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BILINEAR PSEUDO-DIFFERENTIAL OPERATORS
WITH EXOTIC SYMBOLS

by Akihiko MIYACHI & Naohito TOMITA

Abstract. — The boundedness from Lp × Lq to Lr, 1 < p, q 6 ∞, 0 < 1/p +
1/q = 1/r 6 1, of bilinear pseudo-differential operators with symbols in the bilinear
Hörmander classBSmρ,ρ, 0 6 ρ < 1, is proved for the critical orderm. Related results
for the cases p = 1, q = 1 or r =∞ are also obtained.
Résumé. — On considère des opérateurs pseudo-différentiels avec des symboles

dans la classe exotique de Hörmander. On prouve des estimations dans des espaces
de Lebesgue pour ces opérateurs, sous l’hypothèse que leurs symboles soient dans la
classe exotique de Hörmander d’ordre critique. On donne aussi des résultats reliés
pour les espaces de Hardy et BMO.

1. Introduction

Let m ∈ R and 0 6 δ 6 ρ 6 1. We say that a function σ(x, ξ, η) ∈
C∞(Rn×Rn×Rn) belongs to the bilinear Hörmander symbol class BSmρ,δ =
BSmρ,δ(Rn) if for every triple of multi-indices α, β, γ ∈ Nn0 = {0, 1, 2, . . .}n
there exists a constant Cα,β,γ > 0 such that

|∂αx ∂
β
ξ ∂

γ
ησ(x, ξ, η)| 6 Cα,β,γ(1 + |ξ|+ |η|)m+δ|α|−ρ(|β|+|γ|).

For a symbol σ ∈ BSmρ,δ, the bilinear pseudo-differential operator Tσ is
defined by

Tσ(f, g)(x) = 1
(2π)2n

∫
Rn×Rn

eix·(ξ+η)σ(x, ξ, η)f̂(ξ)ĝ(η) dξdη, f, g ∈ S(Rn).

The study of bilinear operators Tσ with σ in the bilinear Hörmander
class BSmρ,δ was initiated by Bényi, Maldonado, Naibo, and Torres in [2],
where in particular the symbolic calculus of the operators Tσ, σ ∈ BSmρ,δ,

Keywords: Bilinear pseudo-differential operators, bilinear Hörmander symbol classes,
exotic symbols.
2010 Mathematics Subject Classification: 42B15, 42B20, 47G30.



2738 Akihiko MIYACHI & Naohito TOMITA

was established. The boundedness properties of those operators have been
considered in many works, some of which will be mentioned below. In the
present paper, we shall also consider the boundedness property of the oper-
ators Tσ, σ ∈ BSmρ,δ. For the boundedness of the operators Tσ, we shall use
the following terminology. If X,Y, Z are function spaces on Rn equipped
with quasi-norms ‖·‖X , ‖·‖Y , ‖·‖Z and if there exists a constant Aσ such
that the estimate

(1.1) ‖Tσ(f, g)‖Z 6 Aσ‖f‖X‖g‖Y , f ∈ S ∩X, g ∈ S ∩ Y,

holds, then we shall simply say that Tσ is bounded from X × Y to Z and
write

Tσ : X × Y → Z.

The smallest constant Aσ of (1.1) is denoted by ‖Tσ‖X×Y→Z .
In the case ρ = 1, bilinear pseudo-differential operators with symbols

in BS0
1,δ, δ < 1, fall into the bilinear Calderón–Zygmund theory in the

sense of Grafakos–Torres [8] and their boundedness properties are well-
understood; see, e.g., Coifman–Meyer [6], Bényi–Torres [3], and Bényi–
Maldonado–Naibo–Torres [2]. In the case ρ < 1, however, we cannot reduce
the corresponding operators to bilinear Calderón–Zygmund operators and
there are some interesting features peculiar to the bilinear case. For exam-
ple, in contrast to the well-known Calderón–Vaillancourt theorem ([5]) for
linear pseudo-differential operators, the condition σ ∈ BS0

ρ,ρ, 0 6 ρ < 1,
does not assure any boundedness of the corresponding bilinear operator.
This gap between the linear and bilinear cases was first pointed out by
Bényi–Torres [4] for the case ρ = 0.
The subject of the present paper concerns with the estimate

(1.2) Tσ : Hp ×Hq → Lr,
1
p

+ 1
q

= 1
r
, σ ∈ BSmρ,ρ, 0 6 ρ < 1,

where Hp denotes Hardy space and Lr denotes Lebesgue space. In the
case p = q = r = ∞, instead of L∞ × L∞ → L∞, we shall consider
L∞ × L∞ → BMO.
For 0 6 ρ < 1 and for 0 < p, q, r 6 ∞ satisfying 1/p + 1/q = 1/r, we

define

mρ(p, q) = (1− ρ)m0(p, q),

m0(p, q) = −n
(

max
{

1
2 ,

1
p
,

1
q
, 1− 1

r
,

1
r
− 1

2

})
.
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Here is an expression of m0(p, q) that will be easy to see. We divide the
region of (1/p, 1/q) into 5 regions J0, . . . , J4 as follows:

-

6

@
@
@
@
@

1/p

1/q

J0

J1

J2

J3

J4

0 1/2 1

1/2

1

Then

m0(p, q) =



n
r − n if

(
1
p ,

1
q

)
∈ J0;

−n2 if
(

1
p ,

1
q

)
∈ J1;

−nq if
(

1
p ,

1
q

)
∈ J2;

−np if
(

1
p ,

1
q

)
∈ J3;

n
2 −

n
r if

(
1
p ,

1
q

)
∈ J4,

where 1/p+ 1/q = 1/r.
The number mρ(p, q) is the critical order as the following proposition

shows. A proof of this proposition will be given in Appendix of this paper.

Proposition 1.1. — Let 0 6 ρ < 1, 0 < p, q, r 6 ∞, and suppose
1/p+ 1/q = 1/r. If r <∞, then

mρ(p, q) = sup{m ∈ R : Tσ : Hp ×Hq → Lr for all σ ∈ BSmρ,ρ}.

When p = q = r =∞, the above equality holds if we replace Hp×Hq → Lr

by L∞ × L∞ → BMO.

It should be an interesting problem to prove the boundedness of bilinear
pseudo-differential operators in the critical class BSmρ,ρ, m = mρ(p, q). For
the case ρ = 0, this problem was solved by the authors in [10]. For the case
0 < ρ < 1, to the best of the authors’ knowledge, the only known result for
the problem is due to Naibo [11], which however is restricted to the case
0 < ρ < 1/2 and p = q = r = ∞. The purpose of the present paper is to
solve the problem in the range 0 6 1/p+ 1/q = 1/r 6 1.
The following are the main results of this paper.

TOME 70 (2020), FASCICULE 6



2740 Akihiko MIYACHI & Naohito TOMITA

Theorem 1.2. — Let 0 6 ρ < 1 andm = −(1−ρ)n/2. Then all bilinear
pseudo-differential operators with symbols in BSmρ,ρ(Rn) are bounded from
L2(Rn)× L∞(Rn) to L2(Rn).

Theorem 1.3. — Let 0 6 ρ < 1 and m = −(1− ρ)n. Then all bilinear
pseudo-differential operators with symbols in BSmρ,ρ(Rn) are bounded from
L∞(Rn)× L∞(Rn) to BMO(Rn).

Corollary 1.4. — Let 0 6 ρ < 1, 1 6 p, q, r 6 ∞, 1/p + 1/q =
1/r, and m = mρ(p, q). Then all bilinear pseudo-differential operators with
symbols in BSmρ,ρ(Rn) are bounded from Lp(Rn)×Lq(Rn) to Lr(Rn), where
Lp(Rn) (respectively, Lq(Rn)) should be replaced by Hp(Rn) (respectively,
Hq(Rn)) if p = 1 (respectively, q = 1) and Lr(Rn) should be replaced by
BMO(Rn) if r =∞.

Here are some comments on the previous works related to the above re-
sults. For the subcritical case m < mρ(p, q), the boundedness (1.2)
were obtained by Michalowski–Rule–Staubach [9] (for (1/p, 1/q) in the tri-
angle with vertices (1/2, 1/2), (1/2, 0), (0, 1/2)) and by Bényi–Bernicot–
Maldonado–Naibo–Torres [1] (in the range 1/p + 1/q 6 1). As we men-
tioned above, the case m = mρ(p, q) with ρ = 0 was obtained by the
authors [10]. In fact, [10, Theorem 1.1] gives a sharper version of the above
Corollary 1.4 for ρ = 0 and covers the full range 0 < p, q, r 6∞. Naibo [11]
has proved the claim of Theorem 1.3 in the case 0 < ρ < 1/2.
Theorem 1.2 should be one of the key estimates to consider the critical

case m = mρ(p, q) in the whole range 0 < p, q 6 ∞. Here is a comment
concerning the method of proof of Theorem 1.2. As we mentioned above
this theorem for the case ρ = 0 was already proved in [10]. However, the
method of the present paper is totally different from that of [10]. The
method of [10] seems to work only in the case ρ = 0, but the method of
the present paper covers all 0 6 ρ < 1.
The contents of this paper are as follows. In Section 2, we recall some

preliminary facts. In Sections 3, 4 and 5, we prove Theorems 1.2, 1.3 and
Corollary 1.4, respectively. In Appendix A, we prove Proposition 1.1.

2. Preliminaries

For two nonnegative quantities A and B, the notation A . B means
that A 6 CB for some unspecified constant C > 0, and A ≈ B means that
A . B and B . A. We denote by 1S the characteristic function of a set S,
and by |S| the Lebesgue measure of a measurable set S in Rn.

ANNALES DE L’INSTITUT FOURIER
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Let S(Rn) and S ′(Rn) be the Schwartz spaces of all rapidly decreasing
smooth functions and tempered distributions, respectively. We define
the Fourier transform Ff and the inverse Fourier transform F−1f of
f ∈ S(Rn) by

Ff(ξ) = f̂(ξ) =
∫
Rn
e−ix·ξf(x) dx and F−1f(x) = 1

(2π)n

∫
Rn
eix·ξf(ξ) dξ.

For m ∈ L∞(Rn), the linear Fourier multiplier operator m(D) is defined by

m(D)f(x) = F−1[mf̂ ](x) = 1
(2π)n

∫
Rn
eix·ξm(ξ)f̂(ξ) dξ, f ∈ S(Rn).

We recall the definition of Hardy spaces and the space BMO on Rn
(see [12, Chapters 3 and 4]). Let 0 < p 6 ∞, and let φ ∈ S(Rn) be
such that

∫
Rn φ(x) dx 6= 0. Then the Hardy space Hp(Rn) consists of all

f ∈ S ′(Rn) such that

‖f‖Hp =
∥∥∥∥ sup

0<t<∞
|φt ∗ f |

∥∥∥∥
Lp
<∞,

where φt(x) = t−nφ(x/t). It is known that Hp(Rn) does not depend on the
choice of the function φ and Hp(Rn) = Lp(Rn) for 1 < p 6 ∞. The space
BMO(Rn) consists of all locally integrable functions f on Rn such that

‖f‖BMO = sup
Q

1
|Q|

∫
Q

|f(x)− fQ|dx <∞,

where fQ is the average of f on Q and the supremum is taken over all cubes
Q in Rn. It is known that the dual spaces of H1(Rn) is BMO(Rn).

We end this section by quoting the following, which we shall call Schur’s
lemma. For a proof, see, e.g., [7, Appendix I].

Lemma 2.1 (Schur’s lemma). — Let {Aj,k}j,k>0 be a sequence of non-
negative numbers satisfying

sup
j>0

∑
k>0

Aj,k 6 1 and sup
k>0

∑
j>0

Aj,k 6 1.

Then

∑
j,k>0

Aj,kbjck 6

∑
j>0

b2j

1/2∑
k>0

c2k

1/2

for all nonnegative sequences {bj} and {ck}.

TOME 70 (2020), FASCICULE 6
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3. Proof of Theorem 1.2

In this section, we shall prove Theorem 1.2. The argument is divided
into three subsections. Although the proof for general σ ∈ BSmρ,ρ is some-
what complicated, the main idea already consists in the special case that
σ(x, ξ, η) is independent of x, namely the bilinear Fourier multiplier case.
In this case, σj,k,ν to be introduced in Subsection 3.1 reduces to

σj,k,ν =
{
σj,ν if k = 0
0 if k > 1,

and the argument will be simple.
We use the following notation and terminology. For a finite set Λ, we

write |Λ| to denote the number of elements of Λ. The following are cubes
in Rn:

Q = [−1, 1]n, aQ = [−a, a]n, a > 0,
x+ aQ = {x+ y : y ∈ aQ}, x ∈ Rn.

If σ is a function on Rn × Rn × Rn, then

supp∗ σ = closure of {(ξ, η) ∈ Rn×Rn : σ(x, ξ, η) 6= 0 for some x ∈ Rn}.

The usual inner product of f, h ∈ L2 = L2(Rn) is denoted by 〈f, g〉. If
{Eα} is a finite family of subsets of Rn, L is a positive integer, and if

|{β : Eβ ∩ Eα 6= ∅}| 6 L for all α,

then we say that the interaction of the family {Eα} is bounded by L.

3.1. Decomposition of the symbol and some preliminaries

We use the following two types of partitions of unity. One is the dyadic
decomposition:

suppψ0 ⊂ {ζ ∈ Rd : |ζ| 6 2},

suppψj ⊂ {ζ ∈ Rd : 2j−1 6 |ζ| 6 2j+1}, j > 1,

‖∂αψj‖L∞ . 2−j|α|, α ∈ Nd0, j > 0,∑
j>0

ψj(ζ) = 1, ζ ∈ Rd.

(3.1)

ANNALES DE L’INSTITUT FOURIER
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The other is the uniform decomposition:

suppϕ ⊂ Q,∑
ν∈Zn

ϕ(ξ − ν) = 1, ξ ∈ Rn.(3.2)

Here ψj , j > 0, and ϕ are smooth real-valued functions. We shall use (3.1)
with d = 2n and d = n. We write Ψj to denote the function ψj of (3.1)
with d = 2n and write ψj to denote the function of (3.1) with d = n. We
shall use (3.2) only on Rn.

In this subsection, we assume σ ∈ BSmρ,ρ with m ∈ R and 0 6 ρ 6 1.
(The conditions on m and ρ as in Theorem 1.2 are not necessary in this
subsection.) We decompose σ as

(3.3)

σ(x, ξ, η) =
∑
j>0

∑
ν=(ν1,ν2)∈Zn×Zn

σj,ν(x, ξ, η)

=
∑
j>0

∑
k>0

∑
ν=(ν1,ν2)∈Zn×Zn

σj,k,ν(x, ξ, η),

where

(3.4) σj,ν(x, ξ, η) = σ(x, ξ, η)ϕ(2−jρξ − ν1)ϕ(2−jρη − ν2)Ψj(ξ, η)

and

σj,k,ν(x, ξ, η) = [ψk(2−jρDx)σj,ν ](x, ξ, η)

= 2jρn
∫
Rn

[F−1ψk](2jρy)σj,ν(x− y, ξ, η) dy.
(3.5)

Notice the following facts. First, if we write the projections as

π1(ξ, η) = ξ, π2(ξ, η) = η,

then it is obvious that

(3.6) Tσj,k,ν (f, g) = Tσj,k,ν (f (1), g) = Tσj,k,ν (f, g(1))

whenever f (1) and g(1) satisfy (f (1))∧ = f̂ on π1(supp∗(σj,ν)) and (g(1))∧ =
ĝ on π2(supp∗(σj,ν)). Secondly, the Fourier transform of Tσj,k,ν (f, g) is
given by

(3.7) F [Tσj,k,ν (f, g)](ζ) = 1
(2π)2n

∫
Rn×Rn

ψk(2−jρ(ζ − ξ − η))

× [Fxσj,ν ](ζ − ξ − η, ξ, η)f̂(ξ)ĝ(η) dξdη,

TOME 70 (2020), FASCICULE 6
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where ζ ∈ Rn and Fxσj,ν denotes the partial Fourier transform of
σj,ν(x, ξ, η) with respect to the x-variable. From this we see that

(3.8) suppF [Tσj,k,ν (f, g)] ⊂
⋃

(ξ,η)∈supp∗(σj,ν)

{ζ : |ζ − ξ − η| 6 2jρ+k+1}.

Hence, we have

(3.9)
〈
Tσj,k,ν (f, g), h

〉
=
〈
Tσj,k,ν (f, g), h(1)〉

whenever h(1) satisfy (h(1))∧ = ĥ on the set on the right-hand side of (3.8).
In the argument to follow, we shall use (3.6) and (3.9) by choosing the
functions f (1), g(1), h(1) according to several different situations.
We also use the following general lemma for nearly orthogonal functions

and operators.

Lemma 3.1.
(1) If {fα} is a finite family of functions in L2, L is a positive integer,

and if |{β : 〈fβ , fα〉 6= 0}| 6 L for all α, then ‖
∑
α fα‖2L2 6

L
∑
α ‖fα‖2L2 .

(2) If {Tα} is a finite family of bounded linear operators in L2, L is
a positive integer, and if |{β : T ∗βTα 6= 0}| 6 L for all α, then
‖
∑
α Tα‖2L2→L2 6 L

∑
α ‖Tα‖2L2→L2 .

(3) If {Tα} is a finite family of bounded linear operators in L2, L is
a positive integer, and if |{β : TβT

∗
α 6= 0}| 6 L for all α, then

‖
∑
α Tα‖2L2→L2 6 L

∑
α ‖Tα‖2L2→L2 .

Proof. — To prove (1), we write∥∥∥∥∥∑
α

fα

∥∥∥∥∥
2

L2

=
∑
α

∑
β

〈fα, fβ〉 6
∑
α

∑
β

1{〈fα, fβ〉 6= 0}‖fα‖L2‖fβ‖L2 .

Applying Schur’s lemma, we obtain the desired inequality. We can prove (2)
by applying (1) to fα = Tαf . The assertion (3) follows from (2) since the
norms of an operator and its adjoint are the same. �

3.2. Basic estimates

In this subsection, except in the last lemma, Lemma 3.7, we only assume
σ ∈ BSmρ,ρ with m ∈ R and 0 6 ρ 6 1.

We shall give some basic estimates which will be used later. We use the
following notation

Sa(f)(x) = an
∫
Rn

|f(y)|
(1 + a|x− y|)n+1 dy, a > 0, x ∈ Rn.

ANNALES DE L’INSTITUT FOURIER
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Let us start with the estimate for the square function of ϕ̃(2−jρD − `)f
with respect to ` ∈ Zn. Although this is known to many people, we shall
give the proof for the reader’s convenience.

Lemma 3.2. — Let ϕ̃ ∈ S(Rn). Then(∑
`∈Zn
|ϕ̃(2−jρD − `)f(x)|2

)1/2

. S2jρ(f2)(x)1/2

holds for j > 0 and x ∈ Rn.

Proof. — Since ϕ̃(2−jρD−`)f(x) = ϕ̃(D−`)[f(2−jρ · )](2jρx), by a scal-
ing argument, it is sufficient to prove the case j = 0. By a periodization
technique, we can write

ϕ̃(D − `)f(x) =
∫
Rn
ei`·(x−y)Φ̃(x− y)f(y) dy

=
∑
˜̀∈Zn

∫
2π˜̀+[−π,π]n

ei`·(x−y)Φ̃(x− y)f(y) dy

= ei`·x
∫

[−π,π]n
e−i`·y

(∑
˜̀∈Zn

Φ̃(x− y − 2π˜̀)f(y + 2π˜̀))dy,

where Φ̃ = F−1ϕ̃. This means that |ϕ̃(D − `)f(x)| is equal to (2π)n times
the absolute value of the `-th Fourier coefficient of the (2πZ)n-periodic
function

∑
˜̀∈Zn Φ̃(x−y−2π˜̀)f(y+2π˜̀) of the y-variable. Hence, it follows

from Parseval’s identity that

∑
`∈Zn
|ϕ̃(D − `)f(x)|2 = (2π)n

∫
[−π,π]n

∣∣∣∣∣∑
˜̀∈Zn

Φ̃(x− y − 2π˜̀)f(y + 2π˜̀)∣∣∣∣∣
2

dy.

Since supz∈Rn
(∑

˜̀∈Zn |Φ̃(z−2π˜̀)|) <∞, by Schwarz’s inequality, the right-
hand side of this identity is estimated by∫

[−π,π]n

∑
˜̀∈Zn
|Φ̃(x− y − 2π˜̀)||f(y + 2π˜̀)|2 dy =

∫
Rn
|Φ̃(x− y)||f(y)|2 dy.

Therefore, the rapidly decreasing property of Φ̃ gives the desired
estimate. �

Lemma 3.3. — For each N ∈ N0 and β, γ ∈ Nn0 , the estimate

|∂βξ ∂
γ
ησj,k,ν(x, ξ, η)| . 2jm−kN2−jρ(|β|+|γ|)

holds for j, k > 0 and ν ∈ Zn × Zn.

TOME 70 (2020), FASCICULE 6



2746 Akihiko MIYACHI & Naohito TOMITA

Proof. — First, suppose k > 1. Then by the moment condition of F−1ψk
and Taylor’s formula, we can write (3.5) as

σj,k,ν(x, ξ, η)

= 2jρn
∫
Rn

[F−1ψk](2jρy)

×

(
σj,ν(x− y, ξ, η)−

∑
|α|<N

∂αx σj,ν(x, ξ, η)
α! (−y)α

)
dy

= 2jρn
∫
Rn

[F−1ψk](2jρy)

×

(
N
∑
|α|=N

(−y)α

α!

∫ 1

0
(1− t)N−1[∂αx σj,ν ](x− ty, ξ, η) dt

)
dy.

Using the fact that 1 + |ξ|+ |η| ≈ 2j for (ξ, η) ∈ supp∗(σj,ν), we have

|∂αx ∂
β
ξ ∂

γ
ησj,ν(x, ξ, η)| . 2jm+jρ(|α|−|β|−|γ|).

On the other hand, it follows from (3.1) that

|F−1ψk(y)| . 2kn(1 + 2k|y|)−(N+n+1).

Hence

|∂βξ ∂
γ
ησj,k,ν(x, ξ, η)|

.
∑
|α|=N

2jρn
∫
Rn

∫ 1

0

∣∣∣∣∣[F−1ψk](2jρy)yα[∂αx ∂
β
ξ ∂

γ
ησj,ν ](x− ty, ξ, η)

∣∣∣∣∣dtdy
. 2(jρ+k)n

∫
Rn

(1 + 2jρ+k|y|)−(N+n+1)|y|N2jm+jρ(N−|β|−|γ|) dy

≈ 2jm−kN2−jρ(|β|+|γ|).

If k = 0, then using (3.5) and slightly modifying the above argument, we
obtain the desired estimate. �

Lemma 3.4. — For each N ∈ N0, the estimate

|Tσj,k,ν (f, g)(x)| . 2jm−kNS2jρ(f)(x)S2jρ(g)(x)

holds for j, k > 0 and ν ∈ Zn × Zn.

Proof. — We write

Tσj,k,ν (f, g)(x) =
∫
Rn×Rn

Kj,k,ν(x, x− y, x− z)f(y)g(z) dydz,
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where

Kj,k,ν(x, y, z) = 1
(2π)2n

∫
Rn×Rn

ei(y·ξ+z·η)σj,k,ν(x, ξ, η) dξdη.

Since |ξ − 2jρν1| . 2jρ and |η − 2jρν2| . 2jρ for (ξ, η) ∈ supp∗(σj,k,ν), it
follows from Lemma 3.3 and integration by parts that

|Kj,k,ν(x, y, z)| . 2jm−kN 2jρn

(1 + 2jρ|y|)n+1
2jρn

(1 + 2jρ|z|)n+1 .

From this the desired estimate follows. �

The estimate

(3.10) ‖Tσj,k,ν (f, g)‖L2 . 2jm−kN‖f‖L2‖g‖L∞

immediately follows from Lemma 3.4. In the lemmas below, we shall derive
finer estimates by utilizing orthogonality.

Lemma 3.5.

(1) For each N ∈ N0, the estimate∥∥∥∥∥ ∑
ν2∈Zn

Tσj,k,ν (f, g)

∥∥∥∥∥
L2

. 2jm−kN‖f‖L2‖g‖L∞

holds for all j, k > 0 and all ν1 ∈ Zn.
(2) For each N ∈ N0, the estimate∥∥∥∥∥ ∑

ν1+ν2=µ
Tσj,k,ν (f, g)

∥∥∥∥∥
L2

. 2jm−kN‖f‖L2‖g‖L∞

holds for all j, k > 0 and all µ ∈ Zn.

Proof.
(1). — Take a function ϕ̃ ∈ C∞0 (Rn) such that ϕ̃(ξ) = 1 on suppϕ.

Then, by (3.6),

(3.11) Tσj,k,ν (f, g) = Tσj,k,ν (fj,ν1 , g) = Tσj,k,ν (f, gj,ν2)

with

(3.12) fj,ν1 = ϕ̃(2−jρD − ν1)f, gj,ν2 = ϕ̃(2−jρD − ν2)g.

From (3.8), we see that

(3.13) suppF [Tσj,k,ν (f, g)] ⊂ 2jρ(ν1 + ν2) + 2jρ+k+2Q.
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Notice that for fixed ν1 ∈ Zn the interaction of the family {2jρ(ν1 + ν2) +
2jρ+k+2Q}ν2∈Zn is . 2kn. Hence, by Lemma 3.1(1) and Lemma 3.4, we
have∥∥∥∥∥ ∑

ν2∈Zn
Tσj,k,ν (f, g)

∥∥∥∥∥
2

L2

=

∥∥∥∥∥ ∑
ν2∈Zn

Tσj,k,ν (f, gj,ν2)

∥∥∥∥∥
2

L2

. 2kn
∑
ν2∈Zn

‖Tσj,k,ν (f, gj,ν2)‖2L2

. 2kn+2(jm−kN)
∑
ν2∈Zn

∫
Rn
S2jρ(f)(x)2S2jρ(gj,ν2)(x)2 dx.(3.14)

By Schwarz’s inequality and Lemma 3.2,

∑
ν2∈Zn

∫
Rn
S2jρ(f)(x)2S2jρ(gj,ν2)(x)2 dx

.
∑
ν2∈Zn

∫
Rn
S2jρ(f2)(x)S2jρ(g2

j,ν2
)(x) dx

.
∫
Rn
S2jρ(f2)(x)S2jρ

[
S2jρ(g2)

]
(x) dx

. ‖f‖2L2‖g‖2L∞ .

Since N can be taken arbitrarily large, we obtain the desired estimate.
(2). — By (3.11)-(3.12), Lemma 3.4, and Schwarz’s inequality, we have∣∣∣∣∣ ∑
ν1+ν2=µ

Tσj,k,ν (f, g)(x)

∣∣∣∣∣ 6 ∑
ν1+ν2=µ

|Tσj,k,ν (fj,ν1 , gj,ν2)(x)|

. 2jm−kN
∑

ν1+ν2=µ
S2jρ(fj,ν1)(x)S2jρ(gj,ν2)(x)

6 2jm−kN
(∑

ν1

S2jρ(fj,ν1)(x)2

)1/2(∑
ν1

S2jρ(gj,µ−ν1)(x)2

)1/2

. 2jm−kN
(∑

ν1

S2jρ(f2
j,ν1

)(x)
)1/2(∑

ν1

S2jρ(g2
j,µ−ν1

)(x)
)1/2

.

By Lemma 3.2, we have(∑
ν1

S2jρ(f2
j,ν1

)(x)
)1/2

. S2jρ
[
S2jρ(f2)

]
(x)1/2 ≈ S2jρ(f2)(x)1/2.
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Similarly, (∑
ν1

S2jρ(g2
j,µ−ν1

)(x)
)1/2

. S2jρ(g2)(x)1/2 . ‖g‖L∞ .

Thus we have the pointwise estimate∣∣∣∣∣ ∑
ν1+ν2=µ

Tσj,k,ν (f, g)(x)

∣∣∣∣∣ . 2jm−kNS2jρ(f2)(x)1/2‖g‖L∞ ,

from which the desired L2 inequality follows. �

Lemma 3.6.
(1) For each N ∈ N0, the estimate∥∥∥∥∥ ∑

ν1∈Λ

∑
ν2∈Zn

Tσj,k,ν (f, g)

∥∥∥∥∥
L2

. |Λ|1/22jm−kN‖f‖L2‖g‖L∞

holds for all j, k > 0 and all finite sets Λ ⊂ Zn.
(2) For each N ∈ N0, the estimate∥∥∥∥∥∑

µ∈Λ

∑
ν1+ν2=µ

Tσj,k,ν (f, g)

∥∥∥∥∥
L2

. |Λ|1/22jm−kN‖f‖L2‖g‖L∞

holds for all j, k > 0 and all finite sets Λ ⊂ Zn.

Proof. — For the proof of (1) and (2), we freeze g ∈ L∞ and consider
the linear operator Tσj,k,ν ( · , g) defined by [Tσj,k,ν ( · , g)](f) = Tσj,k,ν (f, g)
for j, k > 0 and ν ∈ Zn × Zn. By (3.10), Tσj,k,ν ( · , g) is a bounded linear
operator in L2.
(1). — Since

supp∗
( ∑
ν2∈Zn

σj,k,ν

)
⊂ suppϕ(2−jρ · −ν1)× Rn,

we have ∑
ν2∈Zn

Tσj,k,ν (f, g) =
∑
ν2∈Zn

Tσj,k,ν (1suppϕ(2−jρ·−ν1)(D)f, g).

In terms of the linear operator, this can be written as∑
ν2∈Zn

Tσj,k,ν ( · , g) =
( ∑
ν2∈Zn

Tσj,k,ν ( · , g)
)
1suppϕ(2−jρ·−ν1)(D).
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Since the interaction of the family {suppϕ(2−jρ · −ν1)}ν1 is . 1, we see
that∣∣∣∣∣
{
ν̃1 ∈ Zn :

( ∑
ν2∈Zn

Tσj,k,(ν̃1,ν2)( · , g)
)( ∑

ν2∈Zn
Tσj,k,(ν1,ν2)( · , g)

)∗
6= 0
}∣∣∣∣∣ . 1

for all ν1 ∈ Zn. Thus Lemma 3.1 (3) yields∥∥∥∥∥ ∑
ν1∈Λ

∑
ν2∈Zn

Tσj,k,ν ( · , g)

∥∥∥∥∥
2

L2→L2

.
∑
ν1∈Λ

∥∥∥∥∥ ∑
ν2∈Zn

Tσj,k,ν ( · , g)

∥∥∥∥∥
2

L2→L2

.

By Lemma 3.5(1), the right-hand side of the above is. 22(jm−kN)|Λ|‖g‖2L∞ ,
which implies the desired estimate.
(2). — As in (3.13), the formula (3.8) implies

suppF
[ ∑
ν1+ν2=µ

Tσj,k,ν (f, g)
]
⊂ 2jρµ+ 2jρ+k+2Q,

which gives∑
ν1+ν2=µ

Tσj,k,ν (f, g) = 12jρµ+2jρ+k+2Q(D)
( ∑
ν1+ν2=µ

Tσj,k,ν (f, g)
)
.

Thus, in terms of the linear operator,∑
ν1+ν2=µ

Tσj,k,ν ( · , g) = 12jρµ+2jρ+k+2Q(D)
( ∑
ν1+ν2=µ

Tσj,k,ν ( · , g)
)
.

Since the interaction of the family {2jρµ+ 2jρ+k+2Q}µ∈Zn is . 2kn, we see
that∣∣∣∣∣
{
µ̃ ∈ Zn :

( ∑
ν1+ν2=µ̃

Tσj,k,ν ( · , g)
)∗( ∑

ν1+ν2=µ
Tσj,k,ν ( · , g)

)
6= 0
}∣∣∣∣∣ . 2kn

for all µ ∈ Zn. Hence Lemma 3.1(2) yields∥∥∥∥∥∑
µ∈Λ

∑
ν1+ν2=µ

Tσj,k,ν ( · , g)

∥∥∥∥∥
2

L2→L2

. 2kn
∑
µ∈Λ

∥∥∥∥∥ ∑
ν1+ν2=µ

Tσj,k,ν ( · , g)

∥∥∥∥∥
2

L2→L2

.

By Lemma 3.5(2), the right-hand side of the above is . 2kn+2(jm−kN) ×
|Λ|‖g‖2L∞ . Since N can be taken arbitrarily large, we obtain the desired
estimate. �

Notice that σj,k,ν 6= 0 only for |ν1| . 2j(1−ρ) and |ν2| . 2j(1−ρ) and
hence

∑
ν∈Zn×Zn Tσj,k,ν can be written as the sum of Lemma 3.6(1) or

(2) with |Λ| ≈ 2j(1−ρ)n. Hence the following lemma directly follows from
Lemma 3.6.
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Lemma 3.7. — Ifm = −(1−ρ)n/2 and 0 6 ρ 6 1, then for each N ∈ N0
the estimate ∥∥∥∥∥ ∑

ν∈Zn×Zn
Tσj,k,ν (f, g)

∥∥∥∥∥
L2

. 2−kN‖f‖L2‖g‖L∞

holds for j, k > 0.

3.3. Proof of Theorem 1.2

Throughout this subsection, we assumem, ρ, and σ satisfy the conditions
of Theorem 1.2, namely, 0 6 ρ < 1, m = −(1− ρ)n/2, and σ ∈ BSmρ,ρ(Rn).

Before proceeding to the main argument, we shall see that it is suffi-
cient to consider the case where supp∗ σ is included in a cone minus a ball
centered at the origin.
To see this, take a function Θ ∈ C∞0 (Rn × Rn) such that Θ(ξ, η) = 1 on

{(|ξ|2 + |η|2)1/2 6 2} and supp Θ ⊂ {(|ξ|2 + |η|2)1/2 6 4}, and write σ as

σ(x, ξ, η) = σ(x, ξ, η)Θ(ξ, η) + σ(x, ξ, η)(1−Θ(ξ, η)).

By simply summing the estimate of Lemma 3.7 over k > 0 and 0 6 j 6 2,
we obtain

‖TσΘ(f, g)‖L2 . ‖f‖L2‖g‖L∞ .
Hence it is sufficient to treat only Tσ(1−Θ). Next, if (ξ, η) belongs to the unit
sphere Σ of Rn × Rn, then either ξ + η 6= 0 or ξ 6= 0. By the compactness
of Σ, this implies that there exists a constant c > 0 such that Σ is covered
by the two open sets

V1 = {(ξ, η) ∈ Σ : |ξ + η| > c}, V2 = {(ξ, η) ∈ Σ : |ξ| > c}.

Taking a smooth partition of unity Φi, i = 1, 2, on Σ such that supp Φi ⊂ Vi,
we decompose σ(1−Θ) as

σ(x, ζ)(1−Θ(ζ)) =
2∑
i=1

σ(x, ζ)(1−Θ(ζ))Φi(ζ/|ζ|) =
2∑
i=1

σ(i)(x, ζ),

ζ = (ξ, η).

It is sufficient to prove the estimate for each Tσ(i) , i = 1, 2. Obviously
σ(i) ∈ BSmρ,ρ(Rn).
To sum up, by writing σ(i) simply as σ, we may assume that σ satisfies

the additional condition

supp∗ σ ⊂ Γ(Vi) = {ζ ∈ R2n : ζ/|ζ| ∈ Vi, |ζ| > 2} for i = 1 or 2.
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For such σ, we have σj,k,ν = 0 for j = 0 and thus the decomposition (3.3)
takes the form

(3.15) σ =
∑
j>1

∑
ν=(ν1,ν2)∈Zn×Zn

σj,ν =
∑
j>1

∑
k>0

∑
ν=(ν1,ν2)∈Zn×Zn

σj,k,ν .

In the rest of the proof, we shall consider the two cases

supp∗ σ ⊂ Γ(V1), supp∗ σ ⊂ Γ(V2)

separately.
We shall prove the following estimate for the trilinear form:

|〈Tσ(f, g), h〉| . ‖f‖L2‖g‖L∞‖h‖L2 ,

which is equivalent to the desired estimate for the operator Tσ.

The case supp∗ σ ⊂ Γ(V1)

In this case, all (ξ, η) ∈ supp∗ σ satisfy |ξ + η| ≈ (|ξ|2 + |η|2)1/2 (but |ξ|
may be small compared with (|ξ|2 + |η|2)1/2). We take a positive integer a
such that

(3.16) (ξ, η) ∈ supp∗(σj,k,ν) ⇒ 2j−a 6 |ξ + η| 6 2j+a.

Using this a, we write (3.15) as

σ =
∑
j>1

∑
k>0

∑
ν

σj,k,ν =
∑

j>1, k>0
k6j(1−ρ)−a−2

∑
ν

σj,k,ν +
∑

j>1, k>0
k>j(1−ρ)−a−2

∑
ν

σj,k,ν .

According to this decomposition of σ, we write the trilinear form as

〈Tσ(f, g), h〉

=
∑

j>1, k>0
k6j(1−ρ)−a−2

∑
ν

〈Tσj,k,ν (f, g), h〉+
∑

j>1, k>0
k>j(1−ρ)−a−2

∑
ν

〈Tσj,k,ν (f, g), h〉

= X1 +X2, say.

The estimate for the second term X2 is easy. In fact, Lemma 3.7 gives

|X2| 6
∑

j>1, k>0
k>j(1−ρ)−a−2

∥∥∥∥∥∑
ν

Tσj,k,ν (f, g)

∥∥∥∥∥
L2

‖h‖L2

.
∑

j>1, k>0
k>j(1−ρ)−a−2

2−kN‖f‖L2‖g‖L∞‖h‖L2 ≈ ‖f‖L2‖g‖L∞‖h‖L2 ,

where we used the assumption ρ < 1 in the last ≈.
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In order to estimate X1, we use the decomposition

f =
∑
`

f`, f` = ψ`(D)f,

and write
X1 =

∑
j>1, k>0

k6j(1−ρ)−a−2

∑
`>0

∑
ν

〈Tσj,k,ν (f`, g), h〉.

Here we make simple observations. First, if k 6 j(1 − ρ) − a − 2, then
from (3.8) and (3.16) we see that

suppF [Tσj,k,ν (f, g)] ⊂
⋃

2j−a6|ξ+η|62j+a

{ζ ∈ Rn : |ζ − ξ − η| 6 2jρ+k+1}

⊂ {ζ ∈ Rn : 2j−a−1 6 |ζ| 6 2j+a+1}.

Hence, by (3.9), 〈Tσj,k,ν (f`, g), h〉 in X1 can be written as

〈Tσj,k,ν (f`, g), h〉 = 〈Tσj,k,ν (f`, g), hj〉, hj = θ(2−jD)h,

where θ is an appropriate function supported in an annulus. Secondly,
since supp f̂ ` ⊂ {2`−1 6 |ξ| 6 2`+1} for ` > 0 and since supp∗(σj,k,ν) ⊂
{|ξ| 6 2j+1}, it follows that Tσj,k,ν (f`, g) = 0 for ` > j + 1. Thirdly, since
supp∗(σj,k,ν) ⊂ suppϕ(2−jρ · −ν1)× Rn and supp f̂ ` ⊂ suppψ`, we have

Tσj,k,ν (f`, g) 6= 0 ⇒ suppϕ(2−jρ · −ν1) ∩ suppψ` 6= ∅.

Combining these observations, we see that X1 can be written as

(3.17) X1 =
∑

j>1, k>0
k6j(1−ρ)−a−2

j+1∑
`=0

∑
ν1∈Λj,`

∑
ν2∈Zn

〈Tσj,k,ν (f`, g), hj〉,

where
Λj,` = {ν1 ∈ Zn : suppϕ(2−jρ · −ν1) ∩ suppψ` 6= ∅}.

The number of elements of Λj,` satisfies

|Λj,`| . (max{1, 2`−jρ})n.

Thus Lemma 3.6(1) gives∣∣∣∣∣ ∑
ν1∈Λj,`

∑
ν2∈Zn

〈Tσj,k,ν (f`, g), hj〉

∣∣∣∣∣
6

∥∥∥∥∥ ∑
ν1∈Λj,`

∑
ν2∈Zn

Tσj,k,ν (f`, g)

∥∥∥∥∥
L2

‖hj‖L2

. max{1, 2(`−jρ)n/2}2jm−kN‖f`‖L2‖g‖L∞‖hj‖L2 .
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Hence

|X1| .
∑

j>1, k>0
k6j(1−ρ)−a−2

j+1∑
`=0

max{1, 2(`−jρ)n/2}2jm−kN‖f`‖L2‖g‖L∞‖hj‖L2

6
∑
k>0

∑
j>1, `>0
`6j+1

max{1, 2(`−jρ)n/2}2jm−kN‖f`‖L2‖g‖L∞‖hj‖L2 .(3.18)

Under our assumption m = −(1− ρ)n/2 < 0, it holds that

(3.19)
∑
j>1

1{` 6 j + 1}max{1, 2(`−jρ)n/2} 2jm ≈ 1 for all ` > 0

and

(3.20)
∑
`>0

1{` 6 j + 1}max{1, 2(`−jρ)n/2} 2jm ≈ 1 for all j > 1.

Hence, by Schur’s lemma, (3.18) is bounded by

∑
k>0

2−kN
(∑
`>0
‖f`‖2L2

)1/2(∑
j>1
‖hj‖2L2

)1/2

‖g‖L∞ . ‖f‖L2‖h‖L2‖g‖L∞ .

This completes the proof for the first case.

The case supp∗ σ ⊂ Γ(V2)

In this case, all (ξ, η) ∈ supp∗ σ satisfy |ξ| ≈ (|ξ|2 + |η|2)1/2 (but |ξ + η|
may be small compared with (|ξ|2 + |η|2)1/2). We divide the sum over (j, k)
in (3.15) into two parts k 6 j(1−ρ) and k > j(1−ρ) and write the trilinear
form 〈Tσ(f, g), h〉 as

〈Tσ(f, g), h〉 =
∑

j>1, k>0
k6j(1−ρ)

∑
ν

〈Tσj,k,ν (f, g), h〉+
∑

j>1, k>0
k>j(1−ρ)

∑
ν

〈Tσj,k,ν (f, g), h〉

= Y1 + Y2, say.

As in the first case, the estimate for the second term Y2 is easy. In fact,
Lemma 3.7 gives

|Y2| 6
∑

j>1, k>0
k>j(1−ρ)

∥∥∥∥∥∑
ν

Tσj,k,ν (f, g)

∥∥∥∥∥
L2

‖h‖L2

.
∑

j>1, k>0
k>j(1−ρ)

2−kN‖f‖L2‖g‖L∞‖h‖L2 ≈ ‖f‖L2‖g‖L∞‖h‖L2 ,
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where the last ≈ holds because 1− ρ > 0.
In order to estimate Y1, we use the decomposition

h =
∑
`

h`, h` = ψ`(D)h,

and write

Y1 =
∑

j>1, k>0
k6j(1−ρ)

∑
`>0

∑
ν=(ν1,ν2)∈Zn×Zn

〈Tσj,k,ν (f, g), h`〉.

Here observe the following. Firstly, since |ξ| ≈ (|ξ|2 + |η|2)1/2 for (ξ, η) ∈
supp∗ σ, there exists a positive integer b such that supp∗(σj,k,ν) ⊂ {(ξ, η) :
2j−b 6 |ξ| 6 2j+b}. Hence, by (3.6),

Tσj,k,ν (f, g) = Tσj,k,ν (fj , g), fj = θ(2−jD)f,

where θ is an appropriate function supported in an annulus. Secondly, if
k 6 j(1− ρ), then (3.8) yields

suppF [Tσj,k,ν (fj , g)] ⊂
⋃

(|ξ|2+|η|2)1/262j+1

{ζ ∈ Rn : |ζ − ξ − η| 6 2jρ+k+1}

⊂ {ζ ∈ Rn : |ζ| 6 2j+3},

which together with the fact supp ĥ` ⊂ suppψ` implies 〈Tσj,k,ν (fj , g), h`〉 =
0 for ` > j + 3. Thirdly, as we have already seen, (3.13) holds, and hence,
by (3.9),

〈Tσj,k,ν (fj , g), h`〉 6= 0 =⇒ (2jρ(ν1 + ν2) + 2jρ+k+2Q) ∩ suppψ` 6= ∅.

Combining these observations, we see that Y1 can be written as

(3.21) Y1 =
∑

j>1, k>0
k6j(1−ρ)

j+3∑
`=0

∑
µ∈Λj,k,`

∑
ν1+ν2=µ

〈Tσj,k,ν (fj , g), h`〉,

where

Λj,k,` = {µ ∈ Zn : (2jρµ+ 2jρ+k+2Q) ∩ suppψ` 6= ∅}.

The number of elements of Λj,k,` is estimated by

|Λj,k,`| . (max{2k, 2`−jρ})n . 2kn max{1, 2(`−jρ)n}.
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Thus Lemma 3.6 (2) gives∣∣∣∣∣ ∑
µ∈Λj,k,`

∑
ν1+ν2=µ

〈Tσj,k,ν (f`, g), hj〉

∣∣∣∣∣
6

∥∥∥∥∥ ∑
µ∈Λj,k,`

∑
ν1+ν2=µ

Tσj,k,ν (f`, g)

∥∥∥∥∥
L2

‖hj‖L2

. max{1, 2(`−jρ)n/2}2jm−k(N−n/2)‖f`‖L2‖g‖L∞‖hj‖L2 .

Hence

|Y1| .
∑

j>1, k>0
k6j(1−ρ)

j+3∑
`=0

max{1, 2(`−jρ)n/2}2jm−k(N−n/2)‖f`‖L2‖g‖L∞‖hj‖L2

6
∑
k>0

∑
j>1, `>0
`6j+3

max{1, 2(`−jρ)n/2}2jm−k(N−n/2)‖f`‖L2‖g‖L∞‖hj‖L2 .(3.22)

Since (3.19) and (3.20) hold if ` 6 j+ 1 is replaced by ` 6 j+ 3, by Schur’s
lemma, (3.22) is bounded by

∑
k>0

2−k(N−n/2)

(∑
`>0
‖f`‖2L2

)1/2(∑
j>1
‖hj‖2L2

)1/2

‖g‖L∞

. ‖f‖L2‖h‖L2‖g‖L∞ ,

which gives the desired estimate for Y1. This completes the proof of Theo-
rem 1.2.

4. Proof of Theorem 1.3

In this section, we shall prove Theorem 1.3. The main scheme of the
arguments is the same as that of Naibo [11]. In the last step, we introduce
a new idea of using weak type estimates.
Since the theorem is already proved in the case ρ = 0 (see [10]), for

the rest of this section, we assume 0 < ρ < 1, m = −(1 − ρ)n, and σ ∈
BSmρ,ρ(Rn).
Using the function Ψj of Subsection 3.1, we decompose σ as

σ(x, ξ, η) =
∞∑
j=0

σj(x, ξ, η),(4.1)

σj(x, ξ, η) = σ(x, ξ, η)Ψj(ξ, η).(4.2)
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We write the inverse Fourier transform of σj with respect to (ξ, η) as

Kj(x, y, z) = 1
(2π)2n

∫
Rn×Rn

ei(y·ξ+z·η)σj(x, ξ, η) dξdη.

First, we shall prove that Kj satisfy the following estimates:

‖(1 + 2jρ|y|)N1(1 + 2jρ|z|)N2Kj(x, y, z)‖L2
y,z
. 2j(m+n),(4.3)

‖(1 + 2jρ|y|)N1(1 + 2jρ|z|)N2∇xKj(x, y, z)‖L2
y,z
. 2j(ρ+m+n),(4.4)

‖(1 + 2jρ|y|)N1(1 + 2jρ|z|)N2∇yKj(x, y, z)‖L2
y,z
. 2j(1+m+n),(4.5)

‖(1 + 2jρ|y|)N1(1 + 2jρ|z|)N2∇zKj(x, y, z)‖L2
y,z
. 2j(1+m+n),(4.6)

where ∇x,∇y,∇z denote the gradient operator with respect to x, y, z re-
spectively, and N1 and N2 can be arbitrary nonnegative real numbers.
To prove (4.3), observe that 1 + |ξ| + |η| ≈ 2j for all (ξ, η) ∈ supp∗(σj)

and σj satisfies the estimate

|∂βξ ∂
γ
ησj(x, ξ, η)| . (2j)m−ρ|β|−ρ|γ|1{1 + |ξ|+ |η| ≈ 2j}.

Taking inverse Fourier transform with respect to (ξ, η) and using
Plancherel’s theorem, we obtain

‖(2jρy)β(2jρz)γKj(x, y, z)‖L2
y,z
. (2j)m+n,

from which (4.3) follows. The estimates (4.4), (4.5), and (4.6) can be derived
from the estimates

|∂βξ ∂
γ
η∇xσj(x, ξ, η)| . (2j)m+ρ−ρ|β|−ρ|γ|1{1 + |ξ|+ |η| ≈ 2j},

|∂βξ ∂
γ
η {ξσj(x, ξ, η)}| . (2j)m+1−ρ|β|−ρ|γ|1{1 + |ξ|+ |η| ≈ 2j},

|∂βξ ∂
γ
η {ησj(x, ξ, η)}| . (2j)m+1−ρ|β|−ρ|γ|1{1 + |ξ|+ |η| ≈ 2j}

in the same way.
Now we proceed to the proof of the L∞ × L∞ → BMO boundedness of

Tσ. Let f, g be functions satisfying ‖f‖L∞ = ‖g‖L∞ = 1 and let Q be a
cube in Rn. We denote by `(Q) the side length of Q, and by xQ the center
of Q. It is sufficient to prove that there exists a complex number CQ such
that

1
|Q|

∫
Q

|Tσ(f, g)(x)− CQ|dx . 1.

We write h = `(Q) and take the cube Q̃ with the same center as Q and
with the sidelength

`(Q̃) =
{

2hρ if h 6 1,
2h if h > 1.
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We divide f and g as

f = f1Q̃ + f1Q̃c = f (0) + f (1),

g = g1Q̃ + g1Q̃c = g(0) + g(1),

and divide Tσ(f, g) into four parts

Tσ(f, g) = Tσ(f (0), g(0)) + Tσ(f (0), g(1)) + Tσ(f (1), g(0)) + Tσ(f (1), g(1))

= F (1) + F (2) + F (3) + F (4), say.

For each i = 1, 2, 3, 4, we shall show that there exists a complex number
C

(i)
Q such that

(4.7) 1
|Q|

∫
Q

|F (i)(x)− C(i)
Q |dx . 1.

We divide the argument into two cases, h > 1 and h 6 1.

The case h = `(Q) > 1

In this case, we shall prove (4.7) with C(i)
Q = 0 for all i.

Estimate for F (4). — We have

F (4)(x) = Tσ(f (1), g(1))(x) =
∞∑
j=0

Tσj (f (1), g(1))(x).

Using the kernel Kj and using Schwarz’s inequality, we have

|Tσj (f (1), g(1))(x)| =

∣∣∣∣∣
∫
y∈Q̃c
z∈Q̃c

Kj(x, x− y, x− z)f(y)g(z) dydz

∣∣∣∣∣
6

∥∥∥∥∥hn
(
|x− y|
h

)N1(
|x− z|
h

)N2

Kj(x, x− y, x− z)

∥∥∥∥∥
L2(y∈Q̃c, z∈Q̃c)

×

∥∥∥∥∥h−n
(
|x− y|
h

)−N1(
|x− z|
h

)−N2

f(y)g(z)

∥∥∥∥∥
L2(y∈Q̃c, z∈Q̃c)

,
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where N1, N2 > 0 can be taken arbitrarily. The first L2-norm above is
estimated by (4.3) as∥∥∥∥∥hn

(
|x− y|
h

)N1(
|x− z|
h

)N2

Kj(x, x− y, x− z)

∥∥∥∥∥
L2(y∈Q̃c, z∈Q̃c)

6 hn(2jρh)−N1(2jρh)−N2‖(2jρ|y|)N1(2jρ|z|)N2Kj(x, y, z)‖L2
y,z

. hn(2jρh)−N1(2jρh)−N22j(m+n) = (2jρh)−N1−N2+n,

where the last equality holds because of our assumption m = −(1− ρ)n. If
we take N1, N2 > n/2, then, for x ∈ Q, the second L2-norm is estimated
as∥∥∥∥∥h−n

(
|x− z|
h

)−N1(
|x− z|
h

)−N2

f(y)g(z)

∥∥∥∥∥
L2(y∈Q̃c, z∈Q̃c)

6

∥∥∥∥∥h−n
(
|x− y|
h

)−N1(
|x− z|
h

)−N2
∥∥∥∥∥
L2(y∈Q̃c, z∈Q̃c)

≈ 1.

Thus, by taking N1, N2 > n/2, we obtain the pointwise estimate

|F (4)(x)| 6
∞∑
j=0
|Tσj (f (1), g(1))(x)| .

∞∑
j=0

(2jρh)−N1−N2+n ≈ h−N1−N2+n61

for all x ∈ Q. This certainly implies (4.7) for i = 4 with C(4)
Q = 0.

Estimate for F (2) and F (3). — By symmetry, we consider only F (2). We
write

F (2)(x) = Tσ(f (0), g(1))(x) =
∞∑
j=0

Tσj (f (0), g(1))(x).

By Schwarz’s inequality, we have

|Tσj (f (0), g(1))(x)| =

∣∣∣∣∣
∫
y∈Q̃
z∈Q̃c

Kj(x, x− y, x− z)f(y)g(z) dydz

∣∣∣∣∣
6

∥∥∥∥∥hn
(
|x− z|
h

)N2

Kj(x, x− y, x− z)

∥∥∥∥∥
L2(y∈Q̃, z∈Q̃c)

×

∥∥∥∥∥h−n
(
|x− z|
h

)−N2

f(y)g(z)

∥∥∥∥∥
L2(y∈Q̃, z∈Q̃c)

,
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whereN2 > 0 can be taken arbitrarily. The first L2-norm above is estimated
by (4.3) as∥∥∥∥∥hn

(
|x− z|
h

)N2

Kj(x, x− y, x− z)

∥∥∥∥∥
L2(y∈Q̃, z∈Q̃c)

6 hn(2jρh)−N2‖(2jρ|z|)N2Kj(x, y, z)‖L2
y,z

. hn(2jρh)−N22j(m+n) = (2jρh)−N2+n.

If we take N2 > n/2, then, for x ∈ Q, the second L2-norm is estimated as∥∥∥∥∥h−n
(
|x− z|
h

)−N2

f(y)g(z)

∥∥∥∥∥
L2(y∈Q̃, z∈Q̃c)

6

∥∥∥∥∥h−n
(
|x− z|
h

)−N2
∥∥∥∥∥
L2(y∈Q̃, z∈Q̃c)

≈ 1.

Thus, by taking N2 > n, we obtain

|F (2)(x)| 6
∞∑
j=0
|Tσj (f (0), g(1))(x)| .

∞∑
j=0

(2jρh)−N2+n ≈ h−N2+n 6 1

for all x ∈ Q. This implies (4.7) for i = 2 with C(2)
Q = 0.

Estimate for F (1). — Since m = −(1 − ρ)n < −(1 − ρ)n/2 = mρ(2, 2),
the operator Tσ is bounded in L2 × L2 → L1 (see Proposition 1.1). Hence
1
|Q|

∫
Q

|F (1)(x)|dx 6 |Q|−1‖Tσ(f (0), g(0))‖L1 . |Q|−1‖f (0)‖L2‖g(0)‖L2 . 1.

The case h = `(Q) 6 1

Estimate for F (4). — We shall prove the estimate (4.7) for i = 4 with
C

(4)
Q = F (4)(xQ). In the following, x always denotes arbitrary point in Q.
To estimate F (4)(x)− F (4)(xQ), we write

F (4)(x)− F (4)(xQ) =
∞∑
j=0

(Tσj (f (1), g(1))(x)− Tσj (f (1), g(1))(xQ))

=
∞∑
j=0

∫
y∈Q̃c
z∈Q̃c

Hj,Q(x, y, z)f(y)g(z) dydz,
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where

(4.8) Hj,Q(x, y, z) = Kj(x, x− y, x− z)−Kj(xQ, xQ − y, xQ − z).

By Schwarz’s inequality,

(4.9) |Tσj (f (1), g(1))(x)− Tσj (f (1), g(1))(xQ)|

6

∥∥∥∥∥hρn
(
|x− y|
hρ

)N1(
|x− z|
hρ

)N2

Hj,Q(x, y, z)

∥∥∥∥∥
L2(y∈Q̃c, z∈Q̃c)

×

∥∥∥∥∥h−ρn
(
|x− y|
hρ

)−N1(
|x− z|
hρ

)−N2

f(y)g(z)

∥∥∥∥∥
L2(y∈Q̃c, z∈Q̃c)

.

Since ‖f‖∞ = ‖g‖∞ = 1, if we take N1, N2 > n/2, the latter L2-norm
of (4.9) is . 1.
In order to estimate the former L2-norm of (4.9), we write

(4.10) Hj,Q(x, y, z)

=
∫ 1

0
∇Kj(x(t), x(t)− y, x(t)− z) · (x− xQ, x− xQ, x− xQ) dt,

where we used the notation x(t) = xQ + t(x− xQ) and

∇Kj(x, y, z) · (u, v, w)
= ∇xKj(x, y, z) · u+∇yKj(x, y, z) · v +∇zKj(x, y, z) · w.

Notice that |x − y| ≈ |x(t) − y| and |x − z| ≈ |x(t) − z| for all y, z ∈
Q̃c and 0 < t < 1. Hence, by (4.10) and by (4.4), (4.5), (4.6), we can
estimate the former L2-norm of (4.9) as follows: (here ‖ · · · ‖L2(∗) means
‖ · · · ‖L2(y∈Q̃c, z∈Q̃c))∥∥∥∥∥hρn

(
|x− y|

hρ

)N1(
|x− z|

hρ

)N2

Hj,Q(x, y, z)

∥∥∥∥∥
L2(∗)

.

∥∥∥∥∥h1+ρn

(
|x− y|

hρ

)N1(
|x− z|

hρ

)N2 ∫ 1

0
|∇Kj(x(t), x(t)− y, x(t)− z)|dt

∥∥∥∥∥
L2(∗)

≈

∥∥∥∥∥h1+ρn
∫ 1

0

(
|x(t)−y|

hρ

)N1(
|x(t)−z|

hρ

)N2

|∇Kj(x(t), x(t)−y, x(t)−z)| dt

∥∥∥∥∥
L2(∗)

6 h1+ρn
∫ 1

0

∥∥∥∥∥
(
|x(t)−y|

hρ

)N1(
|x(t)− z|

hρ

)N2

∇Kj(x(t), x(t)−y, x(t)−z)

∥∥∥∥∥
L2(∗)

dt

. h1+ρn(2jρhρ)−N1 (2jρhρ)−N2 2j(1+m+n) = (2jρhρ)−N1−N2+n+1/ρ,
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where we used the assumptionm = −(1−ρ)n to obtain the last equality. On
the other hand, if we use (4.3), then we can estimate the former L2-norm
of (4.9) as follows: (the notation ‖ · · · ‖L2(∗) is the same as above)

∥∥∥∥∥hρn
(
|x− y|
hρ

)N1(
|x− z|
hρ

)N2

Hj,Q(x, y, z)

∥∥∥∥∥
L2(∗)

6

∥∥∥∥∥hρn
(
|x− y|
hρ

)N1(
|x− z|
hρ

)N2

Kj(x, x− y, x− z)

∥∥∥∥∥
L2(∗)

+

∥∥∥∥∥hρn
(
|x− y|
hρ

)N1(
|x− z|
hρ

)N2

Kj(xQ, xQ − y, xQ − z)

∥∥∥∥∥
L2(∗)

≈

∥∥∥∥∥hρn
(
|x− y|
hρ

)N1(
|x− z|
hρ

)N2

Kj(x, x− y, x− z)

∥∥∥∥∥
L2(∗)

+

∥∥∥∥∥hρn
(
|xQ − y|
hρ

)N1(
|xQ − z|
hρ

)N2

Kj(xQ, xQ − y, xQ − z)

∥∥∥∥∥
L2(∗)

. hρn(2jρhρ)−N1(2jρhρ)−N22j(m+n) = (2jρhρ)−N1−N2+n.

Combining the above estimates, we have the following estimates for ar-
bitrary N1, N2 > n/2:

|Tσj (f (1), g(1))(x)− Tσj (f (1), g(1))(xQ)|

. min{(2jρhρ)−N1−N2+n+1/ρ, (2jρhρ)−N1−N2+n}.

Now we take N1 = N2 = N such that −2N + n + 1/ρ > 0 > −2N + n.
Then taking the sum of the above estimates over j > 0, we obtain

|F (4)(x)− F (4)(xQ)|

6
∞∑
j=0
|Tσj (f (1), g(1))(x)− Tσj (f (1), g(1))(xQ)| . 1, x ∈ Q,

which a fortiori implies (4.7) for i = 4 with C(4)
Q = F (4)(xQ).

Estimate for F (2) and F (3). — By symmetry, we consider only F (2).
We shall prove the estimate (4.7) for i = 2 with C(2)

Q = F (2)(xQ). In the
following, x always denotes arbitrary point in Q.
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We write

F (2)(x)− F (2)(xQ) =
∞∑
j=0

(Tσj (f (0), g(1))(x)− Tσj (f (0), g(1))(xQ))

=
∞∑
j=0

∫
y∈Q̃
z∈Q̃c

Hj,Q(x, y, z)f(y)g(z) dydz

with Hj,Q given by (4.8).
By Schwarz’s inequality, we have

(4.11) |Tσj (f (0), g(1))(x)− Tσj (f (0), g(1))(xQ)|

6

∥∥∥∥∥hρn
(
|x− z|
hρ

)N2

Hj,Q(x, y, z)

∥∥∥∥∥
L2(y∈Q̃, z∈Q̃c)

×

∥∥∥∥∥h−ρn
(
|x− z|
hρ

)−N2

f(y)g(z)

∥∥∥∥∥
L2(y∈Q̃, z∈Q̃c)

.

Since ‖f‖∞ = ‖g‖∞ = 1, if we take N2 > n/2, then the latter L2-norm
of (4.11) is . 1.
By (4.10) and by (4.4), (4.5), and (4.6), we can estimate the former

L2-norm of (4.11) as

∥∥∥∥∥hρn
(
|x− z|
hρ

)N2

Hj,Q(x, y, z)

∥∥∥∥∥
L2(y∈Q̃, z∈Q̃c)

.

∥∥∥∥∥h1+ρn

(
|x− z|
hρ

)N2∫ 1

0
|∇Kj(x(t), x(t)− y, x(t)− z)|dt

∥∥∥∥∥
L2(y∈Q̃, z∈Q̃c)

≈

∥∥∥∥∥h1+ρn
∫ 1

0

(
|x(t)− z|

hρ

)N2

|∇Kj(x(t), x(t)− y, x(t)− z)|dt

∥∥∥∥∥
L2(y∈Q̃, z∈Q̃c)

6 h1+ρn
∫ 1

0

∥∥∥∥∥
(
|x(t)− z|

hρ

)N2

∇Kj(x(t), x(t)− y, x(t)− z)

∥∥∥∥∥
L2(y∈Q̃, z∈Q̃c)

dt

. h1+ρn(2jρhρ)−N22j(1+m+n) = (2jρhρ)−N2+n+1/ρ.
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On the other hand, using (4.3), we can estimate the former L2-norm of
(4.11) as∥∥∥∥∥hρn

(
|x− z|
hρ

)N2

Hj,Q(x, y, z)

∥∥∥∥∥
L2(y∈Q̃, z∈Q̃c)

6

∥∥∥∥∥hρn
(
|x− z|
hρ

)N2

Kj(x, x− y, x− z)

∥∥∥∥∥
L2(y∈Q̃, z∈Q̃c)

+

∥∥∥∥∥hρn
(
|x− z|
hρ

)N2

Kj(xQ, xQ − y, xQ − z)

∥∥∥∥∥
L2(y∈Q̃, z∈Q̃c)

≈

∥∥∥∥∥hρn
(
|x− z|
hρ

)N2

Kj(x, x− y, x− z)

∥∥∥∥∥
L2(y∈Q̃, z∈Q̃c)

+

∥∥∥∥∥hρn
(
|xQ − z|
hρ

)N2

Kj(xQ, xQ − y, xQ − z)

∥∥∥∥∥
L2(y∈Q̃, z∈Q̃c)

. hρn(2jρhρ)−N22j(m+n) = (2jρhρ)−N2+n.

Combining the above estimates, we have the estimates

|Tσj (f (0), g(1))(x)− Tσj (f (0), g(1))(xQ)|

. min{(2jρhρ)−N2+n+1/ρ, (2jρhρ)−N2+n}

for arbitrary N2 > n/2.
Now we take N2 such that −N2 + n+ 1/ρ > 0 > −N2 + n and take the

sum of the above estimates over j > 0 to obtain

|F (2)(x)− F (2)(xQ)|

6
∞∑
j=0
|Tσj (f (0), g(1))(x)− Tσj (f (0), g(1))(xQ)| . 1, x ∈ Q,

which a fortiori implies (4.7) for i = 2 with C(2)
Q = F (2)(xQ).

Estimate for F (1). — We first prove an L2 estimate of Tσj (f (0), g(0)).
Let σ̃j be the symbol

(4.12) σ̃j(x, ξ, η) = σj(2−jρx, 2jρξ, 2jρη).

Then a simple change of variables gives

(4.13) Tσ(a, b)(2−jρx) = Tσ̃(a(2−jρ·), b(2−jρ·))(x),
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which implies
‖Tσj‖L2×L∞→L2 = ‖Tσ̃j‖L2×L∞→L2 .

Since 1 + |ξ|+ |η| ≈ 2j for all (ξ, η) ∈ supp∗(σj), we see that σ̃j satisfies

|∂αx ∂
β
ξ ∂

γ
η σ̃j(x, ξ, η)| . 2jm1{1 + |ξ|+ |η| ≈ 2j(1−ρ)}

. 2−j(1−ρ)n/2(1 + |ξ|+ |η|)−n/2.
(4.14)

Hence the theorem of [10] or the case ρ = 0 of Theorem 1.2 yields

‖Tσ̃j‖L2×L∞→L2 . 2−j(1−ρ)n/2.

Thus we obtain

‖Tσj (f (0), g(0))‖L2 . 2−j(1−ρ)n/2‖f (0)‖L2‖g(0)‖L∞

6 2−j(1−ρ)n/2|Q̃|1/2 ≈ 2−j(1−ρ)n/2|Q|ρ/2.
(4.15)

Next we prove an L∞ estimate of Tσj (f (0), g(0)). From the formula

Tσj (a, b)(x) =
∫
Rn
Kj(x, x− y, x− z)a(y)b(z) dydz

and from (4.3), we have

|Tσj (a, b)(x)| 6 ‖Kj(x, x− y, x− z)‖L2
y,z
‖a(y)b(z)‖L2

y,z

. 2j(m+n)‖a‖L2‖b‖L2 = 2jρn‖a‖L2‖b‖L2 .

Hence

‖Tσj (f (0), g(0))‖L∞ . 2jρn‖f (0)‖2‖g(0)‖2 6 2jρn|Q̃| ≈ 2jρn|Q|ρ.(4.16)

Now by a characterization of weak Lp functions (see Lemma 4.1 to be
given below), the estimates (4.15) and (4.16) imply the following weak type
estimate for F (1) =

∑∞
j=0 Tσj (f (0), g(0)):

|{x ∈ Rn : |F (1)(x)| > λ}| . |Q|λ−1−1/ρ, λ > 0.

From this we obtain
1
|Q|

∫
Q

|F (1)(x)|dx =
∫ ∞

0
|Q|−1|{x ∈ Q : |F (1)(x)| > λ}|dλ

6
∫ ∞

0
min{1, λ−1−1/ρ} dλ ≈ 1,

which is the estimate (4.7) for i = 1 and C(1)
Q = 0. This completes the proof

of Theorem 1.3.
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Finally we shall give a proof of the fact that was used at the last part
of the above argument. Here we shall give a slightly general lemma. This
lemma is equivalent to the fact that the space L(p,∞) is equal to the real
interpolation space [L∞, Lr]θ,∞, 1/p = θ/r, combined with the character-
ization of the latter space by the J-method. Although this may be known
to many people, we shall give a proof for reader’s convenience.

Lemma 4.1. — Let 0 < r < p <∞, α, β ∈ (0,∞), and 0 < θ < 1 satisfy
1/p = θ/r and α/(α+ β) = θ. Then for nonnegative measurable functions
f on a measure space the following two conditions are equivalent:

(1) there exists constants A,B ∈ (0,∞) and a sequence of nonnegative
measurable functions {fj}j∈Z such that ‖fj‖L∞ 6 A2jα, ‖fj‖Lr 6
B2−jβ , and f =

∑
j∈Z fj .

(2) f ∈ L(p,∞), i.e., there exists a constant C ∈ (0,∞) such that |{x :
f(x) > λ}| 6 (Cλ−1)p for all λ > 0.

To be precise, if (1) holds then (2) holds with C = c(p, r, α, β)A1−θBθ,
and, conversely, if (2) holds then (1) holds with A,B ∈ (0,∞) such that
A1−θBθ = c(p, r, α, β)C.

Proof.
(1) ⇒ (2). — Suppose (1) holds and write γ = α + β. Take an integer

j0 such that A2j0α ≈ B2−j0β and set C = A2j0α. Then C ≈ A1−θBθ,
‖fj+j0‖L∞ . C2jγθ, and ‖fj+j0‖Lr . C2−jγ(1−θ). For λ ∈ (0,∞) given,
take an integer j1 such that C2j1γθ ≈ λ and decompose f as

f =
∑
j6j1

fj+j0 +
∑
j>j1

fj+j0 = f (0) + f (1).

Then ‖f (0)‖L∞ . C2j1γθ ≈ λ and ‖f (1)‖Lr . C2−j1γ(1−θ) ≈ C1/θλ1−1/θ.
Hence, if we take a sufficiently large constant c0, which depends only on
p, r, α, β, then we have

|{x : f(x) > c0λ}| 6 |{x : f (1)(x) > λ}|

6 ‖f (1)‖rLrλ−r . (C1/θλ1−1/θ)rλ−r = (Cλ−1)p.

(2)⇒ (1). — Suppose (2) holds. Take an A∈(0,∞) and decompose f as

f(x) =
∑
j∈Z

fj(x), fj(x) = f(x)1{A2(j−1)α < f(x) 6 A2jα}.

Then ‖fj‖L∞ 6 A2jα and

‖fj‖Lr 6 A2jα|{x : f(x) > A2(j−1)α}|1/r

6 A2jα(CA−12−(j−1)α)p/r = B2−jβ
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with B ≈ C1/θA1−1/θ. The relations between the constants A,B, and C

are obvious from the above arguments. �

5. Proof of Corollary 1.4

It is known that there exist bijective mappings σ 7→ σ∗1 and σ 7→ σ∗2 of
BSmρ,ρ, 0 6 ρ < 1, onto itself such that

(5.1)
∫
Tσ(f, g)(x)h(x)dx =

∫
Tσ∗1(h, g)(x)f(x)dx =

∫
Tσ∗2(f, h)(x)g(x)dx

for all f, g, h ∈ S (see [2, Theorem 2.1]). By duality,

‖Tσ‖L2×L∞→L2 = ‖Tσ∗2‖L2×L2→L1 = ‖T(σ∗2)∗1‖L∞×L2→L2 .

In particular, if one of the above is finite, then the other two are also
finite. Thus the desired result for (p, q) = (2,∞), (2, 2), (∞, 2) follows from
Theorem 1.2. Similarly, by the duality between H1 and BMO,

‖Tσ‖L∞×L∞→BMO ≈ ‖Tσ∗1‖H1×L∞→L1 ≈ ‖Tσ∗2‖L∞×H1→L1 .

Hence the desired result for (p, q) = (∞,∞), (1,∞), (∞, 1) follows from
Theorem 1.3. Other cases can be obtained from interpolation. As for the
interpolation argument, see for example [1, Proof of Theorem 2.2].

Appendix A.

In this appendix, we shall prove Proposition 1.1. Let 0 < p, q, r 6 ∞
and 1/p + 1/q = 1/r. We write m0 = m0(p, q). Recall that mρ(p, q) =
(1−ρ)m0. For simplicity of notation, we only consider the case r <∞, but
the argument below works in the case r = ∞ as well. In fact, in the case
r =∞, all we need is to rewrite Lr by BMO.
In [10, Theorem A.2], it is already proved that if Tσ : Hp × Hq → Lr

for all m ∈ BSmρ,ρ then m 6 (1 − ρ)m0. Hence, in order to complete the
proof of Proposition 1.1, it is sufficient to show that if m < (1− ρ)m0 then
Tσ : Hp × Hq → Lr for all σ ∈ BSmρ,ρ. As we mentioned in Introduction,
this has been proved in [9] and [1] in the range 1/p+1/q 6 1. Here we shall
give a proof that is valid for all 0 < p, q 6∞.
We use the fact that the case ρ = 0 is already known. To be precise, it is

known that Tσ : Hp ×Hq → Lr for all σ ∈ BSm0
0,0 (see [10, Theorem 1.1]).
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By virtue of the closed graph theorem, this boundedness is equivalent to
the claim that there exists a positive integer N and a constant c such that

(A.1) ‖Tσ‖Hp×Hq→Lr

6 c max
|α|,|β|,|γ|6N

(
sup

x,ξ,η∈Rn
(1 + |ξ|+ |η|)−m0 |∂αx ∂

β
ξ ∂

γ
ησ(x, ξ, η)|

)
for all σ ∈ BSm0

0,0 (see [1, Lemma 2.6]).
Now assume that 0 < ρ < 1 and σ ∈ BSmρ,ρ with m < (1− ρ)m0. In the

same way as in Section 4, we write σ =
∑∞
j=0 σj as in (4.1) and (4.2), and

define σ̃j by (4.12). Then (4.13) holds and this, together with the relation
1/p+ 1/q = 1/r, implies

(A.2) ‖Tσj‖Hp×Hq→Lr = ‖Tσ̃j‖Hp×Hq→Lr .

Also, from the same argument as in (4.14), we see that σ̃j satisfies the
estimate

|∂αx ∂
β
ξ ∂

γ
η σ̃j(x, ξ, η)| 6 Cα,β,γ 2j(m−(1−ρ)m0)(1 + |ξ|+ |η|)m0 .

Combining this with (A.2) and (A.1), we have

‖Tσj‖Hp×Hq→Lr = ‖Tσ̃j‖Hp×Hq→Lr . 2j(m−(1−ρ)m0).

Since m < (1 − ρ)m0, the above inequality implies that Tσ =
∑∞
j=0 Tσj is

bounded from Hp×Hq → Lr. This completes the proof of Proposition 1.1.
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