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A GEOMETRIC CRITERION FOR PRESCRIBING
RESIDUES AND SOME APPLICATIONS

by Hanlong FANG

Abstract. — Let X be a compact complex manifold and D a C-linear finite
formal sum of divisors of X. A theorem of Weil and Kodaira says that if X is
Kähler, then there is a closed logarithmic 1-form with residue divisor D if and
only if D is homologous to zero in H2n−2(X,C). We generalized their theorem
to general compact complex manifolds. The necessary and sufficient condition is
described by a new invariant called Q-flat class. In the second part of the paper,
we classify all the pluriharmonic functions on a compact algebraic manifold with
mild singularities.
Résumé. — Soit X une variété complexe compacte et D une somme formelle

finie C-linéaire des diviseurs de X. Un théorème de Weil et Kodaira dit que si X
est kählerienne, alors il existe une 1−forme logarithmique fermé avec un diviseur
résiduel D si et seulement si D est homologue à zéro dans H2n−2(X,C). Nous gé-
néralisons leur théorème aux variétès complexes compactes générales. La condition
nécessaire et suffisante est décrite par un nouvel invariant appelé Q-flat class. Dans
la deuxième partie de l’article, nous classons toutes les fonctions pluriharmoniques
sur une variété algébrique compacte avec des singularités douces.

1. Introduction

In this paper, we study the following two questions for compact complex
manifolds.

Question 1.1 (Inverse residue problem). — Find closed meromorphic
1-forms (called abelian differentials in dimension one) with given residues.

Question 1.2 (Existence of pluriharmonic functions). — Construct and
classify pluriharmonic functions locally taking the form of

(1.1) g1(z) + g2(z) +
l∑
i=1

ai log |fi|2,
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1964 Hanlong FANG

where a1, . . . , al ∈ C and g1, g2, f1, . . . , fl are meromorphic functions.

Integrals of meromorphic 1-forms on Riemann surfaces played an im-
portant role in the development of the theory of complex analysis in one
variable. There are two well-known holomorphic invariants associated with
each meromorphic 1-form called residues and pole orders as follows. Sup-
pose a meromorphic 1-form g has the following Laurent expansion near the
point ξ = 0 in a local chart (U, ξ).

(1.2) g = h(ξ)dξ =
( ∞∑
i=−l

ciξ
i

)
dξ, c−l 6= 0, l > 1.

Then l is the pole order and c−1 is the residue at ξ = 0. This leads to
the following classification of meromorphic 1-forms by types (see [19] for
details).

• A differential is called an abelian differential of the first kind if it
is regular on the Riemann surface, that is, if it has no poles.

• A differential is called an abelian differential of the second kind if
it has at least one pole and if, in addition, its residue at each pole
is zero.

• A differential is called an abelian differential of the third kind if it
has at least one nonzero residue.

Regarding Question 1.1, the following classical theorem give a thorough
understanding of the compact Riemann surfaces case.

Theorem 1.3 ([19]). — Let X be a compact Riemann surface. The
following properties hold.

• The sum of the residues of an abelian differential over X is always
zero.

• For each point p on X and l = 2, 3, . . . there exist abelian differen-
tials of the second kind dEl(p) and dFl(p) with a single pole at p
with pole order l. Furthermore, all the periods of the integral El(p)
are pure imaginary and those of Fl(p) are real.

• For any two distinct points p and q on X there exists an abelian
differential dE(p, q) of the third kind which is regular apart from
simple poles p and q with residues 1 and −1. Also, all the periods
of the integral E(p, q) are pure imaginary.

Recall that the integral El(p) (resp. Fl(p)) in Theorem 1.3 is a multi-
valued definite integral on X\p defined by

(1.3) El(p)(x) =
∫ x

x0

dEl(p)
(
resp. Fl(p)(x) =

∫ x

x0

dFl(p)
)
,
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where x0 ∈ X\p is a fixed point and the integral is taken along some
rectifiable curve C on X\p. The multi-valuedness of the integral comes
from the choice of the curve and is described by the periods; for any closed
curve Γ on X\p, the period El(p)(Γ) (resp. Fl(p)(Γ)) of the integral El(p)
(resp. Fl(p)) is defined by

(1.4) El(p)(Γ) =
∫

Γ
dEl(p)

(
resp. Fl(p)(Γ) =

∫
Γ

dFl(p)
)
.

Picard and Lefschetz generalized the concept of abelian differentials on
algebraic surfaces. Notice that abelian differentials on Riemann surfaces
are closed, and hence the line integrals are homotopic invariant and the
residues are well-defined; when the complex dimension of a complex man-
ifold is larger than or equal to two, the closeness property does not hold
automatically. Therefore, in order to attach residues to a differential, it is
natural to make the closeness property as an additional assumption.

In higher dimension, Hodge and Atiyah ([9]) generalized the concept of
abelian differentials and the associated periods by sheaf theory (see Sec-
tion 2 for more details).

To be more precise, we assume that X is a complex manifold, W is a re-
duced divisor ofX and q, k are nonnegative integers. Denote by Ωq(kW ) the
sheaf of germs of meromorphic q-forms having, as their only singularities,
poles of order at most k on the components of W . (We view meromorphic
functions as 0-forms, when q = 0.) Denote by Ωq(∗W ) the direct limit of the
sheaves Ωq(kW ) as k →∞, which is just the sheaf of germs of meromorphic
q-forms with poles of any order on W . Similarly we denote by Ωq(∗) the
direct limit of the sheaves Ωq(∗W ) as W runs through all reduced divisors
of X. Define a presheaf by

(1.5) dΩq(kW )(U) := {df | f ∈ Ωq(kW )(U)}
for each open subset U of X;

the C-sheaf dΩq(kW ) is its sheafification. Denote by dΩq(∗W ) the direct
limit of the sheaves dΩq(kW ) as k → ∞; denote by dΩq(∗) the direct
limit of the sheaves dΩq(∗W ) as W runs through all reduced divisors of
X. Denote by Φq(kW ), Φq(∗W ) and Φq(∗) the subsheaves of Ωq(kW ),
Ωq(∗W ) and Ωq(∗), respectively, consisting of germs of closed forms. More-
over, define the sheaves Rq(W ) and Rq(∗) by the following exact sequences,
respectively.

(1.6)
0 −→ dΩq−1(∗W ) −→ Φq(∗W ) −→ Rq(W ) −→ 0,

0 −→ dΩq−1(∗) −→ Φq(∗) −→ Rq(∗) −→ 0.
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1966 Hanlong FANG

Notice that when q = 1 one can show that the sheaf cohomology group
H0(X,R1(W )) is the space of C-linear formal sums of divisors of X sup-
ported on W (see Lemma 2.4); H0(X,Φ1(∗W )) is the space of the closed
meromorphic 1-forms with poles on W ; H0(X,dΩ0(∗W )) is the subspace
of H0(X,Φ1(∗W )) consisting of locally exact meromorphic 1-forms.
H0(X,dΩ0) is the space of d-closed holomorphic forms because, for holo-

morphic forms, being d-closed is equivalent to being locally d-exact. Con-
sider the following Hodge–Atiyah short exact sequences of C-sheaves.

0 −→ C −→ Ω0(∗W ) −→ dΩ0(∗W ) −→ 0,(1.7)

0 −→ dΩ0(∗W ) −→ Φ1(∗W ) −→ R1(W ) −→ 0,(1.8)

and the corresponding long exact sequences of the cohomology groups,

(1.9) H0(X,Ω0(∗W )) −→ H0(X,dΩ0(∗W )) −→ H1(X,C)

−→ H1(X,Ω0(∗W )) −→ H1(X,dΩ0(∗W ))

−→ H2(X,C) −→ H2(X,Ω0(∗W )) −→ . . . ;

(1.10) H0(X,dΩ0(∗W )) −→ H0(X,Φ1(∗W )) Res−−→ H0(X,R1(W ))
∆0

−−→ H1(X,dΩ0(∗W )) −→ . . . .

Based on (1.10), the following higher dimensional analogue of the periods
of a closed meromorphic 1-forms are defined.

Definition 1.4 ([9]). — Let Φ ∈ H0(X,Φ1(∗W )) be a closed meromor-
phic 1-form. We call the image Res(Φ) of Φ under the homomorphism Res
the residue divisor of Φ.

As a consequence of the long exact sequence (1.10), one derives immedi-
ately the following abstract criterion for Question 1.1.

Theorem 1.5 ([9]). — Suppose X is a compact complex manifold and
W is a reduced divisor of X. Let D be an element of H0(X,R1(W )). Then
there is a closed meromorphic 1-form Φ ∈ H0(X,Φ1(∗W )) with residue
divisor D if and only if ∆0(D) ∈ H1(X,dΩ0(∗W )) is trivial in the long
exact sequence (1.10).

Recall that for a complex manifold X of complex dimension n and a
reduced divisor W of X, we can define the sheaf of germs of logarithmic
1-forms as follows (see [16]). For each x ∈ X take irreducible germs of
holomorphic functions fj ∈ OX,x, 1 6 j 6 k, so that {f1 = 0}, . . . , {fk = 0}
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define the local irreducible components ofW at x. Then we define the sheaf
Ω1(logW ) of germs of logarithmic 1-forms along W by

(1.11) Ω1
X,x(logW ) =

k∑
j=1
OX,x

dfj
fj

+ Ω1
X,x.

It is easy to verify that if W is smooth at x the germ Ω1
X,x(logW ) is an

OX,x-module generated by dx1
x1

and dx1, . . . ,dxn where (x1, . . . , xn) are
certain local coordinates of X near x such that W is defined locally by
x1 = 0. Hence, the sheaves Ω1(logW ), Ω1(W ) are different when n > 2.
Moreover, one can show that the sheaf Φ1(W ) is a subsheaf of Ω1(logW );
H0(X,Φ1(W )) is the vector space of closed logarithmic 1-forms with poles
on W ; H0(X,Ω1(logW )) is the vector space of logarithmic 1-forms on X
with poles on W .

Weil and Kodaira then derived the following geometric criterion for the
existence of a closed logarithmic 1-forms with a prescribed residue divisor
by further assuming X is a compact Kähler manifold.

Theorem 1.6 ([10] and [22]). — Let X be a compact Kähler manifold
of complex dimension n andW a reduced divisor of X. Let D be an element
of H0(X,R1(W )). Then there is a closed logarithmic 1-form with residue
divisor D if and only if D is homologous to zero in H2n−2(X,C).

In the first part of this paper, we investigate Question 1.1 and generalize
the above geometric criterion for general compact complex manifolds. First
recall the following definition of theQ-flat class of a holomorphic line bundle
via Čech cohomology. (See Section 3.3 for the detailed definition of Čech
cohomology groups.)

Definition 1.7 ([6]). — Let X be a compact complex manifold and E
a holomorphic line bundle on X. Take an open cover U := {Ui}Mi=1 of X
and let g := {gij} be a system of transition functions associated with a
certain family of local trivializations of E with respect to U . For indices
1 6 i1 < i2 6M , define an element ti1i2 ∈ Γ(Ui1i2 ,dΩ0) by

(1.12) ti1i2 :=
g−1
i1i2
· dgi1i2

2π
√
−1

.

We can define a Čech 1-cocycle pfU (E) ∈ qH1(U ,dΩ0) by

(1.13) pfU (E) :=
⊕
i1<i2

ti1i2 ∈
⊕
i1<i2

Γ(Ui1i2 ,dΩ0).
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Recall the following canonical homomorphism (see Definition 3.6 for de-
tails).

(1.14) P : qH1(U ,dΩ0) −→ qH1(X,dΩ0) = lim−→
U

qH1(U ,dΩ0) −→ H1(X,dΩ0).

Denote by F (E) the image of pfU (E) in H1(X,dΩ0) under the homomor-
phism P ; call F (E) the Q-flat class of E.This definition is independent of
the choice of the open cover U , the trivialization of E and the system of
transition functions g.

Remark 1.8. — Similarly, we can define the Q-flat classes of C-linear
finite formal sums of divisors. Suppose D =

∑l
i=1 ai ·Wi where Wi is a

divisor of X and ai ∈ C for i = 1, . . . , l. Define the Q-flat class of D by
F (D) :=

∑l
i=1 ai · F (Wi) ∈ H1(X,dΩ0).

We now state the geometric criterion for general compact complex man-
ifolds in terms of the Q-flat class.

Theorem 1.9. — Let X be a compact complex manifold and W a re-
duced divisor of X. Let D ∈ H0(X,R1(W )). The following statements are
equivalent.

• The Q-flat class of D is trivial in H1(X,dΩ0);
• there is a closed logarithmic 1-form with residue divisor D.

We call a divisor D flat if under a certain trivialization the transition
functions of [D], the line bundle associated withD, can be taken as constant
functions. One can prove that the Q-flat class of a divisor D is trivial if
only if D is flat up to some positive multiple (see [6, Thm. 1.11]). On the
other hand, a well-known fact says that (see [17, Prop. 3.1]), for every
flat, reduced divisor D on a complex manifold X, there exists a closed
logarithmic 1-form with simple poles along D and holomorphic on X\D.
Therefore, Theorem 1.9 actually shows that the well-known fact about
the flat, reduced divisors is general enough to cover all cases up to some
multiple.
As an application of Theorem 1.9, we have the following corollary.

Corollary 1.10. — Let X be a compact complex manifold. Assume
that W (resp. W ′) is a reduced divisor of X and D ∈ H0(X,R1(W )) (resp.
D′ ∈ H0(X,R1(W ′))). Moreover, suppose that D and D′ are C-linearly
equivalent; that is, there exist a nonnegative integer m, complex numbers
a!, . . . , am and meromorphic functions f1, . . . , fm on X such that

(1.15) D −D′ +
m∑
i=1

ai · (fi) = 0 as a formal sum of divisors,
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where (fi) is the principle divisor associated with fi, 1 6 i 6 m. The
following statements are equivalent.

• There is a closed logarithmic 1-form with residue divisor D and
with poles on W ;

• there is a closed logarithmic 1-form with residue divisor D′ and
with poles on W ′.

We also refine Hodge and Atiyah’s criterion for closed meromorphic 1-
forms with poles of arbitrary order (Theorem 5.1). In particular, we derive
the following topological constraint on the residue divisors.

Theorem 1.11. — Let X be a compact complex manifold. Then the
residue divisor of a closed meromorphic 1-form on X is homologous to zero
in H2n−2(X,C).

Next, we compare different criteria. We say that a compact complex
manifold X has Property (H) (see Definition 3.11) if and only if

(1.16) dimH1(X,C) = dimH0(X,dΩ0) + dimH1(X,OX).

A consequence of the complex manifold X having Property (H) is that the
Q-flat class of D, a C-linear finite formal sums of divisors of X, is trivial
if and only if D is homologous to zero (see Lemma 3.17). Therefore, we re-
duce the holomorphic criterion in Theorem 1.9 to the following topological
criterion as in Theorem 1.6.

Theorem 1.12. — Let X be a compact complex manifold of dimension
n. Assume X has Property (H). Let W be a reduced divisor of X and
D ∈ H0(X,R1(W )). The following statements are equivalent.

• D is homologous to zero in H2n−2(X,C);
• there is a closed logarithmic 1-form with residue divisor D.

Theorem 1.12 gives an alternate proof of Theorem 1.6, for compact Käh-
ler manifolds having Property (H). Moreover, when X is of complex di-
mension two, we conclude the following corollary.

Corollary 1.13. — Let X be a compact complex surface, W a re-
duced divisor of X and D ∈ H0(X,R1(W )). The following statements are
equivalent.

• D is homologous to zero in H2n−2(X,C);
• there is a closed logarithmic 1-form with residue divisor D and with

poles on W .

TOME 71 (2021), FASCICULE 5
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A well-known result of Deligne [3] says that each logarithmic form on
projective manifolds is closed. This result later was generalized to Kähler
manifolds and complex manifolds of Fujiki class C by Noguchi [16] and
Winkelmann [23], respectively. We further generalize it in the case of 1-
forms as follows.

Theorem 1.14. — Let X be a compact complex manifold with Prop-
erty (H). Then each logarithmic 1-form on X is a sum of a holomorphic
1-form and a closed logarithmic 1-form. To be more precise, for each re-
duced divisor W of X we have

(1.17) H0(X,Ω1(logW )) = H0(X,Ω1) +H0(X,Φ1(W )).

A consequence of it is that, whenever the Frölicher spectral sequence of
X degenerates at E1, every logarithmic 1-form on X is closed.
Similarly, we have the corresponding decomposition for closed meromor-

phic 1-forms with arbitrary pole order as follows.

Theorem 1.15. — Let X be a compact complex manifold with Prop-
erty (H). Then every closed meromorphic 1-form is a sum of a closed log-
arithmic 1-form and a locally exact meromorphic 1-form.

Notice that this result is optimal, for there are non-closed holomorphic
differential 1-forms on an Iwasawa manifold which is not Kähler but has
Property (H) (see Example 4.6).
In the second part of the paper, we turn to the study of pluriharmonic

functions on projective manifolds (Question 1.2). Recall that a plurihar-
monic function f (possibly singular) is a solution of the following overde-
termined system of partial differential equations:

(1.18) ∂∂f = 0.

The only regular solutions of equation (1.18) on a compact complex mani-
fold are constant functions; meromorphic functions and anti-meromorphic
functions are its singular solutions. We first derive the following theorem.

Theorem 1.16. — Let X be a compact algebraic manifold. Assume
that W is a reduced divisor of X and there is an effective, ample divisor of
X whose support is contained in W . Then for every closed meromorphic
1-form with poles on W , there exists a closed anti-meromorphic 1-form on
X with poles on W , so that the integral of the sum of these two differen-
tials is a single-valued function on X\W . In particular, the integral is a
pluriharmonic function with singularities on W.

ANNALES DE L’INSTITUT FOURIER
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Denote by K(X) the vector space of meromorphic functions on X; de-
note byK(X) the vector space of anti-meromorphic functions on X; denote
by dK(X) the vector space of the differentials of meromorphic functions
on X. Denote by Ph(X) the vector space of the pluriharmonic functions
on X of local form (1.1); denote by Ph0(X) the vector space of the pluri-
harmonic functions on X of local form (1.1) without log terms. Recall
that H0(X,Φ1(∗)) is the vector space of closed meromorphic 1-forms on
X; H0(X,dΩ0(∗)) is the vector space of all locally exact meromorphic 1-
forms.
Then there are natural linear maps k, k0 between vector spaces induced

by differentiation as follows.

κ : Ph(X)/(K(X) +K(X)) −→ H0(X,Φ1(∗))/dK(X)
h 7−→ ∂h,

(1.19)

and
κ0 : Ph0(X)/(K(X) +K(X)) −→ H0(X,dΩ0(∗))/dK(X)

h 7−→ ∂h,
(1.20)

where ∂h is the canonical projection of the exterior differentiation dh of h
onto the holomorphic cotangent space at each point.
As an application of Theorem 1.16, we have the following theorem clas-

sifying all the singular solutions of equation (1.18) with local form (1.1).

Theorem 1.17. — Let X be a compact algebraic manifold. The natural
homomorphisms (1.19) and (1.20) induced by differentiation are isomor-
phisms.

We now briefly describe the organization of the paper and the basic
ideas for the proof of theorems. A natural approach to prove Theorems 1.9
and 1.12 is to interpret sheaf cohomology as Čech cohomology. In order to
establish the isomorphism between these two cohomologies of X, we shall
prove that certain cohomology groups are trivial. However, the Hodge–
Atiyah exact sequences are not sequences of coherent OX -sheaves, and
hence Cartan theorem B does not apply. This difficulty is settled by three
lemmas: truncation lemma, good cover lemma and acyclic lemma. Next, we
construct explicitly the map from the residue divisor group to the obstruc-
tion group by diagram chasing and prove Theorems 1.9 and 1.12. Then, we
show that, for manifolds with Property (H), the criterion for the existence
of logarithmic 1-forms with given residue divisors coincides with the cri-
terion for the existence of closed meromorphic 1-forms with given residue
divisors; therefore, each logarithmic 1-form can be decomposed into two

TOME 71 (2021), FASCICULE 5
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parts as in Theorem 1.14. Similar to the logarithmic case, we derive the
criteria for prescribing residues for closed meromorphic 1-forms with arbi-
trary pole orders and as a consequence of which we prove Theorem 1.11.
In the second part of the paper, we investigate Question 1.2. Firstly, we

describe the two kinds of obstructions for getting a single-valued function
by integrating closed meromorphic 1-forms, namely, the long period vectors
corresponding to the integrals along loops inH1(X,C), and the short period
vectors corresponding to the integrals along small loops around irreducible
components of the residue divisor. Since such an integral is single-valued if
and only if all periods vanish and it is impossible to carry out a cancellation
of periods merely in the holomorphic category except the trivial case, we
produce closed anti-meromorphic 1-forms with opposite periods, and then
sum up the pairs to get a single-valued function. At last, we will prove
Theorems 1.16 and 1.17 by a careful cancellation of the periods.
The organization of the paper is as follows. In Section 2, we introduce

Hodge and Atiyah’s sheaf theoretical method. In Section 3.1, we establish
a special truncation of Hodge–Atiyah exact sequence. In Section 3.2, we
prove the acyclic lemma. In Section 3.3, diagram chasing method is used
to show the geometric meaning of the map from the residue divisor group
to the obstruction group. In Section 3.4, we derive some basic properties
of manifolds with the Property (H). In Section 4.1, we prove Theorems 1.9
and 1.12. In Section 4.2, we prove Theorem 1.14. In Section 5, we prove
Theorem 1.11. In Section 6, we prove Theorems 1.16 and 1.17.

For reader’s convenience, we include in Appendix A a detailed proof
for the existence of a (very) good cover for a compact complex manifold
which is crucial in the comparison of two cohomologies. Also, we include
in Appendix B a proof for the existence of a smooth, transversal two-chain
which is used for calculating periods.
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2. Preliminaries

Let X be a complex manifold and Ω1
X (or Ω1 for short) the cotangent

bundle of X. For each meromorphic 1-form f on X, we define an ideal sheaf
on X characterizing the singularities of f as follows.

Definition 2.1. — Define a presheaf Ppref as follows. For each open set
(in the Euclidean topology) U ⊂ X,

(2.1) Γ(Ppref , U) :=
{
h ∈ OX(U)

∣∣hf |U ∈ H0(U,Ω1)
}
.

Its sheafification is called the denominator ideal sheaf associated with f

and denoted by Pf .

Lemma 2.2. — The denominator ideal sheaf associated with f is locally
free and of rank 1; that is, Pf defines a divisor.

Proof. — We choose a Stein open set U of X with complex coordinates
(z1, . . . , zn) such that

(2.2) f = f1

g1
dz1 + f2

g2
dz2 + f3

g3
dz3 + · · ·+ fn

gn
dzn,

where fi, gi are holomorphic functions over U. Without loss of generality,
we assume fi and gi are coprime for i = 1, . . . , n. Let h be a least com-
mon multiple of g1, g2, . . . , gn. It is easy to verify that Pf (U) = (h). This
completes the proof of the lemma. �

Following [9], we introduce some notations and recall some important
results therein. In what follows, we assume that W is a reduced divisor on
X; we also assume that all the open sets are in the Euclidean topology.

First recall that, similar to the case of linear spaces H0(X,Φ1(∗W )) and
H0(X,dΩ0(∗W )), H0(X,Φ1(∗)) is the space of the closed meromorphic
1-forms and H0(X,dΩ0(∗)) is the subspace of H0(X,Φ1(∗)) consisting of
locally exact meromorphic 1-forms.

Also, we say a number of meromorphic 1-forms are independent if no
linear combination of them is equal to the differential of a meromorphic
function on X.
Define C-sheaves D(W ) and D(∗). Let U be an open set of X. Denote

by {WU
h } the irreducible components of W in U and by CWU

h
the constant

sheaf on WU
h . Since CWU

h
can be viewed as a C-sheaf on U , we define a

presheaf Dpre(W ) by

(2.3) Γ(Dpre(W ), U) :=
∑
h

CWU
h

=
{∑

fh

∣∣∣ fh ∈ Γ(U,CWU
h

)
}
.
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Let D(W ) be the sheafification of Dpre(W ). We denote by D(∗) the direct
limit of the sheaf D(W ), as W runs through all reduced divisors of X.

Remark 2.3. — In the remainder of this paper, we will use Ω0 and OX
interchangeably.

Recall the following lemma due to Hodge and Atiyah.

Lemma 2.4 ([9, Lem. 8]). — Let the sheaves R1(W ) and R1(∗) be de-
fined as in (1.6). The following properties hold.

• R1(W ) ∼= D(W );
• R1(∗) ∼= D(∗).

Remark 2.5 ([9]). — There is an explicit isomorphism between R1(W )
and D(W ) as follows. Let x be any point ofX, and suppose thatW1, . . . ,Wl

are the local irreducible components of W which pass through x, fh = 0
being a local equation of Wh. Then 1

2π
√
−1

dfh
fh

defines an element rh of
R1(W )x. The isomorphism is given by

α : D(W ) −→ R1(W ), [1Wh
]x 7−→ rh.

Remark 2.6. — Let W =
⋃l
i=1Wi be the irreducible decomposition of

W . Then

H0(X,D(W )) ∼=
l⊕
i=1

C · 1Wi ,

where 1Wi
is the function taking value 1 on Wi and 0 on X\Wi. We also

identify the above direct sum with
⊕l

i=1 CWi, the vector space consisting
of C-linear formal sums of divisors W1, . . . ,Wl.

Recall the following well-known Serre vanishing theorem.

Theorem 2.7 (See [9, Lem. 5, 6 and 7]). — If W is ample, and if k is
a sufficiently large integer, then Hp(V,Ωq(kW )) = 0 for p > 1.

It is also proved in [9] that

Theorem 2.8 ([9, Thm. 1 in §3]). — The number of independent locally
exact meromorphic 1-forms is equal to the first Betti number of X.

In a parallel manner, the following result holds.

Proposition 2.9 ([9, Prop. 1 in §3]). — If W is ample, then

(2.4) H0(X,dΩ0(∗W ))/ ImH0(X,Ω0(∗W )) ∼= H1(X,C).

Hence a basis for locally exact meromorphic 1-forms (modulo differentials
of meromorphic functions) can be chosen from forms with singularities on
any ample divisor W .
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In fact, we have the following effective version.

Proposition 2.10. — If H1(X,OX(kW )) = 0 for a certain positive
integer k, then

(2.5) H0(X,dΩ0(kW ))/ ImH0(X,Ω0(kW )) ∼= H1(X,C).

Moreover, a basis for locally exact meromorphic 1-forms (modulo differen-
tials of meromorphic functions) can be chosen from forms with singularities
on W and pole order (at most) k + 1 along W .

Proof. — By definition, we have that

(2.6) 0 −→ C −→ Ω0(kW ) −→ dΩ0(kW ) −→ 0.

The corresponding long exact sequence is:

(2.7) H0(X,Ω0(kW )) −→ H0(X,dΩ0(kW ))

−→ H1(X,C) −→ H1(X,Ω0(kW )).

Since each element of H0(X,dΩ0(kW )) has pole orders no more than k+1
along W , we conclude Proposition 2.10. �

We end this section with the following definitions.

Remark 2.11. — Let Φ ∈ H0(X,Φ1(∗W )) be a closed meromorphic 1-
form and W =

⋃l
i=1Wi the irreducible decomposition of W . Thanks to

Lemma 2.4 and Remarks 2.5 and 2.6, Res(Φ) is a C-linear formal sum of
W1, . . . ,Wl as follows.

Res(Φ) =
l∑
i=1

aiWi, ai ∈ C for i = 1, . . . , l.

Remark 2.12. — When W is a normal crossing divisor, we can calculate
the residue divisor Res(Φ) by taking terms with the form dzi

zi
in the Lau-

rent series expansion of Φ. In general, we can calculate Res(Φ) by taking
the contour integrals along small loops around the components of W (see
Definition 6.5).

3. A geometric interpretation of δ1 and δ1 ◦∆0

Since the original Hodge–Atiyah sequences involve infinite-dimensional
cohomology groups, it is not effective to control the pole orders and is also
abstract for the purpose of a geometric understanding. In this section, we
will introduce a special truncation of short exact sequences (1.7) and (1.8).
Then by using Čech cohomology theory, we are able to derive a geometric
interpretation of the homomorphisms δ1 and δ1 ◦∆0.
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3.1. Truncation lemma

Lemma 3.1 (Truncation lemma). — Let X be a smooth complex man-
ifold of complex dimension m and W a reduced divisor of X. There exist
short exact sequences of C-sheaves on X as follows.

0 −→ C −→ Ω0 −→ dΩ0 −→ 0 ;(3.1)

0 −→ dΩ0 φ−→ Φ1(W ) ψ−→ R1(W ) −→ 0.(3.2)

Proof. — It is easy to see that the sequence (3.1) is exact. To prove
sequence (3.2) is exact, it suffices to prove Lemma 3.1 locally at each point
x ∈ X. Since R1(W )|x = 0 and φ is an isomorphism (by Poincaré lemma)
when x ∈ X\W , Lemma (3.2) holds trivially for x /∈W .

Now let x be a point ofW . Take a neighborhood Ux of x inX such thatW
is defined by the equation f1f2 . . . fl = 0, l > 1, where f1, . . . , fl ∈ O(Ux)
are irreducible holomorphic functions vanishing at x and coprime to each
other. We denote by Wi the zero locus of fi in Ux for i = 1, . . . , l.
Since (dΩ0)x ⊂ (Ω1)x, homomorphism φ is the inclusion of the sheaf of

closed holomorphic 1-forms into the sheaf of closed meromorphic 1-forms.
Thanks to the fact that there is a natural homomorphism from Φ1(W )x

to Φ1(∗W )x and a homomorphism from Φ1(∗W )x to R1(W )x (see (1.6)),
homomorphism ψ is well-defined. Moreover, ψ is surjective, for R1(W )x is
generated by df1

f1
, df2
f2
, . . . , dfl

fl
∈ Φ1(W )x by Lemma 2.4 and Remark 2.5.

In order to show (3.2) is exact at the place Φ1(W )x, it suffices to prove
that if r ∈ Φ1(W )x and ψ(r) = 0, then r is the germ of a holomorphic
1-form. Notice that if a meromorphic 1-form has its poles on a subvariety
of codimension at least two, then the 1-form is actually holomorphic (see
Lemma 2.2). Therefore, it suffices to prove the exactness at smooth points
of W .
Let x be a smooth point of W . Take r ∈ Φ1(W )x with ψ(r) = 0. In

the following, we denote by Ut for t > 0 the polydisc
{

(z1, . . . , zm)
∣∣ |zi| <

t for i = 1, . . . ,m
}
. By a holomorphic change of coordinates, we can assume

that Ux is biholomorphic to U1; W is defined by z1 = 0 in U1; r takes the
form in U1 as

(3.3) r =
m∑
p=1

rpdzp =
m∑
p=1

( ∞∑
i1=−1

zi11 · gpi1(z2, . . . , zm)
)

dzp,

where gpi1(z2, . . . , zm) is holomorphic in variables z2, . . . , zm for 1 6 p 6 m;

(3.4) rp · z1 =
∞∑

i1=−1
z1+i1

1 gpi1(z2, . . . , zm)
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is an absolutely convergent series in Ut for 0 < t < 1 and 1 6 p 6 m.

Claim I. — g1(−1)(z2, . . . , zm) ≡ 0 in pU1 where pU1 =
{

(z2, . . . , zm)
∣∣ |zi|<

1, i = 2, . . . ,m
}
.

Proof of the Claim I. — Since ψ(r) = 0 in U1, r locally is a differential
of a meromorphic function. Then, each line integral of r along a closed loop
in U1\{z1 = 0} is zero. For fixed (z2, . . . , zm) ∈ pU1, define a loop γz2...zm by(
e2π
√
−1t

2 , z2, . . . , zm
)
for t ∈ [0, 1]. Computing the line integral

∫
γz2...zm

r,
we have ∫

γz2...zm

r =
∫
γz2...zm

(
m∑
p=1

∞∑
i1=−1

zi11 · gpi1(z2, . . . , zm)dzp

)
= 2π

√
−1 · g1(−1)(z2, . . . , zm).

(3.5)

Therefore g1(−1)(z2, . . . , zm) ≡ 0 in pU1. �

Claim II. — gp(−1)(z2, . . . , zm) ≡ 0 in pU1 for p = 2, . . . ,m.

Proof of the Claim II. — By Claim I, we can rewrite formula (3.3) as

(3.6) r =
m∑
p=1

( ∞∑
i1=0

zi11 gpi1(z2, . . . , zm)
)

dzp

+
m∑
p=2

z−1
1 gp(−1)(z2, . . . , zm) dzp.

Taking the differential of r, we have

0 =
m∑
p=1

d
( ∞∑
i1=0

zi11 gpi1(z2, . . . , zm)
)
∧ dzp

+
m∑
p=2

d
(
gp(−1)(z2, . . . , zm)

z1

)
∧ dzp

= −
m∑
p=2

gp(−1)(z2, . . . , zm)
z2

1
dz1 ∧ dzp + . . . .

(3.7)

Notice that the coefficient of dz1 ∧ dzp in dr is

(3.8) −
gp(−1)(z2, . . . , zm)

z2
1

+ hp(z1, . . . , zm),

where hp is a holomorphic function in U1 and 2 6 p 6 m. Then gp(−1) ≡ 0
in pU1 for 2 6 p 6 m. �
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As a conclusion, we proved that r is a holomorphic 1-form in U1, and
hence complex (3.2) is exact at the place Φ1(W )x. This completes the proof
of Lemma 3.1. �

By a similar argument, we can prove the following truncation with high
order poles.

Lemma 3.2 (Truncation lemma). — Let X be a smooth complex man-
ifold of complex dimension m and W a reduced divisor of X. There exist
short exact sequences of C-sheaves on X for k > 1 as follows.

0 −→ C −→ Ω0(kW ) −→ dΩ0(kW ) −→ 0 ;(3.9)

0 −→ dΩ0(kW ) φ−→ Φ1((k + 1)W ) ψ−→ R1(W ) −→ 0.(3.10)

Proof of Lemma 3.2. — We first prove the following Claim.

Claim. — Let U be a open set of X. Let f ∈ H0(U,OX((k + 1)W ))
such that f has pole order at most k in U outside an analytic subvariety
of codimension at least two. Then f ∈ H0(U,OX(kW )).

Proof of Claim. — Thanks to the fact that the problem is local, we can
assume that U is a complex ball andW is defined by a reduced holomorphic
function h ∈ H0(U,OX). Then f ·hk is holomorphic in U outside an analytic
subvariety of codimension at least two; hence, f · hk is holomorphic in U .
Since the pole order of 1

h on W is 1, this completes the proof. �

By the above Claim, we can reduce the problem to a smooth point of
W . The remainder of the proof is similar to the proof of Lemma 3.2, and
hence we omit it here. �

3.2. Acyclic lemma

We will prove the following acyclic lemma.

Lemma 3.3 (Acyclic lemma). — Suppose that X is a compact com-
plex manifold. Let U := {Ui}Mi=1 be a finite, good cover of X ensured by
Lemma A.1. Denote by Ui1...ip the intersection

⋂p
j=1 Uij for p > 1 and

1 6 i1 < · · · < ip 6M. The following vanishing results hold for all integers
p, q > 1.

(3.11) Hq(Ui1...ip ,C) = 0, Hq(Ui1...ip ,Ω0) = 0, Hq(Ui1...ip ,dΩ0) = 0.

Proof. — Without loss of generality, we can assume Ui1...ip is nonempty;
otherwise, the above formulas hold trivially.
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A result of [18] shows that if a space X is locally contractible and para-
compact, then singular cohomology H∗sing(X;A) is isomorphic to sheaf co-
homology H∗(X;A), where A is any abelian groups and A is the con-
stant sheaf on X with value A. Recall that X is locally contractible if
any open subset U ⊂ X may be covered by contractible open sets; X
is paracompact if it is Hausdorff and any cover U of X has a locally fi-
nite refinement. Therefore, since Ui1...ip is contractible and paracompact,
the sheaf cohomology group Hq(Ui1...ip ,C) equals the singular cohomology
group Hq

sing(Ui1...ip ,C) for q > 0. Then for all p, q > 1, Hq(Ui1...ip ,C) =
Hq
sing(Ui1...ip ,C) = 0.
Since U is a good cover, Ui1 , . . . , Uip and hence Ui1...ip is Stein. Combined

with the fact that Ω0 is coherent, we conclude that Hq(Ui1...ip ,Ω0) = 0 by
Cartan theorem B for p, q > 1.
Consider the following long exact sequence associated with short exact

sequence (3.1).

H0(Ui1...ip ,Ω0)−→H0(Ui1...ip ,dΩ0)−→H1(Ui1...ip ,C)−→H1(Ui1...ip ,Ω0)

−→ H1(Ui1...ip ,dΩ0) −→ H2(Ui1...ip ,C) −→ H2(Ui1...ip ,Ω0) −→ . . . ,

Since Hq(Ui1...ip ,Ω0) = Hq+1(Ui1...ip ,C) = 0 for q > 1 and p > 1, we
conclude that for q > 1 and p > 1 Hq(Ui1...ip ,dΩ0) = 0. The proof of
Lemma 3.3 is complete. �

Similarly, by Lemma 3.2 we have the short exact sequence

(3.12) 0 −→ C −→ Ω0(kW ) −→ dΩ0(kW ) −→ 0, k > 1,

and the following lemma.

Lemma 3.4 (Acyclic lemma). — Suppose X is a compact complex man-
ifold. Let U := {Ui}Mi=1 be a good cover of X ensured by Lemma A.1. The
following vanishing results hold for k, p, q > 1.

(3.13) Hq(Ui1...ip ,Ω0(kW )) = 0, Hq(Ui1...ip ,dΩ0(kW )) = 0.

Proof. — The proof is similar to the proof of Lemma 3.3 and we omit it
here. �

3.3. The Čech cohomological interpretation of homomorphisms

We first recall some notions in Čech cohomology (see [21, §4] for details).
Let X be a compact complex manifold and W a reduced divisor of X.
Let U := {Ui}Mi=1 be a finite cover of X. Denote by j

i1...ip
∗ , p > 1, the

TOME 71 (2021), FASCICULE 5



1980 Hanlong FANG

inclusion Ui1...ip
j
i1...ip
∗−−−−→ X. Let F be a sheaf on X. Define sheaf ji1...ip∗ F ,

for any sheaf of abelian groups F on Ui1...ip , by formula ji1...ip∗ F(V ) :=
F(V ∩ Ui1...ip). Define the sheaf Ck(U ,F), for integer k > 0, by

(3.14) Ck(U ,F) :=
⊕

16i1<···<ik+16M

j
i1...ik+1
∗ F .

Define the coboundary operator d : Ck(U ,F) → Ck+1(U ,F), for integer
k > 0, by formula

(3.15) (dσ)i1...ik+2 =
∑
s

(−1)s−1σi1...̂is...ik+2
|V ∩Ui1...ik+2

,

1 6 i1 < · · · < ik+2 6M,

where σ = (σj1...jk+1), σj1...jk+1 ∈ j
j1...jk+1
∗ F(V ) = F(V ∩ Uj1...jk+1), 1 6

j1 < · · · < jk+1 6 M and V is any open set of X. One also defines a
homomorphism j : F → C0(U ,F) by j(σ)i = σ|V ∩Ui for σ ∈ F(V ).
We have the following proposition.

Proposition 3.5 ([21, Prop. 4.17]). — The (Čech) complex

(3.16) 0 −→ C0(U ,F) d−→ C1(U ,F) d−→ · · · d−→ Cn(U ,F)
d−→ Cn+1(U ,F) d−→ . . .

is a resolution of F .

Then the Čech cohomology is defined as follows.

Definition 3.6. — Define qHq(U ,F) to be the qth cohomology group of
the complex of global sections

Γ(X, Cq(U ,F)) :=
⊕

16i1<···<iq+16M

F(Ui1...iq+1)

of the Čech complex (3.16) associated with the cover U . Define the Čech
cohomology qHq(X,F) to be the direct limit of qHq(U ,F) as U runs through
all open covers of X,

(3.17) qH1(X,dΩ0) := lim−→
U

qH1(U ,dΩ0).

Moreover, we have the following canonical homomorphism.

(3.18) P : qH1(U ,dΩ0) −→ qH1(X,dΩ0) = lim−→
U

qH1(U ,dΩ0) −→H1(X,dΩ0).
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In what follows, we will take U to be a finite, good cover of X (by
Lemma A.1) and consider the Čech complexes (3.16) for the sheaves C,
Ω0, dΩ0, R1(W ) and Φ1(W ), respectively. Since the derived functor of the
global section functor Γ(X, · ) is left exact, we have the following isomor-
phisms.

(3.19)

H0(X,C) = qH0(U ,C), H0(X,Ω0) = qH0(U ,Ω0),

H0(X,dΩ0) = qH0(U ,dΩ0), H0(X,R1(W )) = qH0(U , R1(W )),

H0(X,Φ1(W )) = qH0(U ,Φ1(W )).

By Lemma 3.3 we have

Hq(Ui1...ip ,C) = Hq(Ui1...ip ,Ω0) = Hq(Ui1...ip ,dΩ0) = 0

for p > 1 and q > 1. Hence we have the following isomorphisms between the
sheaf cohomology groups and the corresponding Čech cohomology groups,
where q > 1 (see [21, Thm. 4.41] for instance).

(3.20)
Hq(X,C) = qHq(U ,C), Hq(X,Ω0) = qHq(U ,Ω0),

Hq(X,dΩ0) = qHq(U ,dΩ0).

Applying the global section functor Γ(X, · ) and its derived functor to
the short exact sequence (3.1) and the long exact sequence (3.16) with
F = C, Ω0 and dΩ0, we have the following commutative diagram, thanks
to H1(Ui1...ip ,C) = 0 for p > 1.
(3.21)

0 //
⊕
i1

C(Ui1) //

d0
C
��

⊕
i1

Ω0(Ui1) //

d0
Ω
��

⊕
i1

dΩ0(Ui1)

d0
dΩ
��

// 0

0 //
⊕
i1<i2

C(Ui1i2) //

d1
C
��

⊕
i1<i2

Ω0(Ui1i2) //

d1
Ω
��

⊕
i1<i2

dΩ0(Ui1i2)

d1
dΩ
��

// 0

0 //
⊕

i1<i2<i3

C(Ui1i2i3) //

d2
C
��

⊕
i1<i2<i3

Ω0(Ui1i2i3) //

d2
Ω
��

⊕
i1<i2<i3

dΩ0(Ui1i2i3) //

d2
dΩ
��

0

. . . . . . . . .

Here the horizontal lines of the above commutative diagram are exact.
By (3.19) and (3.20), we conclude that H0(X,C) = qH0(U ,C) = Ker d0

C,
H1(X,C) = qH1(U ,C) = Ker d1

C
Im d0

C
and H2(X,C) = qH2(U ,C) = Ker d2

C
Im d1

C
;
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H0(X,Ω0) = qH0(U ,Ω0) = Ker d0
Ω, H1(X,Ω0) = qH1(U ,Ω0) = Ker d1

Ω
Im d0

Ω
and

H2(X,Ω0) = qH2(U ,Ω0) = Ker d2
Ω

Im d1
Ω
; H0(X,dΩ0) = qH0(U ,dΩ0) = Ker d0

dΩ

and H1(X,dΩ0) = qH1(U ,dΩ0) = Ker d1
dΩ

Im d0
dΩ

.
Moreover, we also have the following natural commutative diagram.

(3.22)

// qH1(U ,Ω0) //

∼=
��

qH1(U ,dΩ0)

∼=
��

qδ1
// qH2(U ,C)

∼=
��

// qH2(U ,Ω0)

∼=
��

//

// H1(X,Ω0) // H1(X,dΩ0) δ1
// H2(X,C) // H2(X,Ω0) // .

Since H1(Ui1...ip ,dΩ0) = 0 for p > 1, we derive the following commuta-
tive diagram associated with short exact sequence (3.2) in a similar way.
(3.23)

0 //
⊕
i1

dΩ0(Ui1) //

d0
dΩ
��

⊕
i1

Φ1(W )(Ui1) H //

d0
Φ
��

⊕
i1

R1(W )(Ui1)

d0
R

��

// 0

0 //
⊕
i1<i2

dΩ0(Ui1i2) G //

d1
dΩ
��

⊕
i1<i2

Φ1(W )(Ui1i2) //

d1
Φ

��

⊕
i1<i2

R1(W )(Ui1i2)

d1
R

��

// 0

0 //
⊕

i1<i2<i3

dΩ0(Ui1i2i3) . . . . . .

where the horizontal lines are exact. By (3.19) and (3.20), H0(X,dΩ0) =
qH0(U ,dΩ0) andH1(X,dΩ0)= qH1(U ,dΩ0);H0(X,Φ1(W ))= qH0(U ,Φ1(W ));
H0(X,R1(W )) = qH0(U , R1(W )).
Moreover, we have the following commutative diagram.

(3.24)
// qH0(U ,dΩ0) //

∼=
��

qH0(U ,Φ1(W )) //

∼=
��

qH0(U , R1(W ))
q∆0
//

∼=
��

qH1(U ,dΩ0) //

∼=
��

. . .

// H0(X,dΩ0) // H0(X,Φ1(W ) // H0(X,R1(W )) ∆0
// H1(X,dΩ0) // . . .

Combining diagrams (3.22) and (3.24), we have a homomorphism δ1 ◦
∆0 from H0(X,R1(W )) to H2(X,C) such that the following diagram is
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commutative.

(3.25) H0(X,R1(W ))

∆0

��

δ1◦∆0

%%

0 //H0(X,dΩ0) //H1(X,C) //H1(X,Ω0)
j
//H1(X,dΩ0) δ1

//H2(X,C).

The main result of this section is the following theorem.

Theorem 3.7. — Let W be a reduced divisor on a compact complex
manifold X. Let W =

⋃l
i=1Wi be the irreducible decomposition of W .

Then the map δ1 ◦∆0 is induced by the first Chern classes as follows.

δ1 ◦∆0 : H0(X,R1(W )) −→ H2(X,C),
l∑
i=1

ai · 1Wi
∼=

l∑
i=1

aiWi 7−→
l∑
i=1

c1(Wi)⊗Z ai,
(3.26)

where c1(Wi) is the first Chern class of Wi for i = 1, . . . , l. By a slight
abuse of notation, we call (δ1 ◦∆0)(D) the first Chern class of D in the De
Rham cohomology for each D ∈ H0(X,R1(W )).

Remark 3.8. — Since H2(X,Z) ⊗Z C ∼= H2(X,C), c1(Wi) ⊗Z 1 can be
naturally viewed as an element ofH2(X,C). Also recall that, by Lemma 2.4,

H0(X,R1(W )) =
l⊕
i=1

H0(X,CWi) ∼=
l⊕
i=1

C · 1Wi
∼=

l⊕
i=1

CWi.

Proof of Theorem 3.7. — SinceW is a reduced divisor, Lemma 3.1 holds;
then the short exact sequences (3.1) and (3.1) hold. Moreover, Lemmas A.1
and 3.3 hold for X is a compact complex manifold. Hence we have the
commutative diagrams (3.21), (3.22), (3.23), (3.24) and (3.25) with respect
to a good cover U := {Ui}Mi=1 of X.
By the linearity of δ1 ◦∆0, in order to prove (3.26), it suffices to prove

it for 1W1 . Notice that, by (3.22) and (3.24), the homomorphism δ1 ◦∆0 is
isomorphic to the homomorphism qδ1 ◦ q∆0 between the corresponding Čech
cohomology groups. In what follows, we will do diagram chasing in (3.21)
and (3.23).
Recall that the Čech 0-cocycle of 1W1 with respect to U is given by⊕

16i16M
1W1 |Ui1 ∈

⊕
16i16M

R1(W )(Ui1).

Since Ui is Stein for i = 1, . . . ,M , W1 is defined by a holomorphic func-
tion fi = 0 on Ui. Define gi1i2 := fi1

fi2
∈ O∗(Ui1i2) for i1, i2 = 1, . . . ,M .
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Then {gi1i2} is a system of transition functions of holomorphic line bundle
[W1] with respect to U .
Thanks to Remark 2.5 and the diagram (3.23), we define a preimage σ of⊕
16i16M 1W1 |Ui1 under the homomorphismH :

⊕
16i16M Φ1(W )(Ui1) H−→⊕

16i16M R1(W )(Ui1) by

(3.27) σ :=
⊕

16i16M

1
2π
√
−1

dfi1
fi1

∣∣∣∣
Ui1

∈
⊕

16i16M
Φ1(W )(Ui1).

Then d0
Φ(σ) is a Čech 1-cocycle as follows.

(3.28) d0
Φ(σ) =

⊕
16i1<i26M

(
1

2π
√
−1

dfi1
fi1
− 1

2π
√
−1

dfi2
fi2

)∣∣∣∣
Ui1i2

∈
⊕

16i1<i26M
Φ1(W )(Ui1i2).

Since fi1 = gi1i2 · fi2 on Ui1i2 and gi1i2 ∈ O∗(Ui1i2), we have that

d0
Φ(σ)(Ui1i2) = 1

2π
√
−1

dfi1
fi1
− 1

2π
√
−1

dfi2
fi2

= 1
2π
√
−1

d(gi1i2fi2)
(gi1i2fi2) −

1
2π
√
−1

dfi2
fi2

= 1
2π
√
−1

dgi1i2
gi1i2

+ 1
2π
√
−1

dfi2
fi2
− 1

2π
√
−1

dfi2
fi2

= 1
2π
√
−1

dgi1i2
gi1i2

= d(log gi1i2)
2π
√
−1

.

(3.29)

Define a Čech 1-cocycle ξ by

ξ :=
⊕

16i1<i26M

(
d(log gi1i2)

2π
√
−1

)∣∣∣∣
Ui1i2

∈
⊕

16i1<i26M
dΩ0(Ui1i2).

It is easy to see that ξ is a preimage of d0
Φ(σ) under the homomorphism

G :
⊕

i1<i2
dΩ0(Ui1i2) G−→

⊕
i1<i2

Φ1(W )(Ui1i2).
Fix a base point ai1i2 ∈ Ui1i2 for 1 6 i1 < i2 6 M. Let τ be a Čech

1-cochain given by

τ :=
⊕

16i1<i26M
τi1i2 |Ui1i2 ∈

⊕
16i1<i26M

Ω0(Ui1i2),

where

τi1i2 =
∫ z

ai1i2

d(log gi1i2)
2π
√
−1

= 1
2π
√
−1
(
log gi1i2(z)− log gi1i2(ai1i2)

)
,
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and log gi1i2 is a branch of the log function. Then τ is a preimage of ξ under
the homomorphism D :

⊕
16i1<i26M Ω0(Ui1i2) D−→

⊕
16i1<i26M dΩ0(Ui1i2)

in diagram (3.21).
It is clear that d1

Ω(τ) ∈
⊕

16i1<i2<i36M Ω0(Ui1i2i3) is a Čech 2-cocycle
as follows.

d1
Ω(τ) =

⊕
16i1<i2<i36M

d1
Ω(τ)i1i2i3 ∈

⊕
16i1<i2<i36M

Ω0(Ui1i2i3),

where
d1

Ω(τ)i1i2i3 = τi1i2 |Ui1i2i3 − τi1i3 |Ui1i2i3 + τi2i3 |Ui1i2i3

=
{

1
2π
√
−1
(
log gi1i2(z)− log gi1i2(ai1i2)

)
− 1

2π
√
−1
(
log gi1i3(z)− log gi1i3(ai1i3)

)
+ 1

2π
√
−1
(
log gi2i3(z)− log gi2i3(ai2i3)

)}∣∣∣∣∣
Ui1i2i3

.

Since gi1i2 · gi2i3 · gi3i1 ≡ 1 on Ui1i2i3 , d1
Ω(τ)i1i2i3 is a constant function for

z ∈ Ui1i2i3 . Therefore, d1
Ω(τ) ∈

⊕
16i1<i2<i36M C(Ui1i2i3). Thanks to the

fact that gjk(ajk) is a constant function defined in Uik, we conclude that
d1

Ω(τ) defines the same two-cocycle as

(3.30) τ̃ :=
⊕

16i1<i2<i36M

1
2π
√
−1
(
log gi1i2 − log gi1i3 + log gi2i3

)∣∣
Ui1i2i3

∈
⊕

16i1<i2<i36M
C(Ui1i2i3).

We conclude that τ̃ is the image of 1W1 under the map qδ1 ◦ q∆0.

By Proposition §1.1 in [7], the above τ̃ corresponds to the first Chern class
c1(W1) of the divisor W1. This completes the proof of Theorem 3.7. �

Remark-Definition 3.9. — When W runs through all reduced divisors of
X, we can extend the homomorphism δ1 ◦∆0 from H0(X,R1(W )) to the
vector space of all finite formal sums of divisors on X. We call the image
(δ1 ◦∆0)(D) of D, a C-linear finite formal sum of divisors on X, the first
Chern class of D in De Rham cohomology.

Remark 3.10. — It is easy to verify that the homomorphism ∆0 in com-
mutative diagram (3.25) is the restriction of the Q-flat class to the subspace
H0(X,R1(W )).
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3.4. Property (H) and the Q-flat class of a C-linear finite formal
sum of divisors

In this subsection, we will introduce the Property (H) of complex man-
ifolds and the Q-flat classes of holomorphic line bundles and of C-linear
finite formal sums of divisors.

Definition 3.11. — A complex manifoldX is said to have Property (H)
if X is compact and the following equality holds.

(3.31) dimH1(X,C) = dimH0(X,dΩ0) + dimH1(X,OX).

Remark 3.12. — Notice that there is a natural long exact sequence of
cohomology groups induced by the short exact sequence (3.1) of C-sheaves
as follows.

(3.32) 0 −→ H0(X,dΩ0) −→ H1(X,C)

−→ H1(X,OX) −→ H1(X,dΩ0) −→ . . . .

Hence, in general we only have that dimH1(X,C) 6 dimH0(X,dΩ0) +
dimH1(X,OX).

Remark 3.13. — Recall that H0(X,dΩ0) is the vector space consisting
of closed holomorphic differential 1-forms on X and when X is a compact
Kähler manifold (or more generally of Fujiki class C), each holomorphic
1-form on X is closed (see [4] or [20]). The following Hodge decomposition
for H1(X,C) holds.

(3.33) 0 −→ H0(X,Ω1) −→ H1(X,C) −→ H1(X,OX) −→ 0.

Hence, Kähler manifolds or manifolds of Fujiki class C have Property (H).
More generally, Property (H) is satisfied whenever the Frölicher spectral
sequence of X degenerates at E1.

Proposition 3.14. — Property (H) holds for all smooth, compact com-
plex surfaces.

Proof. — Let X be a smooth, compact complex surface. Then each holo-
morphic 1-form onX is closed. Moreover, by Kodaira’s results (see [11, 12]),
one of the following two cases holds.

(1) dimH0(X,Ω1)=q − 1, dimH1(X,OX)=q, dimH1(X,C)=2q − 1;
(2) dimH0(X,Ω1) = q, dimH1(X,OX) = q, dimH1(X,C) = 2q.
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Hence,

(3.34) dimH0(X,dΩ0) + dimH1(X,OX)

= dimH0(X,Ω1) + dimH1(X,OX)

= dimH1(X,C).

We conclude Proposition 3.14. �

Lemma 3.15. — Property (H) is preserved under blow-ups.

Proof of Lemma 3.15. — Let f : Y → X be a blow-up. Since X and Y
are smooth, f∗OY = OX and Rpf∗OY = 0 for p > 0. Then H1(Y,OY ) =
H1(X, f∗OY ) = H1(X,OX). It is easy to verify that H1(X,C) = H1(Y,C).

Next we will prove that H0(X,dΩ0
X) = H0(Y, dΩ0

Y ). On the one hand, if
ω is a closed holomorphic 1-form on X, then f∗ω is a closed holomorphic
1-form on Y . On the other hand, for any closed holomorphic 1-form τ on
Y , its pushforward f∗τ is a closed holomorphic 1-form on X\V where V is
of codimension at least two; hence f∗τ is a closed holomorphic 1-form on
X by extension.
This completes the proof. �

Recall that there is a natural homomorphism i2 from H1(X,Ω1) to
H2(X,C) and a natural homomorphism j1 from H1(X,dΩ0) to H1(X,Ω1).
We have the following proposition.

Proposition 3.16 (See [6, Thm. 4.5]). — Let X be a compact complex
manifold. The first Chern class maps factor through the Q-flat class map
F as

(3.35) H1(X,O∗) F−→ H1(X,dΩ0) j1−→ H1(X,Ω1) i2−→ H2(X,C).

That is to say, for each holomorphic line bundle W of X, (j1 ◦ F )(W ) is
the first Chern class of W in the Dolbeault cohomology group H1(X,Ω1);
(i2 ◦ j1 ◦ F )(W ) is the first Chern class of W in the De Rham cohomology
group H2(X,C).

If X has Property (H), we have the following lemma.

Lemma 3.17. — If X has Property (H), then the flat class, the first
Chern class in the Dolbeault cohomology and the first Chern class in the
De Rham cohomology coincide for each element in H0(X,R1(W )). In par-
ticular, in this case a divisor D of X is homologous to zero if and only if
mD is flat for some nonzero integer m.
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Proof of Lemma 3.17. — Thanks to the commutative diagram (3.25),
we have the following commutative diagram.

(3.36) H0(X,R1(W ))

∆0

��

δ1◦∆0

%%

0 //H0(X,dΩ0) //H1(X,C) //H1(X,Ω0)
j
//H1(X,dΩ0)

j1

��

δ1
//H2(X,C).

H1(X,Ω1)

i2

99

Notice that for each element D ∈ H0(X,R1(W )) the Q-flat class F (D) =
∆0(D); the first Chern class of D in the Dolbeault cohomology is (j1 ◦
∆0)(D); the first Chern class in the De Rham cohomology is (δ1 ◦∆0)(D).
Since X has Property (H), the homomorphism j is a zero map, and hence
the homomorphisms δ1 and j1 are injective. Then Lemma 3.17 follows. �

Remark 3.18. — As W runs through all the reduced divisors of X, it is
clear that Lemma 3.17 holds for each C-linear finite formal sum of divisors
of X. (See Remark-Definition 3.9.)

4. Logarithmic forms

In this section, we will study logarithmic 1-forms.

4.1. Proofs of Theorems 1.9 and 1.12 and some corollaries

Proof of Theorem 1.9. — Recall the bottom horizontal line of long exact
sequence (3.24). It is clear the there exists an element φ ∈ H0(X,Φ1(W ))
with residue divisor D if and only if ∆0(D) = 0. Since ∆0(D) is the Q-flat
class of D, we conclude Theorem 1.9. �

Proof of Theorem 1.12. — Recall the commutative diagram (3.25). When
X has Property (H), the homomorphism j is an injection. Hence ∆0(D) = 0
if and only if (δ1 ◦∆0)(D) = 0. By Theorem 3.7 and the Poincaré duality,
we conclude Theorem 1.12. �

Proof of Corollary 1.10. — Since

(4.1) D −D′ +
m∑
i=1

ai · (fi) = 0,

ANNALES DE L’INSTITUT FOURIER



A GEOMETRIC CRITERION FOR PRESCRIBING RESIDUES 1989

the Q-flat class of D is the same as the Q-flat class of D′. By Theorem 1.9,
we conclude Corollary 1.10. �

Proof of Corollary 1.13. — This is a direct consequence of Theorem 1.12
and Proposition 3.14. �

Thanks to Remark 3.13 and Lemma 3.17, we further have the following
corollaries.

Corollary 4.1 (The theorem of Weil and Kodaira). — For a Kähler
manifold X, there exists a closed logarithmic 1-form with residue divisor
D on X if and only if D is homologous to zero.

Corollary 4.2 ([7, Lem. in §2.2]). — Given a finite set of points
{pλ} on compact Riemann surface S and complex numbers {aλ} such that∑
aλ = 0, there exists a differential of the third kind on S, holomorphic in

S − {pλ} and has residue aλ at pλ.

Corollary 4.3. — Suppose S is a connected, smooth element of an
ample line bundle over X. Then closed meromorphic 1-forms with singu-
larities on S are locally exact.

Proof of Corollary 4.3. — This is an easy consequence of the fact that
c1(S) 6= 0. �

In the following, we collect some well-known examples on prescribing
residues.

Example 4.4 (See [1] and [13]). — Let X be a generic Hopf surface (or
generic Hopf manifold). There are finitely many divisors on X, each of
which is associated with a flat line bundle. Then we can prescribe residues
on each divisor (see [17]). On the other hand, the second singular cohomol-
ogy group of X is zero, and hence each divisor is homologous to zero.

Example 4.5 (See [15]). — Each type VII surface has at most finitely
many curves; each curve is homologous to zero and associated with a flat
bundle.

Example 4.6 (See [14]). — Let X be an Iwasawa manifold. Then

(4.2)
dimH0(X,dΩ0) = 2, dimH0(X,Ω1) = 3,

dimH1(X,OX) = 2, dimH1(X,C) = 4.

X has Property (H) but the Hodge decomposition does not hold (there are
non-closed holomorphic 1-forms on X). On the other hand, X is a fibration
over an abelian variety T of complex dimension 2; the divisors on X are
the pull backs of the divisors on T .
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4.2. Proof of the decomposition theorem for logarithmic 1-forms

Proof of Theorem 1.14. — Without loss of generality, we can assume
that W is a reduced, normal crossing divisor by Lemma 3.15. In the fol-
lowing, we fix a good cover U = {Ui}Mi=1 of X and choose local coordinates
(zi1, . . . , zin) on Ui, for i = 1, . . . , n, such that W ∩ Ui = {z1 . . . zli = 0} for
certain 0 6 li 6 n (when W ∩ Ui = ∅, li = 0 by convention).

Let us recall the following construction of the residue divisors for log-
arithmic 1-forms (see [2] or [16]). Let W =

⋃m
i=1Wi be the irreducible

decomposition of W . Let ιi : W̃i → Wi be the normalization of Wi for
i = 1, . . . ,m. Then W̃ :=

∐m
i=1 W̃i is the normalization of W of which

the map we denote by ι : W̃ → W . Since W is a subvariety of X, by
abuse of notation, we also denote by ιi the map W̃i → X, i = 1, . . . ,m,
and ι the map W̃ → X. Fix a point x ∈ X. Then there is a holomorphic
local coordinate system (z1, . . . , zm) in a neighborhood U of x such that
x = (0, . . . , 0) and W ∩ U = {z1 . . . zl = 0} ∩ U where l is an nonegative
integer between 0 and n. Without loss of generality, we can assume that
Wi ∩U = {zi = 0} ∩U for i = 1, . . . , l and Wi ∩U = ∅ for i = l+ 1, . . . ,m.
For ω ∈ H0(X,Ω1(logW )) we can write

(4.3) ω =
l∑
i=1

1
2π
√
−1

dzi
zi
∧ ηi + ω′ in U,

where ηi ∈ H0(U,OX) for i = 1, . . . , l and ω′ ∈ H0(U,Ω1). Put Res
W̃i

(ω) =
ι∗i (ηi) in W̃i

⋂
ι−1(U) for i = 1, . . . ,m. Then Res

W̃i
(ω) is globally well-

defined and

(4.4) Res
W̃i

(ω) ∈ H0(W̃i,OW̃i
) for i = 1, . . . ,m.

By pushing forward, we have the following short exact sequence of OX -
sheaves on X.

(4.5) 0 −→ Ω1
X −→ Ω1

X(logW ) Res−−→ ι∗OW̃ −→ 0.

We next consider the Čech cohomology groups associated with exact
sequence (4.5) with respect to U . In the same way as in Setion 3.3, the
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following commutative diagram holds.
(4.6)

0 //
⊕
i1

Ω1
X(Ui1) //

d0
Ω
��

⊕
i1

Ω1
X(logW )(Ui1) H //

d0
log
��

⊕
i1

ι∗OW̃ (Ui1)

d0
W

��

// 0

0 //
⊕
i1<i2

Ω1
X(Ui1i2) G //

d1
Ω
��

⊕
i1<i2

Ω1
X(logW )(Ui1i2) //

d1
log

��

⊕
i1<i2

ι∗OW̃ (Ui1i2)

d1
W

��

// 0

0 //
⊕

i1<i2<i3

Ω1
X(Ui1i2i3) . . . . . .

Moreover, we have
(4.7)

qH0(U ,Ω1
X) //

∼=
��

qH0(U ,Ω1
X(logW )) Res //

∼=
��

qH0(U , ι∗OW̃ )
q∆0
//

∼=
��

qH1(U ,Ω1
X) // . . .

H0(X,Ω1
X) //H0(X,Ω1

X(logW )) Res //H0(X, ι∗OW̃ ) ∆0
//H1(X,Ω1

X) // . . .

Notice that

(4.8) H0(X, ι∗OW̃ ) ∼= H0(W̃ ,O
W̃

) ∼= H0(W,OW )

∼=
m⊕
i=1

C · 1Wi
∼= H0(X,R1(W )).

Hence each element σ ∈ qH0(U , ι∗OW̃ ) can be represented by a Čech 0-
cocycle

(4.9) σ =
⊕

16i16M

(
m∑
k=1

ak · 1Wk

)∣∣∣∣∣
Ui1

∈
⊕

16i16M
ι∗OW̃ (Ui1),

where ak ∈ C for k = 1, . . . ,m.
We will show that the homomorphism ∆0 between H0(X, ι∗OW̃ ) and

H1(X,Ω1
X) is induced by the first Chern classes as follows.

Claim. — The map ∆0 : H0(X, ι∗OW̃ )→ H1(X,Ω1
X) is given by

(4.10) ∆0 :
m∑
j=1

aj ·Wj 7−→
m∑
j=1

aj · c1(Wj),

where c1(Wj) is the first Chern class of the holomorphic line bundle [Wj ]
in the Dolbeault cohomology group H1(X,Ω1

X).
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Proof of Claim. — Since ∆0 is a linear map, without loss of generality,
it suffices to prove Claim when a1 = 1, a2 = a3 = · · · = am = 0. Suppose
that W1 is defined by a holomorphic function fi in Ui for i = 1, . . . ,M
and the transition function gij = fi

fj
in Uij for i, j = 1, . . . ,M . Then the

element 1 ·W1 ∈ H0(X, ι∗OW̃ ) can be represented by a Čech 0-cocycle σ
as

(4.11) σ =
⊕

16i16M
(1W1)

∣∣
Ui1
∈

⊕
16i16M

ι∗OW̃ (Ui1).

A preimage η of σ under H can be taken as

(4.12) η =
⊕

16i16M

(
1

2π
√
−1

dfi1
fi1

)∣∣∣∣
Ui1

∈
⊕

16i16M
Ω1
X(logW )(Ui1).

The Čech one-cocycle d0
log(η) takes the form

(4.13) d0
log(η) =

⊕
16i1<i26M

(
1

2π
√
−1

dfi1
fi1
− 1

2π
√
−1

dfi2
fi2

)∣∣∣∣
Ui1i2

∈
⊕

16i1<i26M
Ω1
X(logW )(Ui1i2).

Since fi1 = gi1i2fi2 ,

(4.14) 1
2π
√
−1

dfi1
fi1
− 1

2π
√
−1

dfi2
fi2

= 1
2π
√
−1

d(log gi1i2) ∈ Ω1
X(Ui1i2).

Therefore we can lift η to a Čech 1-cocycle ξ as

(4.15) ξ :=
⊕

16i1<i26M

(
1

2π
√
−1

d(log gi1i2)
)∣∣∣∣

Ui1i2

∈
⊕

16i1<i26M
Ω1
X(Ui1i2).

By Proposition §1.1 in [7], we conclude that ξ is the first Chern class of W1
as an (1, 1) form. Therefore, the proof of Claim is complete. �

Now we proceed to prove Theorem 1.14. Let ω ∈ H0(X,Ω1
X(logW )).

Then the first Chern class of Res(ω) in the Dolbeault cohomology is trivial.
Since X has Property (H), the Q-flat class of Res(ω) is trivial by Corol-
lary 3.17. Therefore, there is a closed meromorphic 1-form ω1 with the
residue class Res(ω). Since the residue divisor of ω−ω1 is zero, ω−ω1 is a
holomorphic 1-form by (4.7). This completes the proof of Theorem 1.14. �

5. Forms with higher order poles

In this section, we will study the closed meromorphic 1-forms with poles
of higher orders. We first refine Hodge and Atiyah’s criterion as follows.
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Theorem 5.1. — Let X be a compact complex manifold and W a re-
duced divisor of X. Suppose that D ∈ H0(X,R1(W )) is a C-linear formal
sum of divisors of X supported on W . Let k be a nonnegative integer. The
following statements are equivalent.

• Jk(F (D)) is trivial in H1(X,dΩ0(kW )), where Jk : H1(X,dΩ0)→
H1(X,dΩ0(kW )) is the natural homomorphism associated with the
homomorphism of sheaves jk : dΩ0 → dΩ0(kW );

• there is a closed meromorphic 1-form φ ∈ H0(X,Φ((k+1)W )) with
residue divisor D.

Proof of Theorem 5.1. — By Lemma 3.2, we have the following short
exact sequence of sheaves.

(5.1) 0 −→ dΩ0(kW ) φ−→ Φ1((k + 1)W ) ψ−→ R1(W ) −→ 0.

By Lemma 3.4 we can compute the sheaf cohomology groups by Čech
cohomology groups in the same as the approach in Section 3. In particular,
we have the following commutative diagram.
(5.2)
0 //

⊕
i1

dΩ0(kW )(Ui1) //

d0
dΩ
��

⊕
i1

Φ1((k+1)W )(Ui1) //

d0
Φ
��

⊕
i1

R1(W )(Ui1)

d0
R
��

// 0

0 //
⊕
i1<i2

dΩ0(kW )(Ui1i2) //

d1
dΩ
��

⊕
i1<i2

Φ1((k+1)W )(Ui1i2) //

d1
Φ
��

⊕
i1<i2

R1(W )(Ui1i2)

d1
R

��

// 0

0 //
⊕

i1<i2<i3

dΩ0(kW )(Ui1i2i3) . . . . . .

Moreover, we also have the following commutative diagrams.

(5.3)

qH0(U ,dΩ0(kW ))

��

∼= // H0(X,dΩ0(kW ))

��

qH0(U ,Φ1((k + 1)W ))

��

∼= // H0(X,Φ1((k + 1)W ))

��

qH0(U , R1(W ))
q∆0
k��

∼= // H0(X,R1(W ))
k∆0

k
��

qH1(U ,dΩ0(kW ))
∼= // H1(X,dΩ0(kW )).
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For homomorphism jk : dΩ0 → dΩ0(kW ), we have a natural homomor-
phism between the Čech complexes as

(5.4)

⊕
i1

dΩ0(Ui1) //

d0
dΩ
��

⊕
i1

dΩ0(kW )(Ui1)

d0
Φ
��⊕

i1<i2

dΩ0(Ui1i2) //

d1
dΩ
��

⊕
i1<i2

dΩ0(kW )(Ui1i2)

d1
Φ
��⊕

i1<i2<i3

dΩ0(Ui1i2i3) //
⊕

i1<i2<i3

dΩ0(kW )(Ui1i2i3).

Hence, the following commutative diagram holds.

(5.5)

qH1(U ,dΩ0)
qJk //

∼=
��

qH1(U ,dΩ0(kW ))

∼=
��

H1(X,dΩ0) Jk // H1(X,dΩ0(kW )),

where qJk is induced from diagram (5.4). Repeating the diagram chasing,
we have that the map ∆0

k factors through the Q-flat class map F , that is,

(5.6) H0(X,R1(W )) F−→ H1(X,dΩ0) Jk−→ H1(X,dΩ0(kW )),

where Jk ◦ F = ∆0
k. Therefore, by the exactness of (5.3) the proof of

Theorem 5.1 is complete. �

Proof of Theorem 1.11. — Notice that for each closed meromorphic
1-form φ ∈ H0(X,Φ(∗)), there is a reduced divisor W of X and an non-
negative integer k such that φ ∈ H0(X,Φ(kW )). Consider the short exact
sequence

(5.7) 0 −→ C −→ Ω0(kW ) −→ dΩ0(kW ) −→ 0.
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In addition to (5.2), we have the following commutative diagrams.
(5.8)
0 //

⊕
i1

C(Ui1) //

d0
C
��

⊕
i1

Ω0(kW )(Ui1) //

d0
Ω
��

⊕
i1

dΩ0(kW )(Ui1)

d0
dΩ
��

// 0

0 //
⊕
i1<i2

C(Ui1i2) //

d1
C
��

⊕
i1<i2

Ω0(kW )(Ui1i2) //

d1
Ω
��

⊕
i1<i2

dΩ0(kW )(Ui1i2)

d1
dΩ
��

// 0

0 //
⊕

i1<i2<i3

C(Ui1i2i3) //

d2
C��

⊕
...

Ω0(kW )(Ui1i2i3) //

d2
Ω��

⊕
...

dΩ0(kW )(Ui1i2i3) //

d2
dΩ��

0

. . . . . . . . .

and
(5.9)

qH1(U ,Ω0(kW )) //

∼=
��

qH1(U ,dΩ0(kW ))
qδ1
k //

∼=
��

qH2(U ,C) //

∼=
��

qH2(U ,Ω0(kW ))

∼=
��

H1(X,Ω0(kW )) // H1(X,dΩ0(kW ))
δ1
k // H2(X,C) // H2(X,Ω0(kW )).

Combining (5.3) and (5.9), we have a homomorphism δ1
k ◦ ∆0

k from
H0(X,R1(W )) to H2(X,C) such that the following commutative diagram
holds.

(5.10) H0(X,R1(W ))

∆0
k

��

δ1
k◦∆

0
k

&&

H1(X,Ω0(kW )) //H1(X,dΩ0(kW ))
δ1
k //H2(X,C) //H2(X,Ω0(kW )).

By diagram chasing, we can conclude that (δ1
k ◦∆0

k)(D) is the first Chern
class of D in the De Rham cohomology for each C-linear finite formal sum
of divisors D. By Poincaré duality, we conclude Theorem 1.11. �

Next we show that for manifolds with Property (H) a decomposition is
possible.

Proof of Theorem 1.15. — Let φ ∈ H0(X,Φ(∗)). Choose a reduced divi-
sor W and a nonnegative integer k such that φ ∈ H0(X,Φ(kW )). Thanks
to (5.10) and the fact that ∆0

k factors through H1(X,dΩ0), we have the
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following commutative diagram.

(5.11)

H0(X,R1(W ))

F

��
c1

  

H1(X,dΩ0)

Jk

��

δ1

((

H1(X,dΩ0(kW ))
δ1
k // H2(X,C).

Since X has Property (H), δ1 is injective; hence F (Res(φ)) = 0. Therefore,
we can find a closed logarithmic form φ̃ ∈ H0(X,Φ(W )) such that Res(φ) =
Res(φ̃). Then ψ := φ − φ̃ is a locally exact meromorphic 1-form. This
completes the proof of Theorem 1.15 �

6. Constructing pluriharmonic functions with mild
singularities

In this section, we will investigate Question 1.2. Our construction of pluri-
harmonic functions is by integrating closed meromorphic 1-forms. Notice
that the integration often results in a multi-valued function; the obstruc-
tions are twofold, that is, the long period vector(1) and the short period
vector(2) (to be defined in the following). In order to get a single-valued
function, we construct a conjugate, namely, a closed anti-meromorphic 1-
form, for each closed meromorphic 1-form, so that the cancellation of the
periods is possible when integrating the sum of the conjugate pair.
In what follows, we always assume that X is a compact algebraic mani-

fold.

6.1. Decorated log pairs, period vectors and conjugate pairs

In this subsection, we will introduce some notions for the purpose of
calculating the obstructions explicitly.

(1) We name it the long period vector because it represents the obstruction correspond-
ing to the integration along closed curves on X\W .
(2) We name it the short period vector because it represents the obstruction correspond-
ing to the integration along a small circle around W .
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Definition 6.1. — Let X be a compact algebraic manifold and W a
reduced divisor of X. We call the pair (X,W ) a log pair. We say that a
closed meromorphic 1-form or a closed anti-meromorphic 1-form belongs
to the log pair (X,W ) if it is defined on X with singularities on W .

Definition 6.2. — Let (X,W ) be a log pair. Assume that W has the
irreducible decomposition W =

⋃l
j=1Wj . Take a point p ∈ X\W and

a basis {γ1, . . . , γm} of H1(X,C) such that γi is a smooth Jordan curve
based at p and contained in X\W for 1 6 i 6 m.We call the quadru-
ple

(
X,W, (W1, . . . ,Wl), (γ1, . . . , γm)

)
a decorated log pair of the log pair

(X,W ).

Definition 6.3. — Let G = (X,W ) be a log pair, Φ a closed meromor-
phic 1-form belonging to G, and A =

(
X,W, (W1, . . . ,Wl), (γ1, . . . , γm)

)
a

decorated log pair of G. We call (b1, . . . , bm) the long period vector of Φ
with respect to A if

bi =
∫
γi

Φ for 1 6 i 6 m.

Before defining the short period vector, we state the following lemma.

Lemma 6.4. — Let (X,W ) be a log pair and W =
⋃l
i=1Wi the irre-

ducible decomposition of W. Assume Φ is a closed meromorphic 1-form on
X with singularities on W . Let a1, a2 be two smooth points of Wi; sup-
pose D1, D2 ⊂ X are two one-dimensional analytic discs intersecting Wi

transversally at a1, a2, respectively; suppose Sk is a small disc contained in
Dk centered at ak with ∂Sk the counterclockwise oriented circle boundary
of Sk for k = 1, 2. Then the following integrals are equal.∫

∂S1

Φ =
∫
∂S2

Φ.

Proof. — Since Wi is irreducible, there is a proper subvariety SingWi

of Wi, such that a1, a2 ∈ WReg
i := Wi\SingWi and WReg

i is connected.
Hence, we can find a smooth curve γ ⊂ WReg

i connecting a1, a2, and an
open set U of γ in WReg

i such that γ ⊂ U ⊂⊂ WReg
i . By Theorem (5.2)

of [8, §4], U has a tubular neighborhood E in X in the sense that

π : E −→ U is a disc bundle; J : E ↪→ X is an embedding.

Notice that J(E) is an open set of X and the zero section of E is mapped
diffeomorphically to U.Without loss of generality, we assume J(E)∩W=U .
When Si is small enough, we have that Si ⊂ J(E) and ∂Si is homotopic

to the counterclockwise oriented boundary Γi of J(π−1(ai)) for i = 1, 2.
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Notice that the homotopies can be chosen away from W ; moreover, Γ1
and Γ2 are diffeomorphic in the circle bundle (the boundary of E) over γ.
Therefore, in a same way as the proof of Lemma B.1, we can find smooth
two-chains

∑p
i=1 aiσ

1
i ,
∑q
j=1 bjσ

2
j and

∑r
k=1 ckσ

3
k, such that they are dis-

joint from W and

∂

(
p∑
i=1

aiσ
1
i

)
= ∂S1−Γ1; ∂

(
q∑
j=1

bjσ
2
j

)
= ∂S2−Γ2; ∂

(
r∑

k=1
ckσ

3
k

)
= Γ1−Γ2.

Since Φ is well-defined on σ1
i , σ

2
j , σ

3
k, we can apply the Stokes theorem as

follows.

0 =
∫
∂
(∑p

i=1
aiσ1

i

) dΦ =
∫
∂S1

Φ−
∫

Γ1

Φ;

0 =
∫
∂
(∑q

j=1
bjσ2

j

) dΦ =
∫
∂S2

Φ−
∫

Γ2

Φ;

0 =
∫
∂
(∑r

k=1
ckσ3

k

) dΦ =
∫

Γ1

Φ−
∫

Γ2

Φ.

We conclude Lemma 6.4. �

Definition 6.5. — Let G = (X,W ) be a log pair, Φ a closed meromor-
phic 1-form belonging to G, and A =

(
X,W, (W1, . . . ,Wl), (γ1, . . . , γm)

)
a

decorated log pair of G. We call (d1, . . . , dl) the short period vector of Φ
with respect to A if

dj =
∫
∂Sj

Φ for 1 6 i 6 l.

Here Sj , as in Lemma 6.4, is a small analytic disc intersectingWj transver-
sally at a smooth point a ∈Wj ; ∂Sj is the counterclockwise oriented circle
boundary of Sj . By Lemma 6.4, this definition is independent of the choice
of the disc Sj .

Remark 6.6. — The residue divisor Res(Φ) of a closed meromorphic 1-
form Φ satisfies the following relation.

Res(Φ) =
l∑

j=1
djWj ,

where dj is the jth component of the short period vector of Φ.

Remark 6.7. — A log pair G = (X,W ) may have many decorated log
pairs. Firstly, we can rearrange the order of the irreducible components
in the decomposition W =

⋃l
j=1Wj ; secondly, we can choose different
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bases for H1(X,C). More precisely, let A and A′ be two decorated log pair
associated with the log pair G; let Φ be a meromorphic 1-form belonging to
G. Then we have the following transformation rules for the period vectors
with respect to A and A′.

(bA′1 , . . . , bA
′

m ) = (bA1 , . . . , bAm) · PA
′

A + (dA1 , . . . , dAl ) ·QA
′

A ,

(dA
′

1 , . . . , dA
′

l ) = (dA1 , . . . , dAl ) · JA
′

A .
(6.1)

Here PA′A , QA′A and JA′A are constant matrices depending on A and A′ only;
JA
′

A is an l × l matrix corresponding to a certain permutation; PA′A is an
m×m nondegenerate matrix; QA′A is an l ×m matrix.

Remark 6.8. — Let Φ1,Φ2 belong to a log pair G = (X,W ). If Φ1 and Φ2
have the same long period vector and short period vector with respect to
one decorated log pair of G, then so do they with respect to any decorated
log pairs of G by Remark 6.7. Hence we can just say Φ1,Φ2 have the same
long period vector and short period vector.

Definition 6.9. — Let G = (X,W ) be a log pair. Let Φ (resp. pΦ) be
a meromorphic 1-form (resp. an anti-meromorphic 1-form) belonging to G.
We call (Φ, pΦ) a conjugate pair belonging to G if and only if there is a
decorated log pair A =

(
X,W, (W1, . . . , Wl), (γ1, . . . , γm)

)
of G such that

the following holds.

(6.2)
{
bi = −pbi, 1 6 i 6 m,
cj = −pcj , 1 6 j 6 l.

Here (b1, . . . , bm) (resp. (pb1, . . . ,pbm)) is the long period vector of Φ (resp. pΦ)
with respect to A; (c1, . . . , cl) (resp. (pc1, . . . ,pcl)) is the short period vector
of Φ (resp. pΦ) with respect to A. In this case, we call pΦ an anti-meromorphic
conjugate of Φ and Φ a meromorphic conjugate of pΦ. For convenience, we
call Φ a conjugate of pΦ, and vice versa.

Remark 6.10. — By Remark 6.7, the definition of conjugate pair does
not depend on the choice of the decorated log pair A; that is, if (Φ, pΦ) is a
conjugate pair, then (6.2) holds for every decorated pair of (X,W ).

Proposition 6.11. — Let G = (X,W ) be a log pair. Let pΦ be a closed
anti-meromorphic 1-form belonging to G. Then the conjugate of pΦ is unique
modulo the differential of a meromorphic function. To be more precise, if
(Φ1, pΦ) and (Φ2, pΦ) are two conjugate pairs belonging to G, then Φ1−Φ2 =
df where f is a meromorphic function on X with singularities on W.
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Proof. — By assumption, Φ1−Φ2 is a closed meromorphic with vanishing
long period vector and short period vector (see Remark 6.8). Then by
Lemma 6.12 in the following, we draw the conclusion. �

Lemma 6.12 (Uniqueness Lemma). — Let G = (X,W ) be a log pair
and Φ a closed meromorphic 1-form belonging to G. Assume the long period
vector of Φ and the short period vector of Φ are both zero. Then Φ is the
differential of a meromorphic function on X.

Proof. — Let A =
(
X,W, (W1, . . . , Wl), (τ1, . . . , τm)

)
be a decorated log

pair of G. Then the smooth Jordan curves τ1, . . . , τm form a basis of the
singular homology H1(X,C), where τi is contained in X\W with a common
base point p ∈ X for 1 6 i 6 m. For each point x ∈ X\W , we can find a
smooth curve γx connecting p and x. Define function f(x) as follows.

f(x) :=
∫
γx

Φ.

We shall prove that f(x) is well-defined, or equivalently, the integral is
independent of the curve γx connecting p and x. It suffices to prove that
for any smooth Jordan Γ ⊂ X\W based at p,

(6.3)
∫

Γ
Φ = 0.

Since Γ is homologous to
∑m
i=1 aiτi, by Lemma B.1 we can find finitely

many smooth 2-simplexes {σj}Jj=1 such that the following properties hold.
(1) σj : ∆2 → X is smooth for 1 6 j 6 J. Here ∆2 := {(x, y) ⊂ R2|0 6

x 6 1, 0 6 y 6 1, x+ y 6 1} is the standard 2-simplex.
(2) ∂

(∑J
j=1 bjσj

)
= Γ −

∑m
k=1 akτk, where 0 6= bj ∈ C for 1 6 j 6 J.

(By abuse of notation, we identify the image of Γ with its corre-
sponding 1-cycle; the same for τk, 1 6 k 6 m.)

(3) There are finitely many 1-simplexes {τ̃l}Ll=1 and finitely many 0-
simplexes {An}Nn=1 such that

∂σj =
L∑
l=1

cjlτ̃l with cjl ∈ {0, 1,−1}, for 1 6 j 6 J, 1 6 l 6 L;

∂τ̃l =
K∑
n=1

dlnAn with dln ∈ {0, 1,−1}, for 1 6 l 6 L, 1 6 n 6 N.

Notice that {Γ, τ1, . . . , τm} ⊂ {τ̃l}Ll=1 and p ∈ {An}Nn=1.

(4) The above {σj}, {τ̃l} and {An} are transversal to W in the sense
that: An /∈ W for 1 6 n 6 N ; τ̃l ∩ W = ∅ for 1 6 l 6 L;
σj ∩ Sing(W ) = ∅ and σj intersects W transversally for 1 6 j 6 J .
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For σj , 1 6 j 6 J, denote by aj1, . . . , a
j
ij
⊂ ∆2 the intersection points

of σj with W . Take small circles Sj1, . . . , S
j
ij
⊂ ∆2 around aj1, . . . , a

j
ij
, re-

spectively. Notice that σ∗j (Φ) is a well-defined closed 1-form on p∆j
2 :=

∆2\
(
∪jiq=1S

j
q

)
, 1 6 j 6 J. By Stokes’ theorem we have for 1 6 j 6 J

(6.4) 0 =
∫

p∆j
2

σ∗j (dΦ) =
∫
∂ p∆j

2

σ∗j (Φ)

=
L∑
l=1
±cjl

∫
[0,1]

τ̃∗l (Φ) +
ij∑
q=1
±
∫
Sjq

σ∗j (Φ).

When Sji is small enough, by Lemma 6.4 and the assumption that the short
period vector of Φ is zero, we get

(6.5)
ij∑
q=1
±
∫
Sjq

σ∗j (Φ) = 0, 1 6 j 6 J.

Since ∂
(∑J

j=1 bjσj
)

= Γ−
∑m
k=1 akτk, we obtain∫

Γ
Φ =

m∑
k=1

ak

∫
τk

Φ = 0.

The last identity is because the long period vector of Φ is zero.
Therefore, we proved that f(x) is well-defined. It is easy to see that f is

a meromorphic function on X with singularities on W. Hence, we conclude
Lemma 6.12. �

Remark 6.13. — Lemma 6.12 holds for closed anti-meromorphic 1-forms
in a similar way, and hence Proposition 6.11 also holds for conjugates of a
closed meromorphic 1-form. That is, if there are two conjugate pairs (Φ, pΦ1)
and (Φ, pΦ2), then pΦ1 − pΦ2 = df where f is an anti-meromorphic function
on X with singularities on W.

6.2. The existence of anti-meromorphic conjugates

In this subsection we will prove a existence theorem for anti-meromorphic
conjugates of a closed meromorphic 1-form belonging to a log pair with an
extra condition.

Lemma 6.14. — Let A = (X,W, (W1, . . . ,Wl), (γ1, . . . , γm)) be a deco-
rated log pair of the log pair G = (X,W ). Let xW be an effective, ample
divisor with the support contained in W . Then for any vector ~b ∈ Cm and
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the C-linear formal sum of divisors D ∈
⊕l

i=1 CWi with c1(D) = 0, there
is a closed meromorphic 1-form belonging to G with long period vector ~b
and residue divisor D.

Proof. — According to Theorem 1.6, there exists a closed meromorphic
1-form Φ ∈ H0(X,Φ1(W )) with residue divisor D. In the same way as
Proposition 2.10, we can find Ψ, a locally exact meromorphic 1-form, such
that Ψ ∈ H0(X,Φ1(W )) and Ψ+Φ has long period vector~b. This completes
the proof of Lemma 6.14. �

Next we will prove the following existence theorem.

Theorem 6.15. — Let G = (X,W ) be a log pair and Φ a closed mero-
morphic 1-form belonging to G. Suppose there is an effective, ample divisor
of X whose support is contained in W . Then there exists a conjugate of Φ
belonging to G.

Proof. — Take a decorated log pair A=
(
X,W, (W1, ...,Wl), (γ1, ..., γm)

)
of G. Denote by (b1, . . . , bm) the long period vector of Φ. Let Res(Φ) be
the residue divisor of Φ with the form Res(Φ) =

∑l
i=1 aiWi. Since Φ is a

closed meromorphic 1-form, the first Chern class of Res(Φ) is zero, that
is,
∑l
i=1 ai · c1(Wi) = 0 ∈ H2(X,C). Since

∑l
i=1(−ai) · c1(Wi) = 0 ∈

H2(X,C), by Lemma 6.14, we can derive a closed meromorphic 1-form Ψ
belonging to G, with residue divisor

∑l
i=1(−ai) ·Wi and long period vector

(−b1, . . . ,−bm).
Take the complex conjugate Ψ of Ψ; that is, if we write Ψ = ψ1 +

√
−1ψ2

where ψ1 and ψ2 are closed real 1-forms with singularities on W , then Ψ =
ψ1 −

√
−1ψ2. It is easy to verify that Ψ is an anti-meromorphic conjugate

of Φ. This completes the proof of Theorem 6.15. �

6.3. Constructing pluriharmonic functions with log singularities

In this subsection we will construct pluriharmonic functions with log
poles by integrating the sum of conjugate pairs.

Theorem 6.16. — Let G = (X,W ) be a log pair and (Φ, pΦ) a conjugate
pair belonging to G. Then the following integral is well-defined on X\W
and gives a pluriharmonic function with singularities on W .

(6.6) hΦpΦ(z) :=
∫
γpz

(Φ + pΦ).

Here p ∈ X\W is a fixed point and γpz is a smooth curve connecting p and
z ∈ X\W.
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Proof. — Take a decorated log pair A=
(
X,W, (W1, ...,Wl), (γ1, ..., γm)

)
of G. It suffices to prove that along each Lipschitz loop γ ⊂ X\W the
following holds.

(6.7)
∫
γ

(Φ + pΦ) = 0.

In the same way as the proof of Lemma 6.12, we can find complex numbers
{ai}mi=1 and {bj}lj=1 so that

(6.8)
∫
γ

(Φ + pΦ) =
m∑
i=1

ai

∫
γi

(Φ + pΦ) +
l∑

j=1
bj

∫
∂Sj

(Φ + pΦ).

Here ∂Sj is the circle boundary of a small analytic disc intersecting Wj

at its smooth point. Notice that the sum of the long period vector (resp.
the short period vector) of Φ and the long period vector (resp. the short
period vector) of pΦ is zero. Then each term on the right hand side of (6.8)
vanishes. We draw the conclusion. �

Definition 6.17. — We call hΦpΦ a pluriharmonic functions coming
from the conjugate pair (Φ, pΦ).

Proof of Theorem 1.16. — Let A =
(
X,W, (W1, . . . ,Wl), (γ1, . . . , γm)

)
be a decorated log pair of the log pair (X,W ). By Theorem 6.15, for each
closed meromorphic 1-form Φ with poles on W , there exists a conjugate pΦ
of Φ. By Theorem 6.16, we conclude Theorem 1.16. �

Let G = (X,W ) be a log pair. Denote by MG the vector space of mero-
morphic functions on X with singularities on W ; denote by xMG the vec-
tor space of anti-meromorphic functions with singularities on W . Define
TG := MG + xMG. Next we will establish the uniqueness of pluriharmonic
functions and estimate the dimension of the vector spaces of pluriharmonic
functions coming from conjugate pairs (modulo TG).

Lemma 6.18. — Let G = (X,W ) be a log pair. Assume (Φ1, pΦ1) and
(Φ2, pΦ2) are two conjugate pairs belonging to G. Then hΦ1 pΦ1

= hΦ2 pΦ2
(modulo TG) if and only if Φ1 and Φ2 have the same long period vector
and the same short period vector.

Proof. — Assume that Φ1 and Φ2 have the same long period vector and
the same short period vector. Then so do pΦ1 and pΦ2. By Lemma 6.12, the
following functions are well-defined on X.

f :=
∫
γpz

(Φ1 − Φ2); g :=
∫
γpz

(pΦ1 − pΦ2).
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Since f is meromorphic and g is anti-meromorphic, we can thus conclude
that hΦ1 pΦ1

= hΦ2 pΦ2
(modulo TG).

On the other hand if hΦ1 pΦ1
= hΦ2 pΦ2

(modulo TG), then there are mero-
morphic function f and anti-meromorphic function g on X such that∫

γpz

(Φ1+pΦ1)−
∫
γpz

(Φ2 + pΦ2) = g − f or equivalently

f +
∫
γpz

(Φ1 − Φ2) = g +
∫
γpz

(pΦ2 − pΦ1).
(6.9)

Notice that the left hand side of (6.9) is holomorphic and the right hand
side is anti-holomorphic, away from the singularities of Φ1, pΦ1,Φ2, pΦ2, f

and g. Then both sides are locally constants. Taking differential of the left
hand side, we have the following equality on X.

(6.10) df + Φ1 − Φ2 = 0.

Integrating df+Φ1−Φ2 along γi and ∂Sj , we conclude that the long period
vector (resp. the short period vector) of Φ1 and that of Φ2 are the same
with respect to any decorated log pair of G. This completes the proof. �

Theorem 6.19. — Let G = (X,W ) be a log pair. Suppose there is
an effective, ample divisor of X whose support is contained in W . Denote
by k the dimension of the kernel of the map δ1 ◦ ∆0 : H0(X,R(W )) →
H2(X,C). Then the dimension of the vector space of the pluriharmonic
functions coming from conjugate pairs with singularities on W (modulo
TG) is k + dimH1(X,C).

Proof. — By Theorem 2.8, the dimension of locally exact meromorphic
1-forms modulo the differentials of meromorphic functions is dimH1(X,C).
By Theorems 1.5, 1.6 and 1.15, the dimension of the closed meromorphic
1-forms modulo the locally exact meromorphic 1-forms is k. By Theo-
rems 6.15 and 6.16, we can construct pluriharmonic functions for every
closed meromorphic 1-form; by Theorem 6.18, these functions are linearly
independent modulo TG. Therefore we conclude Theorem 6.19. �

Remark 6.20. — Denote by V be the vector space of pluriharmonic func-
tions coming from a closed meromorphic 1-form. Then dimV/TG = ∞.
On the other hand, denote by V2 the vector space of pluriharmonic func-
tions coming from a locally exact meromorphic 1-form. Then dimV2/TG =
dimH1(X,C) <∞.
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Proof of Theorem 1.17. — Let h be a pluriharmonic function on X of
local form (1.1). Then h locally takes the form of

(6.11) h(z) = g1(z) + g2(z) +
l∑
i=1

ai log |fi|2,

where a1, . . . , al are constants and g1, g2, f1, . . . , fl are meromorphic func-
tions. Taking differential of h, we have that locally

dh = ∂g1(z) +
l∑
i=1

ai
∂fi
fi

+ ∂g2(z) +
l∑
i=1

ai
∂fi

f i
;

Φ := ∂g1(z) +
l∑
i=1

ai
∂fi
fi

; pΦ := ∂g2(z) +
l∑
i=1

ai
∂fi

f i
.

(6.12)

Notice that Φ is a closed meromorphic 1-form and pΦ is a closed anti-
meromorphic 1-form. Moreover, it is clear that dh = Φ + pΦ holds globally
on X; that is, the definition of Φ and pΦ does not depend on the choice of
the local charts. If there is no log term in formula (6.11), then Φ is a locally
exact meromorphic 1-form. One can show that h is the integral of the sum
of Φ and pΦ in the same way as Theorem 6.16.
Notice that κ by κ(h) = Φ for every h ∈ Ph(X). Next we will show

that κ is injective; that is, for h1, h2 ∈ Ph(X) if κ(h1) = κ(h2), then
h1 − h2 ∈ (K(X) +K(X)). Recall that the singularities of hi is contained
in a divisor of X for i = 1, 2. Take an ample, reduced divisor W of X such
that the singularities of hi is contained in W for i = 1, 2 and consider the
log pair (X,W ). Then by Theorem 6.18, we conclude the injectivity of κ.

Finally, we will show that κ is surjective. Let Φ ∈ H0(X,Φ1(∗)). Take
an ample, effective, reduced divisor W of X such that the singularities of
hi is contained in W for i = 1, 2. Consider the log pair (X,W ). Then by
Theorem 6.15, we can find a conjugate of Φ. By Theorem 6.16, we conclude
the surjectivity.
Similarly, we can show that κ0 is an isomorphism. Hence we conclude

Theorem 1.17. �

Remark 6.21 ([24]). — The log term in the above formula has an inter-
esting explanation related to superfluid vortices in physics. A single vortex
has energy growing asymptotically like log zi and hence unstable. In low
temperature, there will be no free vortices, only clusters of zero total vor-
ticity.
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Appendix A. Good Cover Lemma

In this appendix we will present a detailed proof of the following well-
known lemma for reader’s convenience.

Lemma A.1 (Good cover lemma). — LetX be a compact complex man-
ifold X and V an open cover of X. Then, there is a finite open cover
U := {Ui}Mi=1 of X such that the following properties hold.

(1) Ui is a Stein space for i = 1, . . . ,M ;
(2) Each intersection of Ui is contractible for i = 1, . . . ,M , if it is

nonempty;
(3) U is a refinement of V.

In order to prove Lemma A.1, we will first prove the following lemma.

Lemma A.2. — Let X be a complex manifold of complex dimension m.
Suppose there are two holomorphic local parametrizations of X as

(A.1) Φi : Vi −→ Ui ⊂ X, i = 1, 2,

where Vi is an open set in Cm and Ui is biholomorphic to Vi. Moreover, for
each point x = (x1, . . . , xm) ∈ Vi and real number r > 0, denote by Bi,r(x)
the following complex ball in Vi.

(A.2) Bi,r(x) :=
{

(y1, . . . , ym) ∈ Vi

∣∣∣∣∣ |y1 − x1|2 + |y2 − x2|2

+ · · ·+ |ym − xm|2 < r2

}
.

Then for each point x ∈ Φ−1
1 (U1 ∩ U2), there is a positive number R such

that for any positive number r < R the complex ball B1,r(x) ⊂ Φ−1
1 (U1 ∩

U2) and, moreover, its biholomorphic image (Φ−1
2 ◦ Φ1)(B1,r(x)) is a real

convex set in V2.

Proof. — Fix a point x ∈ Φ−1
1 (U1 ∩ U2). Denote by (z1, . . . , zm) the

complex coordinates for V1; denote by (w1, . . . , wm) the complex coordi-
nates for V2. Without loss of generality, we can assume that the point
x ∈ Φ−1

1 (U1 ∩ U2) has complex coordinates (0, . . . , 0) in V1 and the point
y := (Φ−1

2 ◦ Φ1)(x) has complex coordinates (0, . . . , 0) in V2. For conve-
nience, denote by φ the restriction of the holomorphic map Φ−1

1 ◦ Φ2 to
Φ−1

2 (U1 ∩ U2), that is,

φ : Φ−1
2 (U1 ∩ U2) −→ Φ−1

1 (U1 ∩ U2),

(w1, . . . , wm) 7−→ (z1, . . . , zm) = (Φ−1
1 ◦ Φ2)(w1, . . . , wm).

(A.3)
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Note that φ(y) = x. Restricted to a small ball B2,s(y) ⊂ Φ−1
2 (U1 ∩ U2),

s > 0, we have the following Taylor expansion.

(A.4) z1 =
n∑
i=1

a1iwi +O(|w|2); z2 =
n∑
i=1

a2iwi +O(|w|2); . . . ;

zm =
n∑
i=1

amiwi +O(|w|2).

Since φ is a biholomorphic map, the matrix A := (aij)mi,j=1 is nondegener-
ate. Define a real analytic function F (w1, . . . , wm) in B2,s(y) as follows.

F (w1, . . . , wm) =
m∑
i=1
|zi(w1, . . . , wm)|2

=
m∑
i=1

∣∣∣∣∣
n∑
j=1

aijwj +O(|w|2)

∣∣∣∣∣
2

=
m∑
i=1

∣∣∣∣∣
n∑
j=1

aijwj

∣∣∣∣∣
2

+O(|w|3)

= (w1, . . . , wm) ·AT ·A · (w1, . . . , wm)T +O(|w|3).

(A.5)

Take a complex ball B1,R̃(x) centered at x such that B1,R̃(x) ⊂ φ(B2,s(y));
then, the set φ−1(B1,r(x)) in V2 is the same as the set {F < r2} for 0 <
r < R̃.
Since AT ·A is a strictly positive definite Hermitian matrix, we can find

an m×m unitary matrix U such that

(A.6) UT ·AT ·A · U =


a1 0 . . . 0
0 a2 . . . 0
. . . . . . . . . . . .

0 . . . 0 am

 =: D,

where ai is a positive real number for i = 1, . . . ,m. Take an unitary change
of coordinates for B1,R̃(x) as

(A.7) (w̃1, . . . , w̃m) = (w1, . . . , wm) · U.

Then F in the new coordinates takes the form of

(A.8)
m∑
i=1

ai|w̃i|2 +O(|w̃|3);

we denote it by F̃ .
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Notice that a unitary transformation of Cm does not change the shape of
domains. Therefore, in order to prove Lemma A.2, it suffices to prove that
there exists a positive number R such that {F̃ < r2} is a real convex do-
main in V2 for each 0 < r < R. Denote the real coordinates of (w̃1, . . . , w̃m)
by (x1, . . . , xm, y1, . . . , ym) where w̃i = xi +

√
−1yi for i = 1, . . . ,m. Com-

putation of the real Hessian of F̃ yields that

(A.9) Hess(F̃ ) =

 ( ∂2F̃
∂xi∂xj

) ( ∂2F̃
∂xi∂yj

)
( ∂2F̃
∂yi∂xj

) ( ∂2F̃
∂yi∂yj

)

 =
(
D 0
0 D

)
+O(|w̃|);

hence the real Hessian of F̃ is strictly positive in a small neighborhood of
y. Therefore, we can choose a positive number R such that {F̃ < r2} is a
real convex domain in V2 for each 0 < r < R. �

Now we turn to the proof of Lemma A.1.
Proof of Lemma A.1. — Fix a Riemannian metric g on X. For any

points x, y ∈ X, denote by dg(x, y) the distance between them with respect
to g. Since X is compact, we can have finitely many local parametrizations
{φi : Vi → Ui}Mi=1 such that the following properties hold.

(1) Vi =
{
z = (z1, . . . , zm) ∈ Cm

∣∣dg(φi(0), φi(z)) < 4
}
for 1 6 i 6M .

(2) Ui ⊂ X and φi is the biholomorphic map between Vi and Ui for
1 6 i 6M .

(3) For 1 6 i 6 M , denote by Vi,1, Vi,2, Ui,1 and Ui,2 the set
{
z ∈

Cm
∣∣dg(φi(0), φi(z)) < 1

}
,
{
z ∈ Cm

∣∣dg(φi(0), φi(z)) < 2
}
, φi(Vi,1)

and φi(Vi,2), respectively. Then, {Ui,1}Mi=1 is an open cover of X.
For convenience, denote by I the index set {1, 2, . . . ,M}. Moreover, sim-
ilar to formula (A.2), for 1 6 i 6 M , 0 < r < 1 and each point x ∈
Vi,1 with complex coordinates (x1, . . . , xm), we denote by Bi,r(x) the set{

(y1, . . . , ym) ∈ Vi
∣∣ |y1 − x1|2 + |y2 − x2|2 + · · ·+ |ym − xm|2 < r2}.

Next, we will construct a special open cover of Vi,1 for 1 6 i 6M . Fix i
and, for each point x ∈ Vi,1, let Iix be the index set define by

(A.10) Ix :=
{
j ∈ I

∣∣φi(x) ∈ Uj,2
}
.

Then, for each j ∈ Iix, we can apply Lemma A.2 and derive a positive
number Rj such that for any 0 < r < Rj the following properties hold.

• φi(Bi,r(x)) ⊂ Uj,2;
• φ−1

j (φi(Bi,r(x))) is a real convex set in Vj,2.
Choose a positive number rx such that rx < minj∈Iix{Rj}, the diameter
of Bi,rx(x) with respect to dg is less than 1

3 , and φi(Bi,r(x) is contained
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in a certain open set in open cover V. Notice that Bi,rx(x) is an open
neighborhood of x; moreover, the following properties hold.

(∗) φi(Bi,rx(x)) ⊂ Uj,2 for each j ∈ Iix,
(?) φ−1

j (φi(Bi,rx(x))) is a real convex set in Vj,2 for each j ∈ Iix.

It is clear that
{
Bi,rx(x), x ∈ Vi,1

}
is an open cover of Vi,1.

Since
⋃M
i=1
{
φi(Bi,rx(x)), x ∈ Vi,1

}
is an open cover of X, we can find a

finite subcover Ω of X with the form of

(A.11) Ω =
M⋃
i=1

{
φi(Bi,raij (aij)), aij ∈ Vi,1, 1 6 j 6 Ni

}
.

We claim that the cover Ω satisfies the properties required in Lemma A.1.
The first and the third properties are clear, for each open set in Ω is bi-
holomorphic to a complex ball in Cm and is contained in a certain open set
in V. Since convext sets are contractible, in order to establish the second
property, it suffices to show that each nonempty intersections of open sets
in Ω is biholomorphic to a real convex set in Cm.
Let B be an nonempty intersection of open sets in Ω. Without loss of

generality, by rearranging the indices, we can assume that B takes the
form of

(A.12) B =
M⋂
i=1

li⋂
j=1

φi(Bi,raij (aij)),

where li 6 Ni. Without loss of generality, we can further assume l1 > 1.
Since B is nonempty, by the construction we have aij ∈ V1,2. Therefore,
1 ∈ Iaij for 1 6 i 6 M and 1 6 j 6 li. By property (∗) and property (?),
we have that φi(Bi,rx(x)) ⊂ U1,2 and φ−1

1 (φi(Bi,raij (aij))) is a real convex
set in V1,2 for each for 1 6 i 6M and 1 6 j 6 li. Since the intersection of
convex sets are convex, B is a convex set.

Therefore, we conclude Lemma A.1. �

We also include a proof of the following very good cover lemma for the
completeness.

Lemma A.3 (Very good cover). — Let X be a compact complex mani-
fold, W a normal crossing divisor on X and V an open cover of X. Then,
there is a finite open cover U := {Ui}Mi=1 of X such that the following
properties hold.

(1) Ui is a Stein space for 1 6 i 6M ;
(2) Each intersection of Ui, 1 6 i 6M, is contractible, if it is nonempty;
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(3) There are only finitely many irreducible components of Ui
⋂
W for

1 6 i 6M ; moreover, if Wij is an irreducible component of Ui∩W ,
then Wij is contractible;

(4) U is a refinement of V.

Proof of Lemma A.3. — We first prove the following Claim.

Claim. — Let U be an open set in Cm. Suppose that W ⊂ U is a
reduced analytic subvariety of codimension one with normal crossing sin-
gularities only. For each point x ∈ U , there is a Euclidean complex ball
Br(x) ⊂ U such that there are only finitely many irreducible components
in the irreducible decomposition of W

⋂
Br(x) and each irreducible com-

ponent is contractible.

Proof of Claim. — Since the case x ∈ U\W is trivial, let x ∈ W
⋂
U ;

without loss of generality, we assume x = (0, . . . , 0) ∈ U . By taking the
complex ball BR :=

{
z
∣∣ |z|2 < R2} with radius R > 0 small enough, we

can assume that BR ⊂ U and W is defined in BR by equation
∏l
i=1 fi =

0, where f1, . . . , fl are holomorphic functions in BR such that they are
irreducible, pairwise coprime and vanishing at (0, . . . , 0). Without loss of
generality, we assume that f1, . . . , fl take the form of

(A.13) fi(z) =
m∑
j=1

aijzj +O(|z|2)

with aij ∈ C for 1 6 i 6 l, 1 6 j 6 m and z ∈ BR. Since W is a normal
crossing divisor, fi has a nonzero linear part for 1 6 i 6 l.
Define Wi := {fi = 0}

⋂
BR. It is clear that

⋃l
i=1Wi = W

⋂
BR. Hence

it suffices to prove that each Wi is contractible when R is small enough for
1 6 i 6 l. In the following, we will prove this for W1; the proof for others
is the same which we will omit.
Without loss of generality, we assume that a11 = −1 in formula (A.13).

By the implicit function theorem, we can solve z1 in terms of (z2, . . . , zm) as

(A.14)
z1 = h(z2, . . . , zm)

= a12z2 + a13z3 + · · ·+ a1mzm +O(|z2|2 + · · ·+ |zm|2).

Shrinking the radius R, we have a parametrization (G, W̃ ) of W1 as

G : W̃ −→W1 ⊂ Cm,
(z2, . . . , zm) 7−→ (h(z2, . . . , zm), z2, z3, . . . , zm),

(A.15)
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where W̃ is a domain in Cm−1 defined by

(A.16) ρ(z2, . . . , zm) :=
∣∣h(z2, . . . , zm)

∣∣2 +
m∑
i=2

∣∣zi∣∣2 < R2.

Since W1 and W̃ are biholomorphic, it suffices to show that W̃ is con-
tractible. Computation yields that

ρ =
∣∣a12z2 + a13z3 + · · ·+ a1mzm +O(|z|2)

∣∣2 + |z2|2 + · · ·+ |zm|2

= |a12z2 + a13z3 + · · ·+ a1mzm|2 + |z2|2 + · · ·+ |zm|2 +O(|z|3).
(A.17)

Taking derivatives, we get

(A.18)

∂ρ

∂z2
= (a12a12 + 1)z2 + a12a13z3 + · · ·+ a12a1mzm +O(|z|2),

∂ρ

∂z3
= a13a12z2 + (a13a13 + 1)z3 + · · ·+ a13a1mzm +O(|z|2),

...
∂ρ

∂zm
= a1ma12z2 + a1ma13z3 + · · ·+ (a1ma1m + 1)zm +O(|z|2).

Multiplying ∂ρ
∂zi

by zi, 1 6 i 6 m, and summing up the products, we obtain

m∑
i=1

∂ρ

∂zi
zi =

∣∣∣∣∣
m∑
i=1

a1iz
i

∣∣∣∣∣
2

+
m∑
i=1
|zi|2 +O(|z|3).(A.19)

Then for R > 0 small enough∣∣∣∣∣
m∑
i=1

∂ρ

∂zi
zi

∣∣∣∣∣ > 1
2

m∑
i=2
|zi|2 for (z2, . . . , zm) ∈ W̃ ;

hence ∇ρ is nonzero except at the origin. By Morse theory W̃ is con-
tractible. This completes the proof of the claim. �

The remainder of the proof is exact the same as the proof of Lemma A.1
except that when choosing Bi,rx(x), we require the following condition in
addition

(A.20) φi(Bi,rx(x)) ∩W =
li⋃
j=1

Wj

where Wj is irreducible and contractible for j = 1, . . . , li <∞. �
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Appendix B. Existence of a smooth, transversal two-chain

In this appendix we give a detailed proof of the following lemma.

Lemma B.1. — Let X be a compact algebraic manifold, p ∈ X a fixed
base point and W a normal crossing divisor. Suppose τ̃1, . . . , τ̃m is a basis
of the singular homology H1(X,C), where

τ̃k : [0, 1] −→ X is smooth with τ̃k(0) = τ̃k(1) = p for 1 6 k 6 m.

Assume τ̃ is also a one-cycle, where τ̃ : [0, 1] → X is smooth with τ̃(0) =
τ̃(1) = p. Moreover we assume that τ̃([0, 1])∩W = ∅ and τ̃k([0, 1])∩W = ∅
for 1 6 k 6 m. Then if τ̃ is homologous to

∑m
k=1 ak τ̃k with constants

{ak}mk=1 ⊂ C, we can find finitely many smooth 2-simplexes {σj}Jj=1 such
that the following properties hold.

(1) σj : ∆2 → X is smooth for 1 6 j 6 J where ∆2 is the standard
2-simplex defined by {(x, y) ⊂ R2|0 6 x 6 1, 0 6 y 6 1, x+ y 6 1}.

(2) ∂
(∑J

j=1 bjσj
)

= τ̃ −
∑m
k=1 ak τ̃k, where 0 6= bj ∈ C for 1 6 j 6 J.

(3) There are finitely many 1-simplexes {τl}Ll=1 and finitely many 0-
simplexes {An}Nn=1 such that

∂σj =
L∑
l=1

cjlτl with cjl ∈ {0, 1,−1} for 1 6 j 6 J, 1 6 l 6 L;

∂τl =
K∑
n=1

dlnAn with dln ∈ {0, 1,−1} for 1 6 l 6 L, 1 6 n 6 N.

Notice that {τ̃ , τ̃1, . . . , τ̃m} ⊂ {τj}Ll=1 and p ∈ {An}Nn=1.
(4) The above {σj}, {τl} and {An} are transversal to W in the sense

that: An /∈ W for 1 6 n 6 N and τl ∩ W = ∅ for 1 6 l 6 L;
σj ∩ Sing(W ) = ∅ and σj intersects W transversally for 1 6 j 6 J .

Proof. — Since τ̃ is homologous to
∑m
k=1 ak τ̃k, there are finitely many

2-simplexes {σj}Jj=1 such that ∂
(∑J

j=1 bjσj
)

= τ̃ −
∑m
k=1 ak τ̃k, where 0 6=

bj ∈ C for 1 6 j 6 J.
The idea of the proof is to perturb the simplexes homotopically, thicken

the lower dimensional simplexes and extend the perturbation from sim-
plexes with lower dimension to simplexes with higher dimension. Notice
that the 0-simplex p and the 1-simplexes {τ̃ , τ̃1, . . . , τ̃m} are fixed through-
out the proof. We divide the proof into seven steps as follows.
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Step 1: Perturb {An} so that An /∈ W for 1 6 n 6 N . — To be more
precise, we shall construct homotopies In : [0, 1] → X, 1 6 n 6 N , such
that:

(1) In is smooth;
(2) In(0) = An, In(1) = Ãn and Ãn /∈W .

If An /∈ W , we define In to be the identity map. Otherwise we choose a
point Ãn /∈W near An and draw a smooth curve In connecting An and Ãn.
Step 2: Extend the above homotopies to the complex {An}Nn=1

⋃
{τl}Ll=1.

To be more precise, we shall construct homotopies Tl : [0, 1]× [0, 1] → X

for 1 6 l 6 L satisfying the following properties.
(1) Tl is continuous;
(2) Tl( · , 0) = τl( · );
(3) T (0, ·) = Il0( · ) and T (1, ·) = Il1( · ), where l0, l1 ∈ {1, . . . , N} such

that τl(0) = Al0 and τl(1) = Al1 .
Firstly we define the homotopies of 1-simplexes {τ̃ , τ̃1, . . . , τ̃m} to be

identities. Next we will construct homotopy of Tl for the remaining τl as
shown in Figure B.1.(A). It is easy to see that the projection from the star-
shaped point induces a strong deformation retraction F of the unit square
to the union of three intervals AD, CD and BC in the following sense.

F : [0, 1]×
(
[0, 1]× [0, 1]

)
−→ [0, 1]× [0, 1],

(t, x, y) 7−→ (F1(t, x, y), F2(t, x, y)),

where F (0, x, y) = (x, y), F (1, x, y) ⊂ AD ∪ CD ∪ BC and F (t, x, y) is an
identity map when (x, y) ∈ AD ∪ CD ∪ BC. Denote by T̃l the following
continuous map defined on AD ∪ CD ∪BC.

T̃l :
(
{0} × [0, 1]

)
∪
(
[0, 1]× {0}

)
∪
(
{1} × [0, 1]

)
−→ X;

T̃l(x, 0) = τl(x), T̃l(0, y) = Il0(y) and T̃l(1, y) = Il1(y) for x, y ∈ [0, 1].

Then the desired homotopy Tl can be defined by the following formula.

Tl(x, y) = T̃l(F1(1, x, y), F2(1, x, y)).

Step 3: Smooth {τl}Ll=1 homotopically with fixed boundary 0-simplexes
{An}Nn=1. — To be more precise, we will construct homotopy Tl : [0, 1]×
[0, 1] for 1 6 l 6 L satisfying the following properties:

(1) Tl is continuous and Tl( · , 1) is a smooth map from [0, 1] to X;
(2) Tl( · , 0) = τl( · ); T (0, ·) = τl(0) and T (1, ·) = τl(1);
(3) T (x, 1) = τl(0) when x ≈ 0; T (x, 1) = τl(1) when x ≈ 1.
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Firstly we will thicken the boundary as illustrated by Figure B.2.(A). We
define homotopy T 1

l as follows.

T 1
l : [0, 1]× [0, 1] −→ X;

(x, y) 7−→


τl(0) when (x, y) ∈ Region III;
τl(1) when (x, y) ∈ Region II;
τl
( 2x−y/2

2−y
)

when (x, y) ∈ Region I.

Notice that the map T 1
l ( · , 1) is smooth in a small neighborhood of two

boundary points. Then by Theorem (10.1.2) in [5] and Remark (2) therein,
we can find a smooth map pτ l homotopic to T 1

l ( · , 1). Moreover by Re-
mark (1) of Theorem (10.1.2) in [5], pτ l can be chosen so that pτ l(x) =
T 1
l (x, 1) if x ≈ 0 or x ≈ 1.
Step 4: Perturb {τl}Ll=1 homotopically with fixed boundary points so that

τl is disjoint from W for 1 6 l 6 L. — First we take a stratification of W
asW = W1∪W2∪· · ·∪Wv, whereWi is smooth for 1 6 i 6 v and dimWi <

dimWi−1 for 2 6 i 6 v. According to the proof of Theorem (10.3.2) in [5],
we can find a smooth 1-simplex τ̃vl for τl such that

(1) τ̃vl is transversal to Wv ;
(2) τ̃vl is homotopic to τl;
(3) τ̃vl coincides with τl in a small neighborhood of boundary points.

By dimension counting, we have that τ̃vl is disjoint from Wv. Repeating
the procedure for Wv−1,Wv−2, . . . ,W1, we end with τ̃1

l which is disjoint
with W. Notice that {τ̃ , τ̃1, . . . , τ̃m} satisfy the desired property without
any perturbation.
Step 5: Extend the obtained homotopies of {τl}Ll=1 to {σj}Jj=1. — After

the above steps we have a homotopy Tl for τl such that
(1) Tl is continuous;
(2) Tl( · , 0) = τl( · ), T (x, 1) = T (0, 1) for x ≈ 0 and T (x, 1) = T (1, 1)

for x ≈ 1;
(3) Tl( · , 1) is smooth and disjoint from W.

We shall construct homotopy Sj : ∆2 × [0, 1] → X for 1 6 j 6 J

satisfying the following properties.
(1) Sj is continuous.
(2) Sj( · , 0) = σj( · ).
(3) Suppose that Sj(t, 1 − t, 0) = ±τj12(t), Sj(0, t, 0) = ±τj01(t), and

Sj(t, 0, 0) = ±τj02(t) for j01, j02, j12 ∈ {1, . . . , J} and t ∈ [0, 1] (the
signs depend on the orientation). Then for t ∈ [0, 1], Sj(t, 1− t, ·) =
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±Tj12(t, ·), Sj(0, t, ·) = ±Tj01(t, ·), and Sj(t, 0, ·) = ±Tj02(t, ·) with
the compatible signs.

Similar to Step 2, we first construct a strong deformation retract as
illustrated in Figure B.1.(B). It is clear that the projection from the star-
shaped point induces a strong deformation retraction F of the triangle
based prism to the union of the triangle ABC and three parallelograms
ACC ′A′, CBB′C ′ and ACC ′A′ in the following sense.

F : [0, 1]×
(
∆2 × [0, 1]

)
−→ ∆2 × [0, 1],

(t, x, y, s) 7−→ (F1(t, x, y, s), F2(t, x, y, s), F3(t, x, y, s)),

where F (0, x, y, t) = (x, y, t), F (1, x, y, t) ⊂ AD∪CD∪BC and F (t, x, y, s)
is an identity map when (x, y, s) ∈ ABC ∪ACC ′A′ ∪ CBB′C ′ ∪ACC ′A′.

We construct Sj for σj as follows. Denote by S̃j the following continuous
map defined on AD ∪ CD ∪BC.

S̃j : ABC ∪ACC ′A′ ∪ CBB′C ′ ∪ACC ′A′ −→ X;

S̃j | ¯ABC = σj , S̃j |ACC′A′ = ±Tj01 , S̃j |CBB′C′ = ±Tj02

and S̃j |ACC′A′ = ±Tj12 .

Then the desired homotopy Sj is given by

Sj(x, y, s) = S̃j(F1(1, x, y, s), F2(1, x, y, s), F3(1, x, y, s)).

Step 6: Smooth {σj}Jj=1 homotopically with fixed boundary 1-simplexes
{τl}Ll=1. — To be more precise, we will construct homotopy Sj : ∆2× [0, 1]
for 1 6 j 6 J satisfying the following properties.

(1) Sj is continuous and Sj( · , 1) is a smooth map from ∆2 to X.
(2) Sj( · , 0) = σj( · ).
(3) Sj(x, y, ·) = σj(x, y) for (x, y) ∈

(
{0} × [0, 1]

)
∪
(
[0, 1] × {0}

)
∪

{(t, 1− t) | 0 6 t 6 1}.
We proceed in a similar way to Step 3. Firstly we thicken the boundary as
illustrated by Figure B.2.(B). We can define a homotopy S1

j : ∆2× [0, 1]→
X such that S1

j ( · , · , 1) is defined as follows.

S1
j (x, y, 1) =



σj

( 1√
2+2

y+(1− 1√
2+2

)x− 1√
2+2

x+y− 2√
2+2

,
1√
2+2

x+(1− 1√
2+2

)y− 1√
2+2

x+y− 2√
2+2

)
when (x, y) ∈ Region I;

σj
(
2x− 1√

2+2 , 2y −
1√
2+2

)
when (x, y) ∈ Region II;

σj

(
0, 1√

2+2
x−y

x− 1√
2+2

)
when (x, y) ∈ Region III;

σj

(
1√
2+2

y−x
y− 1√

2+2
, 0
)

when (x, y) ∈ Region IV.
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Figure B.1. Extension of the homotopies

Figure B.2. Thickening the boundary

Notice that after Step 1-5 τj is smooth and constant near the boundary
τj(0) and τj(1). Then S1

j ( · , · , 1) is smooth in a small neighborhood of the
boundary. By Theorem (10.1.2) in [5] and Remark (2) of it, we can find
a smooth map pσj homotopic to S1

j ( · , · , 1). Moreover by Remark (1) of
Theorem (10.1.2) in [5], we can assume pσj coincides with σ̃j in a small
neighborhood of the boundary of ∆2. Hence we get the desired homotopy
of σj .

Step 7: Perturb {σj}Jj=1 so that σj is disjoint from the singularities of
W and intersects the smooth part of W transversally. — First we take a
stratification of W as W = W1 ∪W2 ∪ · · · ∪Wv, where Wi is smooth for
i = 1, . . . , v and dimWi < dimWi−1 for i = 2, . . . , v.
Next we will find a desired perturbation for σl. Notice that a certain

neighborhood of the boundary of σj is transversal to Wv. Then following
the proof of Theorem (10.3.2) in [5], we can find a smooth 2-simplex σ̃vj for
σj such that σ̃vj is transversal to Wv and homotopic to τl with boundary
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points fixed. Repeating the procedure for Wv−1,Wv−2, . . . ,W1, we derive
the corresponding transversal maps σ̃v−1

j , σ̃v−2
j , . . . and σ̃1

j accordingly. By
dimension counting, we conclude that the σ̃1

j is disjoint from
⋃v
i=2Wi and

intersect W1 transversally in the interior.
It is easy to verify that σ̃1

j satisfy all the required property in the lemma.
This completes the proof. �
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