
Université Grenoble Alpes

ANNALES DE
L’INSTITUT FOURIER

Nicolas Marqe

An ε-regularity result with mean curvature control for
Willmore immersions and application to minimal bubbling.
Tome 72, n

o
2 (2022), p. 639-684.

https://doi.org/10.5802/aif.3464

Article mis à disposition par son auteur selon les termes de la licence

Creative Commons attribution – pas de modification 3.0 France

http://creativecommons.org/licenses/by-nd/3.0/fr/

C EN T R E
MER S ENN E

Les Annales de l’Institut Fourier sont membres du

Centre Mersenne pour l’édition scienti�que ouverte

www.centre-mersenne.org e-ISSN : 1777-5310

https://doi.org/10.5802/aif.3464
http://creativecommons.org/licenses/by-nd/3.0/fr/
https://www.centre-mersenne.org/


Ann. Inst. Fourier, Grenoble
72, 2 (2022) 639-684

AN ε-REGULARITY RESULT WITH MEAN
CURVATURE CONTROL FOR WILLMORE

IMMERSIONS AND APPLICATION TO MINIMAL
BUBBLING.

by Nicolas MARQUE (*)

Abstract. — In this paper, we prove a convergence result for sequences of
Willmore immersions with simple minimal bubbles. To this end, we replace the
total curvature control in the proof of the ε-regularity for Willmore immersions by
a control of the local Willmore energy.
Résumé. — Dans cet article, nous montrons une convergence pour des suites

d’immersions de Willmore à bulles minimales simples. À cette fin, nous rempla-
çons le contrôle par la courbure totale dans la preuve de l’ε-régularité pour les
immersions de Willmore par un contrôle de l’énergie Willmore locale.

1. Introduction

The following is primarily concerned with the study of Willmore immer-
sions in R3. Let Φ be an immersion from a closed Riemann surface Σ into
R3. We denote by g := Φ∗ξ the pullback by Φ of the euclidean metric ξ of
R3, also called the first fundamental form of Φ or the induced metric. Let
dvolg be the volume form associated with g. The Gauss map of Φ is the
normal to the surface. In local coordinates (x, y):

~n := Φx × Φy
|Φx × Φy|

,

where Φx = ∂xΦ, Φy = ∂yΦ and × is the usual vectorial product in R3.
Denoting π~n the orthonormal projection on the normal (meaning π~n(v) =
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〈~n, v〉~n), the second fundamental form of Φ at the point p ∈ Σ is defined
as follows.

~Ap(X,Y ) := Ap(X,Y )~n := π~n
(
d2Φ (X,Y )

)
for all X,Y ∈ TpΣ.

The mean curvature of the immersion at p is then

~H(p) = H(p)~n = 1
2 Trg (A)~n,

while its tracefree second fundamental form is

Åp(X,Y ) = Ap(X,Y )−H(p)gp(X,Y ).

The Willmore energy is defined as

W (Φ) :=
∫

Σ
H2 dvolg .

Willmore immersions are critical points of this Willmore energy. The Will-
more energy was already under scrutiny in the XIXth century in the study
of elastic plates, but to our knowledge W. Blaschke was the first to state
(see [5]) its invariance by conformal diffeomorphisms of R3 (which was
later rediscovered by T. Willmore, see [25]) and to study it in the context
of conformal geometry.
While the Willmore energy is the canonically studied Lagrangian, its in-

variance is contextual. Indeed,W is not invariant by inversions whose center
is on the surface (the simplest example is the euclidean sphere which is sent
to a plane once inverted at one of its points). The true pointwise confor-
mal invariant (as shown by T. Willmore, [25]) is in fact

∣∣Åp∣∣ dvolgp . The
tracefree curvature and the total curvature are then two relevant energies,
respectively defined as follows:

E(Φ) :=
∫

Σ

∣∣A∣∣2
g

dvolg =
∫

Σ
|∇g~n|2 dvolg,

E(Φ) :=
∫

Σ

∣∣Å∣∣2
g

dvolg .

Quick and straightforward computations (done in Appendix A.1 in a con-
formal chart) ensure that both

(1.1) E(Φ) = 4W (Φ)− 4πχ(Σ)

with χ(Σ) the Euler characteristic of Σ, and

(1.2) E(Φ) = 2W (Φ)− 4πχ(Σ).

The invariance of W when the topology of the surface is not changed then
follows from (1.2). A Willmore surface is thus a critical point of W , E
and E .

ANNALES DE L’INSTITUT FOURIER
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Great strides in the understanding of Willmore surfaces were made by E.
Kuwert and R. Schatzle (see [14] and [12]) and then by T. Rivière, who in-
troduced the framework of weak immersions(1) and Willmore conservation
laws (see for instance [22, Theorem I.4]). Y. Bernard later showed in [2]
that they stemmed from the conformal invariance ofW . These conservation
laws allow for the introduction on simply connected domains of auxiliary
Willmore quantities ~L, S and ~R, defined as follows

(1.3)

∇⊥~L = ∇ ~H − 3π~n
(
∇ ~H

)
+∇⊥~n× ~H,

∇⊥S = 〈~L,∇⊥Φ〉,

∇⊥ ~R = ~L×∇⊥Φ + 2H∇⊥Φ.

The second and third quantities, S and ~R, are remarkable in that they
solve a Jacobian-like system that allows the use of Wente’s lemmas

(1.4)


∆S = −

〈
∇~n,∇⊥ ~R

〉
∆~R = ∇~n×∇⊥ ~R+∇⊥S∇~n

∆Φ = 1
2

(
∇⊥S.∇Φ +∇⊥ ~R×∇Φ

)
.

Exploiting these quantities and system (1.4) yielded a variety of ε-regularity
results for Willmore immersions (following is a combination of Theorem I.5
in [22] and Theorem I.1 in [3]).

Theorem 1.1. — Let Φ ∈ E(D) be a conformal weak Willmore im-
mersion. Let ~n denote its Gauss map, H its mean curvature and λ =
1
2 log

( |∇Φ|2
2
)
its conformal factor. We assume

‖∇λ‖L2,∞(D) 6 C0.

Then there exists ε0 > 0 such that if

(1.5)
∫
D
|∇~n|2 < ε0,

then for any r < 1 and for any k ∈ N

‖∇k~n‖2L∞(Dr) 6 C
∫
D
|∇~n|2 ,

‖e−λ∇kΦ‖2L∞(Dr) 6 C

(∫
D
|∇~n|2 + 1

)
,

with C a real constant depending on r, C0 and k.

(1)Denoted E(Σ), see Definition 2.1 for more details
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This theorem in fact followed a preexisting result of E. Kuwert and
R. Schätzle (see [13]). T. Rivière introduced the auxiliary quantities, pin-
pointed their key role and originally wrote a proof in arbitrary codimension
(see for instance [22, Theorem I.5]).

Such results induce a now classical concentration/compactness dialectic,
as originally developed by J. Sacks and K. Uhlenbeck, for Willmore sur-
faces with bounded total curvature (or alternatively, given (1.1), bounded
Willmore energy and topology). In essence, sequences of Willmore sur-
faces converge smoothly away from concentration points, on which trees of
Willmore spheres are blown (see [7] for an exploration of the bubble tree
phenomenon in another simpler case). Y. Bernard and T. Rivière developed
an energy quantization result for such sequences of Willmore immersions
assuming their conformal class is in a compact of the Teichmuller space
(see [3, Theorem I.2]). P. Laurain and T. Rivière then showed one could
replace the bounded conformal class hypothesis by a weaker convergence of
residues linked with the conservation laws. Since we will work with bounded
conformal classes, we here give abridged versions of Theorems I.2 and I.3
of [3].

Theorem 1.2. — Let Φk be a sequence of Willmore immersions of a
closed surface Σ. Assume that

lim sup
k→∞

W (Φk) <∞,

and that the conformal class of Φ∗kξ remains within a compact subdomain
of the moduli space of Σ. Then, modulo extraction of a subsequence, the
following energy identity holds

lim
k→∞

W (Φk) = W (Φ∞) +
p∑
s=1

W (ηs) +
q∑
t=1

[W (ζt)− 4πθt] ,

where Φ∞ (respectively ηs, ζt) is a possibly branched smooth immersion
of Σ (respectively S2) and θt ∈ N. Further, there exists a1 . . . an ∈ Σ such
that

Φk → Φ∞ in C∞loc
(
Σ\{a1, . . . , an}

)
up to conformal diffeomorphisms of R3 ∪ {∞}. Moreover, there exists a
sequence of radii ρsk, points xsk ∈ C converging to one of the ai such that
up to conformal diffeomorphisms of R3

Φk (ρsky + xsk)→ ηs ◦ π−1(y) in C∞loc (C\{finite set}) .

ANNALES DE L’INSTITUT FOURIER
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Finally, there exists a sequence of radii ρtk, points xtk ∈ C converging to one
of the ai such that up to conformal diffeomorphisms of R3

Φk
(
ρtky + xtk

)
→ ιpt ◦ ζt ◦ π−1(y) in C∞loc (C\{finite set}) .

Here, ιpt is an inversion at p ∈ ζt(S2). The integer θt is the density of ζt
at pt.

While Theorem 1.2 states an energy quantization for W , equality VIII.8
in [3] offers in fact a stronger energy quantization for E. The ai are the
aforementioned concentration points and the ηs and ιpt ◦ζt are the bubbles
blown on those concentration points. More precisely, the ηs are the compact
bubbles, and the ιpt ◦ζt the non-compact ones. Non-compact bubbles stand
out as a consequence of the conformal invariance of the problem (see [15]
to compare with the bubble tree extraction in the constant mean curvature
framework). One might notice that W (ιpt ◦ζt) = W (ζt)−4πθt, and deduce
that if W (ζt) = 4πθt, then the bubble ιpt ◦ ζt is minimal. This case, which
we will refer to as minimal bubbling will be of special interest to us in this
article. Further, if there is only one bubble at a given concentration point
we will call the bubbling simple. Figures 1.1 and 1.2 illustrate two a pri-
ori possible bubbling configurations: Figure 1.1 presents a simple minimal
bubble, while Figure 1.2 displays a bubble tree.
These bubble trees have been studied with success: works from Y. Li

in [18] proved that bubble trees cannot be embedded, and P. Laurain and
T. Rivière (see [16]) ensured that compact simple bubbles cannot appear.
Non-compact bubbling thus remains the only simple bubbling to consider,
with minimal simple bubbling being a prominent example (with the lowest
total energy) and the main subject of the present paper. As an illustration,
one can keep in mind the configuration of Figure 1.1: an Enneper surface
(the bubble) is parametrized over a disk and scaled down with a dilation
to be glued on the branch point of a branched Willmore surface (the limit
surface: for instance, an inverted Chen–Gackstatter torus as represented in
Figure 1.1, but one could also imagine an inverted López surface).

We now state our main result.

Theorem 1.3. — Let Φε : D → R3 a sequence of conformal, weak,
Willmore immersions, of Gauss map ~nε, mean curvature Hε and conformal
factor λε, of parameter ε > 0. We assume

(1)
∫
D |∇~n

ε|2 dz 6M <∞,
(2) ‖∇λε‖L2,∞(D) 6M ,

(3) limR→∞

(
limε→0

∫
D 1
R
\DεR |∇~n

ε|2 dz
)

= 0,

TOME 72 (2022), FASCICULE 2
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(4) Φε → Φ0 in C∞loc (D\{0}), with Φ0 a branched Willmore immersion
on D,

(5) There exists Cε > 0 such that Φε(ε.)−Φε(0)
Cε → Ψ in C∞loc (C), with Ψ

a minimal immersion (that is of mean curvature HΨ = 0).

Then Φε → Φ0 C2,α(D) for all α < 1.

Such assumptions are natural if we consider sequences of Willmore im-
mersions of a compact Riemann surface with uniformly bounded total cur-
vature and such that the conformal class of the induced metric is in a
compact of the moduli space. Indeed, thanks to Theorem 1.2, such a se-
quence ξk converges smoothly away from concentration points. Then, in a
conformal chart centered on such a point, ξk yields a sequence of confor-
mal, weak Willmore immersions Φk : D → R3 converging smoothly away
from the origin (i.e. Hypothesis (4)). Hypotheses (1) and (2) stand if we
choose proper conformal charts (see Theorem 2.3 below for more details).
Hypothesis (5) then simply specifies that we consider the case where there
is only one simple minimal bubble which concentrates at an εk scale. For
simplicity’s sake we have reparametrized our sequence of immersion by
the concentration scale ε. Hypothesis (3) is then inequality VIII.8 in [3].
An immediate corollary is the following convergence theorem, which is an
improvement over previous convergence results.

Corollary 1.4. — Let Φk be a sequence of Willmore immersions of
a closed surface Σ satisfying the hypotheses of Theorem 1.2. We further
assume that at each concentration point, a single minimal bubble is blown.
Then Φk → Φ0 C2,α (Σ) for all α < 1.

In Theorem 1.3 and Corollary 1.4, the convergence is weaker than in
Theorem 1.2, because they present a convergence result across the concen-
tration points. The convergence is of course still smooth away from the
concentration points. However, while at these points the surfaces behave
more smoothly than expected, we cannot a priori deduce a C∞ convergence
across them. Indeed, we will show below that the structure of the equations
(weak controls on Å) limits us to aW 3,p control on Φ, from which the C2,α

result is deduced (see (5.16) below). While the W 3,p control comes natu-
rally in the weak framework, we chose to present a C2,α convergence result,
as it seems more telling in such a geometric situation.
Theorem 1.3 and Corollary 1.4 are to be viewed in the context of other

studies of Willmore compactness. As has been mentioned, simple bubbling
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compact of the moduli space. Indeed, thanks to theorem 1.2, such a se-

quence ξk converges smoothly away from concentration points. Then, in a

conformal chart centered on such a point, ξk yields a sequence of conformal,

weak Willmore immersions Φk : D → R3 converging smoothly away from

the origin (i.e. hypothesis 4). Hypotheses 1 and 2 stand if we choose proper

conformal charts (see theorem 2.3 below for more details). Hypothesis 5

then simply specifies that we consider the case where there is only one

simple minimal bubble which concentrates at an εk scale. For simplicity’s

sake we have reparametrized our sequence of immersion by the concentra-

tion scale ε. Hypothesis 3 is then inequality VIII.8 in [4]. An immediate

corollary is the following convergence theorem, which is an improvement

over previous convergence results.

ε3E
�
.
ε

�

triple branch point

Figure 1.1. Desingularizing the inversion of a Chen-Gackstatter sur-

face with a piece of Enneper.

SUBMITTED ARTICLE : HEPSILONREGULARITYAIF.TEX

Figure 1.1. Desingularizing the inversion of a Chen–Gackstatter sur-
face with a piece of Enneper.

is necessarily non-compact. Further, in [16], the authors proved compact-
ness below for Willmore immersions satisfying W < 12π. The main candi-
date to realize this threshold would be the previously described scaled down
simple Enneper bubble glued on the branch point of a Chen–Gackstatter
torus (see Figure 1.1). Theorem 1.3 represents a first step in understanding
such bubbling. If one could prove it cannot occur, the compactness ceiling
would then be increased.

Added in Proof. During the reviewing process, the author applied and
furthered these studies (in [19]). He proved that the configuration displayed
in Figure 1.1 was impossible, and that the regularity found increased the
compactness ceiling to sequences of energy below or equal 12π. On the other
hand, the first part of [19] displays an explicit example of Willmore minimal
bubbling (using an Enneper surface to desingularize the branch point of an
inverted López surface) which can illustrate this article’s studies.

TOME 72 (2022), FASCICULE 2
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Figure 1.2. Using a minimal surface to glue a Clifford torus and 3 spheres.

Corollary 1.4. — Let Φk be a sequence of Willmore immersions of

a closed surface Σ satisfying the hypotheses of theorem 1.2. We further

assume that at each concentration point, a single minimal bubble is blown.

Then Φk → Φ0 C2,α (Σ) for all α < 1.

In theorem 1.3 and corollary 1.4, the convergence is weaker than in the-

orem 1.2, because they present a convergence result across the concen-

tration points. The convergence is of course still smooth away from the

concentration points. However, while at these points the surfaces behave

more smoothly than expected, we cannot a priori deduce a C∞ convergence

across them. Indeed, we will show below that the structure of the equations

(weak controls on Å) limits us to a W 3,p control on Φ, from which the C2,α

result is deduced (see (5.16) below). While the W 3,p control comes natu-

rally in the weak framework, we chose to present a C2,α convergence result,

as it seems more telling in such a geometric situation.

Theorem 1.3 and corollary 1.4 are to be viewed in the context of other

studies of Willmore compactness. As has been mentioned, simple bubbling

is necessarily non-compact. Further, in [18], the authors proved compact-

ness below for Willmore immersions satisfying W < 12π. The main candi-

date to realize this threshold would be the previously described scaled down

simple Enneper bubble glued on the branch point of a Chen-Gackstatter
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Theorem 1.3 will be proven through a modification of Theorem 1.1. In
the case of minimal bubbling, ∇~n concentrates, but H∇Φ does not. We will
then aim to prove an ε-result replacing the small total curvature control
of Theorem 1.1 by a small Willmore energy control. Studying the proof of
Theorem 1.1 reveals that Hypothesis (1.5) is used twice.
The first time is to show a Harnack inequality on the conformal factor λ

(following work from F. Hélein, see [10], or [20] for a different treatment by
S. Müller and V. Šverák), and deduce a L2,∞ control on the first Willmore
quantity ~L. This Harnack inequality stems from putting the classical Liou-
ville equation in divergence form with a local Coulomb frame, and applying
Wente’s lemmas. Controlling this frame requires a small estimate on ∇~n
that cannot be avoided. However, this can be done with some flexibility.
For instance, on disks of bounded (not necessarily small) ∇~n energy, one
can extend these results up to counting the number of small energy disks
needed to cover the domain. To this end, we introduce

(1.6) r0 = 1
ρ

inf
{
s

∣∣∣∣∣
∫
Bs(p)

| ∇~n|2 = 4π
3 , ∀ p ∈ Dρ s.t. Bs(p) ⊂ Dρ

}
.

This parameter marks how relatively small a ball has to be to ensure that it
does not contain too much energy, and its inverse will bound the number of

ANNALES DE L’INSTITUT FOURIER
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balls with small energy covering the disk. Alternatively, in the framework
of Theorem 1.2, it measures how concentrated ∇~n is on a disk.
The second use of Hypothesis (1.5) lies in the exploitation of the peculiar

Jacobian form of system (1.4) to break its criticality. We will show in this
article that it can be rewritten into

(1.7)


∆S =

〈
H∇Φ,∇⊥ ~R

〉
∆~R = −H∇Φ×∇⊥ ~R−∇⊥SH∇Φ

∆Φ = 1
2

(
∇⊥S.∇Φ +∇⊥ ~R×∇Φ

)
.

This new equivalent system, along with some tight estimates in Lorentz
spaces will yield an ε-regularity result with a small Willmore energy hy-
pothesis.

Theorem 1.5. — Let Φ ∈ E(D) satisfy the hypotheses of Theorem 2.12.
Then there exists ε′0 depending only on C0 such that if

‖H∇Φ‖L2(D) 6 ε
′
0,

then for any r < 1 there exists a constant C ∈ R depending on r, C0, p
and r0 (defined in (1.6)) such that

‖H∇Φ‖L∞(Dr) 6 C‖H∇Φ‖L2(D),

and
‖∇Φ‖W 2,p(Dr) 6 C‖∇Φ‖L2(D)

for all p <∞.

Theorem 1.5 as stated makes use of the parameter r0, and can be applied
when r0 is bounded from below, but degenerates as soon as this is no longer
the case. However this dependance on r0 only appears as an artefact of
an estimate on ~L (see Theorem 2.14 below). In fact, we will prove a less
immediately eloquent but more adaptable result (see Theorem 3.1 below).
One has to be aware that estimates in r0 will not enable us to prove

Theorem 1.3. Indeed, as the energy concentrates, r0 ' ε goes to 0. However,
applied to a ball of radius ε, Theorem 2.12 will yield uniform estimates for
~L on the bubble Dε. One then only has to control ~L on the so-called “neck
area”: D\Dε, and combine these two to control ~L across the concentration
point. This estimate will then be exploited through the equations to obtain
the result.
In Section 2 we will recall the notion of weak Willmore immersions and

prove generic controls on ~L, H∇Φ and ∇~n in Lorentz spaces. Section 3 will
be devoted to the proof of Theorem 1.5 (and its more general version 3.1)
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while Section 4 will focus on controlling ~L on annuli of degenerating confor-
mal classes. We will conclude in Section 5 with the proof of Theorem 1.3.

2. First regularity results for weak Willmore immersions

2.1. Weak Willmore immersions of a surface

Let Σ be an arbitrary closed compact two-dimensional manifold. Let g0
be a smooth “reference” metric on Σ. The Sobolev spaces W k,p

(
Σ,R3) of

measurable maps from Σ into R3 is defined as

W k,p
(
Σ,R3) :=

{
f measurable: Σ→ R3 s.t

k∑
l=0

∫
Σ

∣∣∇lg0
f
∣∣p
g0

dvolg0<∞

}
.

Since Σ is assumed to be compact, this definition does not depend on g0.
We will work with the concept of weak immersions introduced by T. Riv-

ière, which represent the correct starting framework for studying Willmore
immersions. One might notice the presentation of this notion has changed
through the years (compare Definition I.1 in [22] with its equivalent in [16,
Subsection 1.2]). While we use the latter, which is sufficient for our needs,
one could take slightly less demanding (albeit more complex) starting hy-
potheses.

Definition 2.1. — Let Φ : Σ→ R3. Let gΦ = Φ∗ξ be the first funda-
mental form of Φ and ~n its Gauss map. Then Φ is called a weak immersion
with locally L2-bounded second fundamental form if Φ ∈W 1,∞ (Σ), if there
exists a constant CΦ such that

1
CΦ

g0 6 gΦ 6 CΦg0,

and if ∫
Σ
|d~n|2gΦ

dvolΦ <∞.

The set of weak immersions with L2-bounded second fundamental form on
Σ will be denoted E(Σ).

One of the advantages of such weak immersions is that they allow us to
work with conformal maps as shown by Theorem 5.1.1 of [10].

Theorem 2.2. — Let Φ be a weak immersion from Σ into R3 with
L2-bounded second fundamental form. Then for every x ∈ Σ, there exists
an open disk D in Σ containing x and a homeomorphism Ψ : D → D

such that Φ ◦ Ψ is a conformal bilipschitz immersion. The induced metric
g = (Φ ◦Ψ)∗ ξ is continuous.

ANNALES DE L’INSTITUT FOURIER
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Further, proving estimates on the Greeen function of Σ, P. Laurain and
T. Rivière have shown in Theorem 3.1 of [17] that up to chosing a specific
atlas, one could have further control on the conformal factor.

Theorem 2.3. — Let (Σ, g) be a closed Riemann surface of fixed genus
greater than one. Let h denote the metric with constant curvature (and
volume equal to one in the torus case) in the conformal class of g and
Φ ∈ E(Σ) conformal, that is:

Φ∗ξ = e2uh.

Then, there exists a finite conformal atlas (Ui,Ψi) and a positive constant
C depending only on the genus of Σ, such that

‖∇λi‖L2,∞(Vi) 6 C ‖∇Φ∗ξ~n‖2L2(Σ) ,

with λi = 1
2 log |∇Φ|2

2 the conformal factor of Φ ◦Ψ−1
i in Vi = Ψi(Ui).

Thus, given Φ̃ ∈ E (Σ) we can choose a conformal atlas such that, in a
local chart on D of this atlas, Φ̃ yields Φ ∈ E(D) satisfying

(2.1) ‖∇λ‖L2,∞(D) 6 C0.

One can then systematically study any Φ̃ ∈ E (Σ) in such local conformal
charts, as a conformal bilipschitz map Φ ∈ E(D) satisfying (2.1).

We can now introduce the notion of weak Willmore immersions ([22,
Definition I.2]).

Definition 2.4. — Let Φ ∈ E (Σ). Φ is a weak Willmore immersion if

(2.2) div
(
∇ ~H − 3π~n

(
∇ ~H

)
+∇⊥~n× ~H

)
= 0

holds in a distributional sense in every conformal parametrization Ψ : D→
D on every neighborhood D of x, for all x ∈ Σ. Here the operators div, ∇
and ∇⊥ =

(−∂y
∂x

)
are to be understood with respect to the flat metric on D.

Equation (2.2) is in fact the classical Willmore equation (2.3) in diver-
gence form.

(2.3) ∆H +
∣∣Å∣∣2H = 0.

Immersions satisfying (2.3) are called Willmore immersions. The weak Will-
more equation was introduced to work with weak immersions since (2.2)
requires less regularity than (2.3). However, a consequence of Theorem I.5
in [22] is that weak Willmore immersions are smooth, and necessarily Will-
more immersions.
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2.2. Harnack inequalities on the conformal factor

Works by F. Hélein ensured that in disks of small energy, and that, up to
a reasonable (see (2.1)) assumption on ‖∇λ‖L2,∞(D), the conformal factor
could be controlled pointwise. We here give a version from Theorem 5.5
of [23].

Theorem 2.5. — Let Φ ∈ E(D), conformal. Let ~n be its Gauss map
and λ its conformal factor. We assume∫

D
|∇~n|2 < 8π

3 ,

and

(2.4) ‖∇λ‖L2,∞(D) 6 C0.

Then, for any r < 1 there exists c ∈ R and C ∈ R depending on r and C0
such that

‖λ− c‖L∞(Dr) 6 C.

This theorem can be adapted to disks of arbitrary radii without losing
control on the constant.

Corollary 2.6. — Let Φ ∈ E(Dρ), conformal. Let ~n be its Gauss map
and λ its conformal factor. We assume∫

Dρ
|∇~n|2 < 8π

3

and
‖∇λ‖L2,∞(Dρ) 6 C0.

Then, for any r < 1 there exists cρ ∈ R and C ∈ R depending on r and C0
such that

‖λ− cρ‖L∞(Drρ) 6 C.

Proof. — Let Φρ = Φ (ρ.), ~nρ be its Gauss map and λρ its conformal
factor. Straightforward computations yield

(2.5) eλρ = ρeλ (ρ.)

and

(2.6) ~nρ = ~n (ρ.) .

Then ∫
D
|∇~nρ|2 dz =

∫
Dρ
|∇~n|2 dz < 8π

3
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and, thanks to (2.5),

‖∇λρ‖L2,∞(D) = ‖∇ (λ(ρ.) + ln ρ) ‖L2,∞(D) = ‖∇λ‖L2,∞(Dρ) 6 C0

owing to the scaling-invariance properties of the L2 and L2,∞ norms. Ap-
plying Theorem 2.5 one finds there exists c ∈ R and C ∈ R depending on
r and C0 such that

‖λρ − c‖L∞(Dr) 6 C.

However, using (2.5),

‖λ− cρ‖L∞(Drρ) 6 C

with cρ = c− ln ρ and the same C. �

We can extend the control to domains with merely
∫
D |∇~n|

2
<∞ up to

adding an additionnal parameter r0 to the constant. As explained in the
introduction, r0 measures how uniformly small a ball in the disk has to be
to have sufficiently small ∇~n energy and thus in turn how many of these
small balls are needed to cover the domain of study. We recall the definition
of r0 before proceeding:

r0 = 1
ρ

inf
{
s

∣∣∣∣∣
∫
Bs(p)

| ∇~n|2 = 4π
3 , ∀ p ∈ Dρ s.t. Bs(p) ⊂ Dρ

}
.

Corollary 2.7. — Let Φ ∈ E(Dρ) conformal, let ~n be its Gauss map
and λ its conformal factor. We assume that

‖∇λ‖L2,∞(Dρ) + ‖∇~n‖L2(Dρ) 6 C0.

Then, for any r < 1 there exists cρ ∈ R and C ∈ R depending on r, C0 and
r0 such that

‖λ− cρ‖L∞(Drρ) 6 C.

Proof. — We prove the result on D, then working as in the proof of
Corollary 2.6 we can extend the result to Dρ.

If
∫
D |∇~n|

2
< 8π

6 then one can simply apply Theorem 2.5. Else let r < 1,
and r1 = min

( 1−r
2 , r0

)
. We cover Dr with a finite number N(r1) of open

disks
(
B r1

2
(pi)

)
i=1...n.

One can then apply Corollary 2.6 on each Br1 (pi) and find ci ∈ R such
that

(2.7) ‖λ− ci‖L∞(B r1
2

(pi)) 6 C.
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Here C is a constant depending only on C0. Let i, j ∈ I such that B r1
2

(pi)∩
B r1

2
(pj) 6= ∅. Then

(2.8)

|ci − cj | 6 |ci − λ(x)|+ |cj − λ(x)|
6 ‖λ− ci‖L∞(B r1

2
(pi)) + ‖λ− cj‖L∞(B r1

2
(pj))

6 2C.

Taking any i, j ∈ I, let γij be a straight line linking any fixed xi ∈ B r1
2

(pi)
to any fixed xj ∈ B r1

2
(pj). γij goes through the disks

(
B r1

2
(pql)

)
ql∈J⊂I

,
ordered such that

B r1
2

(pql) ∩B r1
2

(pql+1) 6= ∅.

Then, thanks to (2.8),

|ci − cj | 6
∑
l

∣∣cql − cql+1

∣∣
6
∑
l

2C

6 2NC,

since γij goes through at most N disks.
Setting c = c1, one deduces

(2.9) |c− ci| 6 2NC ∀ i ∈ I.

Then given any x ∈ Dr we find a i ∈ I such that x ∈ B r1
2

(pi) and have,
using (2.7) and (2.9),

|λ(x)− c| 6 |λ(x)− ci|+ |c− ci| 6 (2N + 1)C.

Taking the supremum over x we conclude with

‖λ− c‖L∞(Dr) 6 (2N + 1)C

which is as announced given that N depends only on r and r0. �

This Harnack inequality ensures that (2.2) has a distributional meaning
in conformal maps. Indeed, if we consider Φ ∈ E(D) satisfying Hypothe-
sis (2.4), ∇~n ∈ L2(D) and its respective tracefull and tracefree part H∇Φ
and Å∇Φ are properly defined as L2(D) functions (see (A.6) for details).
Thus, Corollary 2.7 ensures that, for any r < 1, there exists Λ ∈ R such
that on Dr we have

(2.10) eΛ

C
6 eλ 6 CeΛ.
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Hence, since |H| = e−λ |H∇Φ| we have on Dr

(2.11)
‖H‖L2(Dr) 6 e

−ΛC‖H∇Φ‖L2(D)

6 e−ΛC‖∇~n‖L2(D) < +∞.

As a result, (2.2) is well-defined in the distributional sense, which will allow
us to introduce divergence free quantities for the Willmore equations.

2.3. Divergence free vector fields for the Willmore immersions

As said in the introduction, T. Rivière has defined auxiliary quantities
([22, Theorem I.4]) playing a crucial part in the regularity of Willmore
surfaces. We recall their definition before any further exploitation.

Definition 2.8. — Let Φ ∈ E(D) be a weak Willmore immersion. Then,
there exists ~L ∈ D′(D) such that

(2.12) ∇⊥~L = ∇ ~H − 3π~n
(
∇ ~H

)
+∇⊥~n× ~H.

In the following, we will call ~L the first Willmore quantity.

Proposition 2.9. — Let Φ ∈ E(D) be a weak Willmore immersion.
Then, for any ~L ∈ D′(D) satisfying (2.12) we have

div
(
〈~L,∇⊥Φ〉

)
= 0

div
(
~L×∇⊥Φ + 2H∇⊥Φ

)
= 0.

Thus, there exists S and ~R ∈ D′(D) such that

(2.13)
∇⊥S = 〈~L,∇⊥Φ〉

∇⊥ ~R = ~L×∇⊥Φ + 2H∇⊥Φ.

In the following, we will call S and ~R the second and third Willmore quan-
tity.

We remark that ~L, ~R and S are defined up to a constant that we can
(and will) adjust.
The key role played by S and ~R revolves around the system of equations

they satisfy (as stated by Theorem 7.5 and Corollary 7.6 of [23]).

Theorem 2.10. — Let Φ ∈ E(D) be a weak Willmore immersion. Then
S and ~R satisfy

(2.14)
∇S = −

〈
~n,∇⊥ ~R

〉
∇~R = ~n×∇⊥ ~R+∇⊥S~n,
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and hence

(2.15)


∆S = −

〈
∇~n,∇⊥ ~R

〉
∆~R = ∇~n×∇⊥ ~R+∇⊥S∇~n

∆Φ = 1
2

(
∇⊥S.∇Φ +∇⊥ ~R×∇Φ

)
.

This system can be slightly changed to better suit our needs.

Theorem 2.11. — Let Φ ∈ E(D) be a weak Willmore immersion. Then,
S and ~R satisfy

(2.16)


∆S =

〈
H∇Φ,∇⊥ ~R

〉
∆~R = −H∇Φ×∇⊥ ~R−∇⊥SH∇Φ

∆Φ = 1
2

(
∇⊥S.∇Φ +∇⊥ ~R×∇Φ

)
.

Proof. — Computations are done in the appendix (see Section A.2). �

2.4. Control of ~Leλ on a disk

This section is devoted to the following result, which is only a slight
improvement over Theorem 7.4 of [23], with a control by H∇Φ replacing
one by ∇~n. However, we will follow mutatis mutandis the previous proof.

Theorem 2.12. — Let Φ ∈ E(Dρ) be a conformal weak Willmore im-
mersion. Let ~n denote its Gauss map, H its mean curvature and λ its
conformal factor. We assume

‖∇λ‖L2,∞(Dρ) + ‖∇~n‖L2(Dρ) 6 C0.

Then for any= r < 1 there exists a constant ~L ∈ R3 and a constant C ∈ R
depending on r, C0 and r0 (defined in (1.6))= such that∥∥eλ(~L− ~L

)∥∥
L2,∞(Drρ) 6 C ‖H∇Φ‖L2(Dρ) ,

where ~L is given by (1.3).

Proof. — As before we will prove the theorem on D. The proof on Dρ
follows as in Corollary 2.6. Let Φ ∈ E(D) be a conformal weak Willmore
immersion, ~n its Gauss map, H its mean curvature and λ its conformal
factor. We assume that

‖∇λ‖L2,∞(D) + ‖∇~n‖L2(D) 6 C0.

Let r < 1 and ~L ∈ D′(D) satisfying (2.12).
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Step 1: Control of the conformal factor. — Applying Corollary 2.7 we
find Λ ∈ R and C depending on r, C0 and r0 such that

‖λ− Λ‖L∞(D r+1
2

) 6 C.

Consequently, λ satisfies (2.10),

∀ x ∈ D r+1
2

eΛ

C
6 eλ(x) 6 CeΛ.

Step 2: Control on ∇~L. — Estimate (2.11) then stands:

‖H‖L2(D r+1
2

) 6 Ce
−Λ‖H∇Φ‖L2(D r+1

2
).

We can exploit it to control the right-hand side of (2.12). First, using
the fact that the tangent part of ∇ ~H, πT (∇ ~H), satisfies πT (∇ ~H) = H∇~n,
we recast (2.12) as

(2.17)

∇⊥~L = ∇ ~H − 3π~n
(
∇ ~H

)
+∇⊥~n× ~H

= ∇ ~H − 3∇ ~H + 3πT
(
∇ ~H

)
+∇⊥~n× ~H

= −2∇ ~H + 3H∇~n+∇⊥~n× ~H.

Then we control each term of the right-hand side as follows. Moreover

‖∇⊥~n× ~H‖L1(D r+1
2

) 6 ‖∇~n‖L2(D r+1
2

) ‖ ~H‖L2(D r+1
2

)

6 Ce−Λ ‖∇~n‖L2(D) ‖H∇Φ‖L2(D),

while
‖H∇~n‖L1(D r+1

2
) 6 ‖∇~n‖L2(D r+1

2
) ‖ ~H‖L2(D r+1

2
)

6 Ce−Λ ‖∇~n‖L2(D) ‖H∇Φ‖L2(D).

The last three estimates combined give

∇~L ∈ ∇⊥L2(D r+1
2

)⊕ L1(D r+1
2

).

Step 3: Conclusion. — Thanks to Step 2 and Theorem A.2 (see Appen-
dix)

∃ ~L ∈ R3 ∥∥~L− ~L
∥∥
L2,∞(Dr) 6 Ce

−Λ‖H∇Φ‖L2(D)

with C a real constant that depends on r, C0 and r0. Hence∥∥(~L− ~L
)
eλ
∥∥
L2,∞(Dr) 6 e

Λ∥∥~L− ~L
∥∥
L2,∞(Dr)

6 C‖H∇Φ‖L2(D),

with C as desired. This concludes the proof on D. �
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Remark 2.13. — Theorem A.2 yields, in fact, a L2 inequality. Since
L2 ⊂ L(2,∞) the desired (and weaker) control follows. We chose to present
a L2,∞ inequality because it is sufficient to recover the regularity (see The-
orem 3.1), and because in the bubbling case, which is the objective of this
paper, we will start with L2,∞ controls (due to the nature of the neck es-
timates, see Section 4 below). All results will then be presented with this
generic starting estimate on ~L.

2.5. L2,1 controls in the generic case

Without small controls on H or ~n, some results can be achieved in term
of Lorentz spaces estimates as shown by the following.

Theorem 2.14. — Let Φ ∈ E(Dρ) satisfy the hypotheses of Theo-
rem 2.12. Then for any r < 1 there exists a constant C ∈ R depending
on r, C0 and r0 (defined in (1.6)) such that

‖H∇Φ‖L2,1(Drρ) 6 C‖H∇Φ‖L2(Dρ),

and
‖∇~n‖L2,1(Drρ) 6 C ‖∇~n‖L2(Dρ) .

We first prove a more flexible result than Theorem 2.14 (in that it does
not reference r0) controlling the L2,1 norm of ∇~n under L2,∞ assumptions
on ~L.

Theorem 2.15. — Let Φ ∈ E(Dρ) be a conformal weak Willmore im-
mersion, ~n its Gauss map, H its mean curvature, λ its conformal factor
and ~L its first Willmore quantity. We assume

‖∇λ‖L2,∞(Dρ) + ‖∇~n‖L2(Dρ) 6 C0,

and that there exists r′ < 1 and C1 > 0 such that∥∥~Leλ∥∥
L2,∞(Dr′ρ) 6 C1 ‖H∇Φ‖L2(Dρ) .

Then, for any r < r′ there exists a constant C depending on r, r′, C0 and
C1 such that

‖H∇Φ‖L2,1(Drρ) 6 C‖H∇Φ‖L2(Dρ),

and
‖∇~n‖L2,1(Drρ) 6 C ‖∇~n‖L2(Dρ) .

Furthermore, the associated second and third Willmore quantities satisfy

‖∇S‖L2,1(Drρ) + ‖∇~R‖L2,1(Drρ) 6 C‖H∇Φ‖L2(Dρ).
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Proof. — As before, it is enough to work on the unit disk and conclude
with a dilation to obtain the result on disks of arbitrari radii.

Step 1: L2,1 control of ∇S and ∇~R. — Let r′ < 1 and ~L such that∥∥~Leλ∥∥
L2,∞(Dr′ )

6 C1 ‖H∇Φ‖L2(D) .

Then S and ~R defined as

∇⊥S = 〈~L,∇Φ〉

∇⊥ ~R = ~L×∇⊥Φ + 2H∇⊥Φ,

satisfy:

(2.18)
‖∇S‖L2,∞(Dr′ )+‖∇~R‖L2,∞(Dr′ ) 6

∥∥~Leλ∥∥
L2,∞(Dr′ )

+‖H∇Φ‖L2(Dr′ )

6 (C1 + 1) ‖H∇Φ‖L2(D) .

Noticing that S and ~R are defined up to an additive constant, we can choose
S and ~R to be of null average value on Dr′ .
The classic Poincaré–Wirtinger’s inequality (see [8, Theorem 2, Sec-

tion 5.8.1]) yields for any 1 < p <∞ and any u such that ∇u ∈ Lp(Dr′):

‖u− u‖Lp(Dr′ )
6 Cp,r′ ‖∇u‖Lp(Dr′ )

with Cp,r′ ∈ R+ and u the mean value of u on Dr′ . These inequalities can be
extended using Marcinkiewitz interpolation theorem (see for example [10,
Theorem 3.3.3]) to L2,∞: there exists Cr′ such that for any u with ∇u ∈
L2,∞(D)

‖u− u‖L2,∞(Dr′ ) 6 Cr′‖∇u‖L2,∞(Dr′ ).

Applied to S and ~R (which are of null mean value), this yields:

‖S‖W 1,(2,∞)(Dr′ ) + ‖~R‖W 1,(2,∞)(Dr′ ) 6 C‖H∇Φ‖L2(D),

where C depends on r′. Since, thanks to (2.15)

∆S =
〈
∇~R,∇⊥~n

〉
,

one can decompose S = σ + s where s is harmonic and σ is a solution of{
∆σ = ∇~R.∇⊥~n in Dr′

σ = 0 on ∂Dr′ .

Using Wente’s lemma (Theorem A.5, in appendix) one finds:

(2.19)
‖∇σ‖L2(Dr′ )

6 C‖∇~R‖L2,∞(Dr′ )‖∇~n‖L2(Dr′ )

6 C‖H∇Φ‖L2(D),
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where C depends on C0 and C1. Meanwhile, Poisson’s formula yields for s:

(2.20) ‖∇s‖
L2
(
D r+r′

2

) 6 C‖S‖L1(∂Dr′ )

where C depends on r, and r′.
Using Marcinkiewitz interpolation theorem on trace operators yields

(2.21) ‖S‖L1(∂Dr′ ) 6 C ‖∇S‖L2,∞(Dr′ )

with C depending on r′. Combining (2.18), (2.20) and (2.21) yields:

(2.22) ‖∇s‖
L2
(
D r+r′

2

) 6 C‖H∇Φ‖L2(D),

where C depends on r, r′, C1 and C0. Together (2.19) and (2.22) yield:

‖∇S‖
L2
(
D r+r′

2

) 6 C‖H∇Φ‖L2(D).

Working similarly on ~R one finds

(2.23) ‖∇S‖
L2
(
D r+r′

2

) + ‖∇~R‖
L2
(
D r+r′

2

) 6 C‖H∇Φ‖L2(D).

This estimate can still be improved: let S = σ′+s′ with s′ harmonic and σ′∆σ′ = ∇~R.∇⊥~n in D r+r′
2

σ′ = 0 on ∂D r+r′
2
.

Using Theorem A.6 (in appendix) and (2.23) ensures

(2.24)
‖∇σ′‖

L2,1
(
D r+r′

2

) 6 C‖∇~R‖
L2
(
D r+r′

2

)‖∇~n‖
L2
(
D r+r′

2

)
6 C‖H∇Φ‖L2(D).

Using Poisson’s formula allows one to control s′:

(2.25) ‖∇s′‖
L2,1
(
D 3r+r′

4

) 6 C‖S‖
L1
(
∂D r+r′

2

).
As before, Marcinkiewitz interpolation on trace theorems yields

(2.26) ‖∇s′‖
L2,1
(
D 3r+r′

4

) 6 C‖H∇Φ‖L2(D).

Together (2.24) and (2.26) ensure

‖∇S‖
L2,1
(
D 3r+r′

4

) 6 C‖H∇Φ‖L2(D).

Working analogously on ~R one finds

(2.27) ‖∇S‖
L2,1
(
D 3r+r′

4

) + ‖∇~R‖
L2,1
(
D 3r+r′

4

) 6 C‖H∇Φ‖L2(D).
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Once more, C depends on r, r′, C0 and C1 which concludes Step 1.
Step 2: L2,1 control ofH∇Φ. — We simply use inequality (A.21), proven

in appendix:
|H∇Φ| 6 1

2
∣∣∇~R∣∣.

Combining it with (2.27) we find

(2.28) ‖H∇Φ‖
L2,1
(
D 3r+r′

4

) 6 C‖H∇Φ‖L2(D),

which gives us the desired control on H∇Φ.
Step 3: L2,1 control of ∇~n. — To expand these estimates to ∇~n we will

use equation (A.19) (see appendix)

∆~n+∇~n×∇⊥~n+ 2 div(H∇Φ) = 0.

Using Corollary A.10 and (2.28) there exists α ∈ W 1,(2,1)(D 3r+r′
4

)
such

that

(2.29) ∆α = div (H∇Φ)

and

(2.30)
‖α‖

W 1,(2,1)
(
D 3r+r′

4

) 6 ‖H∇Φ‖
L2,1
(
D 3r+r′

4

)
6 C‖H∇Φ‖L2(D).

Setting ν = ~n− 2α and using (2.30) yields

(2.31)

‖∇ν‖
L2
(
D 3r+r′

4

) 6 ‖∇ (~n− 2α)‖
L2
(
D 3r+r′

4

)
6 ‖∇~n‖

L2
(
D 3r+r′

4

) + 2 ‖∇α‖
L2
(
D 3r+r′

4

)
6 ‖∇~n‖L2(D) + 2C ‖∇α‖

L2,1
(
D 3r+r′

4

)
6 ‖∇~n‖L2(D) + C‖H∇Φ‖L2(D)

6 C ‖∇~n‖L2(D) .

Besides, ν satisfies
∆ν +∇~n×∇⊥~n = 0.

We split ν = ν1 + ν2 with ν2 harmonic and ν1 solution of∆ν1 +∇~n×∇⊥~n = 0 in D 3r+r′
4

ν1 = 0 on ∂D 3r+r′
4
.

Using Theorem A.6 we bound

(2.32) ‖∇ν1‖
L2,1
(
D 3r+r′

4

) 6 C‖∇~n‖2
L2
(
D 3r+r′

4

).
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Using the same method as for the estimates on s′ (see (2.25)–(2.26)) and
applying (2.31) we find

(2.33) ‖∇ν2‖L2,1(Dr) 6 C‖∇ν‖L2
(
D 3r+r′

4

) 6 C ‖∇~n‖L2(D) .

Combining (2.32) and (2.33) yields

(2.34) ‖∇ν‖L2,1(Dr) 6 C ‖∇~n‖L2(D) .

Since ~n = ν + 2α, (2.30) and (2.34) ensure
‖∇~n‖L2,1(Dr) 6 ‖∇ν‖L2,1(Dr) + 2‖∇α‖L2,1(Dr)

6 C ‖∇~n‖L2(D) ,

which concludes the proof. �

Theorem 2.14 follows from combining Theorems 2.12 and 2.15.

3. ε-regularity results for weak Willmore immersions:
proof of Theorem 1.5

We will first prove a more adaptable result:

Theorem 3.1. — Let Φ ∈ E(D) satisfy the hypotheses of Theorem 2.12.
We assume there exists r′ < 1 and C1 > 0 such that∥∥~Leλ∥∥

L2,∞(Dr′ )
6 C1 ‖H∇Φ‖L2(D)

where ~L is given by (1.3). Then, there exists ε′0 depending only on C0 such
that if

‖H∇Φ‖L2(D) 6 ε
′
0

then for any r < r′ there exists a constant C ∈ R depending on r, C0, p
and C1 such that

‖H∇Φ‖L∞(Dr) 6 C‖H∇Φ‖L2(D),

and
‖∇Φ‖W 2,p(Dr) 6 C‖∇Φ‖L2(D)

for all p <∞.

Proof. — Let r < r′ < 1, we follow the outline given in the introduction.
Step 1:W 1,(2,1) control on the Willmore quantities. — Let ~L satisfy our

hypothesis. Theorem 2.15 gives:

(3.1) ‖∇S‖
L2,1
(
D r+r′

2

) +
∥∥∇~R∥∥

L2,1
(
D r+r′

2

) 6 C1‖H∇Φ‖L2(D).
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Step 2: W 1,q control on the Willmore quantities, for q > 2. — Thanks
to (2.15) and (2.16) we can decompose in any Bt(p), with p ∈ D r+r′

2
and t

sufficiently small, S = σ + s and ~R = ~ρ+ ~r, with

(3.2)
{

∆σ = ∆S = 〈H∇Φ,∇⊥ ~R〉 = −〈∇~n,∇⊥ ~R〉 in Bt(p)
σ = 0 on ∂Bt(p),

(3.3)


∆~ρ = ∆~R = −H∇Φ×∇⊥ ~R−∇⊥SH∇Φ

= ∇~n×∇⊥ ~R+∇⊥S∇~n in Bt(p)
~ρ = 0 on ∂Bt(p)

(3.4)
{

∆s = 0 in Bt(p)
s = S on ∂Bt(p),

(3.5)
{

∆~r = 0 in Bt(p)

~r = ~R on ∂Bt(p).

Since s and ~r are harmonic functions, l → 1
l2

∫
Bl(p) |∇s|

2 and l →
1
l2

∫
Bl(p) |∇~r|

2 are classically non-decreasing ([21, Lemma IV.1]). It follows
that

(3.6)

‖∇s‖2
L2
(
B t

2
(p)
) 6 1

4‖∇s‖
2
L2(Bt(p)),

‖∇~r‖2
L2
(
B t

2
(p)
) 6 1

4‖∇~r‖
2
L2(Bt(p)).

Furthermore, thanks to (3.2) and Theorem A.6 we have

(3.7) ‖∇σ‖L2,1(Bt(p)) 6 C‖∇~R‖L2(Bt(p))‖∇~n‖L2(Bt(p)).

Thanks to (3.2) and Theorem A.3 we find

(3.8)
‖∇σ‖L2,∞(Bt(p)) 6 C

∥∥〈H∇Φ,∇⊥ ~R〉
∥∥
L1(Bt(p))

6 C
∥∥∇~R∥∥

L2(Bt(p))
‖H∇Φ‖L2(Bt(p)) .

Exploiting the duality of L2,1 and L2,∞, (3.7) and (3.8) yield

(3.9)
‖∇σ‖2L2(Bt(p)) 6 ‖∇σ‖L2,∞(Bt(p)) ‖∇σ‖L2,1(Bt(p))

6 C
(
‖∇~n‖L2(D)

)
‖∇~R‖2L2(Bt(p)) ‖H∇Φ‖L2(D) .
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Working similarly with ~ρ we find

(3.10) ‖∇~ρ‖2L2(Bt(p))

6 C
(
‖∇~n‖L2(D)

)(
‖∇~R‖2L2(Bt(p)) + ‖∇S‖2L2(Bt(p))

)
‖H∇Φ‖L2(D) .

We remind the reader that the constant from Theorems A.6 and A.3
are universal due to the scale invariance properties of the L2, L2,∞ and
L2,1 norms. The constants in (3.9) and (3.10) then do depend solely on
‖∇~n‖L2(D).

We can combine (3.6), (3.9) and (3.10) to get

(3.11) ‖∇S‖2
L2
(
B t

2
(p)
) + ‖∇~R‖2

L2
(
B t

2
(p)
)

6
1
2
(
‖∇s‖2L2(Bt(p)) + ‖∇~r‖2L2(Bt(p))

)
+ 2C

(
‖∇~n‖L2(D)

)(
‖∇~R‖2L2(Bt(p))+‖∇S‖2L2(Bt(p))

)
‖H∇Φ‖L2(D)

6

(
1
2 + ‖H∇Φ‖L2(D) C

)(
‖∇S‖2L2(Bt(p)) + ‖∇~R‖2L2(Bt(p))

)
,

where C depends solely on ‖∇~n‖L2(D). Should ‖H∇Φ‖L2(D) be small enough
then (3.11) would yield

(3.12) ‖∇S‖2
L2
(
B t

2
(p)
) + ‖∇~R‖2

L2
(
B t

2
(p)
)

6
3
4

(
‖∇S‖2L2(Bt(p)) + ‖∇~R‖2L2(Bt(p))

)
.

Since the chosen ε′0 depends only of ‖∇~n‖L2(D), (3.12) is uniformly true
for all Bl(p)⊂D 2r+r′

3
and yields a Morrey-type estimate on D 2r+r′

3
. Through

usual estimates on Riesz potentials, see for instance [1, Theorem 3.1], it
entails

(3.13) ∃ q > 2 s.t. ‖∇S‖
Lq
(
D 3r+r′

4

) + ‖∇~R‖
Lq
(
D 3r+r′

4

)
6 Cq

(
‖∇S‖

L2
(
D r+r′

2

) + ‖∇~R‖
L2
(
D r+r′

2

)) .
Step 3: L∞ control on H∇Φ. — Thanks to Step 2 and (A.21) we deduce

‖H∇Φ‖
Lq
(
D 3r+r′

4

) 6 Cq (‖∇S‖
L2
(
D r+r′

2

) + ‖∇~R‖
L2
(
D r+r′

2

)) .
The criticality of system (2.16) is thus broken: ∆S,∆~R are in L

q
2 with

q
2 > 1. One can apply classic Calderón–Zygmund theory (see for instance [9,
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Theorems 9.9 and 9.11]) to start a bootstrap of limiting regularity L∞ on
H∇Φ. In fine, one has with estimate (3.1)

(3.14) ‖∇S‖
W 1,p

(
D 4r+r′

5

) + ‖∇~R‖
W 1,p

(
D 4r+r′

5

) + ‖H∇Φ‖
L∞
(
D 4r+r′

5

)
6 C‖H∇Φ‖L2(D)

Step 4:W 3,p control on Φ. — The control on∇Φ is obtained by a similar
Calderón–Zygmund bootstrap on equation

2∆Φ = ∇⊥S∇Φ +∇⊥ ~R×∇Φ,

which achieves the proof. �

One only needs to combine Theorems 2.12 and 3.1 to prove Theorem 1.5.
Theorems 1.5 and 3.1 can be applied on disks of arbitrari radii, at the

cost of a control depending on the radius of the disk. Indeed a rescaling,
very similar to what has already been done in the proof of Corollary 2.6
yields the following theorem.

Theorem 3.2. — Let Φ∈E(Dρ) satisfy the hypotheses of Theorem 2.12.
We assume there exists r′ < 1 and C1 > 0 such that∥∥~Leλ∥∥

L2,∞(Dr′ρ) 6 C1 ‖H∇Φ‖L2(Dρ) .

Then there exists ε′0 depending only on C0 such that if

‖H∇Φ‖L2(Dρ) 6 ε
′
0,

then for any r < r′ there exists a constant C ∈ R depending on r, C0, p
and C1 such that

‖H∇Φ‖L∞(Drρ) 6
C

ρ
‖H∇Φ‖L2(Dρ).

4. Control of ~Leλ on an annulus

In this section, we focus on a control of ~L on annuli of small energy,
independantly of its conformal class (see [3, (VI.23)]).

Theorem 4.1. — Let R > 0 and Φ ∈ E(Dr) be a conformal weak
Willmore immersion. Let ~n denote its Gauss map, H its mean curvature
and λ its conformal factor. We assume

‖∇~n‖L2(Dr) + ‖∇λ‖L2,∞(Dr) 6 C0.
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Then there exists ε0 > 0 (independant of Φ) such that if 0 < 8r < R and

sup
r<s<R

2

∫
D2s\Ds

|∇~n|2 6 ε0,

then there exists ~L ∈ R3 and C ∈ R depending on C0 but not on the
conformal class of DR\Dr such that∥∥eλ(~L− ~L)

∥∥
L2,∞

(
DR

2
\D2r

) 6 C‖H∇Φ‖L2(Dr),

where ~L is given by (1.3).

Once more, we will follow Y. Bernard and T. Rivière’s proof, with a few
tweaks in order to obtain a control of ~Leλ by H∇Φ instead of ∇~n. It is
important for Φ to be well-defined, and the bound on its conformal factor
and Gauss map to stand, on the whole disk and not merely on the annulus.
We refer the reader to [16] for a study of what can happen otherwise. In
the context of Theorem 1.2, Theorem 4.1 gives controls on the neck regions
around the concentration points.
Proof.
Step 1: Pointwise estimates on ~H and ∇ ~H. — We set ourselves in the

setting of Theorem 4.1 and consider Φ ∈ E(Dr) a conformal weak Willmore
immersions of Gauss map ~n, mean curvature H, conformal factor λ and
tracefree second fundamental form Å. We assume that

‖∇~n‖L2(Dr) + ‖∇λ‖L2,∞(Dr) 6 C0 <∞,

and that

(4.1) sup
r<s<R

2

∫
D2s\Ds

|∇~n|2 6 ε0.

Consider x ∈ DR
2
\D2r, then B |x|

4
(x) ⊂ D2|x|\D |x|

2
and thus (4.1) implies

(4.2)
∫
B |x|

4
(x)
|∇~n|2 6 ε0.

On B |x|
4

(x) one can then apply either Theorem 1.1, or Theorem 1.5 (with
r0 = 1 since (4.2) stands) to deduce

(4.3) ‖∇~n‖
L∞
(
B |x|

8
(x)
) 6 C

|x|
‖∇~n‖

L2
(
B |x|

4
(x)
) ,

and

(4.4) ‖H∇Φ‖
L∞
(
B |x|

8
(x)
) 6 C

|x|
‖H∇Φ‖

L2
(
B |x|

4
(x)
) .
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Here C depends on C0. Corollary 2.6 then ensures a Harnack inequality
on B |x|

8
(x), meaning there exists Λ ∈ R and C depending only on C0 such

that for all p ∈ B |x|
8

(x) we have

(4.5) eΛ

C
6 eλ(p) 6 CeΛ.

This allows one to control H with (4.4):

(4.6) ‖H‖
L∞
(
B |x|

8
(x)
) 6 Ce−Λ

|x|
‖H∇Φ‖

L2
(
B |x|

4
(x)
) .

Since Φ is Willmore, it satisfies (2.3):

∆H +
∣∣Å∣∣2H = 0.

Combining (4.3), (4.6) and (A.11) yields∥∥∥∣∣Å∣∣2H∥∥∥
L∞
(
B |x|

8
(x)
) 6 Ce−Λ

|x|3
‖H∇Φ‖

L2
(
B |x|

4
(x)
) .

Then

‖∆H‖
L∞
(
B |x|

8
(x)
) 6 Ce−Λ

|x|3
‖H∇Φ‖

L2
(
B |x|

4
(x)
) .

Classic Calderón–Zygmund results (see for instance [9, Theorems 9.9 and
9.11]) ensure that

(4.7) ‖∇H‖
L∞
(
B |x|

16
(x)
) 6 Ce−Λ

|x|2
‖H∇Φ‖

L2
(
B |x|

4
(x)
) .

Combining first (4.4) and (4.5), and then (4.7) and (4.5) yields when eval-
uated at x

(4.8) eλ(x) |H(x)| 6 Cδ(|x|),

(4.9) eλ(x) |∇H(x)| 6 C

|x|
δ(|x|),

where
δ(s) = 1

s
‖H∇Φ‖

L2
(
D2s\D s2

) .
Since ∇ ~H = ∇H~n + H∇~n, we can extend (4.8) and (4.9) to ~H and ∇ ~H
thanks to (4.3), which yields the desired estimates.
Step 2: Controls on δ. — Clearly we have

(4.10) sδ(s) 6 ‖H∇Φ‖
L2
(
DR\D r2

) .
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Further, for any positive function f :

(4.11)

∫ R
2

r

1
s

∫ 2s

s
2

f(t)dtds 6
∫ R

r
2

∫ 2t

t
2

1
s
f(t)dsdt

6
∫ R

r
2

f(t) log
(

2t
t
2

)
dt

6 log 4
∫ R

r
2

f(t)dt.

Applying (4.11) with f(t) =
∫
∂Dt |H∇Φ|2 dσ∂Dt , we find

(4.12)
∫ R

2

r

sδ2(s)ds 6 log 4 ‖H∇Φ‖2
L2
(
DR\D r2

) ,
while with f̃(t) =

∫
∂Dt |∇~n|

2 dσ∂Dt , this yields (VI.9) in [3]:

(4.13)
∫ R

2

r

sδ̃2(s)ds 6 log 4 ‖∇~n‖2
L2
(
DR\D r2

) ,
where

δ̃(s) = 1
s
‖∇~n‖

L2
(
D2s\D s2

) .
Step 3: Exploitation and control of ~L. — Let ~L be a first Willmore

quantity of Φ on DR, i.e. satisfying (2.12). From (2.12), (4.3), (4.8) and (4.9)
we deduce for all x ∈ DR

2
\D2r

(4.14)
∣∣∣∇~L∣∣∣ (x) 6 Ce−λ(x)

|x|
δ(|x|).

We consider for any r 6 t 6 R

~Lt := 1
|∂Dt|

∫
∂Dt

~Ldσ∂Dt .

Then given x ∈ DR
2
\D2r

(4.15)

∣∣∣~L(x)− ~L|x|
∣∣∣ 6 ∫

∂D|x|

∣∣∣∇~L∣∣∣dσ∂D|x|
6
∫
∂D|x|

Ce−λ(x)

|x|
δ(|x|)dσ∂D|x|

6 Cδ(|x|)
∫ 2π

0
e−λ(|x|eiθ)dθ.

One key step of the proof is controlling the conformal factor with a Harnack
inequality. However as the conformal class of the annulus degenerates, the
number of small energy disks needed to cover it goes to infinity. Thus, we
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have no hope to properly estimate the conformal factor by a constant. Y.
Bernard and T. Rivière have however shown that a function of type rd can
be a good approximation, as stated in [3, Lemma V.3] (see below).

Lemma 4.2. — There exists a constant η > 0 with the following prop-
erty. Let 0 < 4r < R < ∞. If Φ is any (weak) conformal immersion of
Ω := DR\Dr into R3 with L2-bounded second fundamental form and sat-
isfying

‖∇~n‖L2,∞(Ω) <
√
η,

then there exist 1
2 < α < 1 and A ∈ R depending on R, r, m and Φ such

that

(4.16) ‖λ(x)− d log |x| −A‖
L∞
(
DαR\D r

α

)6C(‖∇λ‖L2,∞(Ω) +
∫

Ω
|∇~n|2

)
,

where d satisfies

(4.17)
∣∣∣∣2πd− ∫

∂Dr
∂rλdl∂Dr

∣∣∣∣
6 C

[∫
D2r\Dr

|∇~n|2 + 1
log R

r

(
‖∇λ‖L2,∞(Ω) +

∫
Ω
|∇~n|2

)]
.

In our case, (4.16) implies the following Harnack inequality for all x ∈
DR

2
\D2r

(4.18) eA|x|d

C
6 eλ(x) 6 CeA|x|d,

with d, A in R, and C a constant depending on C0. Then (4.15) yields

(4.19)
∣∣∣~L(x)− ~L|x|

∣∣∣ 6 Cδ(|x|)e−λ(x),

with C depending on C0. We can then estimate ~L − ~L|x| with (4.12)
and (4.19):

(4.20)
∫
DR

2
\D2r

e2λ
∣∣∣~L− ~L|x|∣∣∣2 dx 6 C

∫ R
2

2r
rδ2(r)dr 6 C ‖H∇Φ‖2

L2
(
DR\D r2

).
We will control similarly d~Lt

dt = 1
2π
∫ 2π

0
∂~L
∂t (t, θ)dθ. We use expression (2.17)

of ∇~L and deduce

1
2π

∫ 2π

0

∂~L

∂t
(t, θ)dθ = 3

2π

∫ 2π

0
H∂θ~ndθ + 1

2π

∫ 2π

0
∂ν~n× ~Hdθ.
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Using (4.3), (4.8) and (4.18) we deduce from this

(4.21)

∣∣∣∣∣d~Ltdt

∣∣∣∣∣ 6 Ce−A δ(t)δ̃(t)td
.

Defining a(t) = |~Lt| yields
∣∣da

dt
∣∣ 6 ∣∣d~Lt

dt
∣∣ which, combined with (4.18)

and (4.21) ensures

(4.22)
∣∣∣∣dadt

∣∣∣∣ 6 Ce−A δ(t)δ̃(t)td
.

Then∫ R
2

2r
s1+d

∣∣∣∣dads

∣∣∣∣ (s)ds 6 Ce−A ∫ R
2

2r
sδ(s)δ̃(s)

6 Ce−A
(∫ R

2

2r
sδ(s)2ds

) 1
2
(∫ R

2

2r
sδ̃(s)2ds

) 1
2

.

We can thus apply (4.12) and (4.13) and conclude

(4.23)

∫ R
2

2r
s1+d

∣∣∣∣dads

∣∣∣∣ (s)ds 6 Ce−A ‖∇~n‖L2(DR\Dr) ‖H∇Φ‖L2(DR\Dr)

6 CC0e
−A ‖H∇Φ‖L2(DR\Dr) .

An integration by parts gives for any r < τ < T < R,∫ T

τ

s1+d da
ds (s)ds = T 1+da(T )− τ1+da(τ)− (1 + d)

∫ T

τ

sda(s)ds.

Hence, since a > 0, we have

• if d 6 −1, for all 2r < t < R
2 ,

t1+da(t) 6 (2r)1+da(2r) +
∫ R

2

2r
s1+d

∣∣∣∣dads

∣∣∣∣ (s)ds,
• if d > −1, for all 2r < t < R

2 ,

t1+da(t) 6
(
R

2

)1+d
a

(
R

2

)
+
∫ R

2

2r
s1+d

∣∣∣∣dads

∣∣∣∣ (s)ds.
Then if d 6 −1 we take

∫
∂D2r

~L = 0 whereas if d > −1, we take
∫
∂DR

2

~L = 0.
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In both cases for all 2r < |x| < R
2 , thanks to (4.23), we have

(4.24)

|x|eλ(x)
∣∣∣~L|x|∣∣∣ 6 |x|d+1eAa(|x|)

6 eA
∫ R

2

2r
s1+d

∣∣∣∣dadt
∣∣∣∣ (s)ds

6 C ‖H∇Φ‖L2(DR\Dr) ,

where C depends only on C0. Since 1
|x| is in L

2,∞, we conclude with

(4.25)
∥∥eλ(x)~L|x|

∥∥
L2,∞

(
DR

2
\D2r

) 6 C ‖H∇Φ‖L2(DR\Dr) .

Combined with (4.20), this yields the desired result:∥∥eλ~L∥∥
L2,∞

(
DR

2
\D2r

) 6 C ‖H∇Φ‖L2(DR\Dr) .

The constant appearing in the theorem corresponds to the choice of∫
∂D2r

~L = 0 or
∫
∂DR

2

~L = 0 depending on d. �

5. Simple minimal bubbling: proof of Theorem 1.3

In the following, Φ̃ε := Φε(ε.)−Φε(0)
Cε : D 1

ε
→ R3 and ~̃nε, H̃ε λ̃ε will

denote respectively its Gauss map, its mean curvature and its conformal
factor. We can check:

~̃nε = ~nε (ε.) ,(5.1)

H̃ε∇Φ̃ε = εHε∇Φε (ε.) .(5.2)

Then for all 1
ε > R > 0

(5.3)
∫
DεR
|∇~nε|2 dz =

∫
DR

∣∣∣∇~̃nε∣∣∣2 dz,

and

(5.4)
∫
DεR
|Hε∇Φε|2 dz =

∫
DR

∣∣∣H̃ε∇Φ̃ε
∣∣∣2 dz.

Hypothesis (5) implies

(5.5) lim
ε→0

∫
DεR
|∇~nε|2 dz =

∫
DR
|∇~nΨ|2 dz,

(5.6) lim
ε→0

∫
DεR
|Hε∇Φε|2 dz =

∫
DR
|HΨ∇Ψ|2 dz = 0.
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Besides, combining (A.12) and Hypothesis (3) yields

(5.7) lim
R→∞

(
lim
ε→0

∫
D 1
R
\DεR

|Hε∇Φε|2 dz
)

6 lim
R→∞

(
lim
ε→0

∫
D 1
R
\DεR

|∇~nε|2 dz
)

= 0.

Together (5.6) and (5.7) ensure that for R sufficiently big and ε sufficiently
small

(5.8) ‖Hε∇Φε‖
L2
(
D 1
R

) 6 ε′0 (M) ,

with ε′0(M) given by Theorem 3.1. Up to a rescaling, and thus without
loss of generality we can assume that (5.8) stands on D. We will find a
uniform L2,∞ bound on a first Willmore quantity, Theorem 3.1 then gives
the uniform controls proving Theorem 1.3.
Recalling (5.3) yields

lim
ε→0

∫
DεR
|∇~nε|2 dz =

∫
DR
|∇~nΨ|2 dz.

Then either Ψ parametrizes a plane, and classical ε-regularity results yield
smooth convergence (and there is de facto no real bubbling) or for R big
enough,

lim
ε→0

∫
DεR
|∇~nε|2 dz > 8π

3 .

Then

inf
{
s

∣∣∣∣∣
∫
Bs(p)

| ∇~nε|2 = 8π
6 , ∀ p ∈ D s.t. Bs(p) ⊂ D

}
→ 0.

This means that the estimates given by Theorem 2.12 degenerates as ε
goes to 0. Finding a uniform control on ~Leλ will require a “bubble-neck”
decomposition. The bubble region will be D4εR while the neck region will
be D 1

R
\DεR, with a R that we determine in what follows. We consider ~Lε

a first Willmore quantity of Φε on D.
Step 1: Neck estimates. — By Hypothesis (3), there exists R0 > 0 such

that for ε small enough, ∫
D 1
R0
\DεR0

|∇~nε| 6 ε0,
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where ε0 is given by Theorem 4.1. In turn this ensures that

sup
εR0<s<

1
2R0

∫
D2s\Ds

|∇~nε|2 6 ε0.

We can then apply Theorem 4.1 and find a sequence ~Lε1 ∈ R3 such that

(5.9)
∥∥(~Lε − ~Lε1

)
eλ

ε∥∥
L2,∞

(
D 1

2R0
\D2εR0

) 6 C ‖Hε∇Φε‖L2(D) ,

where C depends solely on M defined in (1) and (2).
Step 2: Bubble estimates. — Let pε = εxε ∈ D4R0ε and rε = εsε such

that Brε(pε) ⊂ D4R0ε and∫
Brε (pε)

| ∇~nε|2 = 8π
6 .

Then xε ∈ D4R0 and sε 6 4R0, meaning that there exists x ∈ D4R0 and
s 6 4R0 such that (up to a subsequence)

xε → x,

sε → s,

Bs (x) ⊂ D4R0 .

Adapting slightly (5.3) we find

lim
ε→0

∫
Brε (pε)

|∇~nε|2 dz = lim
ε→0

∫
Bsε (xε)

∣∣∇~̃nε∣∣2dz =
∫
Bs(x)

|∇~nΨ|2 dz = 8π
6 .

Necessarily
s

4R0
> rΨ

0

:= 1
4R0

inf
{
t

∣∣∣∣∣
∫
Bt(p)
|∇~nΨ|2 = 4π

3 , ∀ p ∈ D4R0 s.t. Bs(t) ⊂ D4R0

}
>0.

Thus if we set

rε0 := 1
4εR0

inf
{
r

∣∣∣∣∣
∫
Br(p)

|∇~nε|2 = 4π
3 , ∀ p ∈ D4εR0 s.t. Br(t) ⊂ D4εR0

}
,

we deduce that for ε small enough rε0 is uniformly bounded from below:

(5.10) rε0 >
1
10r

Ψ
0 .

Inequality (5.10) translates the simple bubbling of Φε. While Φε concen-
trates at 0 at the scale ε, Φ̃ε does not concentrate any further, everything
happens at the same scale for Φ̃ε. For instance, Corollary 2.7 ensures that
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the conformal factor satisfies a Harnack inequality. Namely we find Λε ∈ R
such that

(5.11) ∀ x ∈ D3εR0

eΛε

C
6 eλ

ε(x) 6 CeΛε .

Here C depends on M and rΨ
0 . Theorem 2.12 then allows us to control the

first Willmore quantity ; i.e. there exists ~Lε2 ∈ R3 such that

(5.12)
∥∥(~Lε − ~Lε2

)
eλ

ε∥∥
L2,∞(D3εR0) 6 C(M, rΨ

0 ) ‖Hε∇Φε‖L2(D) .

Step 3: Estimates across the concentration point. — We first wish to
estimate

∣∣∣ ~Lε1 − ~Lε2
∣∣∣. Using (5.9) and (5.12) we find

∥∥( ~Lε1 − ~Lε2
)
eλ

ε∥∥
L2,∞(D3R0ε\D2R0ε)

6
∥∥( ~Lε1 − ~Lε)eλε∥∥L2,∞(D3R0ε\D2R0ε)

+
∥∥(~Lε − ~Lε2

)
eλ

ε∥∥
L2,∞(D3R0ε\D2R0ε)

6
∥∥( ~Lε1 − ~Lε)eλε∥∥L2,∞

(
D 1

2R0
\D2R0ε

) +
∥∥(~Lε − ~Lε2

)
eλ

ε∥∥
L2,∞(D3R0ε)

6 C(M, rΨ
0 )‖Hε∇Φε‖L2(D).

Thus

(5.13)
∣∣ ~Lε1 − ~Lε2

∣∣ 6 C(M, rΨ
0 )

‖eλε‖L2,∞(D3R0ε\D2R0ε)
‖Hε∇Φε‖L2(D) .

We can now assemble our estimates on the neck and the bubble. Using
successively (5.9), (5.12) and (5.13) we find

∥∥(~Lε − ~Lε1
)
eλ

ε∥∥
L2,∞

(
D 1

2R0

)
6
∥∥(~Lε − ~Lε1

)
eλ

ε∥∥
L2,∞

(
D 1

2R0
\D2εR0

) +
∥∥(~Lε − ~Lε1

)
eλ

ε∥∥
L2,∞(D3εR0 )

6 C(M) ‖Hε∇Φε‖L2(D)

+
∥∥(~Lε − ~Lε2

)
eλ

ε∥∥
L2,∞(D3εR0 ) +

∥∥( ~Lε2 − ~Lε1
)
eλ

ε∥∥
L2,∞(D3εR0 )

6 C(M, rΨ
0 ) ‖Hε∇Φε‖L2(D) +

∣∣ ~Lε1 − ~Lε2
∣∣∥∥eλε∥∥

L2,∞(D3εR0 )

6 C(M, rΨ
0 ) ‖Hε∇Φε‖L2(D)

(
1 +

∥∥eλε∥∥
L2,∞(D3εR0 )

‖eλε‖L2,∞(D3R0ε\D2R0ε)

)
.
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With (5.11), we can simplify the last right-hand term in the inequality.∥∥eλε∥∥
L2,∞(D3εR0 )

‖eλε‖L2,∞(D3R0ε\D2R0ε)
6 C(M, rΨ

0 )

∥∥eΛε
∥∥
L2,∞(D3εR0 )

‖eΛε‖L2,∞(D3R0ε\D2R0ε)

6 C(M, rΨ
0 )

‖1‖L2,∞(D3εR0 )

‖1‖L2,∞(D3R0ε\D2R0ε)

6 C(M, rΨ
0 )

since Λε is a constant. Accordingly, there exists C(M, rΨ
0 ) > 0 such that

the following estimate across the concentration point stands.

(5.14)
∥∥(~Lε − ~Lε1

)
eλ

ε∥∥
L2,∞

(
D 1

2R0

) 6 C(M, rΨ
0 ) ‖Hε∇Φε‖L2(D) .

Step 4: Conclusion. — We have then found a first Willmore quantity,
~Lε − ~Lε1, with uniform L2,∞ control on a disk of fixed radius ρ = 1

2R0
.

Since (5.8) stands we can apply Theorem 3.1 on Dρ and find

‖Hε∇Φε‖
L∞
(
D ρ

2

) 6 C‖Hε∇Φε‖L2(Dρ),(5.15)

‖∇Φε‖
W 2,p

(
D ρ

2

) 6 C‖∇Φε‖L2(Dρ),(5.16)

while the second and third Willmore quantities satisfy

(5.17) ‖∇Sε‖
W 1,p

(
D ρ

2

) + ‖∇~Rε‖
W 1,p

(
D ρ

2

) 6 C‖Hε∇Φε‖L2(Dρ)

for all p <∞.
Theorem 1.3 then follows from classical compactness results. �

Appendix

A.1. Formulas for a conformal immersion

In this section, we show several formulas useful for the core of the article.
Most are well known, but their proof is included for self-containedness. Let
Φ : D→ R3 be a conformal immersion, that is such that

|Φx|2 − |Φy|2 = 〈Φx,Φy〉 = 0.

Its Gauss map is defined as ~n = Φx×Φy
|Φx×Φy| (with × the usual vectorial product

in R3) and its conformal factor as λ = log |Φx| = log |Φy|. Its second
fundamental form is then

A :=
〈
∇2Φ, ~n

〉
=:
(
e f

f g

)
.
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One can check

(A.1) ∇~n = −e−2λA∇Φ = −e−2λ
(
eΦx + fΦy
fΦx + gΦy

)
and deduce immediately

(A.2) ∇⊥~n = −e−2λ
(
−fΦx − gΦy
eΦx + fΦy

)
.

Defining the mean curvature

H = e+ g

2e2λ

and the tracefree second fundamental form

Å = e−2λ
( e−g

2 f

f g−e
2

)
one finds

(A.3)
∇~n = −H∇Φ− Å∇Φ,

∇⊥~n = −H∇⊥Φ + Å∇⊥Φ.

By definition of ~n
~n× Φx = Φy,
~n× Φy = −Φx,

which implies

(A.4)
~n×∇Φ = −∇⊥Φ,

~n×∇⊥Φ = ∇Φ.

Combining (A.3) and (A.4) yields

(A.5)
~n×∇~n = H∇⊥Φ + Å∇⊥Φ,

~n×∇⊥~n = −H∇Φ + Å∇Φ.

As a result H∇Φ and Å∇Φ can be deduced solely from ∇~n:

(A.6)
H∇Φ = −~n×∇

⊥~n+∇~n
2 ,

Å∇Φ = ~n×∇⊥~n−∇~n
2 .

It is well known that, since Φ is conformal,

(A.7) ∆Φ = ~H |∇Φ|2 ,

where ~H = H~n, and

(A.8) ∆λ = Ke2λ,
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where K = e−4λ detA = e−4λ (eg − f2) is the Gauss curvature. Equa-
tion (A.8) is refered to as the Liouville equation.
We can compute |∇~n|2 in several ways. Using (A.1):

(A.9)

|∇~n|2 = e−2λ (e2 + g2 + 2f2)
= e−2λ

(
4
(
e+ g

2

)2
− 2eg + 2f2

)
= 2

(
2H2 −K

)
e2λ,

and with (A.3)

(A.10)
|∇~n|2 =

∣∣∣H∇Φ + Å∇Φ
∣∣∣2

= |H∇Φ|2 +
∣∣∣Å∇Φ

∣∣∣2 since Å is tracefree.

since Å is tracefree. From (A.10) we deduce

(A.11)
∣∣Å∣∣ 6 |∇~n| ,

and

(A.12) |H∇Φ| 6 |∇~n| .

Complex notations will prove convenient for this work. Let

∂z = 1
2 (∂x − i∂y) = 1

2

(
1
−i

)
.∇ = i

2

(
1
−i

)
.∇⊥.

Then Φ conformal translates as

(A.13)
〈Φz,Φz〉 = 0,

|Φz|2 = e2λ

2 .

If we define the tracefree curvature as ω = e−g
2 − if = 2 〈Φzz, ~n〉, (A.3)

becomes

(A.14) ~nz = −HΦz − ωe−2λΦz̄,

while (A.10) turns into

(A.15) |~nz|2 = H2e2λ + |ω|2 e−2λ

2 .

Similarly, (A.7) translates to

Φzz̄ = He2λ

2 ~n.
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Exploiting (A.13) one finds

〈Φzz,Φz〉 = 0
〈Φzz,Φz̄〉 = (〈Φz,Φz̄〉)z − 〈Φz,Φzz̄〉

= λze
2λ.

Subsequently

Φzz = 2λzΦz + ω

2 ~n.

We can then compute

~nzz̄ = −Hz̄Φz −
H2e2λ

2 ~n−
(
ωz̄e
−2λ − 2λz̄ωe−2λ)Φz̄

− 2λz̄
(
ωe−2λ)Φz̄ −

|ω|2 e−2λ

2 ~n

= −Hz̄Φz − ωz̄e−2λΦz̄ −
H2e2λ + |ω|2 e−2λ

2 ~n.

However ~nzz̄ ∈ R3 since ~n ∈ R3. Then necessarily ωz̄e−2λ = Hz̄ i.e.

(A.16) Hz = ωz̄e
−2λ.

Equation (A.16) is the Gauss–Codazzi equation in complex notations.
Using (A.16) and (A.15) we find

(A.17) ~nzz̄ + |~nz|2 ~n+ 2< (HzΦz̄) = 0.

While the complex notations are most convenient for computations, the
resulting equations are not always telling. We will then translate (A.17)
back to its classic real form:

~nzz̄ + |~nz|2 ~n+ 2< (HzΦz̄) = 1
4

(
∆~n+ |∇~n|2 ~n+ 2 (HxΦx +HyΦy)

)
.

The Gauss map ~n then satisfies

(A.18) ∆~n+ |∇~n|2 ~n+ 2∇H∇Φ = 0.

This can be slightly changed to better suit our needs

∆~n+ |∇~n|2 ~n+ 2∇H∇Φ = ∆~n+ |∇~n|2 ~n+ 2 div(H∇Φ)− 2H∆Φ

= ∆~n+
(
|∇~n|2 − 2 |H∇Φ|2

)
~n+ 2 div(H∇Φ)

= ∆~n+
(∣∣Å∇Φ

∣∣2 − |H∇Φ|2
)
~n+ 2 div(H∇Φ).
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The second equality is obtained with (A.7), and the third with (A.10). Now
we compute

∇~n×∇⊥~n = −~nx × ~ny + ~ny × ~nx = −2~nx × ~ny
= −2e−4λ (eΦx + fΦy)× (fΦx + gΦy)

= −2e−2λ (eg~n− f2~n
)

= −2e−2λ

((
e+ g

2

)2
−
(
e− g

2

)2
− f2

)
~n

= −2H2e2λ~n+ 2
((

e− g
2

)2
+ f2

)
e−2λ~n

= − |H∇Φ|2 ~n+
∣∣Å∇Φ

∣∣2~n.
We then find

(A.19) ∆~n+∇⊥~n×∇~n+ 2 div(H∇Φ) = 0.

A.2. Formulas for a conformal, Willmore immersion

The aim of this section is to study the Willmore quantities and offer a
proof of Theorem 2.11. To that aim, we set ourselves in the same context
as in the previous subsection with the additionnal assumption that Φ is
Willmore.
We recall the definition of the Willmore quantities (already introduced

in Section 2.3 and stemming from Theorem I.4 in [22]).

(A.20)

∇⊥~L = ∇ ~H − 3π~n
(
∇ ~H

)
+∇⊥~n× ~H,

∇⊥S =
〈
~L,∇⊥Φ

〉
,

∇⊥ ~R = ~L×∇⊥Φ + 2H∇⊥Φ.

Now since
〈
~L×∇⊥Φ, H∇⊥Φ

〉
= 0 owing to the properties of the vectorial

product, we can compute∣∣∇~R∣∣2 =
∣∣~L×∇⊥Φ

∣∣2 + 4 |H∇Φ|2 .

This yields an interesting estimate:

(A.21) |H∇Φ| 6 1
2
∣∣∇~R∣∣.
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We recall the system of 2.10
∆S = −

〈
∇~n,∇⊥ ~R

〉
∆~R = ∇~n×∇⊥ ~R+∇⊥S∇~n

∆Φ = 1
2
(
∇⊥S.∇Φ +∇⊥ ~R×∇Φ

)
.

To rephrase this system we compute

(A.22)
〈
Å∇Φ,∇⊥ ~R

〉
=
〈
Å∇Φ, ~L×∇⊥Φ + 2H∇⊥Φ

〉
= −e−2λ

〈
e− g

2 Φx + fΦy, ~L× Φy + 2HΦy
〉

+ e−2λ
〈
fΦx + g − e

2 Φy, ~L× Φx + 2HΦx
〉

= g − e
2 e−2λ(〈Φx, ~L× Φy

〉
+
〈
Φy, ~L× Φx

〉)
− 2Hf + 2Hf

= g − e
2 e−2λ(〈~L,Φy × Φx

〉
+
〈
~L,Φx × Φy

〉)
= 0.

Further

(A.23) Å∇Φ×∇⊥ ~R

= Å∇Φ×
(
~L×∇⊥Φ + 2H∇⊥Φ

)
=
〈
Å∇Φ.∇⊥Φ

〉
~L−

〈
Å∇Φ, ~L

〉
∇⊥Φ + 2HÅ∇Φ×∇⊥Φ

= −e−2λ
〈
e− g

2 Φx + fΦy,Φy
〉
~L+ e−2λ

〈
e− g

2 Φx + fΦy, ~L
〉

Φy

− e−2λ2H
(
e−g

2 Φx+fΦy
)
×Φy + e−2λ

〈
fΦx+ g−e

2 Φy,Φx
〉
~L

− e−2λ
〈
fΦx + g − e

2 Φy, ~L
〉

Φx + 2H
(
fΦx + g − e

2 Φy
)
× Φx

= e− g
2
〈
Φx, ~L

〉
Φy + f

〈
Φy, ~L

〉
Φy − f

〈
Φx, ~L

〉
Φx

− g − e
2
〈
Φy, ~L

〉
Φx + 2H

(
−e− g2 ~n+ g − e

2 (−~n)
)

=
(
e− g

2 SxΦy + fSyΦy − fSxΦx −
g − e

2 SyΦx
)
,

= −∇⊥SÅ∇Φ.
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We have used (A.20) to obtain the second to last equality. The decompo-
sition (A.3) then yields〈

∇~n,∇⊥ ~R
〉

= −
〈
H∇Φ + Å∇Φ,∇⊥ ~R

〉
= −

〈
H∇Φ,∇⊥ ~R

〉
,

with (A.22). Similarly with (A.23) we compute

∇~n×∇⊥ ~R+∇⊥S∇~n

= −H∇Φ×∇⊥ ~R−H∇Φ∇⊥S − Å∇Φ∇⊥ ~R− Å∇Φ∇⊥S

= −H∇Φ×∇⊥ ~R−H∇Φ∇⊥S +∇⊥SÅ∇Φ−∇⊥SÅ∇Φ

= −H∇Φ×∇⊥ ~R−H∇Φ∇⊥S.

Injecting these last two equalities in (2.15), we can conclude that ~R, S and
Φ satisfy: 

∆S =
〈
H∇Φ,∇⊥ ~R

〉
∆~R = −H∇Φ×∇⊥ ~R−∇⊥SH∇Φ

∆Φ = 1
2

(
∇⊥S.∇Φ +∇⊥ ~R×∇Φ

)
,

which is the desired equation. �

A.3. Low-regularity estimates

We first recall Theorem 3 of [6].

Theorem A.1. — Let f ∈ Lp(D) such that
∫
fdxdy = 0, 1 < p < ∞.

Then there exists some Y ∈ L∞(D) ∩W 1,p
0 (D) such that

div Y = f,

and:

‖Y ‖L∞(D) + ‖∇Y ‖W 1,p(D) 6 C ‖f‖Lp(D) .

Theorem A.2. — Let V ∈ D′
(
R3) such that ∇V = ∇⊥A + B with

A ∈ L2(D) and B ∈ L1(D,R2). Then for any r < 1 there exists c ∈ R a
constant and C(r) > 0 such that

‖V − c‖L2(Dr) 6 C(r)
(
‖A‖L2(D) + ‖B‖L1(D)

)
.
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Proof. — Let us first assume that V , A and B are smooth, and obtain
an a priori estimate. Then, for any U =

(
U1
U2

)
∈W 1,2

0 (D,R2), one has:

(A.24)
∣∣∣∣∫

D
∇V.Udxdy

∣∣∣∣
6

∣∣∣∣∫
D
∇⊥A.Udxdy

∣∣∣∣+
∣∣∣∣∫

D
B.Udxdy

∣∣∣∣
6

∣∣∣∣∫
D
A.div

((
U2
−U1

))
dxdy

∣∣∣∣+
∣∣∣∣∫

D
B.Udxdy

∣∣∣∣
6
(
‖A‖L2(D) + ‖B‖L1(D)

)(
‖U‖L∞(D) + ‖∇U‖L2(D)

)
.

Applying Theorem A.1 with f = V − V , with V = 1
|D|
∫
D V dxdy, we can

find U ∈ L∞(D) ∩W 1,2
0 (D,R2) such that:

(A.25) div (U) = V − V ,

and

(A.26) ‖U‖L∞(D) + ‖∇U‖W 1,p(D) 6 C
∥∥V − V ∥∥

L2(D) .

Then, integrating by parts yields:

(A.27)
∣∣∣∣∫

D

(
V − V

)2 dxdy
∣∣∣∣

6

∣∣∣∣∫
D

(
V − V

)
divUdxdy

∣∣∣∣
6

∣∣∣∣∫
D
∇
(
V − V

)
Udxdy

∣∣∣∣ 6 ∣∣∣∣∫
D
∇V Udxdy

∣∣∣∣
6
(
‖A‖L2(D) + ‖B‖L1(D)

)(
‖U‖L∞(D) + ‖∇U‖L2(D)

)
6 C

(
‖A‖L2(D) + ‖B‖L1(D)

) ∥∥V − V ∥∥
L2(D) ,

injecting first (A.25), then (A.24) and (A.26). From (A.27), one then de-
duces:

(A.28)
∥∥V − V ∥∥

L2(D) 6 C
(
‖A‖L2(D) + ‖B‖L1(D)

)
.

A rescaling yields (A.28) on any Dr.
In the general case, we approximate A, B and V by smooth functions

on a smaller disk Dr. On this smaller disk, we apply and converge in the
rescaled a priori estimate (A.28) to obtain the result. �

We conclude this subsection by recalling an extension of Calderón–
Zygmund with Lorentz spaces ([10, Theorem 3.3.6]).
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Theorem A.3. — Let Ω be an open subset of R2 with C1 boundary.
Let f ∈ L1 (Ω) and ϕ solution of{

∆ϕ = f in Ω
ϕ = 0 on ∂Ω.

then there exists a constant C (Ω) such that

‖ϕ‖L2,∞(Ω) 6 C (Ω) ‖f‖L1(Ω) .

A.4. Wentes’ lemmas

Following are a few variations on Wente’s inequality, which will prove
useful in the core of the article.

Theorem A.4 (Wente’s inequality, originally in [24], see also [10, 3.1.2]).
Let a,b ∈W 1,2 (D,R) and u a solution of{

∆u = ∇a.∇⊥b in D
u = 0 on ∂D.

Then u ∈ C0 (D,R) ∩W 1,2 (D,R) and there exists C > 0

‖u‖L∞(D) + ‖∇u‖L2(D) 6 C ‖∇a‖L2(D) ‖∇b‖L2(D) .

Theorem A.5 (Wente’s inequality L2,∞, [10, Theorem 3.4.5]). — Let
Ω be a bounded domain of R2, with C2 boundary. Suppose a and b such
that ∇a ∈ L2,∞ (Ω) and ∇b ∈ L2 (Ω). Let ϕ be the solution of{

∆ϕ = ∇a.∇⊥b in Ω
ϕ = 0 on ∂Ω.

Then ϕ ∈W 1,2 (Ω), and there exists C(Ω) > 0 such that

‖∇ϕ‖L2(Ω) 6 C(Ω)‖∇a‖L2,∞(Ω)‖∇b‖L2(Ω).

Theorem A.6 (Wente’s inequality L2,1, [10, Theorem 3.4.1]). — Let Ω
be a bounded domain of R2, with C2 boundary. Suppose a and b such that
a ∈W 1,2 (Ω) and b ∈W 1,2 (Ω). Let ϕ be the solution of{

∆ϕ = ∇a.∇⊥b in Ω
ϕ = 0 on ∂Ω.

Then ϕ ∈W 1,(2,1) (Ω), and there exists C(Ω) > 0 such that

‖∇ϕ‖L2,1(Ω) 6 C(Ω)‖∇a‖L2(Ω)‖∇b‖L2(Ω).
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Remark A.7. — One must notice that the constant C(Ω) in TheoremsA.5
and A.6 depends on the shape of Ω, but not its size due to the fact that
L2,∞ and L2,1 are scale-invariant, but not conformal invariant. The same
constant C then works for all disks Dr. Since L2 is a conformal invariant
the constant in Theorem A.4 does not depend on Ω. We refer the reader
to [4] for more details.

A.5. Hodge decomposition

In this subsection we briefly recall results on the Hodge decomposition
and recast them in our framework.

Theorem A.8 (Lp decomposition, [11, Theorem 10.5.1]). — Let Ω be a
smoothly bounded domain in Rn and 1 < p <∞. Then for any l-differential
form ω ∈ Lp there exists a l−1 differential form α, a l+ 1-differential form
β and a l-differential form h such that:

ω = dα+ d∗β + h

with dh = d∗h = 0 and

‖α‖W 1,p(Ω) + ‖β‖W 1,p(Ω) 6 Cp(Ω)‖ω‖Lp(Ω).

Theorem 10.5.1 in [11] is in fact more accurate and goes into much more
details about the boundary conditions. However quoting it in a compre-
hensive manner would require to introduce new notations. We thus restrict
ourselves to this partial result, which will satisfy our current needs. Taking
X =

(
X1
X2

)
∈ Lp(Dr,R × R), and ω = X1dx + X2dy, one can apply Theo-

rem A.8 and find a function α, a volume form β and a harmonic 1-form h

on Dr such that:

ω = dα+ d∗β + h,

‖α‖W 1,p(Dr) + ‖β‖W 1,p(Dr) 6 Cp(Dr)‖ω‖Lp(Dr) 6 Cp(r)‖Xt‖Lp(Dr).

Since div(X) = d∗ω = ∆α we deduce

Corollary A.9. — Let r>0 and 1<p<∞. For any X∈Lp(Dr,R×R)
there exists α ∈W 1,p(Dr) such that

div(X) = ∆α

and
‖α‖W 1,p(Dr) 6 Cp(r)‖X‖Lp(Dr).
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Using Marcinkiewitz interpolation theorem (see for example [10, Theo-
rem 3.3.3]) enables us to write

Corollary A.10. — Let r > 0, for any X ∈ L2,1(Dr,R2) there exists
α ∈W 1,(2,1)(Dr) such that

∆α = div(X)

and
‖α‖W 1,(2,1)(Dr) 6 C(r)‖X‖L2,1(Dr).
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