the terms quadratic in the p^ all dropping out. Therefore,

S |P , |<B^P ,+BJ ,
i <

where B is a constant depending upon upper bounds for the abso-
lute values of the first derivatives of the a, and c. Hence, and because
P,(^o ; S) = w^.(S), we have from (12)

S W; ^)i < S IH^. a)i + B /' fn \p,(s; s)i + J(-?; ?)1 ̂
, I ^0 L , J

Integrating with respect to $ over D^ and changing the order of
the integrations with respect to s and { gives us :

P ( 0 < V ( w ; D , ) + B F P(s)ds + B F ( f l(s^)d^)ds.(\3)
0 JfQ % ^^o

The last term is easily calculated, and we have :

^(^J(.;^^)^=^(4^)^
= (^»/' [NOi - s)r ds < b(t - t^

^o
& being the constant previously defined. If we replace the last term
on the right side of (13) by this estimate, we arrive by using
GronwalFs reasoning at the inequality asserted in the theorem.
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4. Stratified solutions and weak solutions.

Given T > 0, determine constants A and a as in the previous
section. Fix h as a positive number not greater than l/(2a) and such
that, for convenience, T//z is an integer. The procedures of Section 3,
Chapter 2, enable us to construct a stratified solution v with layer
thickness h if we perform our smoothing with S^, where

£ = 2CiA0(T;0 , | ^o lo)^

We will have

'^(O.T))^1'0'1^ (1)

and, in every stratum, will be able to use the determination

fv 2"!172
N=SUPz(0,T;0(T;0,|.olo))[^^j

when applying Theorem 2 of the previous section.
To describe the TC-variation of P, we introduce suitable "stepped"

cones, as follows. With arbitrary ^ > T and x^ €E E", let

S^ ={(x,r) : |^-^J<N(^ -0

4- (Th~1 - k)e , A;A < t < {k 4- 1)A}

be a frustum of a "cone of determinacy" in Z ^ + ^ . For

AA < T < (k + 1)A, let E(T) = {(A: , T) : (x , T) E S^}

be a "horizontal" section of S^ at the ordinate r. We denote the base
of S^ by

E^ = E(fe/z) ={(x ,kh) :\x - x^\< NOi -fc/z) 4- (Th~1 - k)e},

and we denote the top of S^_, by

F^ = = { ( ^ , fc/0 : be - x J < N O i - kh) + (Th-1- k 4- l)e}.

The union of the Sj^ for k = 0, 1, .. . , T/A is a figure we might
describe as a portion of a stepped cone. We shall prove that for any
of its horizontal sections E(^), we have :

V(v ; E(0) < e^ V(UQ ; E(0)) + b(e^ - 1). (2)
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We have first

V(P ; E^) == V(y ; E(^)) = V(S, v ; E(^ - 0)),

the right hand member representing lim V(S^y ; E(kh — a) , this
o^o

is by definition of v(x \kh) in a stratified solution. Property (vii)
of smoothing operators (Section 2) shows that

V(S,r ; E(kh - 0)) < V(i. ; F^,

while by Theorem 2, Section 3,

V(v;F^)<^ V ( y ; E ^ _ i ) +6(^B/!- 1).

In sum,

VO^E^XC^VO^E^) + & ^ B h - 1) for k= 1, 2 , . . . ,T/ /z .

From this, by induction, we have

VO ; E^) < ^B^ VO ;Eo) + fc^a^ - 1) for ^ = 1, 2, . . . T /A ,

which is of the desired form (2) for t = kh For kh < t < (k + l)h,
Theorem 2, Section 3, tells us that

V(v ; E(0) < e^-^ V(v ; E^) + b(eBi<t-kh) - 1),

and substitution for V(v ; E^) from the previous result leads to (2)
in the present case as well. In this way, inequality (2) is completely
verified.

With inequalities (1) and (2) established^ the precompactness
theorem of Section 1 can be applied and then the limit function
shown to be a weak solution, for instance by the methods of Chapter 2.
We omit further details.
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CHAPTER 5

EQUATIONS OF HAMILTON-JACOBI TYPE

The global theory of Hamilton-Jacobi equations is very similar
to that of quasilinear conservation laws. That this should be so is
obvious in the one-dimensional case, the Hamilton-Jacobi equation
u^ + f(u^) = 0, for instance, leading to the conservation law

v, + f(v)\ = 0
with v = u^.

Multi-dimensional equations of Hamilton-Jacobi type have been
treated by several authors : S.N. Kruzhkov [23] employed artificial
viscosity, E.D. Conway and E. Hopf [3] used a formulation within
the calculus of variations, E. Hopf [17] adapted the method of en-
velopes (1), A. Douglis [7] set up approximating problems in which x is
discrete, and W.H. Fleming [11,1-4] applied the stochastic calculus of
variations and also control theory and the theory of differential games.
Uniqueness theorems have been given by A. Douglis [7] and S.N.
Kruzhkov [24].

1. Aims and assumptions.

Equations of the Hamilton-Jacobi type

Uf + f(x , t , u , grad u) == 0 (F)

permit the method of stratified solutions to be applied more simply
than do conservation laws. For given T > 0, suppose / to be of class
C2 in the (In 4- 2)-dimensional region

W(T) ^ { O c ^ ^ p ^ J c E E ^ C X r ^ T . ^ E E 1 , ? ^ E"},

and suppose that for any constant V the derivatives

f^ ( x , t , u , p ) , / = 1,. . . ,n

( } ) Applied to boundary problems by S. Aigawa and N. Kikuchi [1-1] and by
S.H. Benton, Jr. [1-3].



204 AVRON DOUGLIS

are bounded on the subregion

{(x , t , u, p) : x G E" , 0 < t < T , \u | < V , \p | < V}.

We have used the notation /p. = 9//9p, and shall also abbreviate
<V/9^ 9//9^p 3//9^ by f^ /^., /„, respectively, with analogous no-
tation for second derivatives.

Prescribing an initial condition of the form

u{x, 0) = UQ(X), (G)
where

l^oMI <U, | ^CO - ̂ o(^)l < U |;c - ;c'| for x^CE" (1)

with constant U, we shall ask for a Lipschitz continuous function u
satisfying (G) in E" and (F) almost everywhere in

Z(T) = {(x, t) : x G E" , 0 < t < T}.

To obtain such solutions, we make further assumptions concerning /.
The first additional assumption is the following convexity condi-

tion : a positive constant p. shall exist such that for any vector
S = ( ^ , — , U ^ E" we have

S^p,p,(^^^P) U/^ISI2 for ( x ^ ^,p)eW(T), (2)
<J

where |$|2 = ^ + • . . + ^. This and the previous suppositions al-
ready imply that at most one Lipschitz continuous function u can
satisfy (G) in E", (F) almost everywhere in Z(T), and a "semi-
concavity" requirement of the form

u(x + $ , t) + u(x - ^ , t) - 2u(x, t) < K(t) |S12 for ^ ̂  E E" (3)

where K(0 < oo for t > 0. A Lipschitz continuous function u that
fulfills all these conditions is called a generalized solution of (F)
and (G) in Z(T).

Now we make assymptions concerning the growth of / and
its first and second derivatives. We presume a positive nondecreasing
function E(p) to exist for p > 0 such that

j rfp/E(p) = oo for any a > 0 (4)
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and that if ^ represents any of the n + 1 expressions

- f + S P/^p, - fx, + P^ , Z = 1 , . . . , n,

then

mx,^,p)|< E(p) (5)

for

.xeE" , 0 < ^ < T , | ^ | < p , |p|<p. (6)

This assumption will be responsible for an a priori estimate
of the Lipschitz constant for a solution of (F), (G). The next, our
final supposition, guarantees that strict solutions will have domains
of suitable widths. It is that if 4> represents / or any one of its first
or second derivatives, then

sup | $ ( x , r , ^ , p ) | < B ( p ) , (7)

the supremum being taken for the values (6), and B(p) being a non-
decreasing function finite for p > 0.

Our principal aim is to prove :

THKORRM C. Under the assumptions stated, a generalized so-
lution of (F), (G) exists in Z(T).

2. Strict solutions of equation (F).

By a strict solution of (F) we mean a continuously differen-
tiable function that satisfies (F) at all points of its domain. We are
concerned here with strict solutions u of (F) defined in layers of
the type

ZOo, ^ + h) ={(x , r) : x E E" , ^ < t < tQ + h}

and satisfying initial conditions of the form

u(x , to) = w(x), (1)

where w is an arbitrary bounded function of class C2 with bounded
first and second derivatives in E". Let W and M be constants such
that
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\w\ < W , |aw/3jc,| < W , \yw/Qx^ 3 .̂1 < M in E" (2)'

for f , / = l , . . . , n.

With fixed ^ in the interval 0 < ̂  < T, let y ( t \ t o ) be the
function that .satisfies the differential equation d y / d t = E(y) and tlie
initial condition y(to) = W. Since this function is characterized by

f^y(t\tQ)
.the relation j dz/E(z) == t — I Q , in view of condition (4), Sec-

tion 1, it exists for / > IQ ; it is positive and increasing. Let A be a
constant such that

|/^0c,^,p)|<-_ for ^ E E " , ^ < r < T ,

| M | < ^ ( T ; ^ ) , l p l < ^ ( T ; ^ ) , ; = 1,.. . ,^ (2)"

Any solid conical layer of the form

L = L(h) = L(^i , t, ; ^ , / z )

={(;c , r) : jjc - ;cJ < AOi - 0 , t^ < ^ < ^ + h},

where jc, G E" and t^ < t^ + h < T < ^, will be called a (conical)
tojw o/ determinacy of K. As will be seen, the values o f ^ i n L will
be determined by those of w prescribed on the base

B = B(Xi , t, ; t^) = {(x , t^ : \x - x,\ < A(t, - t^)}.

We can now formulate our main results concerning strict solu-
tions of (F). In the following theorem, C and C' denote appro-
priate constants depending on W and on bounds for / and its partial
derivatives of first and second order ; C and C' do not depend upon
IQ, M, or p..

THEOREM. — Under the previous hypotheses, the initial value
problem (F), (G) has a strict solution u in Z ( ^ o , ^ o 4- A), where

i) h = 1/[C(1 + M)].

In Z(t^to +/0,

ii) \ u ( x , t ) \ < y ( t , t Q ) , [Qu(x , r)/3x,| <^0 ;^ )

for i = 1, . . . , n,
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and
iii) 132 u / 9 x , 3^.1 < 2nM + 1 for i , 7 = 1,. . . , n.

With an arbitrary unit vector z == (z^ . . . ,z^) , |z| = 1, define

P * 0 ; z ) = P * 0 ; z | K ) = s u p ^ r^-z.z,,^ ^, ax,a^ /

P M = P O ; Z ) = P 0 ; z | ^ ) = m a x ( C 7 ^ , P * 0 ; z | M ) .

Then we have

••^--ci•-'o)^ - '.<-.-
/'TOO/ - The characteristic equations corresponding to (F) are the

differential equations

x .•=^,'P(=-/x, -fuPi=fi,
(3)

v =I.P^fp,-f:=fo, i= l , . . . , n ,
t

in which - = d / d t , and / and its derivatives have ( x , t , y , p ) as
argument. Selecting an arbitrary point ^ = (^ , . . . , ̂ ), we impose
the initial conditions :

^ = S , , y = w ( S ) , p , = 8 w a ) / a $ , for ^ = ^ , f = l , . . . , ^ . (4)

We shall see that the problem (3), (4) has a unique solution for
t^ < t < T.

For us to be assured of a solution

Xi ( t ' ^ ) , v ( t \^),pi(t ;{), < = 1 , . . . , ^2 , (5)

of the initial value problem (3), (4) in the interval ^ < t < T,
it will suffice to be able to find a priori bounds for \v\ and |p| in
any interval IQ < t < t1 in which the solution (5) exists. For conven-
ience, set PQ = v and P = ( p ^ , p i , . .. ,?„), then writing the last
^2 + 1 characteristic equations in the form

Pa =//^^P), ^ = 0 , 1 , . . . ,^ .
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Integrating and using (4) gives us the integral relations

P.O;S)=v^) + j^(^ ;^ s ^ P ( s ' ^ ) ) d s , a = 0 , l , . . . , ^ ,
^o

supposedly valid for t < t < ^ ; here,

w^ = w and H .̂ = vi^. , / = 1,. . . , n.
Defining

P(t) ̂  p(t ; $) = max sup \p^ (s \ ^)|,
a = 0 , 1 ,..., w ^o^^

in view of (2) and of assumption (5), Section 1, we have

^ (^^KW+VEtp^ ) )^ .
tQ

This implies that

p ( D < W + f E(p(s))ds.
^o

We conclude by GronwaH's reasoning that p ( t ) <:y(t ; ̂ ) in the
interval ^ < r < r'. Thus, all the dependent variables (5) have a
priori bounds in this interval, and the bounds do not depend upon t ' .
From well known results on the maximum extent of solutions of
ordinary differential equations we can conclude that the problem
(3), (4) has a unique solution in the interval ^ < t < T and the
estimates

\v(t ; ̂ )| < y(t ; ̂ ) , W ; $)1 < y(t ; ̂ ), i = 1,. .. , n, (6)

hold there.
Eventually, v is identified with the solution u of (F), (G) and

p, with QU/9X, in a suitable layer Z ( ro , ^ 4- h). To estimate the
height h of this layer, we are led to consider new quantities p^ ,
i ,j = 1,. . . ,^z , which will ultimately be identified with the second
derivatives 32 u/9x, 8^.. These p^ satisfy ordinary differential equa-
tions obtained by applying a2^;^.^ formally to equation (F) and
the substituting p^ for a^/a^a^., p, for BM/BX,, and p^. = d p ^ / d t
for^ (9p,,/3^)/^ + Q p i f / Q t . These equations are
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Pii = c,/ + Z ^k PH! +S D^p -/^.
fc fc Kl

- S / P,̂ , ^/=1,.. .^,(7)
^fi '" x

where

- ^7 =/^. ̂ fux,Pj ^ fux^Pi ^ fuuPiPj.

~ ^ik := fx^p^ + Pifp^u '

In these equations, p, stands for p,(^;S), and the derivatives of /
have the argument (x(t ; ^) , ^ , r(r ; $) ,p(r ; {)). We understand the
p,y to be functions of (t ; ̂ ) determined by (7) and the initial condi-
tions

^^o^)-^,.,^). (8)

In view of (6) and assumption (7), Section 1, a constant C
independent of M and ^ exists such that the right side of (7) is not
greater in absolute value than C(l + ^ Ipjkgl)2- Hence, any solu-

^C
tion of (7) defined, say, for t^ < t < t1 will satisfy the inequalities

I^KC (l +1: |p^l)2

k,9. •

and by (8), on the other hand,

IP^O; S)1<M.

Summing over i and / and reasoning as in the proof of Gronwalfs
inequality shows that ̂  \p^ \ < q, where q = q{t) satisfies the integral

U
relation

q(t) = nM + nC f (1 +^(5))2^

and, equivalently, the differential equation dq/dt = nC(\ + <?)2 and
the initial condition q(to) = wM. The latter imply that

^ nM 4- ^C(l + ^ M ) 0 - rp)
^ ^ 1 - nC(l + ^M) (^- ^)
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if t is such that the denominator is positive. Setting

h = l/[2nC(l 4- nM)], (9)

we conclude, in particular, that

l p , , 0 , S ) l < 2 ^ M + 1 if ^ < ^ < ^ + / z , ; J = 1 , . . . , ^ (10)

the right side of this inequality being the maximum of q for the indi-
cated domain of t.

In view of the a priori estimate (10) just achieved, standard
methods now show that the initial value problem (7), (8) has a unique
solution in the interval ^ < t < ^ 4- h ; it is subject to (10).

The next step is to show that the mapping x = x(t ; ^) can be
inverted to give ^ as a function of x , t. To do so, choose x^ € E"
and ^ > T arbitrarily, and require that (^, ^) G B = B(x, , ̂  ; ̂ o).
Let

Y = 0 ;S) = 0 ; S i , . . . , ̂ ), X = (;c, t) = Oc i , . . . ,^, t),

X(r ; ^) = (^ 0 ; S), — ̂ 0 ; SL 0,
and define the set

K(h) = {Y = (t ; ̂ ) : 0 , to) ̂  B , t^ < r < ^ + h}.

In view of (2)", the transformation

X = X ( Y ) ( 1 1 )

maps K(/z) into L(/z). Below we shall prove that the functional deter-
minant of the transformation has a positive lower bound a :

^>a for Y G K ( / 0 ; (12)
d(Y)

as will be seen, a can be selected to be independent of M. It will
follow from (12) that the mapping (11) is locally one-to-one. Fur-
thermore, it is easily seen that the range of the mapping is L(/z).
Indeed, a characteristic curve issuing from an arbitrary point of
L(/z) has spatial coordinates satisfying the conditions ^ , = / p . ,
i = 1 , . . . ,72 , and, owing to the definition of A, therefore will not
escape from L(h) through the conical sides as the parameter t de-
creases to the value t^. Hence, the characteristics that emanate from
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the points of B cover L(A), which means that (11) maps K(h) onto
L(7z), a simply connected region. Hence, this locally one-to-one
mapping is globally one-to-one from K(/0 onto L(h). Both the
mapping and its inverse are continuous and have continuous first
and second partial derivatives. This mapping (11) embraces the
transformation

x = x ( r ; S ) , (13)

which, for fixed t in the interval ^ < t < ^ 4- h, maps a subset
SO) of

S=U : |? -xJ<A(^ -^)}

onto
S, ={x : \x -x^\<A(t, - t)}.

The inverse transformation to (11) embraces the inverse transfor-
mation to (13), which we write as

f = S O c , 0 , (14)

mapping S^ onto S(t). The previous remarks concerning (11) and
its inverse imply that both (13) and (14) are continuous and have
continuous first and second partial derivatives. Consequently, by
traditional theory, the function

u ( x , t ) = v ( t , ^ ( x , 0)

is a solution of (F) in L(/z), where also

.̂ (x , t) = p,(r , ̂ (x , t)) , ̂ .(x , t) = p^(t, ^(x . 0)

for i , / = 1, . . . , n. Since x^ and ^ are arbitrary, the same is true
in Z(IQ , IQ + A). Finally, M satisfies the initial condition (G).

We have still to prove (12). The functional determinant on the
left equals

30c0 ;S»J = W = J ( £ , 0 =
3(S)

the functional determinant for (13). By (4), J(^)= l,and by contin-
uity a positive number h1 exists such that J ( ^ , r ) > 0 in K (A').
Denoting by h^ the supremum of all h* such that J(S , t) > 0 in K(/z')
and h' < h, we shall prove that ^ = A. For any /?' as described, the
argument of the previous paragraph shows that the mapping (13) has
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an inverse (14) for which u(x , t) = v{t \^(x , t) solves (F), (G), in
L(h') and u^^ = p, ,^^ = ̂  there. Hence, in L(A') we have the
differentiation formulas

— ^ /-^ V ^u ^k v^Wt,»l^,L,,.^,

— ^ /^ V ^2M ^fc V-'pi^=w^^^4=}I)-x^
where x^ ^ = 3x^/3^.. Using these when differentiating with respect
to .̂ in the first n characteristic equations (3) gives us

^U, = S fp^ x^^ +/^ ZP^,,^. +1 fp.p^Pk^^.'

Hence, differentiating J by rows and cancelling as is appropriate,
we obtain

i=S^+/^p,+Xp^/p^)J./' k
Previous estimations show that the quantities in parentheses are
bounded in absolute value by an expression of the form (a + ^M)/M,
where a and b are constants independant of M and ^. Therefore,

J >- (a 4- &M)J,

and since J(^ , ̂ ) = 1, we can deduce that

H^t)>e-(a+bMnt-10) in KW.

In K(A), we have 0 < t - t^ < h, while by (9) /z = 1/[2^C(1 + nM)].
We conclude that a positive constant a independent of M and ^ exists
such that ]>a in K(A) and therefore such that (12) holds, as
required. We have thus established statements (i), (ii), (iii) of the
theorem being considered.

To prove (iv), let z = (z,, .. . , z^) be an arbitrary unit vector :
|z| = 1. Multiplying both sides of equation (7) by z,z. and summing
gives

P* = I P,,z.z, = S C,,z,z, + 2 S S z,D,, ̂  p,,z,
',/• »,/• k i f

-/„?*-! f ^ (I p,, z,) (S p^z,), (15)
k.V. I j
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where P* = ̂  p f . z ^ z . . Constants c9 and c" independent of M and /x
<•./

exist such that S C2, < (c')2, /2 < c", and ^ D^ < ̂  » the
/ , / i , k

last condition implying

2 II S -̂D,, 2: p^-z,| < 4c"ln + (^/4) S (S P,,z/.)2.
^ /' / k j

In view of assumption (2), Section 1, we also have

S fp^ (H Pik^i) (S P,^/) > ̂  Z (S P^-2/)2-
k,9. i j k j

Hence, (15) leads to the inequality

P* < civi + (^/4) P*2 - (3^/4) ̂  (^ p ^ z , )2

^ /

where c is a bound, for instance, for c ' p . + Sc" and is taken to be
independent of ^ for JLI less than an agreed upper bound. Moreover,

sd^^-^dfz (Sp,^-)2'!
k i L ^ J L k i J

^s^s^-'h-p'2-
[.k i 1

It follows that

P*<c^- (M/2)P* 2 . (16)

In order to discuss this, set

5=v /c727,^ ==Vc72"/o, ^ -Wy^)?*,^ "^o).

inequality (16) becoming

dqlds < 1 - q2. (17)

We shall prove from it that if

Q = max (1 ,^) , Qo = max (1 ,^),
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then

^^O^-^o) .8)
Q + l Q o + 1 • (10)

Four cases arise.

Case 1. \QQ | < 1. In this case, (17) leads to dql(\ - q2) <ds
and, by integration, to the inequality

L -̂LL^
\-q l - ^ o

where ? = e2^'^. This implies that

r - i + a + i ) < ? o
? + ! + ( ? - l)<?o

and thus that ^ < 1 in this case.

Case 2. ^y < — 1. As s increases, q achieves no value exceed-
ing q^, in view of the sign of dq/ds. Hence, q < - 1 in this case.

Case 3. q^ > 1. Here, we have dql(,q1 - 1) < — ds, and there-
fore

1_1 <^_2 ̂
<? + 1 <?o + 1

or, equivalently,

(^ 1)^-1
• ( ? - i ) ? o + ? + r

Ga^e 4. 1^1 = 1. Either q < 1 or else q assumes a value
q^ > 1. Letting 5, be the first value above SQ for which this occurs,
we have by Case 3 that for s > s^

^-n^+r.-i
(?i - i )<?i+r , + r

where ?, = exp [2(5 - 5,)]. Since we may select q^ arbitrarily close
to 1, we conclude that in fact q < 1 for s > s .



LAYERING METHODS 215

Except in Case 3, we have just seen that q < 1. Hence, in all
four cases,

(?-H)Qo-^-l
( ? - i ) Q o + r + r

the right side of this inequality exceeding the right side of (19) and
also exceeding 1. For the last reason,

(^l)Qo-^-l
(?- i ) Q o + r + r

Equivalently,

Q - 1 < Qo - 1 .-i
Q + 1 ̂  Qo + 1 s 5

which implies (iv) with C' = \/2c. The theorem is now completely
proved.

3. Stratified solutions of (F), (G).

To construct stratified solutions of this problem we employ
smoothing operators S^ with the properties that for an arbitrary
function / E C^E") :

IVIo^ l / l o - (1)

KScAc,.,lo ^ ^i ^l/li ^ z , / = I , . . . , A Z , (2)

P*0 ;z IS,/) < P*(r ;z|/) for all unit vectors z C E", (3)

|/(S,/-/)0rix <CJ/|^(£) for any 0 G C^E"). (4)

Here, as on previous occasions, C^E") denotes the class of bounded
functions with bounded, continuous derivatives of first and second
orders in E" ; \f\^ = sup \f(x)\ ; \f\^ = max sup . |/J ; ̂  is

JfG H" i~-\,..., n " l

an absolute constant ; C^ is a constant depending on 0 only ; P*
is the functional defined in the theorem of Section 2 ; lim a(e)le = 0.

t-40

Averaging operators, for instance, will satisfy all these conditions, sec
Chapter 3.
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Let us fix once and for all the thickness T of the layer Z(T)
within which we are to solve the given problem. Thereby the con-
stants C and C' in the theorem of Section 2 are determined. We shall
construct a stratified solution of (F), (G) with stratum thickness h
such that Ch < 1/2 and that, for convenience, T/A is an integer. We
determine 6 by the condition

and thus as

h= 1/{C[1 +^(T)/£]},

k. yd) Che =
1 -Ch

where y ( t ) is the increasing nonncgative function defined by the
/»y(0

relation j rfp/E(p) = t. In view of (2) and part (i) in the theorem
of the previous section, an inductive procedure analogous to that
of Section 3, Chapter 2, shows that, for m = 1 , 2 , . . . , T//z, a strict
solution u^ of (F) in Z^(1) exists that satisfies the initial condition

u^(x , (m - \)h) = S^_i(;c,(m - 1) h)

and obeys the conditions

I^JcO^ ) ^y(mh), \u^\^^^ <y(mh) for z = l , . . . , 7 2 ,

UQ(X , 0) standing for u^x). Thus, the stratified solution

v =u^ in Z^ ( ]) form = 1,. . . ,T//?

satisfies the inequalities
l l ' lcO(^<T))<-> '(T)' l^ lcO,^<>'(T). (5)

Condition (iv) of the theorem referred to tells us that for

(m - \) h < t <mh

^ - cf < ,-c'o-(^o.) ^-r-C- ( 6 )
^P( / )+C ' ^P^_, +0'

where P(t) = P(t ;z\u^\ P^ = P(kh ;z |^), and also gives us the
relations

(1) The notation is that of Chapter 2, Section 1 (p. 44).
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AiPfc-n - C' _ ttP((k + \)h ;Z |t^i) - C'
^tP^, + C' ;KP((A; + \)h ;z \u^t) + C'

< e-c'h ̂ (kh;z\u^,)- C1

" fJiP(kh;z\u^^) + C'
for k = 0, I , . . . ,T / / ( - 1.

But inequality (3) implies that P(kh ;z IM^,) < P(kh ;z 1^) = ¥„.
Hence, the last member of the previous inequality is

^e-^^f, -C']/[^+C'],

and in sum we have the recursion

-'il*!!-—0'̂ -0''1^——0'- for k = \ 1 T/A 1
/2P,,, + C' MPk + C' ' ' • • • ' '" ~ L

Multiplying these for k = 0, 1 , . . . , m - 2 and then also multi-
plying by (6) shows that

^p(o - c> < ,-C^PO-C' ^ ,-cr
n ¥ ( t ) + C ' ^ / x P o + C ' •

from which we immediately deduce that

P(0 < (C'/^t) coth (C'//2).

It follows that for an arbitrary unit vector z € E", |z| = 1, we have

^ i^.z,z,<(C'/jLi)coth(C"r/2) in Z(T)
',/ ' /

and thus

v(.x + p z , t) + v(x - p z , t ) + 2y(x, t)

= X1 [jf^22'2/^,-/ ̂  + "'P2)^'] 9dQ

< (C7^)p2 coth (C't/2) for (x , t) € Z(T), z £ E" , |z | - l.(7)
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4. Precompactness of stratified solutions.

We shall demonstrate the following result, similar in its nature
and its proof to the precompactness theorem of Section 4, Chapter 2.
Again v^ denotes the stratified solution with layer thickness h.

PRECOMPACTNESS THEOREM. A bounded, Lipschitz continuous func-
tion u in Z ( T ) and a null sequence {h^} exist such that for any t in
the interval 0 < t < T

lim ^ , ( - , 0 = ^ ( . , r )
^ ->oo K

in E", uniformly in any bounded region of E".

Again the proof is in several steps. First, we have by methods of
the earlier section :

PROPOSITION 1. — A null sequence {h^} exists such that for any
bounded, measurable function 0 with compact support in E",

lim fn ^j^- t)(f>(x)dxfc-^00 - E "

exists for 0 < t < T.
Secondly, we prove :

PROPOSITION 2. - Let t be a fixed value in (0, T), and let {h^}
be an arbitrary subsequence of the sequence {AjJ in Proposition 1.
Correspondingly, a function u ' ( - , t) continuous in E" and a sub-
subsequence {hy} —a subsequence of {h^} —exist such that

lim ^ (. , t) = i/(. , t)
fc"-»oo K

in E", uniformly in every bounded region of E".
The proof is immediate from the equiboundedness and equi-

continuity of the v/,(- , t) (inequalities (5), Section 3).
Propositions 1 and 2 imply that for any bounded measurable 0

with compact support in E",
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lim [ ^ (x, t)<j)(x)dx
fr-^oo ^•y» kk-*oo ^E" "

lim { Vh...(x, t) (f>(x)dx = f u'(x , t) <f»(x) dx
fc"-»oo "E k v E^

which in turn implies that u ' ( - , t) is independent of the subsequence
{h^'}. This and Proposition 2 give us :

PROPOSITION 3. - For each fixed value of t in (0 , T), a function
u(' , t) continuous in E" exists such that

lim P. (• , t) = u(' , t)
k^00 k

in E", uniformly in any bounded region of E".
Next, we shall prove that u is Lipschitz continuous in Z(T) and

begin by discussing its continuity with respect to t. For this purpose,
we return to the functions

V(0 == V(r ;^) =/^(x, t) (l>(x)dx

with 0 G C^E") and 0 > 0. The domain of integration is E". Since
the v^ are stratified solutions, the one-sided limits \(kh ± 0) exist,
and for (k - 1) h < t < kh the derivative

V'(0=J\,(x,D00c)Ac

exists, with k = 1 , 2 , . . . , T//!. If 0 < t\ < t^ < T and, more specif-
ically,

m^h <t^ <(mi + 1)A ^ m ^ A < ̂  < (m^ + 1)A,

we thus have

v(f,)-v(f,)=S A""41)''^- "'f ^+l)'•+^^ v
r'l k^.+i"*" '/m2ft

W2 — 1

,̂.̂^ m i +1
'0)^

m^
+ ^ [\(kh - 0) - V(fc/z + 0)].

k -- m 14 l

Property (4), Section 3, shows the second summation on the right,
in absolute value, to be < C^(t^ — ti)h~1 yCT)a(^) and thus to
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tend towards zero with h. The remaining part of the right hand
side, in absolute value, is < ^0^2 ~~ t! ̂  j <t>(x)dx, where ?o is
an upper bound for \f(x , t , u , p)\ for x € E", 0 < t < T, \u\ <^(T),
|p I <^(T). Consequently, we have

lim |V(^ ;^.)- V(^ ;^) | = | f(u(x, t ^ - u ( x , t,))<f>(x)dx
f^-^oo K K ' v

^Fo^2- t,)f(t>(x)dx.

This implies that

f(t>(x){P^ - t ^ ) ± ( u ( x , t ^ - u ( x ^ t,))}dx>0,

and since u is continuous with respect to x and 0 is arbitrary,

PO^I - ^i) ± ("(^» ^2) - u(x, ^))>0.

This says that u is Lipschitz continuous with respect to t with Lipschitz
constant Fo. It follows that u is Lipschitz continuous with respect
to ( x , t).

Properties (5) and (7) of stratified solutions, Section 3, carry
over to u, and we have

\u(x^t)\<y0:),\u(x + z . t ) - u ( x . t ) \ < y m |z|,

u(x + z , t) + u(x - z , t) - 2u(x , t) < (C7^) |z|2 coth (C'^/2) (2)

for (.x:, 0 G Z(0 , T) and z G E".

5. Generalized solutions of (F)» (G).

The Lipschitz continuous function u obtained in the previous
section obviously fulfills the initial condition (G). Now we shall
show that u satisfies the differential equation (F) almost everywhere
in Z(T).

By the previous section,

lim u^ = u in Z(T),
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where ^(w) = u^ , w = 1, 2, . . . , is a suitable sequence of strati-w
fied solutions as described. Since u^' is a stratified solution, we have
for 0 < t < T and, say, kh^ < t < (k + 1) h^,

M^) (x, r) - ̂ (m) Qc, fc/^ + 0)

= r f(x , .9, u^ (x , s) , grad ^(w) (x , ̂ )) d5 ;
"^m

also,

^<w) (^, jh^ - 0) - M<m) (;c, (/• - \)h^ + 0)

= P'̂  /(x , 5, u^ (x , 5) , grad ^w) (x , s)) ds
^(f-^m

for 7 = 1,. . . , k.

Adding these k -h 1 relations, multiplying by an arbitrary test func-
tion 0 € C^(Z(T)), and integrating over Z(T) gives us

f 00c, t)\ u^ (x , t) - u^ (x , 0)
"Z(T) (

- F /Oc,^ M^ (^^), grad ̂ m) Oc ,5) ̂  } Jjc^r ( 1 )
JQ i

= S f^ - ̂ m) [^(w) (̂  - 7^ + 0) - î ^) (x , fh^ - 0)] dx.
/-i

We shall wish to let m -^ °° in this formula and therefore now consider
the convergence of the first derivatives

p^)=a^)/ax,
of the stratified solutions of the sequence to the respective first deri-
vatives

p, = 3u/QXf
of their limit.

By Lipschitz continuity, the p, exist on a set G C Z(T) such
that Z(T)\G has measure zero. We shall now argue that the p, are
the respective limits almost everywhere of the ^(w) as m -^ 00.

Fix the index i. By Fubinfs theorem, G includes almost all
points of almost all lines in Z(T) that are parallel to the x,-axis.
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On such a line L, almost all points of which belong to G, we regard
Xf as the only variable in the functions

q^ (x,) == p^ (x , t) , q(x,) = p,(x , 0,

and consider the other Xy and t to be fixed parameters. For t > 0,
it follows from the last inequality (2), Section 4, that q satisfies
the one-sided Lipschitz condition

^^<. for ̂ ; (2)
Xf — Xf

with K = K(t) = (C7^i) coth (C'r/2); hence, q is continuous at almost
all points on L. (See a remark on "semi-monotonic" functions in [6],
page 78). Inequality (7), Section 3, implies that the q^ for
m = 1, 2 , . . . also satisfy a one-sided Lipschitz condition of the
form (2) and all with the same constant K independent of m. Conse-
quently, from any subsequence {m'} of indices, a sub-subsequence
{m"} can be selected such that q^"^ converges almost everywhere
on L. (See [6]). The limit function q again is subject to the one-sided
Lipschitz condition (2) and therefore is continuous at almost all
points of L. Furthermore, ^(wrt) -> q9 at every point at which q' is
continuous.

The next step is to identify q' with q at the points at which
q is continuous. Let L' consist of the points of L at which q is
continuous and L" consist of the i - th coordinates of these points.
Setting

U^ (x,) = ^w) (x) , U(x,) = u(x) along L,

we have for x,, a, E L"

U^ (x,) = l^ (a,) -h f^ ̂ 0) dS.
"i

Letting m == w" -^ °° gives

U(x, )=U(f l , )+ rV(S)dS,
»/a,

while the same relation holds with q in place of q1. Therefore, q1 = q
almost everywhere on L and, in particular, at every point of contin-
uity of the two functions. This means that lim ^(mrt) == q at every

w"-*00
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point of continuity of q on L, while the limit q is independent of the
arbitrarily selected subsequence {m1}. With respect to the original
sequence, we conclude, therefore, that

lim q^ = q
W+oo

at every point at which q is continuous on L. It follows that

lim pW = p,
W-^oo

almost everywhere in Z(T). Let p? and p^ denote the upper and
lower limits of the ^(w), respectively, as m -> °°. The set of points
S at which p^ - p^ > 0 is measurable and is included in the set
of discontinuities of p, with respect to x,. Hence, for almost every
line L parallel to the jc,-axis the intersection SHLhas one-dimensional
measure 0. Therefore, the (n 4- 1 )-dimensional measure of S is 0,
i.e., lim p^ exists almost everywhere in Z(T). Similar reasoning,

w->00

in which p * — p- is considered, will show that lim p^ ^ p . almost, w-»00 *everywhere.
It is now possible to let m -> °° in (1). The limit of the right

hand side is 0 in view of property (4), Section 3, and we obtain :

J^0(x, t) u(x. t ) - U o ( x )

^ )- / f(x , s , u(x , s) , grad u(x , s)) ds\ dxdt = 0.
Jo }

Since 0 is arbitrary, we can infer that the quantity in curly brackets
is 0 almost everywhere in Z(T) and therefore, in particular, at almost
all points of almost all line segments x = const., 0 < t < T, parallel
to the ^-axis. If M is such a segment, by differentiation with respect
to t we have u^ = f almost everywhere on M. Since u^ and / are
measurable, this relation, which is (F), holds almost everywhere in
Z(T), as was to be proved.
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