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TOPOLOGICAL PROPERTY (T) FOR GROUPOIDS

by Clément DELL’ATERA & Rufus WILLETT (*)

ABSTRACT. — We introduce a notion of topological Property (T) for étale
groupoids. This simultaneously generalizes Kazhdan’s Property (T) for groups
and geometric Property (T) for coarse spaces. One main goal is to use this Prop-
erty (T) to prove the existence of so-called Kazhdan projections in both maximal
and reduced groupoid C*-algebras, and explore applications of this to exactness,
K-exactness, and the Baum—Connes conjecture. We also study various examples,
and discuss the relationship with other notions of Property (T) for groupoids and
with a-T-menability.

RESUME. — Nous définissons une notion de propriété (T) pour les groupoides
étales. Elle généralise & la fois la propriété (T) de Kazhdan pour les groupes, et
la propriété (T) géométrique pour les espaces grossiers. Notre but principal est
Papplication de cette propriété (T) a lexistence de projecteurs de type Kazhdan
dans les C*-algébres réduites et maximales des groupoides, dont nous explorons
les conséquences sur ’exactitude, ’exactitude en K-théorie, et sur la validité de la
conjecture de Baum—Connes. Nous étudions aussi divers exemples, et comparons
cette notion & d’autres versions de la propriété (T) ainsi qu’a la a-T-moyennabilité.

1. Introduction

Property (T) is an important rigidity property of groups introduced by
Kazhdan [12], and much studied for its applications and connections to
several parts of mathematics: see for example the monograph [5] for an
overview and historical comments. Property (T) has also been extended
to measured groupoids by Zimmer [26] (for equivalence relations) and
Anantharaman-Delaroche [2] (in a fairly general setting). Measured Prop-
erty (T) has very interesting connections to von Neumann algebra theory
via the construction of groupoid von Neumann algebras, and in particular
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to the special case of group actions via the group measure-space construc-
tion: see for example [15] and the references given there.

For applications to groupoid C*-algebras, one needs a topological version
of Property (T) for groupoids, and this currently seems to be missing from
the literature. It is the goal of this paper to give one possible definition
that fills this gap, particularly motivated by work of Higson, Lafforgue,
and Skandalis [11]. Indeed, these authors were able to show that certain
projections in groupoid C*-algebras have bad properties from the point
of view of exactness, and thus to produce counterexamples to versions of
the Baum—Connes conjecture. The projections constructed by Higson, Laf-
forgue, and Skandalis have a lot in common with the so-called Kazhdan
projections in group C*-algebras first constructed by Akemann—Walter [1]
using Property (T). This analogy is particularly good when one uses the
approach to these projections exploiting spectral gap phenomena due to
Valette [23, Theorem 3.2] and as extensively studied recently by Drutu and
Nowak [9].

From the above discussion, it seems natural to try to define a topolog-
ical version of Property (T) that works for groupoids, and allows one to
construct such Kazhdan projections in associated groupoid C*-algebras.
Indeed, this was implicitly done by the second author and Yu [25] in a spe-
cial case. These authors introduced a notion called geometric Property (T)
for coarse spaces; moreover, geometric Property (T) can be interpreted as
a property of the associated coarse groupoid introduced by Skandalis, Tu
and Yu in [20]. Another motivation of ours was to generalize geometric
Property (T) from coarse groupoids to a more general class of groupoids.

There is something a little mysterious about the Kazhdan projections
considered (at least implicitly) by Higson, Lafforgue, and Skandalis when
compared to the group case. In the group case, Kazhdan projections live
in the maximal group C*-algebra C} .. (G), but (other than in the very
special situation where the underlying group is compact) must map to zero
in the reduced group C*-algebra C}(G). However, in the groupoid case,
there can be Kazhdan projections that are non-zero in both C} .. (G) and
C} (@), or even that are non-zero in C}(G) without existing in C} . (G).
These sort of phenomena are crucial for the work of Higson, Lafforgue, and
Skandalis: the Baum-Connes conjecture is about the K-theory of C(G), so
one needs projections in the reduced C*-algebra. An important motivation
for us was to clarify all this; although it would be a little unwieldy to
give details in this introduction, let us say that the existence of non-trivial
Kazhdan projections in C}(G) has to do with interactions between the
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parts of the base space that emit finitely many arrows, and those parts
that emit infinitely many.

Outline

Although studying Kazhdan projections is our main motivation, we ex-
pect that topological Property (T) for groupoids will have other interesting
applications just as in the group case, and take the opportunity to develop
some basic theory. Thus having gone over some conventions in Section 2, we
start by giving an account of what we mean by Property (T) for groupoids
in Section 3: much as in the group case, the basic idea is that invariant vec-
tors in representations must be isolated from the rest in some appropriate
sense. In the groupoid case, however, there are at least two reasonable defi-
nitions of invariant vector, so there are some foundational issues about this
to consider before one can even get started; this is all done in Section 3. We
then discuss some natural classes of examples in Section 4, including con-
nections to coarse geometry, group actions, and Property (7). In Section 5
we discuss the relationship of our notion to other definitions of Property (T)
for groupoids, including the work of Zimmer and Anantharaman-Delaroche
in the measured setting that was mentioned above. In Section 6, we discuss
the relationship with a-T-menability for groupoids as defined by Tu [22,
Section 3]; as one might expect by analogy with the group case, Prop-
erty (T) is incompatible with a-T-menability at least in some cases. In Sec-
tion 7 we finally get back to our main motivation and give a fairly thorough
discussion of the existence of Kazhdan projections in groupoid C'*-algebras
and applications to exactness, K-exactness, and the Baum—Connes conjec-
ture. Finally, in Section 8, we summarize some open questions.

This paper is fairly long, and we expect different parts might interest
different audiences. We have thus aimed to write the paper in a fairly
modular way: after Section 3, it should be possible to read any of Sections 4,
5, 6 and 7 more-or-less independently of the others.

Acknowledgments
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work of the second author with Guoliang Yu in the coarse geometric set-
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versations around this subject. We are also grateful to Jesse Peterson for
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pointing out some references, and other interesting comments. Finally, we
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2. Conventions

As there is some variation of notational and terminological conventions
in the groupoid C*-algebra literature(*), we list ours here. For background
on the class of groupoids we consider and the associated C*-algebras, we
recommend [17, Section 2.3], [6, Section 5.6], and [19]; see these references
for precise definitions of the various objects we introduce below.

Groupoids will be denoted G, with base space or unit space G(®), which
we identify with a subset of G. Typically, we write elements of G using
letters like g, h, k, and elements of G(9) using letters like z,y, z. An ordered
pair (g,h) € G x G is composable if s(g) = r(h), in which case we write gh
for their product. For z € G(©, the range fibre and source fibre of x are
defined by

G":=r"Yz) and G, :=s'(x)
respectively. If E, F are two subsets of G(9) we define
GE:={g€G|slg) € FEandr(g) € F}.
If A, B are subsets of G, we define
A ={g7 g€ G} and AB:={gh|g€ A hc B and s(g) =r(h)}

(note that AB could be empty even if A and B are not).

A groupoid will always be assumed to be equipped with a locally com-
pact, Hausdorff topology. We will always assume that the inverse and com-
position maps are continuous. A bisection is an open subset B of G on
which 7 and s restrict to homeomorphisms. We will always assume that G
is étale, meaning that there is a basis for its topology consisting of open
bisections; note that this implies that r and s are continuous and open
maps, that G(©) is closed and open in G, and that each G, and G® are
discrete in the subspace topology.

We will sometimes need to use measures on G and G(°). A measure on
a locally compact Hausdorff space X will always mean a Radon measure,
i.e. a positive element i : C.(X) — C of the continuous dual of the topo-
logical vector space C.(X) of continuous compactly supported complex-
valued functions on X; we will also think of measures as appropriate maps

(M And indeed, even between our own papers!
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w: B(X) — [0, 00] from the collection of Borel subsets of X to [0, co] when
convenient. A measure is a probability measure if u(X) = 1.

Given a measure p on G(©) define measures r*p and s*; on G as func-
tionals on C.(G) via the formulas

/G(O)Zf )dup(z) and  (s™u)( /G(O)Z

geG® geGy

A measure p on G is quasi-invariant if 7*p and s*u have the same null
sets, in which case the associated modular function D : G — (0, 00) is de-
fined to be the Radon-Nikodym derivative D := d(r*p)/d(s*p). A measure
on G is invariant if r*u = s*u, or equivalently, if u(r(B)) = u(s(B)) for
any Borel bisection B.

The convolution x-algebra of G identifies as a vector space with the space
C.(Q) of continuous, compactly supported, complex-valued functions on G.
The multiplication and adjoint operations on C.(G) are defined by

(f1f2)(g Z fi(h and  f*(g) == f(g~1)
hk=g
respectively. The maximal and reduced C*-algebraic completions of C.(G)
will be denoted by C},.(G) and C}(G) respectively. In addition to the
reduced and maximal C*-norms on C.(G), we will need the I-norm defined

for f e C.(G) b

11z :=max{ sup ST f@) sup S (g }

€GO e €GO o
A representation of C.(G) is by definition a *-homomorphism
m:C.(G) — B(H)

from C.(G) to the C*-algebra of bounded operators on some Hilbert space
H; our Hilbert spaces are always complex, and inner products are linear
in the second variable. Typically we write (H, ) for a representation. Of-
ten, we will leave the map = implicit in the notation unless this seems
likely to cause confusion, writing for example “f£” rather than “m(f)¢”
for f € C.(G) and £ € H. Note that any representation of C.(G) extends
uniquely® to a representation of C7,, (@), i.e. to a *-homomorphism

7 Crax(G) — B(H),

(2 In the literature this is often stated as a consequence of Renault’s disintegration
theorem, and thus something that is only known to hold in the second countable case;
however, for étale groupoids it is always true, and not difficult to prove directly. See for
example [19, Theorem 3.2.2].
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and any such representation restricts to a unique representation of C.(G);
as such, we will sometimes identify representations of C.(G) with represen-
tations of Cf . (G).

As this is certainly not universal, we finish this section by emphasizing
the following convention.

Convention 2.1. — Throughout this paper, all groupoids are assumed to
be locally compact, Hausdorff, étale, and to have compact unit space (other
than in a few side remarks). We will generally not repeat these assump-
tions; thus in this paper “groupoid” means locally compact, Hausdorff, étale
groupoid with compact unit space.

Much of what we do could be carried out in more generality; we make a
few comments below about possible generalisations where we feel this might
be useful. However, we thought it would be better to keep to a relatively
simple setting so as not to lose the main ideas in excessive technicalities, and
also as our assumptions cover the examples that we are most interested in.

3. Constant vectors and Property (T)

See Convention 2.1 for our use of the word “groupoid”.

In this section, we introduce our notion of Property (T) for groupoids
(as usual, locally compact, Hausdorff, étale, and with compact unit space).
Just like Property (T) for groups, the idea is that the “constant vectors”
in any representation of C.(G) should be isolated in some sense.

However, unlike for groups it is not completely clear what a constant
vector in a representation of C.(G) should mean: there seem to be at least
two genuinely different reasonable definitions. The definition below is well-
suited to our applications.

DEFINITION 3.1. — Let G be a groupoid. Define a linear map by
U:C(G) — C(GY), fr— Y [flg).
geGeT

Note that the image is indeed contained in C(G)): indeed, it suffices by
the étale assumption to check this for f supported in an open bisection, in
which case it is clear. For a representation (H,m) of C¢(G), a vector { € H
is invariant, or fixed, or constant if for all f € C.(G),

f&E="U(f)E.
We write H™ for the closed subspace of H consisting of constant vectors,
and H, for its orthogonal complement.

ANNALES DE L’INSTITUT FOURIER
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In order to fix intuition, let us look at some examples.

Example 3.2. — Let G = T" be a discrete group, so C.(G) = C[I] is
the usual complex group *-algebra, with elements given by formal sums
> ger 4g9 with finitely many non-zero complex coefficients a, € C. Repre-
sentations of C.(G) are canonically in one-to-one correspondence with uni-
tary representations of I'. Moreover, C.(G(?) = C, and ¥ (3" ayu,) = 3 a,.
From this, one sees that in any representation (H,7) of C.(G), a vector &
is fixed if and only if it is fixed by the corresponding unitary representation
uof I', ie. if and only if us§ = ¢ for all g € I'.

Example 3.3. — Let G be a groupoid, and let u be an invariant proba-
bility measure on G(?). Let H,, be the Hilbert space L*(GO), 11), and define
a representation 7, of C.(G) on H by the formula

(ru(NE) (@) = > Fl9)é(s(9))-
geG®
The pair (H,,7,) is called the trivial representation associated to p. Then
any function € : G(©) — C that is constant in the usual sense is invariant
for 7,,. More generally, £ € H,, is invariant if and only if for y-almost-every
z € GO and every g € G®, £(z) = £(s(g)) (roughly, “€ is constant on
almost every orbit”).

Note that the above example shows that H™ and H, will not be invariant
under 7 in general, and therefore (unlike the group case), the constant
vectors do not define a subrepresentation of (H, ) in general.

The above example of constant vectors is in some sense general. The next
proposition formalises this; we include it mainly for intuition, and will not
really use it in the rest of the paper.

PROPOSITION 3.4. — Let G be a groupoid, (H, ) be a representation
of C.(G), and ¢ € H™ be a constant vector. Then the measure pg on G©)
defined by

pe: C(GY) — C. fr— (6 fe)
is invariant.

Moreover, the cyclic subrepresentation of (H, ) generated by £ is unitar-
ily equivalent to the trivial representation (H,,,7,.) of Example 3.3 via a
unitary isomorphism that takes £ to the constant function with value one.

Proof. — Recall that a measure p on G is invariant if and only if
r*u = s*u, i.e. if and only if

/G(O) > flg)du(x) =/G(O) > flg)du()

geG= geG,

TOME 72 (2022), FASCICULE 3
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for all f € C.(G). In the case i = p¢, note that the left hand side equals
(&,%(f)€) by definition of p¢, and the right hand side equals (U (f*)¢, ¢).
Hence to show invariance of p¢, we must show that

(6 W(NE) = (W(f)E:6)

for all f € C.(G). However, invariance of £ gives

(6 U()E) = (& 1) = (76,6 = (¥(f)E,E)

as required.
For the unitary equivalence statement, we compute that for any f €

CC(G)?

<§7 f£>H = <£a ‘Il(f)£>H = / Z f(g)dﬂf(x) = <17Tu§ (f)1>HH§ .
fel) A
geG
Hence the unitary equivalence statement follows from the uniqueness of
x-representations of an involutive algebra with specified cyclic vector (see
for example [7, Proposition 2.4.1]). O

The following corollary is immediate. It shows in particular that for many
groupoids, C.(G) does not admit any representations with non-zero con-
stant vectors. This is in sharp contrast to the group case where such rep-
resentations always exist.

COROLLARY 3.5. — A groupoid G admits a representation with non-
zero constant vectors if and only if G°) admits an invariant probability
measure.

We are now ready to give our definition of Property (T).

DEFINITION 3.6. — Let G be a groupoid. A subset K of G is a Kazhdan
set if there exists ¢ > 0 such that for any representation (H,w) of C.(G)
and any £ € Hy, there exists f € C.(G) with support in K and || f||; <1
such that [ f§ —W(f)E] = cli€]l-

The groupoid G has topological Property (T) if it admits a compact
Kazhdan set.

We will generally just say “Property (T)”, omitting the word “topologi-
cal” unless we need to make a distinction with the measure-theoretic case.
If K is a Kazhdan set for G and ¢ > 0 satisfies the condition in Defini-
tion 3.6, then (K, c¢) will be called a Kazhdan pair, and ¢ will be called a
Kazhdan constant. We will give examples in the next section.

We will also be interested in the following family of weaker variants of
Property (T).

ANNALES DE L’INSTITUT FOURIER
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DEFINITION 3.7. — Let G be a groupoid, and let F be a class of repre-
sentations of C.(G). A subset K of G is a Kazhdan set for F if there exists
¢ > 0 such that for any representation (H,w) of C.(G) in the collection F,
and any £ € H, there exists f € C.(G) with support in K and ||f||; <1
such that | f€ — W(f)E]| > cllé]|

The groupoid G has (topological) Property (T) with respect to F if it
admits a compact Kazhdan set.

We will again talk about Kazhdan pairs and constants with respect to
F in the obvious ways.

Note that Property (T) as in Definition 3.6 is the same as Property (T)
for the family of all representations of C.(G). In general, the larger F
is, the stronger a condition having Property (T) with respect to F is, so
Property (T) itself is the strongest variant.

We will be particularly interested in the following example of a family of
representations.

Example 3.8. — For = € G, the regular representation of C.(G) asso-
ciated to z is the pair (¢2(G,), ), where

(ma(£)E)(9) = D Flgh™ ()
heG,
for f € C.(G) and £ € £?(G,,) (compare [17, Section 2.3.4]). We denote the
family of all such representations by F,.. This family is particularly inter-
esting as the reduced C*-algebra C*(G) is (by definition) the completion
of C.(G) for the norm

[fllr == sup |lm(f)llBe2c.))-
x€G0)

Let us conclude this section with a remark on possible generalisations.

Remark 3.9. — There are several natural generalizations of the definition
of Property (T) above. We sketch some of these out here; we would be very
happy if someone else explores these in future work.

One could consider more general locally compact groupoids with Haar
system (and compact unit space). Having replaced the sum by an integral
with respect to Haar measure in the definition of ¥ : C.(G) — C(G®)
(Definition 3.1), everything else makes sense in this level of generality. It
would also be natural to expand the definition to cover non-compact base
spaces. For this it seems most reasonable to proceed as follows: say that a
subset E of a groupoid G is fibrewise compact if for any compact subset
K of GO, EnN GE is compact. Then define Property (T) for a groupoid

TOME 72 (2022), FASCICULE 3
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with possibly non-compact base space to mean that there exists a fibrewise
compact Kazhdan set.

Another natural generalisation would be to look at broader classes of
representations of C.(G): for example, Hilbert space representations that
are not x-representations, or representations on suitable classes of Banach
spaces. Indeed, there has been a great deal of relatively recent interesting
work in the group case in these settings: for example [3, 13, 9].

As for the analogues in the group case, we expect these generalizations
would be interesting. We did not pursue any of these seriously mainly to
keep the current paper down to a relatively reasonable length, and minimize
our discussion of technical issues.

4. Examples

In this section, we discuss some basic examples of groupoids with Prop-
erty (T). We remind the reader that our groupoids are always locally com-
pact, Hausdorff, étale, and have compact base space as in Convention 2.1.
We will not repeat these assumptions in the body of the section.

4.1. Trivial and compact groupoids

The most basic class of groupoids with Property (T) are the trivial
groupoids, i.e. those for which G = G, Indeed, in this case for any rep-
resentation (H,w) of C.(G), H™ = H, so the definition is vacuous.

The second most basic class probably consists of compact groupoids as
in the next result.

PROPOSITION 4.1. — Any compact groupoid has Property (T).

Proof. — We claim that G itself is a Kazhdan set, with associated Kazh-
dan constant one. Indeed, let x : G — C be the constant function with
value one everywhere, and let p = x/(¥(x) o r). Then one checks directly
that p is a well-defined element of C.(G), that for all f € C.(G) we have
fp="Y(f)p (here the products are convolution in C.(G)), that p = p*, and
that W(p) = 1. From these computations it follows also that p? = p, and
that the image of p in any representation of C.(G) is exactly the orthogonal
projection onto the constant vectors. Hence for any representation (H, ),
and any ¢ € H, we have that

Ip€ = ®(p)Ell = 110 =&l = €],

which gives the desired conclusion. O

ANNALES DE L’INSTITUT FOURIER
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4.2. Groups

In this subsection we show that our version of Property (T) reduces to
the usual one for discrete groups (i.e. groups that are étale when considered
as groupoids).

The following definition is taken from [5, Definition 1.1.3]. For a Hilbert
space H, let U(H) denote the unitary group of H.

DEFINITION 4.2. — Let G be a discrete group, and let
u:G—U(H)
be a unitary representation of G. A vector { € H is constant if ug& = &£ for
allg € G.

A subset S of G is a Kazhdan set if there exists ¢ > 0 such that if (H,u)
is a unitary representation of G such that

l[ugg — €Il < €]l

for all g € S, then there exists a non-zero invariant vector in H.
The group G has Property (T) if it admits a finite Kazhdan set.

We now have two definitions of “Kazhdan set” for groups: Definition 4.2
and the specialisation of Definition 3.7. Temporarily, if G is a discrete group
let us say a group Kazhdan set a Kazhdan set in the sense of Definition 3.7
and a groupoid Kazhdan set a Kazhdan set in the sense of Definition 3.7,
and similarly for the notions of invariant vector.

PROPOSITION 4.3. — Let G be a discrete group. Then a finite subset of
G is a group Kazhdan set if and only if it is a groupoid Kazhdan set.

Proof. — Assume first that K is a groupoid Kazhdan set with associated
Kazhdan constant ¢ > 0. Let u : G — U(H) be a unitary representation of
G and & € H be such that |lugé —&|| < c[|€|| for all g € K. Denote by 7 the
usual extension of u to C.(G) = C[G] defined by

m: E agg — E Qglg.
geG geG

Letting f = > f(9)g € C.(G) be supported in K with ||f]j; < 1, we see
that with f as above,

()& = (W (HEN < D 1F£(9)lllugé — €||<C||f|lzsupHug£ &l < cliéll-

geqG

As (K, ¢) is a groupoid Kazhdan pair, this forces H # H,., and so H™ # {0},
and K is a group Kazhdan set.

TOME 72 (2022), FASCICULE 3



1108 Clément DELL’AIERA & Rufus WILLETT

Conversely, say S is a group Kazhdan set with associated Kazhdan con-
stant ¢ > 0. Let 7 : C.(G) — B(H) be a representation of C.(G), and let
u be the associated unitary representation of G defined by u, = 7(x{4}),
where X4 is the characteristic function of the singleton {g}. Let & be a
vector in H,, and note that as u leaves H™ invariant it restricts to a rep-
resentation on H,. As H, has no invariant vectors and as S is a group
Kazhdan set, there exists g € S with ||ugé — £|| > ¢||§]|. Then the function
f = X{g} is supported in S, satisfies || f||; < 1, and also that

1£& = W()EI = cll€]]-

Hence S is also a groupoid Kazhdan set. O

COROLLARY 4.4. — A discrete group has Property (T) in the sense of
Definition 3.6 if and only if it has it in the sense of Definition 4.2.

4.3. Coarse spaces

Yu and the second author introduced a notion called geometric Prop-
erty (T) in [25] for monogenic, bounded geometry coarse spaces. On the
other hand, Skandalis, Tu, and Yu [20] introduced a coarse groupoid G(X)
associated to any bounded geometry coarse space X. Our goal in this sub-
section is to explain why geometric Property (T) for X is equivalent to
Property (T) for G(X). This example is one of the main motivations be-
hind our definition of Property (T) for groupoids.

Let X be a coarse space as in [18, Definition 2.3]. Precisely, this means
that X is equipped with a collection £ of subsets of X x X called controlled
sets which contains the diagonal, and is closed under the formation of
subsets, finite unions, inverses, and products, where the inverse of E is
defined by

B~ i={(z,y) € B | (y,2) € E}
and the product of two subsets E and F' of X x X is defined to be
there exists y € X with (z,y) € E}

EoF:={(z,2)e X x X
° {(x ?) x and (y,z) € F

Such a collection & is called a coarse structure on X. A coarse structure
has bounded geometry if the suprema of cardinalities of “slices”

sup {y € X [ (z,y) € E}| and sup [{z € X [ (z,y) € E}|
reX yeX

ANNALES DE L’INSTITUT FOURIER



TOPOLOGICAL PROPERTY (T) FOR GROUPOIDS 1109

are both finite. A controlled set E generates the coarse structure if £ is
the smallest coarse structure containing E, and a coarse structure & is
monogenic if a generator exists.

The uniform Roe *-algebra of a bounded geometry, monogenic coarse
space X, denoted C,[X], consists of all X-by-X matrices a = (agy)zyecx
with uniformly bounded complex entries, and such that the set {(z,y) €
X x X | azy # 0} is controlled. The uniform Roe *-algebra is then a x-
algebra when equipped with the usual matrix operations. Following [25,
Section 3], define a linear map

O Cy[X] — £2(X), B(a)(x) =) aay.
yeX
A representation of C,[X] is by definition a *-representation as bounded
operators on some Hilbert space. If (H, ) is such a representation, then a
vector £ € H is called constant if a§ = ®(a)¢ for all a € C,[X]. We will
denote the constant vectors in H by H..
The following definition comes from [25, Proposition 3.8].

DEFINITION 4.5. — Let X be a bounded geometry, monogenic coarse
space. Then X has geometric Property (T) if for every generating controlled
set E there exists ¢ > 0 such that for every representation (H, ) of C,[X]
and every vector £ € H} there exists a € C,[X] with {(z,y) € X x X |
agy # 0} contained in E, and such that

lag = @(a)€[| = csup |aqzy|[€]]-

T,y

We now recall the definition of the coarse groupoid G(X) from [20]; see
also the expositions in [18, Chapter 10] and [21, Appendix C]. Let SX be
the Stone-Cech compactification of X. For each controlled set E, let E be
the closure of F inside X x X for the natural inclusion X x X C fX x3X,
which one can check is a compact open set. Equip each E with the subspace
topology. Define

GX)=|JFE
Ec&
equipped with the weak topology it inherits as the union of open subsets E:
precisely, this means that a subset U of G(X) is open precisely when U N E
is open in F for all E € £ (this is not the topology it inherits as a subspace
of BX x 8X). Equip G(X) with the groupoid operations it inherits as a
subset of the pair groupoid X x SX. It is shown in [18, Theorem 10.20]
that G(X) thus defined is a (locally compact, Hausdorff, étale) groupoid,
with base space 5X.
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PROPOSITION 4.6. — For a monogenic bounded geometry coarse space
X, geometric Property (T) for X and Property (T) for G(X) are equivalent.

Proof. — For f € C.(G(X)), note that f restricts to a function on X x X.
Define an element af € C,[X] by the formula af, := f(z,y). It is proved
in [18, Proposition 10.28] that the map

C.(G(X)) — C,[X], fr—al

is a *-isomorphism. It is moreover not difficult to see that this map takes
C(BX) to 1°°(X), and that it “intertwines” ¥ and ® in the sense that

®(af) = ¥,

It follows from this that representations (H, ) of C,[X] and of C.(G(X))
are in one-to-one correspondence, and that the two notions of constant
vectors that we have defined using ® and W correspond. The remainder
of the proof is essentially a translation exercise: the key facts one has to
know are that any compact subset K of G(X) is contained in the closure
E of some controlled set (which is itself compact and open), and that for
any controlled set F there is a constant M > 0 (coming from bounded
geometry) such that for any f € C.(G(X)) with support in E, we have

1
271/l < suplaf, [ < /1l
z,y

We leave the remaining details to the reader. O

Note that the isomorphism C.(G(X)) = C,[X] from the proof above
gives rise to a natural representation of C.(G(X)) on ¢*(X) by matrix
multiplication of the corresponding element of C,[X]. Let Fy2(x) be the
family of representations of C.(G(X)) consisting of this single represen-
tation. Then we get an interesting example of Property (T) with respect
to Fy2(x) coming from expanders as in the following definition (see the
book [14] for background on expanders).

DEFINITION 4.7. — We will think of edges in a graph X as two-element
subsets of X; in particular, our graphs have no loops, no multiple edges,
and are undirected. Let X = (X,)%2, be a sequence of finite, connected
graphs. We will abuse notation, and also write X for the disjoint union
X =", X,. Assume that there is an absolute bound on the degree of all
vertices in X, and that the cardinality of X,, tends to infinity as n tends
to infinity. Let £ be the coarse structure on X generated be the set

{(z,y) € X x X | {z,y} an edge}
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and the diagonal. Then the coarse space X is bounded geometry (due to
the bound on vertex degrees) and monogenic.
For each n, let now A,, be the graph Laplacian on ¢*(X,,) defined by

Apidpr— Y 0.,
{y,z} an edge
It follows from the formula
&A= Y @) —E)
{z,y} an edge

that A,, is a positive operator with kernel consisting exactly of the constant
functions in £*(X,,) (this uses that X,, is connected). The sequence X is an
expander if there exists a constant ¢ > 0 such that for all n the spectrum
of A, is contained in {0} U [c, 00).

ProprosSITION 4.8. — Let X be an expander. Then the associated coarse
groupoid G(X) has Property (T) with respect to the singleton family F(x
consisting of the natural representation on ¢?(X).

Proof. — It is not difficult to check that a vector ¢ in £2(X) is constant
for this representation of C.(G(X)) if and only if it is constant as a function
X, — C for each n. Let A denote the operator on ¢?(X) that acts by A,
on each subspace ¢2(X,,). If £ € £2(X) is in the orthogonal complement of
the constant vectors, we must have that

(€, A8) > clg]®

by the above comments on the spectrum and kernel of each A,. On the
other hand, a little combinatorics (compare [25, Section 5]) shows that one

A = Z *(viv] — ;)

for some collection of partlal 1sometrles, each of which is represented by a
{0, 1}-valued function in C.(G(X)) supported on a bisection. We thus have

that
ZH v )€l = el

As each v; is supported on a bisection, we have moreover that v;v; = U(v;).
We must therefore have that for some ¢
Ve

I(vivi —vi)ell = = =lell,

which gives the desired result. O

can write
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4.4. HLS groupoids and property 7

Our aim in this subsection is to discuss so-called HLS groupoids, and a
connection to Property (7). HLS groupoids are constructed from a discrete
group and a collection of finite quotients; they were introduced by Higson,
Lafforgue, and Skandalis in [11, Section 2| as part of their work on coun-
terexamples to the Baum—Connes conjecture. Property (7) is a version of
Property (T) for groups that only sees information from representations
that factor through finite quotients; see the book [14] for background.

The key ingredients for the construction of HLS groupoids are a discrete
group, and an approximating sequence K of subgroups: this means K is a
nested sequence

Ki>2Ky>---

of finite index normal subgroups of I' such that the intersection () K, is the
trivial group. Given such a group and approximating sequence, let '), :=
I'/ K, be the corresponding quotient group for each n, and ¢, : I' — T, the
quotient map. Define also I'oo = T, and ¢ : I' — I'x to be the identity
map.

DEFINITION 4.9. — Let T' be a discrete group with a fixed approximat-
ing sequence K as above. Let N = NU {oc} be the one-point compactifica-
tion of the natural numbers, equipped with the usual topology and order
structure. The associated HLS groupoid has as underlying set

Gr = | |{n} x T
neN
It is equipped with the topology generated by the following sets: {(n,g)}
forn € N and g € T'; and {(n,q,(g9)) € Gk | n € Nyn > N} as N ranges
over N, and g over I'. The base space is

GO :={(n,g) € Gk | g is the identity e of T, },

and the range and source maps are given by r(n,g) = s(n,g) = (n,e).
Composition and inverses are defined using the group operations in each
fibre {n} x T,,.

For an HLS groupoid G built as above, we call I" the parent group.

In [24, Lemma 2.4], it was proved that G is (topologically) amenable if
and only if the parent group I' is amenable; thus amenability of G only
sees the parent group and not the approximating sequence. In this section,
we will show a similar result for Property (T): G has Property (T) if and
only if the parent group I' does. More subtly, we will also give a result that
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takes the approximating sequence into account: G has Property (T) with
respect to the family of representations that extend to Cf(Gy) if and only
if I' has Property (7) with respect to the approximating sequence K (we
recall the definition of Property (7) below).

For both results, we need a lemma relating C.(Gx) to the group alge-
bra C[T'].

LEMMA 4.10. — Let Gx be an HLS groupoid associated to the discrete
group I' and approximating sequence K. Then restriction to the fibre at
infinity defines a surjective x-homomorphism o : C.(Gx) — C[T']. On the
other hand, for each g € I, set x4 to be the characteristic function of the
set

{(n,qn(g)) € Gx | n € N}.
Then the map
['— Ce(Gk), 97— Xg
extends to an injective x-homomorphism ¢ : C[T'] — C.(Gk).

Proof. — The proof consists of direct checks that we leave to the reader.
Note that injectivity of ¢ follows as ¢ is split by o. O

We now get to the first of our main results.

ProproSITION 4.11. — Let G be an HLS groupoid with parent group
I. Then G has Property (T) if and only if ' has Property (T).

Proof. — Assume first that T' has Property (T), so there is a finite
Kazhdan set S with associated constant ¢ > 0. Let m be a representa-
tion of C.(Gx) on some Hilbert space H, and consider the representa-
tion 7 o ¢ of C[T']. It is straightforward to check that the invariant vectors
for m are the same as those for 7 o ¢. From this, one sees that the set
K :={(n,q.(9)) € Gc | n € N,g € S} is a groupoid Kazhdan set: indeed,
the function f with support contained in K required by the definition can
always be taken to be one of the functions x, for some g € S. We leave the
remaining details to the reader.

Conversely, say G has Property (T), with associated Kazhdan set K.
Let S ={g €T | (00,9) € K}. We claim that this S is a group Kazhdan
set for I'. Indeed, if u is a unitary representation of I', denote also by u
the corresponding #-representation of C[I']. With o as in Lemma 4.10, the
composition u o ¢ is then a representation of C.(G). It is straightforward
to check that groupoid invariant vectors for u o o, are the same thing
as group invariant vectors for w, and from here that K being a groupoid
Kazhdan set implies that S is a group Kazhdan set; we again leave the
details to the reader. O
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We now turn to Property (7). We give a definition that is a little more
general than necessary as it will be useful later.

DEFINITION 4.12. — Let U be a collection of unitary representations of
a discrete group I'. A subset S of T' is a Kazhdan set for U if there exists
¢ > 0 such that if (H,w) is a unitary representation of I" contained in U
and such that

l[ugg = €Il < i€l

for all g € S, then there exists a non-zero invariant vector in H.
The group I' has Property (T) with respect to the collection U if it admits
a finite Kazhdan set.

Example 4.13. — A group I" has Property (T) in the usual sense of Def-
inition 4.2 if and only if it has Property (T) with respect to the family of
all representations. In particular, if I' has Property (T), then it has Prop-
erty (T) with respect to any collection of representations.

DEFINITION 4.14. — Let I be a discrete group, and K an approximating
sequence. Let Ux be the collection of unitary representations of I that
factor through one of the finite quotients I';, for some n € N. Then I' has
Property (7) with respect to K if it has Property (T) with respect to Uy.

PROPOSITION 4.15. — Let G be an HLS groupoid with parent group
T. Let R be the collection of representations of C.(Gx) that extend to the
regular representation C(Gx). Then Gx has Property (T) with respect to
R if and only if T' has Property () with respect to K.

Proof. — Let Ci(T") denote the completion of the group algebra C[T'] for
the norm

lall := sup [lu(a)]|
uEUx

Note that I" has Property (T) with respect to the collection U if and only
it has Property (T) with respect to the collection of all representations of
I' that extend to C§(T).

Having made the above definition and observation, the proof of the
proposition is then essentially the same as that of Proposition 4.11, once
we have noted also that: the map ¢ : C[I'] — C.(Gk) of Lemma 4.10 ex-
tends to an injective *-homomorphism C¢(I') — C*(Gx); and that the map
o : Ce(Gr) — CIT'] of Lemma 4.10 extends to a surjective x-homomorphism
Cr(Gk) — CE(T) (compare the proof of [24, Lemma 2.7]). We leave the
remaining details to the reader. O
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4.5. Group actions

Let I" be a discrete group acting on a compact space X. Our goal in this
section is to characterise Property (T) for the associated transformation
groupoid X x I'. We start with the definitions.

Recall then that the transformation groupoid G := X x I' associated to
such an action is defined as a set to be.

G:={(gr,9,2) e X xI'x X |geT,z € X}.
It is equipped with the subspace topology it inherits from X x I" x X. The
unit space is G = {(z,e,2) | * € X} (where e is the trivial element in
I'), which we identify with X in the obvious way. The range and source
maps r,s : G — X are given by
r:(gx,9,x) — gz, s:(gx,9,2) — x
respectively, and the composition and inverse by
(ghz, g, hx)(ha, h,x) = (ghx,gh,z) and (gz,9,2)"" = (x,97", g).

The following lemma is well known; we provide a sketch proof for the
reader’s convenience, and as we need to establish notation. In order to state
it, for g € T, let us write G4 := {(gz,g,x) € G | x € X} for the “slice” of G
corresponding to g, and let us write oy for the x-automorphism of C.(X)
defined by a,(f) := f(g~ x).

LEMMA 4.16. — Let 7 : C.(G) — B(H) be a unital representation of
C.(Q). Then there exist unique representations 7~ and 7' of C.(X) and
I" respectively on H that satisfy the covariance relation

mam ™ (F)(mg)" = 7% (ag(f))
and such that for all f € C.( )
(4.1) Zﬂ' f|G
gel

Conversely, any pair of representations (7%, 7") of C.(X) and I' on some
H that satisfy the covariance relation uniquely determines a nondegenerate
representation of C.(G) via the formula in line (4.1).

Proof. — Starting with a representation 7 of C..(G), define 7% to be the
restriction of 7 to C(X) C C.(G) (as usual, we identify X with G(©) here).
For g € T, define u, : G — [0, 1] to be the function
1 h=g

0 otherwise.

ug(hx, h,x) = {
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We leave the direct checks that

(a) g — ugy defines a unitary representation of T,
(b) of the covariance relation, and
(c) of the equation in line (4.1) to the reader.

The converse direction is straightforward: given a covariant pair (7%, 71),
define 7 by the formula in line (5.7), and use the covariance relation to
show that this does define a representation of C.(G); we leave the direct
computations involved to the reader. O

The next lemma again consists of direct algebraic computations; this
time we leave all the details to the reader.

LEMMA 4.17. — Let m be a nondegenerate representation of C.(G) on
H, and let (7%, 7") be the corresponding covariant pair from Lemma 4.16.
Then a vector ¢ in H is fixed by C.(G) if and only if it is invariant for T’
in the sense that wgf =¢ forallgel.

Going back to actions, the following definition is natural.

DEFINITION 4.18. — Let Ux be the collection of all representations u
of T such that there exists a unital representation © of C'(X) with (m,u)
covariant.

PROPOSITION 4.19. — Let I" be a discrete group acting on a compact

space X, and let G = X X I' be the associated transformation groupoid.
Then the following are equivalent:
(i) G has Property (T);
(ii) T has Property (T) with respect to the collection Ux in the sense
of Definition 4.12.

Proof. — Assume G has Property (T), and let (K, ¢) be a Kazhdan pair
for G with K compact. As K is compact, we have that K is contained
in {(gx,9,2) € G | g € S} for some finite subset S of G. Let u be a
representation in Uy, so u is part of some covariant pair (7%, u). Let 7
be the corresponding representation of C.(G) as in Lemma 4.16. Using
Lemma 4.17, the orthogonal complement of the u fixed vectors exactly
corresponds to H,. Let £ be a unit vector in H,, and let f € C.(G) be
supported in K, such that || f||; < 1, and with the property that ||7(f)¢ —
T(P(f))E|l > c. We may write f as a finite sum f =3 ¢ f|c,; note that
Il fla,llr <1 for each g € S. There must then exist some g € S such that
I7(Fla, )€ — m(¥(fla, )l > /IS Note that

m(fla,) = m(¥(fla,))ug,

ANNALES DE L’INSTITUT FOURIER



TOPOLOGICAL PROPERTY (T) FOR GROUPOIDS 1117

whence we now have that for some g € S

c/|S| < lIm(¥(fle,))ugs — m(¥(fla )&l < llugé =&,

giving us that I" has Property (T) with respect to Ux.

For the converse direction, assume that I' has Property (T) with respect
to Ux, and let (S, ¢) be a Kazhdan pair in the usual sense. Let K :=
{(9z,9,2) € G | g € S}, which is compact. We claim that (K,c) is a
Kazhdan pair for G, thus showing that G has Property (T). Indeed, let
¢ € H, be a unit vector for some representation (m, H) with (7%, 7") the
corresponding covariant pair as in Lemma 4.16. Then analogously to the
discussion above there exists g € S such that ||} £ —£[| > ¢. Let f € Ce(G)
be the characteristic function of the slice G, = {(gz,9,2) | z € X}.
Then f is supported in K, satisfies ||f||; < 1, and the above says that
|7 (f)€ —m(T(f))E|l > ¢, so we are done. O

COROLLARY 4.20. — Let ' be a discrete group acting on a compact
space X, and let G = X x I' be the associated transformation groupoid.
Assume moreover that X admits an invariant probability measure. Then
G =T x X has Property (T) if and only if G has Property (T).

Proof. — If T has Property (T), then G always has Property (T) by Ex-
ample 4.13 and Proposition 4.19. Conversely, the multiplication represen-
tation 7# and permutation representation u* of C.(X) and I" respectively
on L%(X,u) fit together to make a covariant pair. Moreover, u,, contains
the trivial representation as a subrepresentation. It follows that if (H,u) is
any unitary representation of G, then (7# ® 1y, u* ® u) is a covariant pair
such that the I' part u* ® u contains u as a subrepresentation. As u was
arbitrary, it follows that Property (T) with respect to Ux is the same as
Property (T) with respect to the collection of all unitary representations,
which is just Property (T). O

Example 4.21. — Let T’ be a discrete group. By definition, a compact
space X with an action of I and a quasi-invariant measure p has spectral
gap if T has Property (T) with respect to the collection of representations
consisting of just the Koopman representation on L?(X, p). From Propo-
sition 4.19, it follows that if G = X x T has Property (T) and p is a
quasi-invariant measure on X, then the action of ' on (X, ) will have
spectral gap.
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5. Connections with other versions of Property (T)

In this section, we explore relationships with other versions of Prop-
erty (T): first other topological notions, then the measure-theoretic defini-
tion of Zimmer and Anantharaman-Delaroche.

5.1. Other topological definitions of Property (T)

There are two other versions of topological Property (T) for groupoids
that either seem reasonable, or have appeared more-or-less explicitly in
the literature. In this subsection, we look at these, and (at least partially)
determine the relationship to our notion. As usual, throughout this section,
“groupoid” means locally compact, Hausdorff, étale groupoid with compact
base space: see Convention 2.1.

The first possible variant of Property (T) is as follows, and is a natural
variant of our notion from Definition 3.6.

DEFINITION 5.1. — Let G be a groupoid with compact base space. A
subset K of G is a Kazhdan; set if there exists ¢ > 0 such that for any
representation (H, ) of C.(G) which does not have invariant vectors, and
any £ € H, there exists f € C.(G) with support in K and || f||; < 1 such
that ||£€ — W(f)¢] > cle]].

The groupoid G has (topological) Property (T4) if it admits a compact
Kazhdan; set.

For groups, it follows from the fact that the invariant vectors H™ form
a subrepresentation of any given representation (H,n) that Property (T)
is equivalent to Property (T;). Clearly we also have that Property (T)
implies (T) in general; the converse, however, is false as we will see in a
moment. For certain purposes, Property (T7) may be more natural than
Property (T), partly as it deals with genuine representations rather than
subspaces of representations. However, for our main applications on the
construction of Kazhdan projections, Property (T) is the more useful ver-
sion.

Here is an example showing that Property (T) is strictly stronger than
Property (T1).

Example 5.2. — Let N be the one-point compactification of the natural
numbers considered as a trivial groupoid, and let P be the pair groupoid
on {0,1}. Let N x P be the associated product groupoid: its base space is
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N x PO with the obvious structure maps. Let G be the subgroupoid of
N x P defined by
G := (N x P)U ({co} x PO),

ie. v = (n,g) € Nx PO isin G if and only if n # oo or g € P, As
G is an open subgroupoid of N x P, it is étale. We will denote by G, the
subgroupoid sitting over n, i.e. the restriction r~*({n} x P®). Note that
C.(Gp) & My(C) for each n € N; we will fix such an isomorphism that
takes the characteristic functions of the points 0 and 1 in the unit space of
G, to the two diagonal projections in Ms(C). We have the following exact
sequence

(5.1) 0= P Ce(Gn) = C*(G) = C* —0.
neN
We will show that G has (T1) but not (T).

(1) We first claim that G has (T;). Let ¢ : C.(G) — B(H) be a
representation. If there is some n such that ¢ is non-zero when
restricted to C.(Gy,), we claim that ¢ has invariant vectors. In-
deed, if p € C.(G,) is the projection corresponding to the matrix
1(11) € M,(C), then ¢(p) is non-zero as Cc(G,,) is simple. Any
non-zero element in the image of ¢(p) is invariant.

On the other hand, a representation ¢ that is zero on all the
subalgebras C.(G,) factors through the quotient in line (5.1) as
(E : C? — B(H). All vectors are invariant for such a representation.
This shows that any representation C*(G) — B(H) has non-trivial
invariant vectors, hence (T7) holds for vacuous reasons.

(2) We now show that G does not have (T). For the sake of contradic-
tion, let us suppose a Kazhdan set K exists. By compactness of K,
there exists N € N such that

K C({0,...,N}x P)uG,

Let now ¢ : C.(G) — C? be the representation one gets by com-
posing the natural restriction map C.(G) — C.(Gy41) with the
canonical representation of C.(Gny1) = M3(C) on H := C2. We
then have that the vector (—1,1)7 € H is non-zero and in the
subspace Hy that is orthogonal to the constant vectors. However,
for any f € C.(G) supported in K, the restriction of f to Gny1
is supported in G§3>+1. Hence ¢(f) = ¢(¥(f)), so this contradicts
Property (T).

The second definition of Property (T) that we look at is also very natural.
This has appeared in the literature before for group actions in a slightly
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different but equivalent form: see [8, p. 441]. We are not aware of any study
of the general groupoid property in the literature before.

We need a standard preliminary definition: see for example [6, Defini-
tion 5.6.15].

DEFINITION 5.3. — Let G be a groupoid. A function ¢ : G — C is
positive type if:
(i) ¢(z) =1 for all z € GO);
(ii) ¢ is symmetric, i.e. (g~ 1) = ¢(g) for every g € G;
(iii) for every finite tuple g1, ..., g, in G with the same range and every
tuple z1, ..., z, of complex numbers,

n
> Fzioletgy) = 0.
i,j=1
Positive type functions are intimately connected to representations of
groupoids: see for example Lemma 6.7 below.

DEFINITION 5.4. — A groupoid G has (topological) Property (Ts) if
whenever (¢; : G — C);e; is a net of continuous® positive type functions
that converges uniformly on compact sets to the constant function one,
then (¢;) converges uniformly to the constant function one.

The above definition is well-known to be equivalent to Property (T)
in the group case: this follows for example from [1, Lemma 2] combined
with [7, Theorem 13.5.2]. It is moreover a very natural definition, and
maybe of a more “topological” nature than ours: indeed, ours has some
measure-theoretic flavour coming from the connections of invariant vec-
tors to invariant measures, and also from the connection to representation
theory.

The following lemma combined with Proposition 4.19 shows that in the
case of group actions, Property (Ts) is strictly stronger than our Prop-
erty (T).

LEMMA 5.5. — Let T’ be a discrete group acting on a compact space
X by homeomorphisms, and let X x I' be the associated transformation
groupoid. If X x T' has property (Ts), then T' has Property (T).

Proof. — Assume G := X x I" has Property (T3), and let (¢; : I' — C)
be a net of positive type functions converging uniformly on compact sets
(i.e. pointwise, as I' is discrete) to the constant function one; to see that

(3) As we are working in the topological category, it seems natural to require continuity.

ANNALES DE L’INSTITUT FOURIER



TOPOLOGICAL PROPERTY (T) FOR GROUPOIDS 1121

I has (T) it suffices to prove that (¢;) converges uniformly to one. To see
this, for each i let ¢; : G — C be the pullback defined by

Then direct checks show that each (;Z is positive type, and that the net
((El) converges uniformly to one on compact subsets of G; hence by Prop-
erty (T3) it converges uniformly to one. It follows that the original net (¢;)
also converges uniformly to one, so we are done. O

Using the discussion in [18, Section 11.4.3], one also has the following
result, showing that Property (Ts) is essentially trivial for coarse groupoids.

LEMMA 5.6. — Let X be a bounded geometry metric space. Then the
coarse groupoid G(X) has Property (Ty) if and only if X is bounded.

Hence for coarse groupoids, Property (Ts) is also strictly stronger than
our Property (T) by Proposition 4.6. It is plausible from these examples
that (T2) implies (T) in general, but we were unable to show this.

5.2. Measured Property (T)

In [2], Anantharaman-Delaroche defined a notion of Property (T) for a
measured groupoid, building on earlier work of Zimmer [26] in the case of
a measured equivalence relation. Our aim in this subsection is to discuss
the relationship of this measure-theoretic notion to our topological notion:
in particular (Theorem 5.12 below), we show that the topological notion
implies the measure-theoretic one for a large class of measures

Throughout this subsection G will be a groupoid (as usual, locally com-
pact, Hausdorff, étale, and with compact unit space). As we are interested
in measure theory, we will assume that G is second countable to avoid
measure-theoretic pathologies. We assume moreover that the base space
G is equipped with an invariant probability measure u. Associated to
this measure p is the measure r*u on G defined as a functional on C.(G)
by the formula

T f%/ > flg)du(x).
G geG®
We equip G with the Borel structure induced by the topology, and with the
measure class C' of 7*u. When we say “almost everywhere” below, we mean
with respect to 4 when the ambient space is G(°), and with respect to C
when the ambient space is G. The pair (G, C) is a measured groupoid in
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the sense of [2, Definition 2.7]. As C is determined by u, we will generally
write (G, p) for this measured groupoid.

We want to compare Property (T) for (G, 1) in the sense of [2, Section 4]
with our notion of Property (T) for G. To avoid confusion, let us call the
former property measured Property (T) for (G, 1), and the latter property
topological Property (T) for G.

We first recall the definitions necessary to make sense of measured Prop-
erty (T). The following is [2, Definition 3.1].

DEFINITION 5.7. — A representation of G consists of the following data:
(i) a Hilbert bundle H = (H,),cw over G in the sense of [2, Defi-
nition 2.2[;

(ii) the associated Borel groupoid Iso(G®) x H) consisting of triples
(x,V,y) where V : H, — H, is a unitary isomorphism [2, Sec-
tion 3.1];

(iii) a Borel homomorphism 7 : G — Iso(G®) x H) sending each unit
z € GO to the corresponding unit (z,Idg, ,z) of Iso(G(®) % H).

We will write representations of G in the sense above as pairs (H, 7). We
will abuse notation by writing 7, : Hy) — H,(4) for the unitary V' such
that m, = (r(g),V, s(g)).

The next definitions are from [2, Sections 2.1 and 4.1].

DEFINITION 5.8. — Let H be a Hilbert bundle over G©) in the sense
of [2, Definition 2.2]. The space S(G), u, H) consists of all Borel sections

£:GO —H z+¢

(where “section” means that {(x) € H,), modulo almost everywhere equal-
ity, and equipped with the topology defined by the equivalent conditions
from [2, Proposition 2.3]. An element & of S(G(®), ju, H) is a unit section if
€)1z, = 1 for almost all z € G (see [2, Section 4.1]).

The next definitions are from [2, Definition 4.2].

DEFINITION 5.9. — Let (H, ) be a representation of G.

(i) A section & in S(G), u, H) is invariant if

Erg) = Tols(q) I Hyg)

for almost every g € G.
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(ii) The representation (H, ) almost contains unit invariant sections if
there is a sequence of unit sections (£™) such that

1&gy — To&aiq) Iy — 0

for almost every g € G.

Finally, we get to the definition of measured Property (T) for our mea-
sured groupoid. The following is [2, Definition 4.3]

DEFINITION 5.10. — Let G be a groupoid (locally compact, Hausdorff,
étale, second countable, with compact base space) equipped with an in-
variant probability measure i on G(°). The measured groupoid (G, 1) has
measured Property (T) if whenever a representation (H, L) almost contains
unit invariant sections, it actually contains a unit invariant section.

Remark 5.11. — Anantharaman-Delaroche’s definition of measured
Property (T) applies to a more general class of measured groupoids than
ours. For example, Anantharaman-Delaroche does not assume the presence
of an underlying topology, and allows quasi-invariant measures on the base
space. There seems to be no obvious connection between our definition and
that of Anantharaman-Delaroche in the case of a quasi-invariant probabil-
ity measure: see Lemma 5.13 and the following comments at the end of this
section.

Here is the main result of this section.

THEOREM 5.12. — Let G be a groupoid with topological Property (T).
Then for every ergodic invariant probability measure . on G(©), the mea-
sured groupoid (G, ) has measured Property (T).

Proof. — Assume for contradiction that p is an invariant ergodic mea-
sure on G(©) and (H, ) a representation of G that almost has unit invariant
sections, but no invariant section. Let H,, be the Hilbert space completion
of the collection of all bounded elements of S(G(O),u, H), equipped with
the inner product

€, = [ (€nndndua)

As described in [17, Section 2.3.3], (H, ) integrates to a -representation
7:C(G) — H,
with the property that for all £, € H,,

Enthm = [ 3 16 mnniy) . dule).

geG®
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We claim first that the representation (H,,,m) of C.(G) contains no non-
zero constant vectors. Assume for contradiction that £ € H, is a constant
unit vector, so that

(5.2) m(U(f)E =7(f)E

for all f € C.(G). Writing out what this means,

(N (@) = D fl9)melsiy and (x(¥())E)e = > f(9)é

geG® geG®

and so line (5.2) above says that

> H@mebsgy = D f9)é

geG® geG®

for every f € C.(G), and almost every z € G(9). As this holds for all f €
C.(G), considering functions f that are supported on bisections (and using
second countability) shows that this is impossible unless 7,&,(g) = &r(g) for
almost every g € G. This implies that the function

GO —R, z—|&|n,

is invariant under the action of G on G©), and thus by ergodicity, it is
constant almost everywhere. As y is a probability measure and as [|]|z, =
1, this forces ||, || = 1 for almost every 2 € G(©). At this point, we have that
¢ is a unit invariant section for (H, ), which is the desired contradiction.

Now, let (£™) be a sequence as in the definition of almost containing unit
invariant sections, so that

(5.3) ||£:’L(g) - ng?(g)H%I —0

r(9)

for almost every g € G. From topological Property (T) there exists a com-
pact subset K of G and ¢ > 0 such that for each £™ there exists f,, € C.(G)
supported in K and with || f,||; < 1 such that

7w (fu)" = w(C(fa))E" | F, > c.

Writing out what this means,

,/G‘(O) ‘ Z fn(g)ﬂgg?(g) - Z fn(g>§;b
geGe rzeG®
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Using that || f. ||z < 1 and that each f,, is supported in K we thus get
| > Fal9) (ot — €2)

c</
GO geG®

2
< [ (3 1@t — €2l ) ante)

geG®

(5.4) <[ sw mgy - €l duto)
G(0) ge KNG*

2
‘ )

Now, as K NG? is finite for all z € G(©) line (5.3) gives that the integrand
above tends to zero pointwise almost everywhere. As each £™ is a unit sec-
tion, the integrand is moreover bounded above by four; as u is a probability
measure we may thus apply the dominated convergence theorem to get that
the final integral in line (5.4) tends to zero as n tends to infinity. As it is
bounded below by ¢ for all n, this gives the required contradiction. O

To conclude this section, we make some comments about the relationship
of our definition to that of Anantharaman-Delaroche when one only has a
quasi-invariant measure on the base space. The essential point is that the
notions of constant vectors one gets in that case are different.

Recall then that if G is a groupoid and p is a quasi-invariant measure on
G then there is an associated modular function D : G — (0, 00) defined
by D = d(r*p)/d(s*p). If moreover (H, ) is a representation of G in the
sense of Definition 5.7 above, then associated to the triple (H, u, 7) we may
form the Hilbert space

HH = LQ(G(O)v {Haf}a /U')

of L2-sections of the family {H,} with respect to the measure p. More-
over, there is a representation of C(G) on H,, uniquely determined by the
condition

et = [ 3 10D 0wy dn(o)

geGeT

for all {,n € H, and f € C.(G). The representation (H,,m) of C.(G)
is called the integrated form of the triple (H, u, 7). Conversely, Renault’s
disintegration theorem [16, Theorem 2.3.15] says that when G is second
countable, any representation (H,7) of C.(G) arises like this.

We leave the proof of the following lemma to the reader.
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LEMMA 5.13. — Let (H,, ) be the integrated form of the representa-
tion (H,u, ) of a second countable groupoid G. Let D be the modular
function associated to . Then a vector { € H,, is constant in the sense of
Definition 3.1 if and only if

gr(g) = D71/2(g)ﬂ'!]§s(g)

for almost all ¢ € G, where “almost all” is meant with respect to the
measure r* [i.

On the other hand, Anantharaman-Delaroche uses the definition of con-
stant from Definition 5.9 above, that &, ;) = m,&,(y) for almost every g € G,
also in the case of a quasi-invariant measure of G(%). Thus in the case when
w is only quasi-invariant, it seems unreasonable to expect much connection
between the notions of Anantharaman-Delaroche (and also of Zimmer) and
ours.

6. Connections with a-T-menability

As usual in this section, groupoids are always locally compact, Hausdorff,
étale, and have compact base space: see Convention 2.1.

The property of a-T-menability for groupoids was introduced by Tu [22,
Section 3] as part of his work on the Baum—Connes conjecture. Just as
for groups, a-T-menability for groupoids is a generalisation of amenability
that admits several useful characterisations. Moreover, just as for groups,
all amenable groupoids are a-T-menable.

For groups, the name a-T-menability (due to Gromov) came about as this
condition is like amenability, and incompatible with Property (T): indeed
a discrete group is a-T-menable and has Property (T) if and only if it is
finite. Our goal in this section is to show that Property (T) for a groupoid
is also incompatible with a-T-menability in many cases.

Here is a sample result that we can deduce from our main theorem. To
state it, recall that a groupoid is minimal if for every z € G(9, the orbit
Gz defined by Gz := s(G*) is dense in G(©),

THEOREM 6.1. — Let G be a minimal groupoid with Property (T),
that is a-T-menable, and such that G(°) admits an invariant probability
measure. Then G is finite.
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Note that this result generalises the above-mentioned incompatibility of
a-T-menability and Property (T) in the group case. See also [2, Proposi-
tion 4.7] for an analogous result in the measured context, where the mini-
mality assumption is replaced by the related measure-theoretic assumption
of ergodicity.

In order to get to our main result, we need some definitions. We start by
recalling some definitions from Tu’s work [22, Section 3].

DEFINITION 6.2. — Let G be a groupoid. A function F : G — [0, 00) is
of negative type if:
(i) F(z) =0 for all x € G;
(ii) F is symmetric, i.e. F(g~') = F(g) for every g € G;
(iii) for every finite tuple g1, ..., g, in G with the same range, and every
tuple aq, ..., a, of real numbers such that Zj a;j =0,

n
> wa;F(g; 'g;) <0.
ij=1
DEFINITION 6.3. — A groupoid G is a-T-menable if there exists a con-
tinuous, proper(4) , negative type function F : G — [0, 00).

Tu shows several useful facts about the class of a-T-menable groupoids
in [22, Section 3]: perhaps most relevant for us in terms of understanding
the range of validity of Theorem 6.6 is that amenable groupoids are always
a-T-menable [22, Lemme 3.5].

We need one more technical condition for the proof.

DEFINITION 6.4. — A groupoid G is large if for any compact subset K
of G the restriction of the range map r|c\x : G\ K — G is surjective.

Note that a large groupoid is automatically non-compact; in general, one
should think of largeness as a fairly mild generalisation of non-compactness.
For example, it is straightforward to see that a transformation groupoid
X x T (with X compact) is large if and only if T' is not finite, if and only
if X x I is not compact. We also have the following result: it implies in
particular that largeness and non-compactness are equivalent for minimal
groupoids.

LEMMA 6.5. — Let G be a minimal, infinite groupoid. Then G is large.

(D 1f we do not assume that G(©) is compact, “proper” should be replaced with “locally
proper”: a function F' : G — [0,00) is locally proper if for any compact subset K of
G0 the restriction of F' to G% is proper in the usual sense.
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Proof. — Assume for contradiction that G is minimal and infinite, but
that there is a compact K C G and z € G(©) such that = ¢ r(G\ K). Tt
follows that G* C K. As K is compact, this forces G* to be finite, and thus
the orbit of  under G must be finite. This contradicts minimality unless
G equals the finite orbit of 2, so we must have that G(© is finite and G
acts transitively on it. However, as G* is finite and G acts transitively on
G0 this forces each range fibre to be finite. Hence G is finite, which is the
desired contradiction. g

Here is the main result of this section.

THEOREM 6.6. — Let G be an a-T-menable groupoid with Property (T),
and an invariant probability measure p on G(©). Then G is not large.

Note that this result together with Lemma 6.5 imply Theorem 6.1. We
discuss the failure of some stronger statements in Example 6.11 below.

In order to prove Theorem 6.6, we need some basic facts about positive
type functions (see Definition 5.3) on groupoids, and the associated GNS-
type representations. Let then p be an invariant probability measure on
G and ¢ : G — C be a bounded, Borel, positive type function. We
provisionally define a (semidefinite) inner product on C.(G) by the formula

(61) Emoi= [ S E@nmols hduto)
GO heae

To see that this integral makes sense, first assume that & and 7 are sup-
ported on a single bisection. Then the integrand is clearly a bounded Borel
function, and so the integral is well-defined. In general, as £ and 7 are
compactly supported they can be written as a finite linear combination
of functions in C.(G) that are supported on a single bisection; we thus
see that the integral in line (6.1) makes sense in general. Moreover, the
fact that ¢ is of positive type implies for each z € G(©), the sum appear-
ing in the integrand of line (6.1) is non-negative, and thus that the inner
product in line (6.1) above is positive semidefinite. Hence we may define a
Hilbert space Hy to be the separated completion of C.(G) for the above
(semidefinite) inner product.

The following lemma is presumably well-known (compare also Rem-
ark 6.8 below). However, we could not find what we needed in the literature
so give a proof for the reader’s convenience.

LEMMA 6.7. — Let ¢ : G — C be a bounded, Borel, positive type func-
tion on a groupoid G, and let yu be an invariant probability measure on G(©).
Then with notation as above, the left convolution action of C.(G) induces
a well-defined representation m, of C.(G) on Hy by bounded operators.
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Proof. — Let us first show that the convolution action of f € C.(G)
on C.(G) descends to a well-defined action of a bounded operator on Hy.
Any f € C.(G) can be written as a finite linear combination of elements
supported on a single bisection, so it suffices to consider the case that f is
supported on a single bisection.

For this, is suffices to show that there exists C' > 0 such that if £ € C.(G),
then (€, f&)s < C(£,€)¢. Indeed, this shows first that if £ = 0 in Hy, then
f€ = 0 in Hgy, which implies that f gives a well-defined operator from
the image of C.(G) in Hy to itself; second, it shows that this operator is
bounded, so extends to all of H, from the dense subset given by the image
of C.(G).

Let us now compute: with f € C.(G), and € € C.(G), we have

fe18e= [ 3 FRERTOAOL W0 (o).
GO g hkleGe
As f is supported on a bisection, it can be non-zero on at most one point

in G*; hence we may replace the sums over k£ and [ in the above by a single
sum in k, getting

Feseo= [ 3 IHOPERTGEE Dolg H)du(o)
GOy hkege
Making the substitutions m = k~'g and n = k= 'h, we get
UesQe= [ >3 IFWPEmEmetn  wdu(a).
GO keGr mopeas®
The right hand side above is the integral of the function
G—C, ke > [f(R)PEm)Em)S(m n)
m,neGsk)

with respect to the measure r*u. Hence by invariance of p it equals the
same integral with respect to s*p, i.e.

Gete= [ 3 X IHRPEmIEmsm T n)dua)

k€Gz m,neGsk)

L ( 2\ W) ( > §(m)§(n)¢(m_1n)>du(x)

keG, m,neG®

Note now that as f is supported in a bisection, we have that Zkecw If (k)2 <
| f1I2,- Hence we now have that

e < I [ 30 Emiemotm™ mdn(e) = 112 (6 O

m,neGT
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As discussed above, this completes the case that f is supported on a single
bisection, which implies the general case.

It remains to prove that w4 is a *-representation. Linearity is clear, and
multiplicativity follows from associativity of multiplication on C.(G), so
it remains to check that 7y is *-preserving. We compute that for f,&,n €

Ce(G),

o= [ S E@I R)ola™ W)duta).

g,h,keG=®

Making the substitutions { = k~'h and m = kg, this equals

/C;(o) Z Z E(km) f(k)n(D)p(m ™ 1)dp(x).

kEG® |, meGs®)

Using invariance of y again we have

/G(O) Z Z Wf(k)n(l)¢(m_ll)du(x)

kEG ImeGs(®)

- L(o) Z Z Wf(k)n(l)ﬁﬁ(mill)dlu(x)_

kEG, I,meG™

On the other hand, f(k) = f*(k—1), so this becomes

/G Yo > FEDEEmnOe(m Ddu(z).

O 1. meG keG,

The sum > f*(k=1)&(km) is just the complex conjugate of the convo-
lution product of f* and £ evaluated at m, however, so this equals

/G(O) Z WU(Z)¢(m_1l)du(x) =(f"&me

l,meG®

and we are done. O

Remark 6.8. — We could also have deduced the above lemma from gen-
eral theory, at least in the case that G is second countable. Indeed, for each
z € G we may define a positive definite sesquilinear form on C.(G®) by
the formula

Ema =Y Egn(h)e(g~"h),
g,heG®
and so a Hilbert space H,. We then equip the collection H = {H,},cqo
with the fundamental space of sections given by the image of C.(G); if G
is second countable, this makes H into a measurable field of Hilbert spaces
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in the sense of [17, Definition 1.3.12] (or equivalently, a Hilbert bundle in
the sense of [2, Definition 2.2], as already used in Definition 5.7 above).

We then equip H with a representation 7 of G in the sense of [17, Defi-
nition 2.3.12], or equivalently of Definition 5.7 above, by defining for each
g€eG

Tg - Hs(g) — Hr(g)a (ng)(h) = g(g_lh)

The reader can then verify for themselves that the integrated form of
this representation (see [17, Section 2.3.3]) agrees with (Hg,my) as defined
above. We instead went via Lemma 6.7 as this seemed a little more direct,
and as it does not require any separability assumptions on G.

Let us now go back to the assumptions of Theorem 6.6. As G is a-T-
menable with compact base space, there exists a continuous, proper neg-
ative type function F' : G — [0,00) as in Definition 6.2. It follows from
Schoenberg’s theorem (see for example [5, Theorem C.3.2]) that for each
t > 0 the function

¢ :G—R, gr— e tF@

is positive type. Each ¢; is moreover clearly continuous and bounded. Hence
we may form the Hilbert spaces H; := Hy, and representations m; := mg,
of C.(G) as in the discussion above.

LEMMA 6.9. — With notation as above, the representations (Hy, )
have the following property. Let £ denote the image in H; of the charac-
teristic function of the base space. For all ¢ > 0 and compact subsets K of
G there exists T > 0 such that for all t € (0,T] and all f € C.(G) with
IIfllr <1 we have that

17§ =W (F)Ellm, <e

Proof. — We compute that

IFe = w(FElR,
= (fE=W(f)E fE =W (HE)m,

= [, X TETmaE@UE - e heda Haua).

g,heG®

Using that £ is the identity for convolution, this equals

/G(O) Z f(g) ¢t(g Yh) —¢i(g™") — du(h )+¢t(l‘))d,u(x).

g,heG®
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As p is a probability measure, the absolute value of this is bounded above
by

sup |ou(97'h) = (g™ — du(h) + dul2)| D If(9)f(h)]

g,heK

g,heG®
< sup |¢e(g7"h) — de(g ") — be(R) + e (@) fllooll f1lz
g,he K
< sup [Ge(g " h) — de(g™") — de(h) + ().
g,he K

As K is compact and ¢:(g) = e~ tF(9) all four terms in the last expression
can be made to be within €¢/4 of 1 for ¢ suitably small (depending only on
the fixed function F', and K and ¢), so we have the result. O

We need one more ancillary lemma that will let us use largeness.

LEMMA 6.10. — A groupoid G is large if and only if for every compact
subset K of G there exists f € C.(G) with support in G \ K, values in
[0,1], and with W(f) : G(©) — C equal to the constant function with value
one.

Proof. — If K C G is compact, and f € C.(G) is a function as in the
statement, then we have that

L=Y(N)@)= Y flo)= Y. f

geG® geG*\K

for all z € G(9). Hence in particular G* \ K must be non-empty for each z,
which is largeness.

Conversely, assume G is large. Then for each z € G(©), we may choose an
open bisection B, € G\ K such that r(B,) > z. As G(9) is compact, we may
take a finite subcover {r(By,),...,r(By,,)} of the cover {r(B,) | z € G}
of G, Choose a partition of unity {¢; : G0 — [0,1] | i € {1,...,n}}
on G such that (bz(-o) has compact support contained in r(B,,). Define
moreover f; : G — [0,1] by

ﬂ@):{@wm» g€B,

0 otherwise.

Then each f; is continuous and compactly supported. Define finally f :=
Sor_, fi- It is not too difficult to see that this f has the properties required
by the statement, so we are done. 0

We are now ready to complete the proof of Theorem 6.6.
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Proof of Theorem 6.6. — With notation as above, let us assume for con-
tradiction that G is a-T-menable, has Property (T), that G is equipped
with an invariant probability measure u, and that G is large. To derive a
contradiction, it will be sufficient to prove that no representation (Hy, ;)
has a non-zero invariant vector. Indeed, Lemma 6.9 then contradicts Prop-
erty (T).

Let us then assume for contradiction that some (H;, ;) does have an
invariant unit vector, say . Choose n € C.(G) so that || — n||g, < 1/4.
Let

(6.2) m = 4|l 1]l

Let N be the support of n and choose a compact subset K such that
|#:(g)] < 1/m for all g € N~1. (G \ K) - N; this is possible by properness
of F, by compactness of N, and by the fact that ¢;(g) = e~*¥9) for all
g € G. Let f € C.(G) be as in the definition of largeness for this K.

Now, on the one hand, using invariance of £ we get

(6.3) [, fo)| > (&, FE)| = 2/4 = [{&, W(NHE) - 1/2 = [[¢]]> = 1/2 = 1/2.
On the other hand,
i = [ X A@ A e Do)

g,h,kEG=

For the expression 7(g) f (k)n(k~'h)é:(g~'h) to be non-zero, we must have
that k € G\ K, that k~*h is in N and that g~! € N~!, whence h € k- N C
(G\ K)- N, and so g~ th is in N~!. (G \ K) - N; hence whenever this
expression is non-zero, we have that |¢;(g~h)| < 1/m. It follows that

nf77|<*/ >
G(O)gthG*

The Y7, veg= |f(k)n(E~'h)| is bounded above by |[n]|collf|I7, and the as-
sumptions on f imply that || f||; = 1. Hence we get

ol < el 3 @ (e

geG”

n(g)|lf (k)n(k™"h)|dp(z)

The expression [;) 2 geqe In(g)|du(x) is bounded above by the I-norm
of n, and thus by definition of m (line (6.2)) we get

|(n, fo)| < 1/4.

This contradicts line (6.3), however, completing the proof. O
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We conclude this section with an example showing that the existence of
an invariant probability measure is necessary on Theorem 6.6, and that one
cannot in general conclude that G is compact under the same hypotheses
(as opposed to the weaker conclusion that G is not large).

Example 6.11. — Let I be the free group on two generators acting on its
Gromov, or ideal, boundary X; see for example [6, Section 5.1] for a direct
treatment of this. Let G = X xI" be the associated transformation groupoid.
As T' is a-T-menable, it is not difficult to show that G is a-T-menable.
Moreover, the action of I on X is amenable (see for example [6, Section 5.1]
again) whence C} .. (G) = C}(G) (see for example [6, Corollary 5.6.17]). It
follows from this and the canonical identification C}(G) = C(X) %, T that
the natural inclusion C[I'] — C} . (G) extends to an inclusion C}(T") —
C} .x(G). This implies that the collection Ux of Definition 4.18 consists of
representations of I" that extend to C(I"). As T is not amenable, I" therefore
has Property (T) with respect to Uy in the sense of Definition 4.12. Thanks
to Proposition 4.19, we may conclude therefore that X xI" has Property (T).

To summarise, if G is the transformation groupoid associated to the
action of the free group F3 on its Gromov boundary, then G is a-T-menable
and has Property (T); it is also large, as this is true for any transformation
groupoid X x I'" with X compact and I' infinite. Hence the existence of an
invariant probability measure is needed in Theorem 6.6. Moreover, as is
well-known (and not difficult to check directly from the description given
in [6, Section 5.1]), G is a minimal groupoid, so the existence of an invariant
probability measure is also necessary in Theorem 6.1.

We may also use this example to build a non-compact groupoid G which
is a-T-menable, has Property (T), and for which there exists an invariant
probability measure; thus we cannot get the stronger conclusion that G is
non-compact in Theorem 6.6. Indeed, let T and X be as before, let {pt} be
the trivial groupoid with base space a single point, and let G = X xT'| |{pt}
be the disjoint union with the natural groupoid operations. Then using
the discussion above it is not difficult to see that G is a-T-menable and
Property (T). It is not compact as X x I' is not compact, and it has an
invariant probability measure given by the Dirac mass on the trivial point.

7. Kazhdan projections

Throughout this section, G denotes a groupoid. As usual, groupoids will
be locally compact, Hausdorff, and étale, and have compact base space: see
Convention 2.1.
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In this section we will use Property (T) for a groupoid G to construct
so-called Kazhdan projections in C} . (G), and explore some connections
to exactness properties of C;(G) and the Baum—Connes conjecture. The
analogous classical result in the group case is due to Akemann and Wal-
ter [1]. See also Valette’s paper [23]: Theorem 3.2 from this paper is one
motivation for our approach to constructing Kazhdan projections.

Kazhdan projections are interesting partly as (other than in trivial cases)
they give examples of projections in C} . (G)\ C¢(G); these projections are
thus quite exotic in some sense, and exist for “analytic” as opposed to
“algebraic” reasons.

Another reason Kazhdan projections are interesting is due to their con-
nections to the Baum—Connes conjecture and exactness. This was exploited
to great effect by Higson, Lafforgue, and Skandalis in their construction of
counterexamples to the Baum—Connes conjecture [11]; part of the motiva-
tion for what we do here is to try to better understand some of the ideas
in their work.

In the group case, Kazhdan projections usually refer to projections living
in the maximal groupoid C*-algebra. Here, we also study the existence of
Kazhdan type projections living in completions of C.(G) with respect to
general families of representations. The extra generality causes no difficul-
ties, and covers interesting examples.

DEFINITION 7.1. — Let F be a family of representations of C.(G). The
C*-algebra C%(G) is defined to be the separated completion of C.(G) for
the (semi-)norm defined by

1fll7 =S [ (s

IS

DEFINITION 7.2. — Let G be an groupoid. A projection p € C%(G) is
a Kazhdan projection if its image in any *-representation of C%(G) is the
orthogonal projection onto the constant vectors.

Note that if it exists, a Kazhdan projection is uniquely determined by
the defining condition, so we will just say “the” Kazhdan projection in
future. Note that the Kazhdan projection could exist and be zero: this
happens if and only if C+(G) does not have any *-representations with
non-zero constant vectors. For example, for C%__(G), Corollary 3.5 implies
this happens if and only if G(©) does not admit an invariant probability
measure.

Example 7.3. — Say G is compact. Then the function p = x/(¥(x) or)
from the proof of Proposition 4.1 is the Kazhdan projection in any C'%(G).
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7.1. Existence of Kazhdan projections

Our first goal is to prove a general existence result for Kazhdan projec-
tions.

To state it, recall that a groupoid G is compactly generated if there is
a compact subset K of G such that any subgroupoid of G containing K
must be all of G.

THEOREM 7.4. — Say G is a compactly generated groupoid which has
Property (T) with respect to the family F. Then there exists a Kazhdan
projection p € C%(G).

The proof will proceed via some lemmas.

LEMMA 7.5. — Say G is a compactly generated groupoid that has Prop-
erty (T) with respect to a family of representations F. Then there exists a
constant ¢ > 0 and a finite set ¢1,. .., ¢, of functions G — [0, 1] supported
on relatively compact open bisections such that the set

(7.1) Ufg e Gl ailg) = 1/n}

i=1
generates (G, and such that for any representation (H,w) in F and any
vector £ € H, we have that

(7.2) 1(d: — W(a))El = cll€]l

for at least one i.

Proof. — As G is étale and locally compact, it is covered by its open,
relatively compact bisections. Let K C G be a compact set that is simul-
taneously a Kazhdan set for F, and that generates G. As K is compact,
it therefore admits a finite cover by relatively compact open bisections; let
@1,...,¢, be a partition of unity subordinate to this open cover, so each
¢; takes values in [0, 1], is supported on some open relatively compact bi-
section, and for all g € K, Y1 | ¢;(g) = 1. We claim that ¢1,..., ¢, have
the required properties.

Indeed, as K generates G, the set in line (7.1) generates G as it contains
K. To see the inequality in line (7.2), note that as K is a Kazhdan set there
exists a constant ¢g > 0 such that for any representation (H,7) in F and
any vector { € H, there exists f € C.(G) supported in K with ||f||; <1
and such that

(7.3) I(f =W ())EN = coll€]l-
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Let f; : G© — C be defined by
f(g) thereis g € G* Nsupp(¢;)
fz(.’lﬁ) =

0 otherwise;

as G” Nsupp(¢;) contains at most one point, this makes sense, and each f;
is a bounded Borel function of compact support with ||f;|lcoc < [[f]lr <1
Noting that the representation of C'(G(®)) C C.(G) extends canonically to
a representation of the C*-algebra of bounded Borel functions on G(©), we
may make sense of each f; as an operator on H, and we have the formula

F=Y_ fioi
im1

(where each product f;¢; means convolution of functions, or equivalently
composition of operators) as operators on H. Now, we have from line (7.3)
that

coll€ll < (f = (NEN < Y I(Fidi — T (figi)éll = Znﬂ ¢ — W)l
i=1 i=1
<D illooll (i = T(@)Ell < D ll(i — T (i)l
i=1 i=1
The result follows with ¢ = ¢g/n. O

Now, with notation as in Lemma 7.5, for each i, define

Aj = (i — (i) (¢ — V().
Then clearly each A; is an element of C.(G) whose image in any *-repres-
entation is a positive operator. Define

One should think of A as a combinatorial Laplacian-type operator: indeed,
it is an analogue of the well-studied group Laplacian for a discrete group
with finite generating set S, defined by

Ar = 22 —s—s" = Z(s - 1)*(s—1) eC[I).
s€ES ses
LEMMA 7.6. — With notation as above, for any representation (H,)
of C.(QG), the kernel of w(A) consists exactly of the constant vectors.

Proof. — Fix a representation (H, 7) of C.(G); for simplicity we will omit
7 from the notation. Let £ be a constant vector in H. Then ¢;£ = ¥(¢;)&
for each 7. Hence £ is in the kernel of each A;, so in the kernel of A.
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Conversely, say £ is in the kernel of A. To show that £ is constant, it
will suffice to show that for any g € G, there is a non-negative function
fg + G — C with compact support contained in a bisection, such that
fg(g) = 1, and such that f,& = ¥(f,)¢. Indeed, this suffices because any
element of f € C,(G) can then be written as a finite sum of products of the
form f =" | ¢;f, where g1,...,9, € G, f,, has the properties above,
and v; is in C(G(?)). One then has that

V() =D W(thife)s =D Vil(fo)E =Y tife& = f§,
i=1 =1 i=1

where the second equality uses that 1; is supported on the base space, and
that fg, is supported on a bisection.

Fix g € G. We aim to construct f, with the properties. above. As the
set in line (7.1) generates G, there exist g1, ..., g, in this set such that g =
gk - - - g1. Say n(m) is such that each g,, isin {h € G | ¢ () (h) = 1/n}. We
claim that we can choose continuous functions 1, ..., : G© — [0, o)
and open neighbourhoods U,,, and V,, of g,, with the following properties:

(i) for each m € {1,...,k}, ¥inp(m) is supported on Uy;
(ii) for each m € {1,...,k}, ¥m¢yn(m) is constantly equal to one on V,,;

(iii) for each m € {2,...,k}, s(Up) C r(Vi—1).

We will do this by an iterative construction starting with m = 1. Define
Vi = {h e G | (;5”(1)(]1) > 1/(2n)}7 and Uy := {h e G ‘ ¢n(1)(h) > 0},
so g € V3 C Vi C U; and both U; and Vi are open bisections. Let
Y1 € C(G©) be any non-negative function that is supported in r(Uy),
and is such that 1 (r(h)) = 1/¢n1)(h) for all h € Vi (this formula makes
sense as ¢p(1) is supported on a bisection). Assume now that we have
chosen ¥1,...,Ym_1, U1,...,Up—1, and V1,...,V,,—1 with the right prop-
erties. Let Uy, be any open bisection containing g,, and such that s(U,,) C
7(Vin—1). Choose an open set V,,, such that V;,, 3 g,,, and such that

Choose 1, € C(G®) to be any function that is supported in r(U,,), and
such that 1y, satisfies 1, (r(h)) = 1/¢p(m)(h) on r(Vy,). This completes
the iterative construction.

We claim that the function

(7.4) fg = Vb -+ - V16n(1)

has the required properties. Indeed, note that f; is non-negative and has
compact support contained in a bisection as each ¢; has the same proper-
ties. Moreover, fy(g9) = 1 as (Vm®Pn(m))(gm) = 1 for all m. It remains to
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show that fo& = ¥(f,)§. We prove this by induction on the number of ele-
ments k appearing in an expression as in line (7.4) (and with the properties
from our iterative construction above).

Note first that

0= (¢ A = ZH U(h:)E|?

whence ¢;& = U(¢;)¢ for each 4. It follows that for any m

where the last equality uses that 1), is supported on G(©) and that Gn(m)
is supported on a bisection. In particular, this completes the base case. For
the inductive step, say we know that

Ymnbn(m) = V10n1)€ = Y (mPn(m) -+ V10n(1))§

for some m. Then using line (7.5)

qj(¢m+1¢n(m+1))£ = ¢m+1¢n(m+1)£~

On the other hand, using that W (¢, ¢y (m) - - - Y10n(1)) is constantly equal to
one on r(V,,) (this follows from the properties of the iterative construction),
that ¥4 10n(m+1) is supported in Uy,;1 and that s(Uyy1) € r(Vin), we
have

1/’m+1¢n(m+1) = wm+l¢n(m+1)@(wm¢n(m) o q/Jl(bn(l))
and also that
\Il(wm-i-ld)n(m-ﬁ—l)) = \P(zr[)m-l—ld)n(m-i-l)d}mqsn(m) to d)ld)n(l))
Combining the last four displayed lines gives that

V(Y1 Pn(mt 1) PmPr(m) *** P1Pn(1))E
= VU (Ym+1Pn(m+1))§
= Ym+10nm+1)€
= Vm11Pn(ms 1) Y (WVmPn(m) - V1Pn(1))§
= Vmt1Pn(m+ 1) PmPr(m) = V100 1)E,

which completes the proof. O

LEMMA 7.7. — With ¢ > 0 as in Lemma 7.5, we have that for any
representation of (H,7) in F, the spectrum of w(A) is contained in {0} U
[¢2, 00).
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Proof. — We have already seen that the kernel of w(A) consists precisely
of H™, so it suffices to show that (A&, €) > c2(|€]|? for all € € H,. Indeed,
this follows directly from Lemma 7.5 as we have

(Ag,€) = Z (¢ — W (:))ElI* > €]

as required. O

Putting the above together, we may now complete the proof of Theo-
rem 7.4.

Proof of Theorem 7.4. — With A as above, Lemma 7.7 implies that the
spectrum of A as an element of C%(G) is contained in {0} U [¢?, o). Hence
the characteristic function of zero o} is continuous on the spectrum of A,
and so we may set p := x{01(A) € C%(G). This has the right property by
Lemma 7.6. g

7.2. Kazhdan projections in C}(G) and exactness

In this subsection, we want to study the Kazhdan projection in C*(G)
when it exists. In particular we aim to characterise when it is non-zero.
For this, we need to know when C}(G) has representations with non-zero
constant vectors.

The next lemma is the key technical ingredient. To state it, recall from
Example 3.8 that if G is a groupoid and z € G(9), then the regular represen-
tation of C.(G) is defined to be the pair (¢2(G,), T, ), where for f € C.(G),
7. (f) acts via the usual convolution formula

(ma(N)E)(g) = D F(MEMRTg).
heGr(9)

LEMMA 7.8. — Let G be a groupoid and let ({*(G,), ) be the regular
representation associated to some x € G(©). Then the invariant vectors in
(?(G,) in the sense of Definition 3.1 are exactly the functions ¢ : G, — C
that are constant in the usual sense.

Proof. — 1t is straightforward to check that a constant function in ¢2(G,,)
is invariant; we leave this to the reader.

Conversely, let £ € (2(G,) be a norm one invariant vector. Then the
associated probability measure 1 on G(®) defined on f € C.(G(®) by

p(f) = (&6 =Y l£9) 9))

g€Gy
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is invariant by Proposition 3.4. The measure p equals the weighted sum
> geG, 1€(9)|?6,(4) of Dirac masses. Consider the orbit Gz := r(G®), and
define
w:Gr—[0,1], y— Y &9,
geG,NGY

so we have pn =3, w(y)dy. As p is invariant, we have that

/ fdrp = / fds*,
G G
or in other words that

(7.6) STwly) Yo fh) =D wly) Y f(h)
yeGr heGy, yeEGx heGY

for all f € C.(G). Now, for y,z € Gz, fix h € G with s(h) = y and
r(h) = z. Let (U;);er be a basis of open neighbourhoods of h with compact
closure, and (f;) be a net of functions in C.(G) such that the support of
fi is contained in Uy, 0 < f; < 1, and f;(h) = 1 for all <. Then substituting
fi into line (7.6) above and taking the limit over ¢ forces w(y) = w(z), or
in other words that w is constant on the orbit Gx. As p is a probability
measure, this is impossible unless Gz is finite.

Summarising, then: at this point, we have that the cardinality n of Gz
is finite, and for each y € Gz,

p{y}) = 1/n.

As the set Gz is finite (and as G is étale), for each g € G there exists a

continuous function f : G — [0, 1] supported on a relatively compact open
bisection such that f(g) = 1 and f(h) = 0 for all h € G, \ {g}. As & is
constant, we have that

as functions on G, and evaluating both sides of the line above at g gives
&(z) = &(g). This just says that & is constant (in the naive sense of “taking
the same value at each point of G,.”), so we are done. O

The following result gives a fairly precise characterisation of what the
Kazhdan projection “looks like” in C}(G). To state it, let E : CF(G) —
C(G®) be the canonical conditional expectation of [17, Proposition 2.3.22].

PROPOSITION 7.9. — Let G be a groupoid, and assume that there exists
a Kazhdan projection p € C*(G). Then

{x € GO | E(p)(z) >0} = {x € X | G, is finite }.
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In particular, if a Kazhdan projection p exists in C*(G), then it is non-zero
if and only if the source fibre G is finite for some x € G(©).

Proof. — Let € G and let (£*(G,),7,) be the associated regular
representation. As in the proof of [17, Proposition 2.3.20], we have that

E(a)(z) = (0z, mu(a)dz)e2(a,)

for any a € C}(G). Using Lemma 7.8, the Kazhdan projection m,(p) is
non-zero if and only if G, is finite, in which case its image consists of all
constant vectors. Note moreover that if G, is finite, then this description
gives that

(02, M2 (p)6s) =

|G|

Hence we have that

1/|G.| G, finite
E T) =
®)(@) {O G, infinite.

The given equality of sets follows.
The remaining statement follows as the canonical conditional expectation
E: CG) — C(GO) is faithful (see [17, Proposition 2.3.22]). O

We now turn to an application to (inner) exactness. Recall first that if
G is a groupoid, a subset E of G(¥) is invariant if whenever g € G is such
that s(g) is in E, we also have that r(g) is in E. If F is an open or closed
invariant subset of G(9), then the restriction G|g := G it itself a (locally
compact, Hausdorff, étale) groupoid. It follows directly from the definition
of the reduced groupoid C*-algebra (see for example [17, Section 2.3.4])
that if F' is a closed invariant subset of G(°), then the natural restriction
map C.(G) — C.(G|r) extends to quotient *-homomorphism C}(G) —
C}(G|F). Moreover, if U is an open invariant subset of G, then C.(G|y)
is an ideal in C.(G), and the inclusion C.(G|y) — C.(G) extends to an
inclusion of a C*-ideal C}(G|y) — C(G).

If now F is a closed invariant subset of G(9) and U its (necessarily open
and invariant complement), then in the diagram below

0 —— C}(Gly) —— C}(G) —— C¥(Glp) —=0

all the conditions needed to be a short exact sequence are always satisfied,
except one may have that the kernel of 7 strictly contains the image of ¢.
While it is often true that this sequence will be exact, this need not always
be the case, leading to the next definition.
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DEFINITION 7.10. — A groupoid G is inner exact if for any open invari-
ant subset U of G(°) with closed complement F, the canonical sequence

0 ——C/(Gly) —= C(G) —= CF(G|p) —=0
discussed above is exact in the middle.

Although it looks a little technical at first, the proposition below (com-
bined with Theorem 7.4) gives many examples of non-inner exact groupoids
coming from Property (T). It, or variations of it, underlies many of the
counterexamples to the Baum—Connes conjecture considered in [11]. We
do not claim, however, that the result is optimal in any sense.

PROPOSITION 7.11. — Say G is a groupoid such that the Kazhdan pro-
jection exists in C¥(G). Assume moreover that there is a closed invariant
subset F of G(°) with complement U = G() \ F and a net (z;) in U with
the following properties:

(i) for every x € F, G, is infinite;
(ii) for every i, G, is finite;
(iii) for any compact subset K of U, the orbit Gx; :== {r(g) | g € G, }
does not intersect K for all suitably large i.

Then the sequence
0 — C3(Gly) — C}(G) —= C(G|p) —=0
is not exact, and in particular G is not inner exact.

Proof. — With assumptions as in the proposition, note that the Kazhdan
projection in C}(G) has to map to the Kazhdan projection in C}(G|r),
which is zero by the assumption that F(®) contains no points with finite
source fibre, and Proposition 7.9. Thus we must show that p is not in
C}(G|v); assume for contradiction that this is the case, so in particular
there exists a € C.(G|v) such that [[p — al|cx(a) < 1/2.

Let (x;) be the net in the assumptions. Then as each G, is finite, Propo-
sition 7.9 implies that the image 7, (p) under the regular representation ,,
is a non-trivial projection, so norm one. On the other hand, the assumption
that the orbits Gx; are eventually disjoint from any compact subset of U
implies that 7., (a) = 0 for all suitably large i. Thus we have

1/2> [lp = all ¢z (@) = limsup |7z, (p) — 72, ()| = 1,

which is the desired contradiction. O
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Examples 7.12. — There are two interesting examples where Proposi-
tion 7.11 applies that we have discussed already in this paper; no doubt
other examples are possible, but we will content ourselves with these here.

The first occurs for HLS groupoids (Definition 4.9), associated to a group
and approximating sequence with Property (7) as in Proposition 4.15. In
this case one can take U to be the subset N of the unit space NU {oo}, and
F to be the singleton {co}.

A second interesting example occurs when X is an expander as in Defini-
tion 4.7. Then G(X) has Property (T) with respect to the singleton family
Fo2(x) consisting of the natural representation on ¢?(X) by Proposition 4.8.
We have that C3(G(X)) equals C(G(X)) in this case (see for example [18,
Proposition 10.29]), so the Kazhdan projection exists in C*(G(X)) by The-
orem 7.4. In this case, recall that G(X)(® is the Stone-Cech compactifica-
tion of X. One can take U to be X, and F to be the Stone-Cech remainder
BX\ X CGX)O.

7.3. Kazhdan projections as K-theory classes

In this subsection, we say a little about the class of the Kazhdan projec-
tion in K-theory. We start with a discussion of failures of inner K-exactness.

DEFINITION 7.13. — A groupoid G is inner K-exact if for every open
invariant subset U C G©) with closed complement F, the corresponding
sequence

K. (CHGlv)) — K (CF(G)) — K.(CH(G|F))
of K-theory groups is exact in the middle.

PROPOSITION 7.14. — Under the assumptions of Proposition 7.11,
the class [p] € Ko(C!(G)) of the Kazhdan projection goes to zero in
Ko(C#(G|F)), but is not in the image of the map Ko(C!(G|y)) —
Ko(Cr(Q)). In particular, G fails to be inner K-exact.

Proof. — We have seen that p itself goes to zero in C*(G| ), so it suffices
to show that [p] is not in the image of the map K, (C}(G|v)) — K.(C(G)).
Assume for contradiction that it is, so there exists some projection ¢ €

—_~

M, (C*(G|y)) and k < n such that [p] = [1x] — [¢] in Ko(C*(G)) (here
~ denotes unitisation, and 1j denotes the idempotent in M, (C) with k
ones down the main diagonal, followed by n — k zeros), and such that
q = 1 + a for some self-adjoint a € M, (C*(G|v)). Let b € M, (C.(Gv))
be self-adjoint and such that ||a — b|| < 1/100.
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For each i, let 7, : C*(G) — B({*(G,)) denote the regular represen-
tation, where (x;) is the net in the assumptions. Then for each i, the
class [, (p)] € Ko(B({?*(G:))) = Z corresponds to the generator 1, as
7., (p) is a rank one projection by Proposition 7.9. On the other hand, if
X(1/2,00) denotes the characteristic function of this interval, then the fact
that [[¢ — (1x + b)[| < 1/100 implies that X(1/2,) is continuous on the
spectrum of 7, (1x + b) and moreover that

1= [m2,(p)] = [m2: (1e)] = [X(1/2,00) (T2, (1 + D)]
= [Li] = [X(1/2,00) (T2, (Lg) + 72, (b))]-
As b is compactly supported, the assumption that the orbits Gx; eventually
do not intersect any compact subset of U implies that 7., (b) is zero for all

suitably large i. Thus the above displayed line implies that for all suitably
large i, 1 = 0 in Z, giving the desired contradiction. O

Combining this with the observation of Higson, Lafforgue, and Skandalis
that a groupoid satisfying the Baum—Connes conjecture must be inner K-
exact (see [11, Section 1]), we get the following corollary.

COROLLARY 7.15. — Under the assumptions of Proposition 7.11, the
Baum-Connes conjecture (with trivial coefficients) must fail for at least
one of the groupoids G|y, G, or G|F.

Another interesting connection to the Baum—Connes conjecture is given
by the following result, saying that the class of the Kazhdan projection
cannot be in the image of the maximal Baum—Connes assembly map in
some cases. Variants of this are well-known for groups: see for example [10,
Section 5).

LEMMA 7.16. — Let G be a groupoid such that the Kazhdan projection
p exists in C} . (G), and such that no source fibre is finite. Assume moreover
that the class [p] € Ko(C.<(G)) is non-zero, and that G satisfies the
Baum—Connes conjecture. Then [p] is not in the image of the maximal
Baum—Connes assembly map.

Proof. — We have a commutative diagram

Kiop(G) g K* (C;;ax(G))

e

K.(Cr (@)

where the maps labeled pu,,, and u, are respectively the maximal and re-
duced Baum—Connes assembly maps, and the map labeled A, is the map
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on K-theory induced by the canonical quotient A : C} . (G) — C}(G).
We are assuming that p,. is an isomorphism, and Proposition 7.9 plus the
assumption that no source fibre in G is finite implies that the image of
[p] € Ko(C} .« (G)) under A, is zero. The result follows as we are assuming

that [p] € Ko(Cy < (G)) is non-zero. O

max
(G@)) cannot
be in the image of the maximal assembly map, without assuming that G
satisfies the Baum—Connes conjecture; this is known for discrete groups [10,
Section 5].

It would be also be interesting to have a good characterisation of when
[p] # 0 in K, (C} . (G)); this is automatic in the group case, but we do not
have a good general condition. We do at least have the following observa-
tion. It is implicit in the proof of Proposition 7.14, but it seemed potentially
useful to make it explicit.

It would be interesting if one could show that [p] € Kq(C

max

LEMMA 7.17. — Say G is a groupoid, and assume the Kazhdan projec-
(G). Then [p] # 0 in Ko(Ck4(G)).

tion is not zero in C},

Proof. — Proposition 7.9 implies that there is some z € G with G,
finite, and Lemma 7.8 implies that m.(p) # 0. As B(¢*(G,)) is finite di-
mensional, all non-trivial projections in this algebra have non-zero K
class. Hence the map (7). : Ko(Cly(G)) — Ko(B(*(G,)) sends [p] €
Ky (C?4(GQ)) to something non-zero, and so [p] itself is non-zero. O

8. Questions

We conclude the paper by summarising some open problems that we
think are interesting. Some of these we thought about and could not make
progress with; others we did not attempt to address here mainly to keep the
paper to a reasonable length (and would be more than happy for someone
else to take up).

(i) Does Property (T) for a groupoid G imply some sort of fixed point
property for affine actions on bundles of Hilbert spaces over G(©),
analogous to the classical Delorme—Guichardet theorem for groups
(see [5, Chapter 2])?

(ii) What (if any) is the precise relationship between our Property (T),
and the Dong—Ruan Property (T) from Definition 5.4 above?
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(iii) (Suggested by Jesse Peterson) Is there any connection between our
Property (T) and Bekka’s definition [4] of Property (T) for (pairs
of) C*-algebras?

(iv) Is Property (T) Morita invariant?
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