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EFFECTIVE OPERATORS FOR ROBIN EIGENVALUES
IN DOMAINS WITH CORNERS

by Magda KHALILE, Thomas OURMIÈRES-BONAFOS
& Konstantin PANKRASHKIN

Abstract. — We study the eigenvalues of the Laplacian with a strong attrac-
tive Robin boundary condition in curvilinear polygons. It was known from previous
works that the asymptotics of several first eigenvalues is essentially determined by
the corner openings, while only rough estimates were available for the next eigen-
values. Under some geometric assumptions, we go beyond the critical eigenvalue
number and give a precise asymptotics of any individual eigenvalue by establishing
a link with an effective Schrödinger-type operator on the boundary of the domain
with boundary conditions at the corners.
Résumé. — Nous étudions les valeurs propres du laplacien avec une condition de

Robin fortement attractive dans des polygones curvilignes. Grâce à de précédents
travaux, on sait que le comportement asymptotique de quelques premières valeurs
propres est essentiellement déterminé par les ouvertures des coins, alors que seules
quelques estimées grossières sont disponibles pour les valeurs propres suivantes.
Sous certaines hypothèses géométriques, nous allons au-delà du nombre critique
de valeurs propres et nous donnons un développement asymptotique précis pour
chaque valeur propre individuelle en établissant un lien avec un opérateur effectif
de type Schrödinger agissant sur le bord du domaine et muni de conditions aux
limites aux coins.

1. Introduction

1.1. Problem setting and previous results

Given a domain Ω ⊂ Rd, d > 2, with a suitably regular boundary ∂Ω
and a parameter α > 0, we denote by RΩ

α the Laplacian in L2(Ω) with the
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2216 M. Khalile, T. Ourmières-Bonafos & K. Pankrashkin

Robin condition ∂u/∂ν = αu at the boundary, where ν is the outer unit
normal. The operator is rigorously defined using its quadratic form

H1(Ω) 3 u 7→
∫

Ω
|∇u|2 dx− α

∫
∂Ω
u2 ds

with ds being the (d − 1)-dimensional Hausdorff measure, provided that
the form is lower semibounded and closed. The spectral properties of the
operator RΩ

α have attracted a lot of attention during the last years, and
a recent review of various results and open problems can be found in the
paper [12] by Bucur, Freitas, Kennedy. In the present paper we will be
interested in the behavior of the eigenvalues En(RΩ

α) in the asymptotic
regime α→ +∞. Let us recall some available results in this direction.
It seems that the study of the above asymptotic regime was first pro-

posed by Lacey, Ockedon, Sabina [42] when considering a reaction-diffusion
system, and Giorgi and Smits [24, 25] obtained a number of estimates with
links to the theory of enhanced surface superconductivity. Remark that for
bounded Lipschitz domains Ω it follows from the general theory of Sobolev
spaces that there exists C > 0 with E1(RΩ

α) > −Cα2 for large α (see
Lemma 2.7 below). Lacey, Ockedon, Sabina in [42] conjectured that under
suitable regularity assumptions on Ω the lower bound can be upgraded to
an asymptotics

(1.1) E1(RΩ
α) ∼ −CΩα

2,

with some CΩ > 0, and they have shown that CΩ = 1 for C4 smooth
domains. Levitin and Parnovski in [43] have shown the asymptotics (1.1)
for piecewise smooth domains satisfying the interior cone condition, and
they have shown that the constant CΩ is explicitly determined through the
spectra of model Robin Laplacians by

(1.2) (−CΩ) = inf
x∈∂Ω

inf spec(RTx1 ),

where Tx is the tangent cone to Ω at x and spec stands for the spectrum
of the operator. Bruneau and Popoff in [10] gave an improved remainder
estimate under the slightly stronger assumption that Ω is a so-called corner
domain. We also mention the recent paper [39] by Kovařík and Pankrashkin
on non-Lipschitz domains, for which the eigenvalue behavior is completely
different.
More precise estimates are available for smooth domains. The lower

bound by Lou and Zhu [45] and the upper bound due to Daners and
Kennedy [15] imply that if Ω is a bounded C1 domain, then for each fixed
n ∈ N one has En(RΩ

α) ∼ −α2. It seems that a more precise asymptotics
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was first obtained by Pankrashkin in [52]: it was shown that if Ω ⊂ R2 is
bounded with a C3 boundary, then E1(RΩ

α) = −α2−H∗α+O(α 2
3 ), where

H∗ is the maximum of the curvature of the boundary. Exner, Minakov and
Parnovski in [18] show that the asymptotics

(1.3) En(RΩ
α) = −α2 −H∗α+O(α 2

3 )

holds for any fixed n ∈ N, and then Exner and Minakov [17] obtained sim-
ilar results for a class of non-compact domains. Helffer and Kachmar [30]
obtained a complete asymptotic expansion for eigenvalues under the addi-
tional assumption that the curvature of the boundary admits a single non-
degenerate maximum. Pankrashkin and Popoff in [56] started the study
of the multidimensional case: if Ω ⊂ Rd is a C3 domain, then the asymp-
totics (1.3) holds with H∗ := maxH and H is defined as the sum of the
principal curvatures at the boundary, i.e. H = (d− 1) times the mean cur-
vature. An analog of the asymptotics (1.3) for the first eigenvalue of Robin
p-Laplacians was obtained by Kovařík and Pankrashkin in [38]. Among
possible applications of the asymptotics (1.3) one may mention various op-
timization issues concerning the eigenvalues of RΩ

α . It was conjectured by
Bareket [5] that among the domains Ω of fixed volume, for any α > 0
the quantity E1(RΩ

α) is maximized by the balls. In this most general form,
the conjecture was disproved by Freitas and Krejčiřík [23], but an addi-
tional analysis shows that the conjecture may hold in a weaker form under
additional restrictions on the geometry of Ω, we refer to the papers by An-
tunes, Freitas, Krejčiřík [1], Bandle and Wagner [4], Bucur, Ferone, Nitsch,
Trombetti [11], Ferone, Nitsch, Trombetti [20], Trani [62] and Savo [61]
for domains on manifolds. As noted by Pankrashkin and Popoff in [56], if
the ball is the maximizer of E1(RΩ

α) for all α > 0 in some class of smooth
domains Ω, then it is also the minimizer for the maximum mean curvature
H∗ in the same class of domains, and this observation leads to some new in-
equalities for H∗, see e.g. Ferone, Nitsch, Trombetti [21], and it was used to
construct a number of counterexamples, for example, the asymptotics (1.3)
was used by Krejčiřík and Lotoreichik [40, 41] in the study of isoperimetric
inequalities for Robin laplacians in exterior domains.
In [57] Pankrashkin and Popoff proposed an effective operator to study

the eigenvalues of RΩ
α . Namely, it was shown for C3 domains Ω, either

bounded or with a controllable behavior at infinity, that for any fixed n ∈ N
one has the asymptotics

(1.4) En(RΩ
α) = −α2 + En(Lα) +O(1),

TOME 70 (2020), FASCICULE 5
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Figure 1.1. An example of a curvilinear polygon Ω with four vertices
and sides of constant curvature. The vertices A1 and A2 are convex,
and the vertices A3 and A4 are concave. One has H1 < 0, H3 > 0 and
H2 = H4 = 0.

where Lα is the Schrödinger operator in L2(∂Ω) acting as Lα = −∆∂Ω−αH
with ∆∂Ω being the Laplace–Beltrami operator on ∂Ω. Kachmar, Keraval,
Raymond [35] and Helffer, Kachmar, Raymond [31] have shown that the
same effective operator appears in other spectral questions for RΩ

α , e.g.
the Weyl asymptotics and the tunneling effect for RΩ

α are also controlled
by those for Lα at the leading orders. Pankrashkin [54] and Bruneau,
Pankrashkin, Popoff [9] used the effective operator in order to study the
accumulation of eigenvalues for Robin Laplacians on some non-compact
domains.
We also mention some related papers going slightly beyond the initial

problem setting. Colorado and García-Melián [14] obtained some results in
the same spirit for Laplacians with the boundary condition ∂u/∂ν = αpu

for variable functions p and α → +∞. Filinovskii in [22] obtained the
estimate lim infα→+∞ α−1∂E1(RΩ

α)/∂α 6 −1. Helffer and Pankrashkin [32]
studied the exponential splitting between the first two eigenvalues of RΩ

α in
a domain Ω with two congruent corners. Cakoni, Chaulet and Haddar [13]
have shown that, in a sense, the only finite accumulation points of the
eigenvalues ofRΩ

α for large positive α are the Dirichlet Laplacian eigenvalues
of Ω.

1.2. Main results

In the present paper, we would like to combine the existing results and
techniques in order to study the eigenvalues of RΩ

α for the case of Ω ⊂ R2

being a curvilinear polygon and to better understand the role of corners in
the spectral properties. A complete definition of curvilinear polygons will
be given later in the text (Subsection 5.1), and for the moment we restrict
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Figure 1.2. The infinite sector Sθ for θ < π/2 (left) and θ > π/2 (right).

ourselves to a less formal intuitive definition: one says that a bounded
planar domain Ω is a curvilinear polygon if its boundary is smooth except
near M points (vertices) A1, . . . , AM , and if Γj−1 and Γj are two smooth
pieces of boundary meeting at Aj , then the half -angle θj between them
(measured inside Ω) is non-degenerate and non-trivial, i.e. θj /∈ {0, π/2, π}.
We say that a vertex Aj is convex if θj < π/2, otherwise it is called concave.
Furthermore, let Hj be the curvature defined on Γj , with the convention
that Hj > 0 for convex domain, and `j denotes the length of Γj . We refer
to Figure 1.1 for an illustration.
Using the general result (1.2) one is reduced first to the study of Robin

Laplacians in all possible tangent sectors, which have a simple structure in
two dimensions. Namely, consider the infinite planar sectors Sθ :=

{
(x1, x2) :∣∣arg(x1 + ix2)

∣∣ < θ
}
⊂ R2, see Figure 1.2, then the tangent sector to Ω at

Aj is a rotated copy of Sθj , while at all other points the tangent sectors are
isometric to Sπ

2
, which is just the half-plane. Denote by Tθ the Laplacian

in Sθ with the normalized Robin boundary condition ∂u/∂ν = u. Its spec-
tral properties were studied in detail by Khalile and Pankrashkin [37] and
are summarized below in Proposition 2.11. For the current presentation we
remark that the essential spectrum is always [−1,+∞), and, in addition,
it has κ(θ) <∞ discrete eigenvalues E1(θ), . . . , Eκ(θ)(θ), while κ(θ) = 0 for
θ > π/2 (i.e. there are no discrete eigenvalues at all if the sector is con-
cave), and E1(θ) = −1/ sin2 θ for θ < π/2. Furthermore, one has κ(θ) = 1
for π

6 6 θ <
π
2 . Hence, with Ω we associate the following objects:

K := κ(θ1) + · · ·+ κ(θM ),
E := the disjoint union of

{
En(θj), n = 1, . . . , κ(θj)

}
, j ∈ {1, . . . ,M},

En := the nth element of E when numbered in the non-decreasing order.

Khalile in [36] gives an improved version of (1.2) for curvilinear polygons,
namely, for each n ∈ {1, . . . ,K} one has En(RΩ

α) = Enα2 + O(α 4
3 ), while

the remainder estimate can be improved for polygons with straight sides,
and EK+n(RΩ

α) ∼ −α2 for each n ∈ N. (We remark that paper [36] was
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in turn motivated by the earlier work by Bonnaillie–Noël and Dauge [8]
on magnetic Neumann Laplacians in corner domains.) Therefore, the be-
havior of the first K eigenvalues at the leading order is determined by the
corners only, so one might call them corner-induced. In the present work
we would like to understand in greater detail the asymptotics of the higher
eigenvalues EK+n(RΩ

α) with a fixed n ∈ N, which will be referred to as side-
induced. As the main term (−α2) in the asymptotics is the same as in the
smooth case, one might expect that their behavior should take into account
the geometry of the boundary away from the corners, so that a kind of an
effective Schrödinger-type operator may appear by analogy with (1.4). On
the other hand, one might expect that the corners should contribute to the
effective operator: due to the singularities at the vertices, some boundary
conditions might be needed in order to make the effective operator self-
adjoint. It seems that the only result obtained in this direction is the one by
Pankrashkin [53]: if Ω is the exterior of a convex polygon with side lengths
`j , then for any fixed n one has En(RΩ

α) = −α2 +En(
⊕

j Dj) +O(α− 1
2 ) as

α→ +∞, where Dj is the Dirichlet Laplacian on (0, `j). Remark that this
result is in agreement with what precedes: as all the corners are concave,
one simply has K = 0. We are going to obtain a result in the same spirit
for a more general case, in particular, by allowing the presence of convex
corners.
Our analysis will be based on the notion of non-resonant convex vertex

(it will be seen from the proof that concave vertices are much easier to deal
with), which is formulated in terms of a model Robin eigenvalue problem
on a truncated sector. Namely, for θ ∈ (0, π/2) and r > 0 let A±r be the two
points lying on the two boundary rays of the sector Sθ at the distance r > 0
from the origin O, and let Br be the intersection point of the straight lines
passing through A±r perpendicular to the boundary, see Figure 1.3. Denote
by Srθ the quadrangle OA+

r BrA
−
r and by Nr

θ the Laplacian u 7→ −∆u
in Srθ with the Robin boundary condition ∂u/∂ν = u at OA±r and the
Neumann boundary condition at A±r Br. Using rather standard methods
one sees that the first κ(θ) eigenvalues of Nr

θ converge to those of Tθ as
r → +∞ (Lemma 3.6), and the non-resonance condition is a hypothesis
on the behavior of the next eigenvalue. We say that a half-angle θ is non-
resonant if for some C > 0 one has Eκ(θ)+1(Nr

θ ) > −1 + C/r2 for large
r. One shows in Proposition 3.10, using a combination of a separation of
variables with a monotonicity argument that all half-angles θ ∈

[
π
4 ,

π
2
)
are

non-resonant.

ANNALES DE L’INSTITUT FOURIER
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Figure 1.3. The quadrangle Srθ .

In order to concentrate on the contribution of the corners, let us discuss
first the case when Ω is a polygon with straight edges. We denote

Dj := the Dirichlet Laplacian on (0, `j).

Our main result reads as follows:

Theorem 1.1. — Let Ω ⊂ R2 be a polygon with M vertices, half-
angles θj and side lengths `j . Assume that each θj is either concave or
non-resonant, then for any fixed n ∈ N and α→ +∞ there holds

EK+n(RΩ
α) = −α2 + En

(
M⊕
j=1

Dj

)
+O

(
logα√
α

)
.

As it will be seen in the proof, using the Dirichlet–Neumann bracketing
and the non-resonance condition, it is quite elementary to obtain the two-
sided estimate

−α2 + En

(
M⊕
j=1

Nj

)
+O

(
logα
α

)
6 EK+n(RΩ

α),

EK+n(RΩ
α) 6 −α2 + En

(
M⊕
j=1

Dj

)
+O

(
logα
α

)
,

where Nj is the Neumann laplacian on (0, `j), and one easily sees that the
difference between the lower and upper bounds is of order 1. It takes then
the most efforts to close this gap and to show that it is the upper bound
which gives the main term of the eigenvalue asymptotics, and this is the
main contribution of the present paper.
Using the above observation that all obtuse angles θ are non-resonant

with κ(θ) = 1, one arrives at the following corollary:

TOME 70 (2020), FASCICULE 5
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Corollary 1.2. — Let Ω ⊂ R2 be a polygon with M vertices, half-
angles θj and sides of length `j . Assume that θj > π/4 for all j, then for
any n ∈ N and α→ +∞ there holds

EK+n(RΩ
α) = −α2 + En

(
M⊕
j=1

Dj

)
+O

(
logα√
α

)
,

where K is the number of convex vertices.

It is an important point that a different eigenvalue asymptotics can arise
if no condition is imposed on the corners. In order to see it, remark first
that in the situation of Theorem 1.1 one has

(1.5) lim
α→+∞

(
EK+1(RΩ

α) + α2) = E1

(
M⊕
j=1

Dj

)
> 0.

On the other hand, the computations by McCartin [46] for an explicit
configuration (which we review in Subsection 6.1) give the following result

Proposition 1.3. — Let Ω be an equilateral triangle of side length
` > 0. Then for α→ +∞ there holds En(RΩ) = −4α2+o(1) for n ∈ {1, 2, 3}
and

(1.6) E3+n(RΩ) = −α2 + En(L) + o(1) for any fixed n ∈ N,

where L is the Laplacian on (0, 3`) with the periodic boundary condition.

For the equilateral triangle one has indeed K = 3, while E1(L) = 0.
(1.6) implies limα→+∞

(
EK+1(RΩ

α) + α2) = 0, which contradicts (1.5).
This means that the half-angle θ = π

6 is resonant (i.e. it does not satisfy
the above non-resonance condition). We remark that the non-resonance
condition we use is strictly adapted to our proof method and is not sup-
posed to be optimal, but we are not aware of any suitable alternative.
In fact our choice is strongly motivated by some recent studies of Lapla-
cians in domains collapsing on graphs, and some analogies with waveguides
and possible reformulations of the non-resonance condition are discussed
in Subsection 6.3.
For the case of curvilinear polygons, a number of additional difficulties

arise due to the presence of non-trivial curvatures on the sides, and we were
not able to study the most general case in the present text (the most im-
portant technical obstacles are discussed in Subsection 6.2). Nevertheless,
we were able to consider two important cases.

First, we consider the case when the maximum curvature is not attained
at the corners.

ANNALES DE L’INSTITUT FOURIER
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Theorem 1.4. — Denote Hj,∗ := maxs∈[0,`j ]Hj(s), H∗ := maxj Hj,∗,
and assume that

for all j ∈ {1, . . . ,M} there holds Hj(0) 6= H∗ and Hj(`j) 6= H∗,

and that each corner of Ω is either concave or non-resonant. Then for each
n ∈ N and α→ +∞ one has

EK+n(RΩ
α) = −α2 + En

( ⊕
j:Hj,∗=H∗

(Dj − αHj)
)

+O(1),(1.7)

= −α2 + En

( ⊕
j:Hj,∗=H∗

(Nj − αHj)
)

+O(1).

In fact, the proof of Theorem 1.4 appears to be less involved than the one
of Theorem 1.1: the main ingredient is that the eigenvalues of Dj−αHj are
exponentially close to those of Nj −αHj , which is a simple consequence of
Agmon-type estimates, hence, the contribution of the boundary conditions
to be imposed at the vertices is very small (as the eigenfunctions are concen-
trated near the set on which the curvature attains its maximal value). The
remainder O(1) is the same as for the effective operator in (1.4) obtained
for smooth domains. Furthermore, under suitable geometric assumptions
a complete asymptotic expansion can be obtained, see Subsection 5.4. We
remark that the non-resonance condition is still used in the proof of The-
orem 1.4, and we have no intuition on what kind of asymptotics can be
expected without additional conditions on the corners.
The second important case we were able to study is as follows:

(1.8) the curvatures Hj are constant, and we denote H∗ := maxHj ;

i.e. each side is either a line segment or a circle arc. We explicitly mention
that Hj can be different for different j. Then we obtain the following result,
which is in the same spirit as Theorem 1.1:

Theorem 1.5. — Assume that all corners are concave or non-resonant
and that (1.8) is satisfied, then for any fixed n ∈ N and α→ +∞ one has
the asymptotics

(1.9) EK+n(RΩ
α) = −α2−H∗α−

1
2 H

2
∗ +En

( ⊕
j:Hj=H∗

Dj

)
+O

(
logα√
α

)
.

Remark that (1.9) can be formally viewed as a particular case of the
asymptotics (1.7) as the terms − 1

2 H
2
∗ +O

( logα√
α

)
in (1.9) can be viewed as

a resolution of the remainder O(1) in (1.7). The presence of the new term
1
2 H

2
∗ was not observed in earlier papers on Robin eigenvalues.

TOME 70 (2020), FASCICULE 5



2224 M. Khalile, T. Ourmières-Bonafos & K. Pankrashkin

The text is organized as follows. In Section 2 we recall basic tools from
the functional analysis (min-max based eigenvalue estimates, distance be-
tween subspaces, Sobolev trace theorems) and study or recall the spectral
properties of some model operators (Robin Laplacians on intervals and
infinite sectors). Section 3 is devoted to the study of Robin Laplacians in
convex sectors truncated in a special way: we obtain some estimates for the
eigenvalues and decay estimate for the eigenfunctions, then we introduce
the new notion of non-resonant angle and show that it is satisfied by the
obtuse angles. In Section 4 we prove Theorem 1.1, i.e. the case of polygons
with straight sides. We first decompose the polygon into vertex neighbor-
hoods and side neighborhoods, and apply Dirichlet–Neumann bracketing in
order to give first a rough eigenvalue estimate in terms of the direct sum of
operators in each part. This approach appears to be sufficient for the upper
bound. The proof of the lower bound is much more involved and represents
the main contribution of the paper. Our approach is based on the construc-
tion of an identification operator between functions in Ω and functions on
the boundary satisfying the Dirichlet boundary condition at the vertices.
This machinery was initially proposed by Post [58] for the analysis of thin
branching domains, and it was already used by Pankrashkin [53] to study
the Robin Laplacians in the exterior of convex polygons. The difference
with the present case comes from the fact that we want to obtain estimates
on the K + n eigenvalue, namely the identification only applies to the or-
thogonal complement of the K first eigenfunctions of RΩ

α . The strategy
consists in proving that the lowest eigenspaces of the polygon are close in a
suitable sense to the ones of the vertex neighborhoods. The non-resonance
condition is then used to analyze their orthogonal complement: it allows
us to obtain a control on the trace of the eigenfunctions at the boundary
of the vertex neighborhoods which gives a necessary input for the eigen-
value estimates. We explicitly remark that our analysis is not based on the
construction of quasimodes for the operators in play, but on a construc-
tion of test functions which are not in the operator domains. In particular,
we do not see any sufficiently direct way to obtain a complete asymptotic
expansion for the eigenvalues.
In Section 5 we discuss the case of curvilinear polygons. We still need a

special decomposition of the domain into pieces of a very special form as
well as the existence of some diffeomorphisms and special cut-off functions.
The procedure is summarized at the beginning of the section while a com-
plete justification of the geometric constructions is given in Appendix A, as
we are not aware of suitable constructions in the existing literature. As in

ANNALES DE L’INSTITUT FOURIER
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the case of straight polygons we then estimate the portion of the operator
in each piece of the domain, which gives the sought upper bound and some
lower bound. We prove Theorem 1.4 in Subsection 5.4 by showing that
the lower and upper bounds are close enough (when compared with the
order of the eigenvalue) under the geometric condition imposed. In Sub-
section 5.5 we then prove Theorem 1.5. With preparation in the preceding
subsection, the proof scheme is almost identical to the one of Theorem 1.1,
and differences are mostly of a technical nature.
Finally, in Section 6 we discuss possible extensions of the results, in par-

ticular, we show that some angles do not satisfy the non-resonance condi-
tion and give a different eigenvalue asymptotics, and we explain some links
between our study and the spectral analysis of waveguides. As already men-
tioned, Appendix A contains some geometric constructions in curvilinear
sectors, and we believe that they can be of use for other problems involving
differential operators in domains with corners.
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2. Preliminaries

2.1. Notation

For x = (x1, x2) ∈ R2 and y = (y1, y2) ∈ R2 we will use the length
|x| =

√
x2

1 + x2
2, the scalar product x · y = x1y1 + x2y2 and the wedge

product x ∧ y = x1y2 − x2y1. In this paper we only deal with real-valued
operators, so we prefer to work with real Hilbert spaces in order to have
a simpler writing. Let H be a Hilbert space and u, v ∈ H, then we denote
by 〈u, v〉H the scalar product of u and v. It will be sometimes shortened
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to 〈u, v〉 if there is no ambiguity in the choice of the Hilbert space, and
the same applies to the associated norm ‖ · ‖H. For a self-adjoint opera-
tor (A,D(A)) in H, with D(A) being the operator domain, we denote by
spec(A), specdisc(A) and specess(A) the spectrum of A, its discrete spec-
trum and its essential spectrum, respectively. For n ∈ N := {1, 2, 3, . . .},
by En(A) we denote the nth discrete eigenvalue of A (if it exists) when
enumerated in the non-decreasing order counting the multiplicities. If the
operator A is semibounded from below, then Q(A) denotes the domain of
its sesquilinear form, and the value of the sesquilinear form on two vectors
u, v ∈ Q(A) will be denoted by A[u, v].

2.2. Min-max principle and its consequences

Let H be an infinite-dimensional Hilbert space and A be a lower semi-
bounded self-adjoint operator in H, with A > −c for some c ∈ R. Recall
that Q(A) equipped with the scalar product

Q(A)×Q(A) 3 (u, v) 7→ A[u, v] + (c+ 1)〈u, v〉H
is a Hilbert space. The following result, giving a variational characteri-
zation of eigenvalues (usually referred to as the min-max principle), is a
standard tool in the spectral theory of self-adjoint operators, see e.g. [60,
Section XIII.1] or [7, Section 10.2]:

Proposition 2.1. — Let Σ := inf specess(A) if specess(A) 6= ∅, other-
wise set Σ := +∞. Let n ∈ N and D be a dense subspace of Q(A). Define
the nth Rayleigh quotient Λn(A) of A by

Λn(A) := inf
G⊂D: dimG=n

sup
u∈G\{0}

A[u, u]
‖u‖2H

,

then one and only one of the following two assertions is true:
• Λn(A) < Σ and En(A) = Λn(A).
• Λn(A) = Σ and Λm(A) = Λn(A) for all m > n.

The following corollary is also well known, see e.g. [7, Section 10.2,
Theorem 5]:

Corollary 2.2. — Let A and B be lower semibounded self-adjoint
operators in an infinite-dimensional Hilbert space H. Assume that there
exists d ∈ N and a d-dimensional subspace D such that Q(A) = Q(B)⊕D
and that A[u, u] = B[u, u] for all u ∈ Q(B), then Λn(B) 6 Λn+d(A) for all
n ∈ N.
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Furthermore, the following min-max-based eigenvalue estimate will be of
use to compare the eigenvalues of operators acting in different spaces. It
was introduced and used by Exner and Post in [19, Lemma 2.1] as well as
by Post in [58, Lemma 2.2]:

Proposition 2.3. — Let H and H′ be infinite-dimensional Hilbert
spaces, B be a non-negative self-adjoint operator with a compact resol-
vent in H and B′ be a lower semibounded self-adjoint operator in H′. Pick
n ∈ N and assume that there exists a linear map J : Q(B) → Q(B′) and
constants ε1 > 0 and ε2 > 0 such that ε1 < 1/

(
1 + En(B)

)
and that for

any u ∈ Q(B) one has

‖u‖2H − ‖Ju‖2H′ 6 ε1
(
B[u, u] + ‖u‖2H

)
,

B′[Ju, Ju]−B[u, u] 6 ε2
(
B[u, u] + ‖u‖2H

)
,

then Λn(B′) 6 En(B) +
(
En(B)ε1+ε2

)(
1+En(B)

)
1−
(

1+En(B)
)
ε1

.

2.3. Distance between closed subspaces

We will use the well-known notion of a distance between two closed
subspaces:

Definition 2.4. — Let E and F be closed subspaces of a Hilbert space
H and denote by PE and PF the orthogonal projectors in H on E and F
respectively. The distance d(E,F ) between E and F is defined by

d(E,F ) := sup
x∈E, x 6=0

‖x− PFx‖
‖x‖

≡ ‖PE − PFPE‖ ≡ ‖PE − PEPF ‖.

One easily sees that the distance is not symmetric, i.e. d(E,F ) 6= d(F,E)
in general, but the triangular inequality is satisfied, i.e. d(E,G) 6 d(E,F )+
d(F,G) for any closed subspaces E,F,G. Furthermore, we will need the
following result due to Helffer and Sjöstrand [33, Proposition 2.5] allowing
to estimate the distance between two subspaces in a special case.

Proposition 2.5. — Let A be a self-adjoint operator in a Hilbert space
H and I ⊂ R be a compact interval. For some n ∈ N let µ1, . . . , µn ∈ I and
ψ1, . . . , ψn ∈ D(A) be linearly independent vectors, then we denote

ε := max
j∈{1,...,n}

∥∥(A− µj)ψj
∥∥, η := 1

2 dist
(
I, (specA)\I

)
,

λ := the smallest eigenvalue of the Gram matrix
(
〈ψj , ψk〉

)
j,k∈{1,...,n}.
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If η > 0, then the distance d(E,F ) between the subspaces

E := span{ψ1, . . . , ψn},
F := the spectral subspace associated with A and I

satisfies d(E,F ) 6 ε
η

√
n
λ .

2.4. Laplacians with mixed boundary conditions and a trace
estimate

In what follows we will deal with numerous Laplacians with various com-
binations of boundary conditions. In order to simplify the writing, we in-
troduce the following definition:

Definition 2.6 (Laplacians with mixed boundary conditions). — Let
U ⊂ Rd be an open set and ΓD, ΓN , ΓR be disjoint subsets of ∂U such
that ΓD ∪ ΓN ∪ ΓR = ∂U . In addition, let α ∈ R, then by the Laplacian in
Ω with Dirichlet condition at ΓD, Neumann condition at ΓN and α-Robin
condition at ΓR we mean the self-adjoint operator A in L2(U) with

A[u, u] =
∫
U

|∇u|2 dx− α
∫

ΓR
|u|2 ds,

Q(A) =
{
u ∈ H1(U) : u = 0 at ΓD

}
,

where ds is the (d−1)-dimensional Hausdorff measure on ∂U , provided that
the above expression defines a closed semibounded from below sesquilinear
form (which is the case for bounded Lipschitz domains U). Informally, the
operator A acts then as u 7→ −∆u on suitably regular functions u in U

satisfying u = 0 at ΓD, ∂νu = 0 at ΓN , ∂νu = αu at ΓR, where ∂ν stands
for the outer normal derivative.

We will need a variant of the Sobolev trace inequality on scaled domains.

Lemma 2.7. — Let U ⊂ Rd be a bounded Lipschitz domain, then there
exists c > 0 such that∫

∂(tU)
f2 ds 6 c

(
tε

∫
tU

|∇f |2 dx+ 1
tε

∫
tU

f2 dx
)

for all t > 0, f ∈ H1(tU), ε ∈ (0, 1]. In particular, if for α > 0 one denotes
by RtUα the Laplacian in tU with α-Robin condition at the whole boundary,
then there exists C > 0 such that RtUα > −Cα2 for αt sufficiently large.
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Proof. — The standard trace inequality, see e.g. Grisvard [27, Theo-
rem 1.5.1.10], implies that there exists c > 0 such that

(2.1)
∫
∂U

u2 ds 6 c
(
ε

∫
U

|∇u|2 dx+ 1
ε

∫
U

u2 dx
)

for all u ∈ H1(U) and ε ∈ (0, 1].

For f ∈ L2(tU) denote by ft ∈ L2(U) the function given by ft(x) = f(tx),
then f ∈ H1(tU) if and only if ft ∈ H1(U). Using (2.1) we see that

(2.2)
∫
∂U

f2
t ds 6 c

(
ε

∫
U

|∇ft|2 dx+ 1
ε

∫
U

f2
t dx

)
for all f ∈ H1(tU), ε ∈ (0, 1].

and using the change of variables x = y/t one easily obtains∫
∂U

f2
t ds =

∫
∂U

f(tx)2 ds = t1−d
∫
∂(tU)

f(y)2 ds,∫
U

|∇ft|2 dx =
∫
U

t2
∣∣(∇f)(tx)

∣∣2 dx = t2−d
∫
tU

|∇f(y)|2 dy,∫
U

f2
t dx =

∫
U

f(tx)2 dx = t−d
∫
tU

f(y)2 dy.

The substitution of these three equalities into (2.2) gives the desired trace
inequality. Furthermore, for all f ∈ H1(tU) and ε ∈ (0, 1] one has

RtUα [f, f ] =
∫
tU

|∇f |2 dx− α
∫
∂(tU)

f2 ds

> (1− cαtε)
∫
tU

|∇f |2 dx− cα

tε

∫
tU

f2 dx.

Hence, taking ε := 1/(cαt) we arrive at RtUα > −c2α2. �

2.5. One-dimensional model operators

Let us recall some eigenvalue estimates for Laplacians on finite intervals
with a combination of boundary conditions.

Proposition 2.8. — For δ > 0 and α > 0, let LD be the Laplacian on
(0, δ) with α-Robin condition at 0 and the Dirichlet boundary condition
at δ, then for αδ → +∞ there holds E1(LD) = −α2(1 + O(e−δα)

)
and

E2(LD) > 0.
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The result is obtained by direct computations, details can be found e.g.
in [52, Lemma 4].

Proposition 2.9. — For δ > 0, α > 0 and β > 0, let LN denote the
Laplacian on (0, δ) with α-Robin condition at 0 and β-Robin condition at
δ, then for αδ → +∞ and βδ → 0+ one has E1(LN ) = −α2(1 +O(e−αδ)

)
and E2(LN ) > 1/δ2.

Proof. — The estimate for the first eigenvalue was already obtained by
direct computations e.g. in [52, Lemma 3]. To study the second eigenvalue,
let Bβ be the Laplacian on (0, δ) with the Dirichlet boundary condition
at 0 and β-Robin condition at δ, then the sesquilinear form of Bβ is a
restriction of the sesquilinear form of LN , and Q(LN ) = H1(0, δ) only
differs from Q(Bβ) =

{
f ∈ H1(0, δ) : f(0) = 0

}
by a one-dimensional

subspace. It follows by Corollary 2.2 that E2(LN ) > E1(Bβ). Now, let us
obtain a lower bound for Bβ . For β = 0 one obtains simply the Laplacian
on (0, δ) with the Dirichlet boundary condition at 0 and the Neumann
boundary condition at δ, and E1(B0) = π2/(4δ2). By Lemma 2.7 there is
c > 0 such that

f(δ)2 6 c

(
δ

∫ δ

0
(f ′)2 dt+ 1

δ

∫ δ

0
f2 dt

)
for all f ∈ H1(0, δ).

It follows that for f ∈ Q(Bβ) ≡ Q(B0) one has

Bβ [f, f ] =
∫ δ

0
(f ′)2 dt− βf(δ)2 > (1− cβδ)

∫ δ

0
(f ′)2 dt− cβ

δ

∫ δ

0
f2 dt,

and the min-max principle implies that for βδ → 0+ one has

E1(Bδ) > (1− cβδ)E1(B0)− cβδ

δ2 = (1− cβδ)π2 − 4cβδ
4δ2 >

1
δ2 . �

2.6. Robin Laplacians in infinite sectors

Now, let us recall some basic facts on Robin laplacians in infinite sectors.

Definition 2.10. — For θ ∈ (0, π) denote by Sθ the following infinite
sector of opening angle 2θ:

Sθ =
{

(x1, x2) ∈ R2 : −θ < arg(x1 + ix2) < θ
}
, 0 < θ < π,

see Figure 1.2 in the introduction. For θ = π/2 one obtains simply the
half-plane R+ × R.

The following proposition summarizes the basic properties of the associ-
ated Robin Laplacians proved in the paper [37] by Khalile and Pankrashkin:
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Proposition 2.11. — For θ ∈ (0, π) and α > 0, let Tθ,α be the Lapla-
cian on Sθ with α-Robin condition at the whole boundary, then:

• the operator Tθ,α is well-defined, lower semibounded and is unitarily
equivalent to α2Tθ,1 for all θ ∈ (0, π) and α > 0,

• specess(Tθ,α) = [−α2,+∞) for all θ ∈ (0, π) and α > 0,
• the discrete spectrum of Tθ,α is non-empty if and only if θ < π

2 , in
particular,

E1(Tθ,α) = −α2/ sin2 θ for θ ∈
(

0, π2

)
.

• if one denotes

κ(θ) := the number of discrete eigenvalues of Tθ,α,

which is independent of α, then
◦ κ(θ) < +∞ and θ 7→ κ(θ) is non-increasing with κ(0+) = +∞,
◦ for all π6 6 θ <

π
2 one has κ(θ) = 1,

• there exist b > 0 and B > 0 such that if n ∈
{

1, . . . , κ(θ)
}

and
ψn,α is an eigenfunction of Tθ,α for the nth eigenvalue, then for any
α > 0 one has the Agmon-type decay estimate

(2.3)
∫
Sθ
ebα|x|

(
1
α2

∣∣∇ψn,α(x)
∣∣2 + ψ2

n,α(x)
)

dx 6 B‖ψn,α‖2L2(Sθ).

Remark that the above properties of Tθ,α are also of relevance for Steklov-
type eigenvalue problems in domains with corners, see e.g. the papers by
Ivrii [34] and Levitin, Parnovski, Polterovich, Sher [44]. For a subsequent
use we give a special name to the eigenvalues of the above operator with
α = 1:

En(θ) := En(Tθ,1) for θ ∈
(

0, π2

)
and n ∈ {1, . . . , κ(θ)

}
.

Remark that due to Proposition 2.11 one has E1(θ) = −1/ sin2 θ and

En(θ) < −1, En(Tθ,α) = En(θ)α2 < −α2,

for θ ∈
(

0, π2

)
, n ∈ {1, . . . , κ(θ)

}
, α > 0.

3. Analysis in truncated convex sectors

3.1. Robin Laplacians in truncated convex sectors

Recall that the infinite sectors Sθ are defined above in Definition 2.10.
Let us introduce their truncated versions.
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Definition 3.1 (Truncated convex sector Srθ ). — Let θ ∈
(
0, π2

)
and

r > 0. Consider the points

A±r = r(cos θ,± sin θ) ∈ ∂Sθ, Br = r
(
1/ cos θ, 0

)
∈ Sθ,

and denote by Srθ the interior of the quadrangle OA+
r BrA

−
r (remark that

the sides BrA±r are orthogonal to ∂Sθ at A±r , see Figure 3.1). We will
distinguish between two parts of the boundary of Srθ , namely, we set

∂∗Srθ := ∂Srθ ∩ ∂Sθ := polygonal chain A+
r OA

−
r ,

∂extSrθ := ∂Srθ \ ∂∗Srθ := polygonal chain A+
r BrA

−
r .

In what follows we will need some properties of three operators associated
with Srθ , namely, for θ ∈

(
0, π2

)
, α > 0 and r > 0 we introduce:

(3.1)

Dr
θ,α := the Laplacian in Srθ with α-Robin condition at ∂∗Srθ and

Dirichlet condition at ∂extSrθ ,
Nr
θ,α := the Laplacian in Srθ with α-Robin condition at ∂∗Srθ and

Neumann condition at ∂extSrθ ,
Rrθ,α := the Laplacian in Srθ with α-Robin condition at the whole

boundary.
We remark that Nr

θ,α will play a key role in the subsequent considerations
(in particular, see Subsection 3.3), while the other two operators will be
used mostly for auxiliary constructions. The following properties of the
three operators are easily established by a standard routine computation:

Lemma 3.2. — For t, r > 0 denote by Ξt the unitary operators (dila-
tions) Ξt : L2(Strθ ) → L2(Srθ ), (Ξtu)(x) = t u(tx). Let Xr

θ,α be any of the
three operators Dr

θ,α, Nr
θ,α, Rrθ,α, then Xr

θ,tαΞt = t2ΞtXtr
θ,α, which then

gives the eigenvalue identities

(3.2) En(Xr
θ,α) = α2En(Xαr

θ,1) for all n ∈ N.

Figure 3.1. The truncated sector Srθ is shaded (see Definition 3.1). The
part of the boundary ∂∗Srθ is indicated by the thick solid line, and the
part of the boundary ∂extSrθ is shown as the thick dashed line.
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Let us show that in a suitable asymptotic regime the lowest eigenvalues
of the Robin–Dirichlet Laplacians Dr

θ,α are close to the Robin eigenvalues
of the associated infinite sectors:

Lemma 3.3. — For some c > 0 one has

En(Dr
θ,α) = En(Tθ,α) +O(α2e−cαr) ≡ α2(En(θ) +O(e−cαr)

)
for n ∈

{
1, . . . , κ(θ)

}
, and Eκ(θ)+1(Dr

θ,α) > −α2 as αr → +∞.

Proof. — The result is quite standard and is based on the fact that the
Robin eigenfunctions of the infinite sectors satisfy an Agmon-type estimate
at infinity, but we provide a proof for the sake of completeness. In view of
the above scaling (3.2) it is sufficient to study the case α = 1 and r → +∞.
Recall that

Dr
θ,1[u, u] =

∫
Sr
θ

|∇u|2 dx−
∫
∂∗Srθ

u2 ds,

Q(Dr
θ,1) =

{
H1(Srθ ) : u = 0 on ∂extSrθ

}
,

Tθ,1[u, u] =
∫
Sθ
|∇u|2 dx−

∫
∂Sθ

u2 ds, Q(Tθ,1) = H1(Sθ).

The min-max principle gives En(Dr
θ,1) > Λn(Tθ,1) for any r > 0 and

n ∈ N. For n ∈
{

1, . . . , κ(θ)
}

one has Λn(Tθ,1) = En(Tθ,1) ≡ En(θ),
while Λκ(θ)+1(Tθ,1) = inf specess Tθ,1 = −1. This proves the required lower
bounds.
To prove the upper bound, let us pick n ∈

{
1, . . . , κ(θ)

}
and let ψj ,

j = 1, . . . , n, be eigenfunctions of the operator Tθ,1 in the infinite sector
corresponding to the n first eigenvalues and chosen to form an orthonormal
family, i.e.

〈ψj , ψk〉L2(Sθ) = δj,k, Tθ,1[ψj , ψk] = Ej(θ) δj,k, j, k = 1, . . . , n.

Let χ0, χ1 : R→ [0, 1] be smooth functions such that χ0 = 1 in
(
−∞, 1

2 ],
χ0 = 0 in [1,∞) and χ2

0 + χ2
1 = 1. We define χrj : R2 → R by χrj(x) =

χj
(
|x|/r

)
, j = 0, 1, and ψrj : Sθ → R by ψrj := χr0ψj , j = 1, . . . , n, and keep

the same symbols for the restrictions of these functions to Srθ . Remark that
the functions ψrj belong to H1(Srθ ) and vanish at ∂extSrθ , i.e. they belong
to Q(Dr

θ,1) and can be used to estimate the Rayleigh quotients. Let us now
use the Agmon-type estimate (2.3) with suitable b > 0 and B > 0 for the
eigenfunctions ψj . Denote

Crj,k :=
∫
Sθ

(χr1)2ψjψk dx,
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then |Crj,k| 6 1
2 (Crj,j + Crk,k) and

Crj,j =
∫
Sθ

(χr1)2ψ2
j dx 6

∫
Sθ: |x|>r/2

ψ2
j dx

6 e−
br
2

∫
Sθ: |x|>r/2

eb|x|ψ2
j dx 6 Be− br2 .

Therefore, for large r one has Crj,k = O(e−cr) with c := 1
2 b and

〈ψrj , ψrk〉L2(Sr
θ

) = 〈ψj , ψk〉L2(Sθ) − Crj,k = δj,k +O(e−cr).

In particular, for large r the functions ψrj are linearly independent. Using
similar estimates we obtain∫

Sθ
∇(χr1ψj)2 dx = O(e−cr),∫

Sr
θ

∇ψrj · ∇ψrk dx =
∫
Sθ
∇ψj · ∇ψk dx+O(e−cr).

To estimate the quantities

Grj,k :=
∫
∂Sθ

(χr1)2ψj ψk ds

we remark again that |Grj,k| 6 1
2 (Grj,j + Grk,k), and using χr1ψj as a test

function in the inequality Tθ,1 > −(sin θ)−2 for the Robin Laplacian in the
sector we obtain

Grj,j =
∫
∂Sθ

(χr1)2ψ2
j ds 6

∫
Sθ
∇(χr1ψj)2 dx+ 1

sin2 θ

∫
Sθ
χr1ψ

2
j dx = O(e−cr),

which implies Grj,k = O(e−cr) and∫
∂∗Srθ

ψrjψ
r
k ds =

∫
∂Sθ

ψj ψk ds−Grj,k =
∫
∂Sθ

ψj ψk ds+O(e−cr).

Denote Lr := span(ψr1, . . . , ψrn), which is an n-dimensional subspace of
Q(Dr

θ,1) for large r. For any function ψ of the form

ψ = ξ1ψ
r
1 + · · ·+ ξnψ

r
n ∈ Lr, ξ = (ξ1, . . . , ξn) ∈ Rn

one has, due to the preceding estimates, ‖ψ‖2L2(Sr
θ

) = |ξ|2
(
1+O(e−cr)

)
and

Dr
θ,1[ψ,ψ] =

n∑
j,k=1

(
Tθ,1[ψj , ψk] +O(e−cr)

)
ξjξk

=
n∑

j,k=1

(
Ej(θ) δj,k +O(e−cr)

)
ξjξk 6

(
En(θ) +O(e−cr)

)
|ξ|2,
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and an application of the min-max principle gives

En(Dr
θ,1) 6 sup

ψ∈Lr, ψ 6=0

Dr
θ,1[ψ,ψ]
‖ψ‖2L2(Sr

θ
)
6 En(θ) +O(e−cr). �

In order to obtain an analogous result on the behavior of the first κ(θ)
eigenvalues of Nr

θ,α we need a preliminary estimate.

Definition 3.4. — For θ ∈
(
0, π2

)
and 0 < ρ < r denote

Pr,ρθ := Srθ \ S
ρ
θ ≡ the hexagon BρA+

ρ A
+
r BrA

−
r A
−
ρ ,

where one uses the same notation as in the definition of Srθ , see Figures 3.1
and 3.2(a). We again split the boundary of Pr,ρθ into two parts by setting

∂∗Pr,ρθ := ∂Pr,ρθ ∩ ∂Sθ := the union of the segments [A±ρ , A±r ],
∂extPr,ρθ := ∂Pr,ρθ \ ∂∗P

r,ρ
θ .

Lemma 3.5. — Let P r,ρθ,α denote the Laplacian in Pr,ρθ with α-Robin
condition at ∂∗Pr,ρθ and the Neumann boundary condition at ∂extPr,ρθ , then
E1(P r,ρθ,α) > −α2(1 +O(e−αρ tan θ)

)
as αρ→ +∞.

Proof. — Denote for shortness P := P r,ρθ,α. Let us decompose the polygon
Pr,ρθ as shown in Figure 3.2(b). Namely, let C± be orthogonal projection
of Bρ on the segment [A±r , Br] and let U be the domain obtained from
Pr,ρθ by taking out the segments [Bρ, C±], then U is the disjoint union of
two rectangles Π± := BρA

±
ρ A
±
r C
± and the quadrangle Π0 := BρC

+BrC
−.

Let Λ be the Laplacian in U with α-Robin condition on ∂∗Pr,ρθ ⊂ ∂U and
Neumann condition at the remaining boundary, then the min-max principle
implies then E1(P ) > E1(Λ). Hence, it is sufficient to show the sought lower
bound for E1(Λ).

(a) (b)

Figure 3.2. (a) Polygon Pr,ρθ , see Definition 3.4. (b) Decomposition of
Pr,ρθ for the proof of Lemma 3.5. The solid/dashed lines correspond to
Robin/Neumann boundary conditions.
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The operator Λ is the direct sum Λ0 ⊕ Λ+ ⊕ Λ− with Λj acting in
L2(Πj). Namely, Λ0 is just the Neumann Laplacian in Π0, and, therefore,
E1(Λ0) = 0. Furthermore, Λ± are Laplacians in the rectangles Π± with
α-Robin condition on the sides A±ρ A±r and Neumann condition at the re-
maining boundary. Therefore, they admit a separation of variables and are
both unitary equivalent to LN ⊗ 1 + 1 ⊗ T , where the operator LN is the
Laplacian on (0, ρ tan θ) with α-Robin condition at 0 and Neumann con-
dition at ρ tan θ and T is the Neumann Laplacian on (0, r − ρ). Therefore,
E1(Λ±) = E1(LN ) + E1(T ) = E1(LN ). The operator LN is covered by
Proposition 2.9 (with β = 0), and E1(LN ) = −α2(1 + O(e−αρ tan θ)

)
< 0

for αρ→ +∞. Therefore, for αρ→ +∞ one has

E1(P ) > E1(Λ) = E1(Λ0 ⊕ Λ+ ⊕ Λ−) = E1(Λ+)

= E1(LN ) = −α2(1 +O(e−αρ tan θ)
)
. �

Lemma 3.6. — For αr → +∞ there holds

En(Nr
θ,α) =

[
En(θ) +O

(
1

(αr)2

)]
α2, n ∈

{
1, . . . , κ(θ)

}
,

Eκ(θ)+1(Nr
θ,α) > −α2 + o(α2).

Proof. — The min-max principle shows that the eigenvalues of Nr
θ,α are

bounded from above by the respective eigenvalues ofDr
θ,α. Hence, the upper

bound for En(Nr
θ,α) follows from the upper bound for the eigenvalues of

Dr
θ,α obtained in Lemma 3.3 above.
Let us pass to the proof of the lower bound. Let χ0, χ1 : R → [0, 1] be

smooth functions such that χ0 = 1 in
(
− ∞, 1

2 ], χ0 = 0 in [1,∞) and
χ2

0 + χ2
1 = 1. We define χrj : R2 → R by χrj(x) = χj

(
|x|/r

)
, j = 0, 1. Recall

that

Nr
θ,α[u, u] =

∫
Sr
θ

|∇u|2 dx− α
∫
∂∗Srθ

u2 ds, Q(Nr
θ,α) = H1(Srθ ),

and by direct computation for any u ∈ Q(Nr
θ,α) one has

(3.3) Nr
θ,α[u, u]

= Nr
θ,α[χr0u, χr0u] +Nr

θ,α[χr1u, χr1u] −
∫
Sr
θ

(
|∇χr0|2 + |∇χr1|2

)
u2 dx

> Nr
θ,α[χr0u, χr0u] +Nr

θ,α[χr1u, χr1u]− a

r2 ‖u‖
2
L2(Sr

θ
),

a := ‖χ′0‖2∞ + ‖χ′1‖2∞.

One has χr0u ∈ H1(Srθ ) and χr0u = 0 at ∂extSrθ . At the same time, the
function χr1u vanishes inside the disk |x| 6 1

2 r and, hence, is supported in
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the quadrangle Pr,ρθ with ρ := 1
2 r cos θ and belongs to H1(Pr,ρθ ). There-

fore, one has χr0u ∈ Q(Dr
θ,α) and χr1u ∈ Q(P r,ρθ,α), and the inequality (3.3)

rewrites as Nr
θ,α[u, u] > Dr

θ,α[χr0u, χr0u] +P r,ρθ,α[χr1u, χr1u]− (a/r2)‖u‖2L2(Sr
θ

),
and we recall that ‖u‖2L2(Sr

θ
) = ‖χr0u‖2L2(Sr

θ
) + ‖χr0u‖2L2(Pr,ρ

θ
). By the min-

max principle,

(3.4) En(Nr
θ,α) > En(Dr

θ,α ⊕ P
r,ρ
θ,α)− a/r2, r > 0, n ∈ N.

Now let us pick n ∈
{

1, . . . , κ(θ)
}

and consider the regime αr → +∞.
Then one also has αρ→ +∞, and the estimate of Lemma 3.5 for the first
eigenvalue of P r,ρθ,α gives E1(P r,ρθ,α) > −α2+o(α2). On the other hand, the es-
timate of Lemma 3.3 for the first eigenvalues ofDr

θ,α shows that En(DR
θ,α) =

α2(En(θ) + O(e−cαr)
)
with some c > 0, which is below −α2 + o(α2) due

to the inequality En(θ) < −1. Hence, En(Dr
θ,α ⊕ P r,ρθ,α) = En(Dr

θ,α) =
α2(En(θ) + O(e−cαr)

)
. Substituting this last estimate into the inequal-

ity (3.4) one arrives to

En(Nr
θ,α) >

[
En(θ) +O(e−cαr)− a

(αr)2

]
α2 =

[
En(θ) +O

(
1

(αr)2

)]
α2.

Using (3.4) for n = κ(θ) + 1 we have

Eκ(θ)+1(Nr
θ,α) > min

{
Eκ(θ)+1(Dr

θ,α), E1(P r,ρθ,α)
}
− a/r2.

By assumption one has 1/r = o(α). In addition, E1(P r,ρθ,α) > −α2 + o(α2),
while Eκ(θ)+1(Dr

θ,α) > −α2 by Lemma 3.3, which concludes the proof. �
Let us give a rough estimate for the first eigenvalue of Rrθ,α (it will be

improved later).

Lemma 3.7. — For some c > 0 there holds Rrθ,α > −cα2 as αr → +∞.

Proof. — Due to the scaling Srθ = rS1
θ the estimate follows from Lem-

ma 2.7. �

3.2. Eigenfunctions of the Robin–Neumann Laplacians

We will need an Agmon-type decay estimate for the first κ(θ) eigenfunc-
tions of Nr

θ,α, which is established in the following lemma:

Lemma 3.8. — There exist c > 0 and C > 0 such that if n∈{1, . . . , κ(θ)}
and ψr,nθ,α is an eigenfunction of Nr

θ,α for the nth eigenvalue, then for αr →
+∞ there holds∫

Sr
θ

ecα|x|
(

1
α2 |∇ψ

r,n
θ,α|

2 + |ψr,nθ,α|
2
)

dx 6 C
∥∥ψr,nθ,α∥∥2

L2(Sr
θ

).
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Proof. — Denote for shortness

N := Nr
θ,α, ψ := ψr,nθ,α and E := Eκ(θ)(θ) < −1.

For b > 0 to be chosen later let us consider the function φ : Srθ 3 x 7→
b|x| ∈ R, then |∇φ| = b, and a standard computation gives

N
[
eαφψ, eαφψ] =

∫
Sr
θ

e2αφ(En(N) + b2α2)ψ2 dx.

For αr → +∞ one has En(N) =
(
En(θ)+o(1)

)
α2 by Lemma 3.6. Therefore,

for an arbitrary ε > 0 there holds En(N) 6 (E + ε)α2, and

(3.5) N
[
eαφψ, eαφψ] 6 (E + b2 + ε)α2

∫
Sr
θ

e2αφψ2 dx.

On the other hand, let us pick η ∈ (0, 1) whose exact value will be chosen
later, and set ρ := L/α with a value L > 0 to be chosen later as well, then

N
[
eαφψ, eαφψ] ≡

∫
Sr
θ

∣∣∇(eαφψ)
∣∣2 dx− α

∫
∂∗Srθ

e2αφψ2 ds

= η

∫
Sr
θ

∣∣∇(eαφψ)
∣∣2 dx

+ (1− η)
[ ∫

Sρ
θ

∣∣∇(eαφψ)
∣∣2 dx− α

1− η

∫
∂∗Sρθ

e2αφψ2 ds

+
∫
Sr
θ
\Sρ
θ

∣∣∇(eαφψ)
∣∣2 dx− α

1−η

∫
∂∗Srθ\∂∗S

ρ
θ

e2αφψ2 ds
]

= η

∫
Sr
θ

∣∣∇(eαφψ)
∣∣2 dx

+ (1− η)
(
Nρ
θ, α

1−η

[
eαφψ, eαφψ] + P r,ρθ, α

1−η

[
eαφψ, eαφψ]

)
> η

∫
Sr
θ

∣∣∇(eαφψ)
∣∣2 dx+ (1− η)E1

(
Nρ
θ, α

1−η

) ∫
Sρ
θ

e2αφψ2 dx

+ (1− η)E1
(
P r,ρθ, α

1−η

) ∫
Pr,ρ
θ

e2αφψ2 dx.

By applying Lemma 3.6 for Nρ
θ, α

1−η
and Lemma 3.5 to P r,ρθ, α

1−η
we see that

the constant L in the definition of ρ can be chosen sufficiently large to have,
for large α,

E1
(
Nρ
θ, α

1−η

)
>
(
E1(θ)− ε

) α2

(1− η)2 , E1
(
P r,ρθ, α

1−η

)
> − (1 + ε)α2

(1− η)2 ,
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and the substitution into the preceding inequality gives

N
[
eαφψ, eαφψ] > η

∫
Sr
θ

∣∣∇(eαφψ)
∣∣2 dx+ E1(θ)− ε

1− η α2
∫
Sρ
θ

e2αφψ2 dx

− 1 + ε

1− η α
2
∫
Pr,ρ
θ

e2αφψ2 dx.

Recall that Pr,ρθ = Srθ \ S
ρ
θ and substitute the last inequality into (3.5),

then

η

∫
Sr
θ

∣∣∇(eαφψ)
∣∣2dx+ E1(θ)−ε

1−η α2
∫
Sρ
θ

e2αφψ2 dx− 1+ε

1−η α
2
∫
Pr,ρ
θ

e2αφψ2 dx

6 (E + b2 + ε)α2
∫
Pr,ρ
θ

e2αφψ2 dx+ (E + b2 + ε)α2
∫
Sρ
θ

e2αφψ2 dx,

which we rewrite as

η

∫
Sr
θ

∣∣∇(eαφψ)
∣∣2 dx+ a0α

2
∫
Sr
θ
\Sρ
θ

e2αφψ2 dx 6 b0α2
∫
Sρ
θ

e2αφψ2 dx,(3.6)

a0 := −E − b2 − ε− 1 + ε

1− η =
−E − 1 +

(
ηb2 − b2 + ηE − 2ε+ εη

)
1− η ,

b0 := E + b2 + ε− E1(θ)− ε
1− η = E − E1(θ)− ηE + 2ε− εη

1− η + b2.

Due to E1(θ) 6 E < −1, for any b > 0 one can choose ε > 0 and η > 0
sufficiently small to have a0 > 0 and b0 > 0. For x ∈ Sρθ one has |x| <
ρ/ cos θ, hence, αφ(x) 6 αbL/(α cos θ) = bL/ cos θ, and (3.6) takes the
form

η

∫
Sr
θ

∣∣∇(eαφψ)
∣∣2 dx+ a0α

2
∫
Sr
θ
\Sρ
θ

e2αφψ2 dx 6 Aα2
∫
Sρ
θ

ψ2 dx,

A := b0e
2bL/ cos θ,

and then

(3.7)
∫
Sr
θ

∣∣∇(eαφψ)
∣∣2 dx+ 2b2α2

∫
Sr
θ

∣∣e2αφψ|2 dx

= 1
η
η

∫
Sr
θ

∣∣∇(eαφψ)
∣∣2 dx+ 2b2

a0
a0α

2
∫
Sr
θ
\Sρ
θ

e2αφψ2 dx+ 2b2α2
∫
Sρ
θ

ψ2 dx

6

(
1
η
A+ 2b2

a0
A+ 2b2

)
α2
∫
Sρ
θ

ψ2 dx =: A0α
2
∫
Sρ
θ

ψ2 dx 6 A0α
2‖ψ‖2L2(Sr

θ
).
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Using 2xy 6 x2 + y2 and xy 6 1
4 x

2 + y2 for x, y ∈ R, we estimate∣∣∇(eαφψ)
∣∣2 > |eαφ∇ψ|2 + b2α2|eαφψ|2 − 2

∣∣eαφ∇ψ∣∣ ∣∣bαeαφψ∣∣
>

1
2 |e

αφ∇ψ|2 − b2α2|eαφψ|2.

The substitution into (3.7) gives∫
Sr
θ

e2bα|x|
(

1
2
∣∣∇ψ|2 + b2α2ψ2

)
dx 6 A0α

2‖ψ‖2L2(§r
θ
),

and one arrives to the claim by taking c := 2b and C := A0(2 + 1/b2). �

3.3. Non-resonant sectors

Recall that the Robin–Neumann Laplacians Nr
θ,α in the truncated con-

vex sectors Srθ are defined in (3.1), and that due to the asymptotics of
Lemma 3.6 their first κ(θ) eigenvalues are, in a sense, close to the first κ(θ)
eigenvalues of the Robin Laplacian Tθ,α in the associated infinite sectors Sθ
in the regime αr → +∞. For the subsequent study we will use the notion
of a non-resonant angle, which involves a hypothesis on the behavior of the
next eigenvalue of Nr

θ,α in the same asymptotic regime. Namely, we will
use the following definition:

Definition 3.9. — A half-angle θ ∈
(
0, π2

)
is called non-resonant if

there is C > 0 such that

Eκ(θ)+1(Nr
θ,α) > −α2 + C/r2 as α > 0 is fixed and r is large.

By the scaling (3.2), the property only depends on θ and can be equivalently
reformulated as

Eκ(θ)+1(Nr
θ,α) > −α2 + C/r2 as αr is large.

We show in Proposition 3.10 that the non-resonance property is satisfied
by an explicit wide range of half-angles, which is a key point for the whole
analysis (we remark that there exist half-angles which do not satisfy the
non-resonance property as it will be seen in Subsection 6.1).

Proposition 3.10. — All half-angles θ with π
4 6 θ < π

2 are non-
resonant.

Proof. — We prove the result first for θ = π/4 (Step 1) by rather direct
computations, and then use a kind of monotonicity to extend it to other
half-angles in the range indicated (Step 2). Without loss of generality we
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(a) (b)

Figure 3.3. Constructions for the proof of Proposition 3.10. (a) The
completion of the triangle Sr,+θ (shaded) to a rectangle Πr (surrounded
by the dashed line). (b) The triangle Zr,θ is a rotated copy of Sr,+θ . The
solid/dashed lines correspond to Robin/Neumann boundary condi-
tions.

set α = 1 and remove the dependence on α from the notation and write
Nr
θ instead of Nr

θ,1.
Step 1: θ = π/4. — By Proposition 2.11 we have κ(π/4) = 1, so we need

to prove that there exists a constant C > 0 satisfying

(3.8) E2(Nr
π
4

) > −1 + C/r2 as r is large.

Remark that Srπ
4
is simply a square of side length r, andNr

π
4
is the Laplacian

with 1-Robin boundary condition on two neighboring sides and Neumann
condition on the other two sides. Hence, on can separate the variables:
using the one-dimensional Laplacians LN on (0, r) with 1-Robin condition
at 0 and Neumann condition at r one has Nr

π
4

= LN ⊗1+1⊗LN , and then
E2(Nr

π
4

) = E1(LN ) + E2(LN ). Using Proposition 2.9 one has E2(Nr
π
4

) >
−1 + 1/r2 + O(e−r) as r → +∞, which gives the sought inequality (3.8).
Hence, the claim is proved for θ = π/4.

Step 2: extension to θ ∈ [π4 ,
π
2 ). — We still have κ(θ) = 1 by Proposi-

tion 2.11, hence, we need to show that there exists C > 0 such that

(3.9) E2(Nr
θ ) > −1 + C/r2 as r is large.

Using the symmetry with respect to the axis Ox1 one easily sees that Nr
θ is

unitarily equivalent to T r,Dθ ⊕T r,Nθ , where T r,D/Nθ stand for the Laplacians
in

Sr,+θ := Srθ ∩
{

(x1, x2) : x2 > 0
}

= triangle OA+
r Br
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with 1-Robin condition at OA+
r , Neumann condition at A+

r Br and the
Dirichlet/Neumann boundary condition at OBr (we refer to Figures 3.1
and 3.3(a) for an illustration). Let us study first the Dirichlet part T r,Dθ .
Let Πr be the rectangle constructed on the vectors OA+

r and A+
r Br, see

Figure 3.3(a), then Sr,+θ ⊂ Πr. Using the standard Dirichlet bracketing
we obtain En(T r,Dθ ) > En(Qr) for any n ∈ N, where Qr is the Lapla-
cian in Πr with 1-Robin condition at OA+

r , Neumann condition at A+
r Br

and the Dirichlet boundary condition at the remaining part of the bound-
ary. Remark that |A+

r Br| = r tan θ, and the operator Qr admits then a
separation of variables and is unitarily equivalent to LD ⊗ 1 + 1 ⊗ Dr,
where Dr is the Laplacian on (0, r) with the Dirichlet boundary con-
dition at 0 and the Neumann boundary condition at r, and LD is the
one-dimensional Laplacian on the interval (0, r tan θ) with 1-Robin condi-
tion at 0 and Dirichlet condition on the other end. Therefore, E1(T r,Dθ ) =
E1(LD) + E1(Dr) = E1(LD) + π2/(4r2). Due to Proposition 2.8 we have
E1(LD) = −1 + O(e−r tan θ), therefore, E1(T r,Dθ ) > −1 + CD/r

2 for large
r with any fixed CD ∈ (0, π2/4). Therefore, the sought estimate (3.9) be-
comes equivalent to the existence of CN > 0 for which there holds

(3.10) E2(T r,Nθ ) > −1 + CN/r
2 as r → +∞,

which we already know to hold for θ = π
4 . In order to study T r,Nθ we apply

a rotation bringing the triangle Sr,+θ onto the triangle Zr,θ :=
{

(x1, x2) :
0 < x1 cotan θ < x2 < r

}
, so that T r,Nθ becomes unitary equivalent to the

Laplacian Qr,θ in L2(Zr,θ) with 1-Robin condition along the axis Ox2 and
Neumann condition at the remaining boundary, and En(T r,Nθ ) = En(Qr,θ)
for any n ∈ N, and one easily sees that

Qr,θ[u, u] =
∫
Zr,θ

|∇u|2 dx−
∫ r

0
u(0, x2)2 dx2, Q(Qr,θ) = H1(Zr,θ),

see Figure 3.3(b) for an illustration. Using the unitary transform

V : L2(Zr tan θ,π4 )→ L2(Zr,θ), (V u)(x1, x2) =
√

tan θ u(x1, x2 tan θ),

which satisfies V
(
H1(Zr tan θ,π4 )

)
=H1(Zr,θ), we obtain, with uj := ∂u/∂xj ,

QR,θ[V u, V u] = tan θ
∫
ZR,θ

(
u1(x1, x2 tan θ)2 + tan2 θ u2(x1, x2 tan θ)2

)
dx

− tan θ
∫ r

0
u(0, x2 tan θ)2 dx2
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=
∫
Zr tan θ, π4

(
u1(x1, x2)2 + tan2 θ u2(x1, x2)2

)
dx

− α
∫ r tan θ

0
u(0, x2)2 dx2

= Qr tan θ,π4 [u, u] + (tan2 θ − 1)
∫
Zr tan θ, π4

u2
2 dx.

For θ ∈
[
π
4 ,

π
2
)
we have tan θ > 1, hence, Qr,θ[V u, V u] > Qr tan θ,π4 [u, u] for

all u ∈ H1(Zr,θ), and by the min-max principle we have

En(T r,Nθ ) = En(Qr,θ) > En(Qr tan θ,π4 ) = En(T r tan θ,N
π
4

).

It was already shown in Step 1 that for some C > 0 we have E2(T r tan θ,N
π
4

) >
−1+C/(r tan θ)2 for large r, so the substitution into the preceding inequal-
ity gives the sought estimate (3.10) with CN = C cotan2 θ. �

Now we state some consequences of the non-resonance condition, which
will provide important components for the subsequent asymptotic analysis:

Lemma 3.11. — Assume that θ is non-resonant and denote by L the
subspace spanned by the eigenfunctions corresponding to the first κ(θ)
eigenvalues of Nr

θ,α. Then there exists b > 0 such that for αr → +∞ there
holds

‖v‖2L2(Sr
θ

) 6 b r
2(Nr

θ,α[v, v] + α2‖v‖2L2(Sr
θ

)
)
, v ∈ H1(Srθ )∩L⊥,(3.11) ∫

∂extSrθ
v2 ds 6 bαr2(Nr

θ,α[v, v] + α2‖v‖2L2(Sr
θ

)
)
, v ∈ H1(Srθ )∩L⊥.(3.12)

Proof. — The norm estimate (3.11) directly follows from the definition
of a non-resonant half-angle (Definition 3.9) with the help of the spectral
theorem. For (3.12), recall that by Lemma 2.7 one can find c0 > 0 such
that E1(Rrθ,α) > −c0α2 for large αr. Due to

Q(Nr
θ,α) = Q(Rrθ,α) = H1(Srθ ), Rrθ,α[v, v] = Nr

θ,α[v, v]− α
∫
∂extSrθ

v2 ds,

the preceding inequality for E1(Rrθ,α) takes the form∫
∂extSrθ

v2 ds 6 1
α
Nr
θ,α[v, v] + c0α‖v‖2L2(Sr

θ
) for all v ∈ H1(Srθ ).
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Figure 4.1. An example of a polygon Ω with six vertices. The vertex
A3 is concave, the other vertices are convex, and Jcvx = {1, 2, 4, 5, 6}.

Assume in addition that v ⊥ L, then one bounds from above the second
term on the right-hand side using (3.11), which gives∫

∂extSrθ
v2 ds 6 1

α
Nr
θ,α[v, v] + c0b αr

2(Nr
θ,α[v, v] + α2‖v‖2L2(Sr

θ
)
)

=
(

1
α

+ c0b αr
2
)
Nr
θ,α[v, v] + c0b αr

2α2‖v‖2L2(Sr
θ

)

6

(
1
α

+ c0b αr
2
)(

Nr
θ,α[v, v] + α2‖v‖2L2(Sr

θ
)

)
.

It remains to estimate, for αr → +∞,
1
α

+ c0b αr
2 = 1 + c0b (αr)2

α
6

2c0b (αr)2

α
= 2c0bαr2. �

4. Robin eigenvalues in polygons: Proof of Theorem 1.1

4.1. Decomposition of a polygon

In this section we assume that Ω is a polygon with straight edges. We
assume that Ω hasM vertices A1, . . . , AM , and for the notation convenience
we identify A0 ≡ AM and AM+1 ≡ A1, and the same cyclic numbering
convention will be applied to other related objects. We denote by `j the
length of the side Γj := [Aj , Aj+1], j = 1, . . . ,M , and introduce the maps

γj : [0, `j ] 3 t 7→ Aj + Aj+1 −Aj
`j

t ∈ R2

providing an arc-length parametrization of Γj with γj(0) = Aj and γj(`j) =
Aj+1. In addition, for t ∈ (0, `j) by νj(t) we denote the outer unit normal
to ∂Ω at the point γj(t) of Γj .
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By θj ∈ [0, π] we denote the half-angle of Ω at the vertex Aj , i.e. θj is
the half of the angle between Γj−1 and Γj when measured inside Ω. Our
assumption is that there are neither zero angles nor artificial vertices, i.e.
that θj /∈

{
0, π2 , π

}
for all j = 1, . . . ,M . One says that a vertex Aj is convex

if θj < π
2 , otherwise it will be called concave. We denote

Jcvx := {j : Aj is convex}.

We refer to Figure 4.1 for an illustration.
For small δ > 0 denote

Ωδ =
{
x ∈ Ω : dist(x, ∂Ω) < δ

}
, Ωcδ := Ω \ Ωδ,

and Ωδ will be further decomposed near each vertex. The construction is
different for convex and concave vertices.

• Let Aj be a convex vertex, then there exists a unique point Yj,δ ∈ Ω
such that dist(Yj,δ,Γj−1) = dist(Yj,δ,Γj) = δ. Denote λj := cot θj ,
then the points

A−j,δ := γj−1(`j − λjδ), A+
j,δ := γj(λjδ)

are exactly the orthogonal projections of Yj,δ on Γj−1 and Γj , re-
spectively. We denote the interior of the quadrangle AjA−j,δYj,δA

+
j,δ

by Vj,δ, and, in turn, we decompose the boundary of Vj,δ into the
following parts:

∂∗Vj,δ := ∂Vj,δ ∩ ∂Ω, ∂extVj,δ := ∂Vj,δ \ ∂∗Vj,δ, ∂outVj,δ := ∅.

• Let Aj be a concave vertex. Let L−j be the half-line emanating from
Aj which is orthogonal to Γj−1 and directed inside Ω. By L+

j we
denote the half-line emanating from Aj , orthogonal to Γj at Aj and

(a) (b)

Figure 4.2. The construction of the neighborhoods Vj,δ: (a) convex
vertex, (b) concave vertex. The partial boundary ∂∗Vj,δ is shown with
the thick solid line, the part ∂extVj,δ is indicated with the thick dashed
line, and the part ∂outVj,δ with the gray dotted line.
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Figure 4.3. Decomposition of a polygon.

directed inside Ω. Denote by Sj the infinite sector bounded by L−j
and L+

j which lies inside Ω near Aj . Then we set

Vj,δ := Sj ∩B(Aj , δ), λj := 0,

where B(a, r) is the disk of radius r centered at a. We decompose
the boundary of Vj,δ as follows:

∂∗Vj,δ := ∅, ∂outVj,δ := ∂Vj,δ ∩ ∂Ωcδ, ∂extVj,δ := ∂Vj,δ \ ∂outVj,δ.

Remark that the numbers λj represent a kind of “length deficiency”: the
length of ∂∗Vj,δ is equal to 2λjδ for both convex and concave vertices.
The set Wδ := Ωδ \

⋃M
j=1 Vj,δ is then the union of M disjoint thin rect-

angles. Namely, denote

(4.1)
Ij,δ := (λjδ, `j − λj+1δ), Πj,δ := Ij,δ × (0, δ),
Wj,δ := Φj(Πj,δ), Φj(s, t) := γj(s)− tνj(s),

then Wδ =
⋃M
j=1Wj,δ, and Wj,δ ∩Wk,δ = ∅ for j 6= k. We decompose the

boundary of each rectangle Wj,δ as follows:

∂∗Wj,δ := ∂Wj,δ ∩ ∂Ω, ∂outWj,δ := ∂Wj,δ ∩ ∂Ωcδ,

∂extWj,δ := ∂Wj,δ \
(
∂∗Wj,δ ∪ ∂outWj,δ

)
.

By construction we have the equality

(4.2)
M⋃
j=1

∂extVj,δ =
M⋃
j=1

∂extWj,δ,

which will be of importance later. We refer to Figure 4.3 for an illustration
of the above decomposition.
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4.2. First estimates for side-induced eigenvalues

With each j ∈ {1, . . . ,M} we associate the corresponding number κ(θj)
of discrete eigenvalues of the Robin Laplacians in the infinite sector of
aperture 2θj (see Section 2.6) and set

K := κ(θ1) + · · ·+ κ(θM ) ≡
∑

j∈Jcvx

κ(θj),

E := the disjoint union of
{
En(θj), n = 1, . . . , κ(θj)

}
for j ∈ Jcvx,

En := the nth element of E when numbered in the non-decreasing order,

(see Subsection 2.6 for a detailed notation). For what follows we introduce
several operators:

NV
j := the Laplacian in Vj,δ with the α-Robin boundary

condition at ∂∗Vj,δ and the Neumann boundary condition
at the rest of the boundary,

DV
j := the Laplacian in Vj,δ with the α-Robin boundary

condition at ∂∗Vj,δ and the Dirichlet boundary condition
at the rest of the boundary.

We remark that for concave vertices Aj , the respective operators (N/D)Vj
are just the Neumann/Dirichlet Laplacians in Vj,δ due to ∂∗Vj,δ = ∅. Fur-
thermore, denote

NW
j := the Laplacian in Wj,δ with the α-Robin boundary

condition at ∂∗Wj,δ and the Neumann boundary condition
at the rest of the boundary,

DW
j := the Laplacian in Wj,δ with the α-Robin boundary

condition at ∂∗Wj,δ and the Dirichlet boundary condition
at the rest of the boundary.

Finally, introduce

N c := the Neumann Laplacian in Ωcδ.

One easily sees that DV
j and NV

j with j ∈ Jcvx are covered by the analysis
of Section 3, and the behavior of the first κ(θj) eigenvalues for αδ → +∞ is
given in Lemmas 3.3 and 3.6, respectively. On the other hand, for j /∈ Jcvx
one has DV

j > 0, NV
j > 0, and N c > 0. For the rest of the section we

assume that

(4.3) all convex vertices are non-resonant,

then, in addition, we have a lower bound for the
(
κ(θj) + 1)-th eigenvalue

of each NV
j with j ∈ Jcvx due to Definition 3.9.
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In the subsequent constructions we choose δ > 0 depending on α in such
a way that

(4.4) δ → 0+, αδ → +∞ for α→ +∞,

and summarize the preceding observations as follows:

Lemma 4.1. — With some c > 0 and c0 > 0 there holds, for α→ +∞,

En

(
M⊕
j=1

NV
j

)
= En α2 +O(1/δ2), for n = 1, . . . ,K,

En

(
M⊕
j=1

DV
j

)
= En α2 +O(α2e−cαδ), for n = 1, . . . ,K,

EK+1

(
M⊕
j=1

DV
j

)
> EK+1

(
M⊕
j=1

NV
j

)
> −α2 + c0/δ

2.

In what follows we are going to use several one-dimensional operators.
We denote

Dj := the Dirichlet Laplacian on (0, `j),
Dj,δ := the Dirichlet Laplacian on Ij,δ,
Nj := the Neumann Laplacian on (0, `j),
Nj,δ := the Neumann Laplacian on Ij,δ,

and remark that for each fixed n ∈ N one has En(Dj,δ) = En(Dj) +O(δ)
and En(Nj,δ) = En(Nj) + O(δ). We start with a simple estimate for the
eigenvalues of RΩ

α :

Proposition 4.2. — There holds, with some c > 0,

(4.5) En(RΩ
α) = En α2 +O(1/δ2 + α2e−cαδ), n ∈ {1, . . . ,K}.

In addition, for any n ∈ N there holds

(4.6) − α2 + En

(
M⊕
j=1

Nj

)
+O(δ + α2e−αδ) 6 EK+n(RΩ

α)

6 −α2 + En

(
M⊕
j=1

Dj

)
+O(δ + α2e−αδ).
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Proof. — Due to the standard Dirichlet–Neumann bracketing, for any
n ∈ N one has

(4.7) En

(
N c ⊕

(
M⊕
j=1

NV
j

)
⊕

(
M⊕
j=1

NW
j

))
6 En(RΩ

α)

6 En

(
M⊕
j=1

DV
j ⊕

(
M⊕
j=1

DW
j

))
.

The operators NW
j and DW

j admits a separation of variables: if one de-
notes LN/D the Laplacian on (0, δ) with α-Robin condition at 0 and Neu-
mann/Dirichlet condition at δ, then one has the unitary equivalencesNW

j '
Nj,δ ⊗ 1 + 1 ⊗ LN and DW

j ' Dj,δ ⊗ 1 + 1 ⊗ LD. For each fixed n ∈ N
one has En(Nj,δ) = O(1) and En(Dj,δ) = O(1). On the other hand, by
Propositions 2.8 and 2.9 we have E1(LN/D) = −α2 + O(α2e−αδ) and
E2(LN/D) > 0. Therefore, En(NW

j ) = E1(LN ) +En(Nj,δ) and En(DW
j ) =

E1(LD) + En(Dj,δ), and then

En

(
M⊕
j=1

NW
j

)
= E1(LN ) + En

(
M⊕
j=1

Nj,δ

)

= −α2 + En

(
M⊕
j=1

Nj

)
+O(δ + α2e−αδ),

En

(
M⊕
j=1

DW
j

)
= E1(LD) + En

(
M⊕
j=1

Dj,δ

)

= −α2 + En

(
M⊕
j=1

Dj

)
+O(δ + α2e−αδ).

In view of the estimates of Lemma 4.1 one has then

EK

(
N c ⊕

(
M⊕
j=1

NV
j

))
6 En

(
M⊕
j=1

NW
j

)
6 EK+1

(
N c ⊕

(
M⊕
j=1

NV
j

))
,

EK

((
M⊕
j=1

DV
j

))
6 En

(
M⊕
j=1

DW
j

)
6 EK+1

((
M⊕
j=1

DV
j

))
.
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Therefore, for each n ∈ {1, . . . ,K} one has

En

(
N c ⊕

(
M⊕
j=1

NV
j

)
⊕

(
M⊕
j=1

NW
j

))
= En

(
M⊕
j=1

NV
j

)
= En α2 +O(1/δ2),

En

((
M⊕
j=1

DV
j

)
⊕

(
M⊕
j=1

DW
j

))
= En

(
M⊕
j=1

DV
j

)
= En α2 +O(α2e−cαδ),

and (4.7) reads as En α2 + O(1/δ2) 6 En(RΩ
α) 6 En α2 + O(e−cαδ) and

gives (4.5). In order to obtain (4.6) we remark that for each n ∈ N one has

EK+n

(
N c ⊕

(
M⊕
j=1

NV
j

)
⊕

(
M⊕
j=1

NW
j

))
= En

(
M⊕
j=1

NW
j

)

= −α2 + En

(
M⊕
j=1

Nj

)
+O(δ + α2e−αδ),

EK+n

(
M⊕
j=1

DV
j ⊕

(
M⊕
j=1

DW
j

))
= En

(
M⊕
j=1

DW
j

)

= −α2 + En

(
M⊕
j=1

Dj

)
+O(δ + α2e−αδ),

and it remains to use these bounds on the both sides of (4.7). �

By taking δ := b logα/α with a sufficiently large b one then obtains:

Corollary 4.3. — There holds

(4.8) En(RΩ
α) = En α2 + o(α2) for n ∈ {1, . . . ,K}.

In addition, for any n ∈ N there holds

(4.9)

EK+n(RΩ
α) = −α2 +O(1),

EK+n(RΩ
α) 6 −α2 + En

(
M⊕
j=1

Dj

)
+O

(
logα
α

)
.

Remark that (4.8) is only given for completeness (and as a preparation
for the analysis of the curvilinear case): the remainder is not optimal and
can be improved to O(e−cα) with a suitable c > 0 by using more advanced
methods as shown by Khalile [36].
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4.3. Lower bound for side-induced eigenvalues

It remains to obtain a more precise lower bound for EK+n(RΩ
α). This is

the most involved part of the whole analysis, and it will be done in the
present subsection with the help of the Proposition 2.3 by constructing a
suitable identification map. All estimates of this subsection are for α and
δ in the asymptotic regime (4.4). Introduce some additional objects:

L := the subspace of L2(Ω) spanned by the firstK eigenfunctions
of RΩ

α ,
Lj := the subspace of L2(Vj,δ) spanned by the first κ(θj) eigen-

functions of NV
j , with j ∈ Jcvx,

σj : L2(Ω)→ L2(Vj,δ) the operator of restriction,
(σju)(x) = u(x) for x ∈ Vj,δ,

then the adjoint operators σ∗j : L2(Vj,δ) → L2(Ω) are the operators of
extension by zero. Recall that the distance d(E,F ) between subspaces E
and F was discussed in Subsection 2.3.

Lemma 4.4. — For j ∈ Jcvx one has d(σ∗jLj , L) = O(e−cαδ) with some
fixed c > 0.

Proof. — During the proof we denote Λj := σ∗jLj ⊂ L2(Ω), and for
v ∈ L2(Vj,δ) we denote v∗ := σ∗j v ∈ L2(Ω).
Let 0 < a < b < 1. Consider a C∞ function ϕ : R→ [0, 1] with ϕ(t) = 1

for t 6 a and ϕ(t) = 0 for t > b. Introduce ϕδ : Ω → R by ϕδ(x) =
ϕ
(
|x − Aj |/(δ cot θj)

)
, which clearly satisfies (as α is large, hence, δ is

small):
• 0 6 ϕδ 6 1, and for all β ∈ N2 with 1 6 |β| 6 2 there holds
‖∂βϕδ‖∞ 6 Cδ−|β|,

• ϕδ = 1 in Vj,aδ, and ϕδ = 0 in Ω \ Vj,bδ,
• the normal derivative of ϕδ at ∂Ω is zero,

where C > 0 is some fixed constant. Denote

ϕδΛj :=
{
ϕδv∗ : v∗ ∈ Λj

}
⊂ L2(Ω),

then

(4.10) d(Λj , L) 6 d(Λj , ϕδΛj) + d(ϕδΛj , L).

The first term on the right-hand side can be easily estimated by applying
directly the definition of the distance. Namely, due to the Agmon-type
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estimate for the first κ(θj) eigenfunctions of NV
j (Lemma 3.8), with some

b0 > 0 and B > 0 there holds∫
Vj,δ

eb0α|x−Aj |
(

1
α2 |∇v|

2 + v2
)

dx 6 B‖v‖2L2(Vj,δ), v ∈ Lj .

Writing∫
Vj,δ\Vj,aδ

(
1
α2 |∇v|

2 + v2
)

dx

=
∫
Vj,δ\Vj,aδ

eb0α|x−Aj | · eb0α|x−Aj |
(

1
α2 |∇v|

2 + v2
∗

)
dx

we obtain the following upper bound∫
Vj,δ\Vj,aδ

(
1
α2 |∇v|

2 + v2
)

dx

6 e−b0αaδ

∫
Vj,δ\Vj,aδ

eb0α|x−Aj |
(

1
α2 |∇v|

2 + v2
∗

)
dx

6 e−b0αaδ

∫
Vj,δ

eb0α|x−Aj |
(

1
α2 |∇v|

2 + v2
∗

)
dx.

This finally gives∫
Vj,δ\Vj,aδ

(
1
α2 |∇v|

2 + v2
)

dx 6 Be−2cαδ‖v‖2L2(Vj,δ), c := b0a/2.(4.11)

Therefore, for any v∗ ∈ Λj we have∥∥v∗ − ϕδv∗∥∥2
L2(Ω) =

∫
Ω

(1− ϕδ)2v2
∗ dx 6

∫
Ω\Vj,aδ

v2
∗ dx

≡
∫
Vj,δ\Vj,aδ

v2 dx 6 Be−2cαδ‖v‖2L2(Vj,δ) ≡ Be
−2cαδ‖v∗‖2L2(Ω).

Denote by Pj the orthogonal projector on ϕδΛj in L2(Ω), then for any
u ∈ L2(Ω) we have by definition ‖u−Pju‖ = infφ∈ϕδΛj ‖u−φ‖. Therefore,
for any non-zero v∗ ∈ Λj we have

(4.12)

‖v∗ − Pjv∗‖
‖v∗‖

6
‖v∗ − ϕδv∗‖
‖v∗‖

≡
∥∥(1− ϕδ)v∗

∥∥
‖v∗‖

6
√
B e−cαδ,

d(Λj , ϕδΛj) = sup
v∗∈Λj , v∗ 6=0

‖v∗ − Pjv∗‖
‖v∗‖

6
√
B e−cαδ.

Now we need an estimate for the second term on the right-hand side
of (4.10), which will be obtained with the help of Proposition 2.5. Namely,
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let vn with n ∈
{

1, . . . , κ(θj)
}
be the eigenfunctions of NV

j for the eigenval-
ues En := En(NV

j ) forming an orthonormal basis of Lj , then, in particular,

−∆vn = Env
n in Vj,δ,

∂vn

∂ν
= αvn at ∂∗Vj,δ ⊂ ∂Ω,

where ν the outer unit normal. Consider the functions ψn := ϕδv
n
∗ , then

using the above properties of ϕδ we have

∆ψn =
(
(∆ϕδ)vn + 2∇ϕδ · ∇vn + ϕδ∆vn

)
∗ ∈ L

2(Ω),
∂ψn
∂ν

= ∂ϕδ
∂ν

vn + ϕδ
∂vn

∂ν
= ϕδ

∂vn

∂ν
= αϕδv

n = αψn on ∂Ω,

which shows that ψn belong to the domain of RΩ
α . We represent now

(RΩ
α − En)ψn = (−∆− En)ψn =

(
− (∆ϕδ)vn − 2∇ϕδ · ∇vn

)
∗

and note that the supports of ∇ϕδ and ∆ϕδ are contained in Vj,bδ \ Vj,aδ.
Therefore, with the help of (4.11) we can estimate∫

Ω

∣∣(∆ϕδ)vn∗ ∣∣2 dx 6 C2

δ4

∫
Vj,bδ\Vj,aδ

(vn)2 dx

6
BC2

δ4 e−2cαδ‖vn‖2L2(Vj,δ) ≡
BC2

δ4 e−2cαδ,∫
Ω

∣∣∇ϕδ · ∇vn∗ ∣∣2 dx 6
∫

Ω
|∇ϕδ|2|∇vn∗ |2 dx 6 C2

δ2

∫
Vj,bδ\Vj,aδ

(∇vn)2 dx

6
BC2α2

δ2 e−2cαδ‖vn‖2L2(Vj,δ) ≡
BC2α2

δ2 e−2cαδ,

and by noting that 1/δ2 = o(α/δ) we have∥∥(RΩ
α − En)ψn

∥∥
L2(Ω) = O

(
(α/δ) e−cαδ

)
.

Let us estimate the Gram matrix G of (ψn). We have, using Cauchy–
Schwarz and (4.11),∣∣∣〈ψk, ψn〉L2(Ω) − 〈vk∗ , vn∗ 〉L2(Ω)

∣∣∣
=
∣∣∣ ∫

Ω
(ϕ2
δ − 1)vk∗vn∗ dx

∣∣∣ 6 ∫
Vj,δ\Vj,aδ

|vk vn| dx

6
1
2

(∫
Vj,δ\Vj,aδ

(vk)2 dx+
∫
Vj,δ\Vj,aδ

(vn)2 dx
)
6 Be−2cαδ.

Therefore, we have 〈ψk, ψn〉L2(Ω) = δk,n+O(e−2cαδ), and the lowest eigen-
value λ of G is estimated as λ = 1 +O(e−2cαδ).
Finally let h := (−EK − 1)/2, then the interval I :=

(
(E1 − h)α2, (EK +

h)α2) contains all the above eigenvalues En due to Lemma 4.1, and it also
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contains the first K eigenvalues of RΩ
α and satisfies dist(I, spec(RΩ

α) \ I) >
1
4 hα

2 by (4.8). Therefore, we are exactly in the situation of Proposition 2.5
with the parameters

E = ϕδΛj , F = L, ε = O
(α
δ
e−cαδ

)
, η >

1
8hα

2, λ = 1+O(e−2cαδ),

which gives d(ϕδΛj , L) = O
(
e−cαδ/(αδ)

)
. By combining this last inequality

with (4.12) in the initial triangular inequality (4.10) one arrives at the
conclusion. �

Lemma 4.5. — There exist b > 0 and c > 0 such that for each j =
1, . . . ,M there holds

(4.13) ‖σju‖2L2(Vj,δ) 6 bδ
2
(
NV
j [σju, σju] + α2‖σju‖2L2(Vj,δ)

)
+ bα2δ2e−cαδ‖u‖2L2(Ω),

(4.14)
∫
∂extVj,δ

(σju)2 ds 6 bαδ2
(
NV
j [σju, σju] + α2‖σju‖2L2(Vj,δ)

)
+ bα3δ2e−cαδ‖u‖2L2(Ω)

as u ∈ H1(Ω) with u ⊥ L.

Proof. — Remark that the sought inequalities look quite similar to those
in Lemma 3.11. The novelty is that we do not assume σju ⊥ Lj (in this
case the result would follow directly) but just u ⊥ L. The main technical
ingredient of the proof below is to show that the orthogonal projection of
σju onto Lj is sufficiently small and absorbed by the last summands in
the above inequalities (4.13) and (4.14). This will be achieved using the
distance estimate of Lemma 4.4.
Assume first that j ∈ Jcvx. Let P be the orthogonal projector on L in

L2(Ω) and Pj be the orthogonal projector on Lj in L2(Vj,δ). Consider the
following functions of L2(Vj,δ):

uV := σju, v0 := Pju
V , v := (1− Pj)uV .

Due to u ⊥ L we have u = (1− P )u, hence,

‖v0‖L2(Vj,δ) = ‖σ∗j v0‖L2(Ω) =
∥∥σ∗jPjσj(1− P )u

∥∥
L2(Ω)

6
∥∥σ∗jPjσj(1− P )

∥∥ ‖u‖L2(Ω).

The operator Πj := σ∗jPjσj is exactly the orthogonal projector on σ∗jLj
in L2(Ω), and by Lemma 4.4 one has

∥∥σ∗jPjσj(1 − P )
∥∥ = ‖Πj − ΠjP‖ =

ANNALES DE L’INSTITUT FOURIER



ROBIN EIGENVALUES 2255

d(σ∗jLj , L) = O(e−cαδ) with some c > 0. Then for some b > 0 one has

(4.15) ‖v0‖L2(Vj,δ) 6 be
−cαδ‖u‖L2(Ω).

As Pj is a spectral projector for NV
j , one has NV

j [uV , uV ] = NV
j [v0, v0] +

NV
j [v, v], and due to the spectral theorem we have the inequalities

E1(NV
j )‖v0‖2L2(Vj,δ) 6 N

V
j [v0, v0] 6 Eκ(θj)(N

V
j )‖v0‖2L2(Vj,δ).

By Lemma 3.6 we have En(NV
j ) = O(α2) for n = 1, . . . , κ(θj) and us-

ing (4.15) one arrives at

(4.16)

∣∣∣NV
j [v0, v0]

∣∣∣ 6 a0α
2e−2cαδ‖u‖2L2(Ω),

NV
j [v, v] 6 NV

j [uV , uV ] + a0α
2e−2cαδ‖u‖2L2(Ω).

As v ⊥ Lj , one can apply the trace and norm estimate for non-resonant
truncated sectors (Lemma 3.11). Using first the norm estimate one has,
with some c1 > 0,

‖v‖2L2(Vj,δ) 6 c1δ
2
(
NV
j [v, v] + α2‖v‖2L2(Vj,δ)

)
,

and by using (4.15), (4.16) and the inequality ‖v‖2L2(Vj,δ) 6 ‖u
V ‖2L2(Vj,δ) we

have

‖uV ‖2L2(Vj,δ) = ‖v‖2L2(Vj,δ) + ‖v0‖2L2(Vj,δ)

6 c1δ
2
(
NV
j [v, v] + α2‖v‖2L2(Vj,δ)

)
+ b2e−2cαδ‖u‖2L2(Ω)

6 c1δ
2
(
NV
j [uV , uV ] + α2‖uV ‖2L2(Vj,δ)

)
+ (a0c1α

2δ2e−2cαδ + b2e−2cαδ)‖u‖2L2(Ω)

6 c1δ
2
(
NV
j [uV , uV ] + α2‖uV ‖2L2(Vj,δ)

)
+ b0α

2δ2e−2cαδ‖u‖2L2(Ω)

with a sufficiently large b0 > 0, which proves (4.13). Furthermore, using
first the trace estimate of Lemma 3.11 and then (4.16) we have, with some
c2 > 0,

(4.17)

∫
∂extVj,δ

v2 ds 6 c1αδ2
(
NV
j [v, v] + α2‖v‖2L2(Vj,δ)

)
6 c1αδ

2
(
NV
j [uV , uV ] + α2‖uV ‖2L2(Vj,δ)

)
+ c2α

3δ2e−2cαδ‖u‖2L2(Ω),
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with c2 := c1a0. Let RVj be the Laplacian in Vj,δ with α-Robin condition
at the whole boundary, then E1(RVj ) > −c0α2 with some c0 > 0 (see
Lemma 2.7), i.e.

RVj [f, f ] ≡ NV
j [f, f ]− α

∫
∂extVj,δ

f2 ds > −c0α2‖f‖2L2(Vj,δ),∫
∂extVj,δ

f2 ds 6 1
α

(
NV
j [f, f ] + c0α

2‖f‖2L2(Vj,δ)

)
for all f ∈ H1(Vj,δ).

Using this inequality for f := v0 and then applying (4.15) and (4.16) on
both terms on the right-hand side we arrive at

(4.18)
∫
∂extVj,δ

v2
0 ds 6 c3αe−2cαδ‖u‖2L2(Ω)

with some c3 > 0. Finally,∫
∂extVj,δ

(uV )2 ds ≡
∫
∂extVj,δ

(v+ v0)2 ds 6 2
∫
∂extVj,δ

v2 ds+ 2
∫
∂extVj,δ

v2
0 ds,

and by estimating the two terms on the right-hand side by (4.17) and (4.18)
one arrives at (4.14).
Now assume that j /∈ Jcvx, then NV

j > 0 is just the Neumann Laplacian
in Vj,δ. In particular, for large α one has the obvious estimate

‖σju‖2L2(Vj,δ) 6
1
α2

(
NV
j [σju, σju] + α2‖σju‖2L2(Vj,δ)

)
,

implying (4.13) due to 1/α2 = o(δ2). To obtain (4.14) consider the Lapla-
cian RVj in Vj,δ with the α-Robin boundary condition at the whole bound-
ary, then RVj > −c4α2 with some c4 > 0 by Lemma 2.7, and for all
f ∈ H1(Vj,δ) we have∫

∂Vj,δ

f2 ds 6 1
α

(∫
Vj,δ

|∇f |2 dx+ c4α
2
∫
Vj,δ

f2 dx
)

≡ 1
α

(
NV
j [f, f ] + c4α

2‖f‖2L2(Vj,δ)

)
.

The terms on the right-hand side are non-negative, so for c5 := max{1, c4}
one has∫

∂Vj,δ

f2 ds 6 c5
α

(
NV
j [f, f ] + α2‖f‖2L2(Vj,δ)

)
for all f ∈ H1(Vj,δ).

Using this estimate for f := σju and noting that 1/α = o(αδ2) we arrive
at (4.14). Remark that the last summands in (4.13) and (4.14) appear for
convex vertices only. �
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Now we have collected all technical ingredients for the proof of the main
estimate:

Proposition 4.6. — For any fixed n ∈ N one has EK+n(RΩ
α) > −α2 +

En
(⊕M

j=1Dj

)
+O

( logα√
α

)
as α→ +∞.

Proof. — Consider the Hilbert spaces

H := the orthogonal complement of L in L2(Ω), H′ :=
M⊕
j=1

L2(Ij,δ).

During the proof for u ∈ H we denote ‖u‖ := ‖u‖L2(Ω) and

vj := the restriction of u to Vj,δ, ‖vj‖ := ‖vj‖L2(Vj,δ),

wj := the restriction of u to Wj,δ, ‖wj‖ := ‖wj‖L2(Wj,δ),

uc := the restriction of u to Ωcδ, ‖uc‖ := ‖uc‖L2(Ωc
δ
),

and remark that due to the preceding constructions and the equality (4.2)
we have

(4.19)
M∑
j=1

∫
∂extVj,δ

v2
j ds =

M∑
j=1

∫
∂extWj,δ

w2
j ds.

Applying Lemma 4.5 we obtain, with some b > 0 and c > 0, the inequalities

‖vj‖2 6 bδ2
(
NV
j [vj , vj ] + α2‖vj‖2

)
+ bα2δ2e−cαδ‖u‖2,∫

∂extVj,δ

v2
j ds 6 bαδ2

(
NV
j [vj , vj ] + α2‖vj‖2

)
+ bα3δ2e−cαδ‖u‖2.

Now recall that each NW
j admit a separation of variables, NW

j ' LN ⊗
1 + 1 ⊗ Nj,δ, where LN is the Laplacian on (0, δ) with α-Robin condition
at 0 and Neumann condition at δ. Denote by ψ a normalized eigenfunction
for the first eigenvalue of LN , consider the maps

(4.20) Pj : H → L2(Ij,δ), (Pju)(s) :=
∫ δ

0
ψ(t)wj

(
Φj(s, t)

)
dt,

with Φj defined in (4.1), and denote w̃j := wj ◦Φj and zj := w̃j−(Pju)⊗ψ,
then one has the pointwise orthogonality∫ δ

0
ψ(t)zj( · , t) dt = 0.
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Using the standard change of variables and then the spectral theorem for
LN one obtains

NW [wj , wj ] =
∫
Wj,δ

|∇wj |2 dx− α
∫
∂∗Wj,δ

w2 ds

=
∫
Ij,δ

∫ δ

0

((
∂sw̃j

)2 +
(
∂tw̃j

)2)dtds− α
∫
Ij,δ

w̃j(s, 0)2 ds

=
∫
Ij,δ

(
(Pju)′(s)

)2 ds+
∫
Ij,δ

∫ δ

0

(
∂szj

)2 dtds

+
∫
Ij,δ

(∫ δ

0

(
∂tw̃j

)2 dt− αw̃j(s, 0)2
)

ds

>
∫
Ij,δ

(
(Pju)′(s)

)2 ds+
∫
Ij,δ

∫ δ

0

(
∂szj

)2 dtds

+ E1(LN )‖Pju‖2 + E2(LN )‖zj‖2.

Using Proposition 2.9 we estimate E1(L) > −α2−b1α2e−cαδ and E2(LN ) >
0, which leads to

NW
j [wj , wj ] > −α2‖Pju‖2 +

∥∥(Pju)′
∥∥2 − b1α2e−cαδ‖Pju‖2.

Now let us set δ := (c′ logα)/α with c′ > 3/c, then the conditions (4.4) for
the choice of δ are satisfied, and α2e−cαδ = o(δ), which implies α2δ2e−cαδ =
o(δ3) and α3δ2e−cαδ = o(αδ3). This simplifies the remainders in the above
inequalities, and one can pick a sufficiently large a > 0,

‖vj‖2 6
a log2 α

α2

(
NV
j [vj , vj ] + α2‖vj‖2

)
+ a log3 α

α3 ‖u‖2,(4.21) ∫
∂extVj,δ

v2
j ds 6 a log2 α

α

(
NV
j [vj , vj ] + α2‖vj‖2

)
+ a log3 α

α2 ‖u‖2,(4.22)

NW
j [wj , wj ] > −α2‖Pju‖2 +

∥∥(Pju)′
∥∥2 − a logα

α
‖Pju‖2.(4.23)

Consider the self-adjoint operators

B := RΩ
α + α2 + (M + a) logα

α
viewed as an operator in H,

B′ :=
M⊕
j=1

Dj,δ in H′,
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with Q(B) = H1(Ω)∩H and Q(B′) =
⊕M

j=1H
1
0 (Ij,δ). Recall that

(4.24)

B[u, u] =
∫

Ω
|∇u|2 dx− α

∫
∂Ω
u2 ds+ α2

∫
Ω
u2 dx

+ (M + a) logα
α

∫
Ω
u2 dx

=
M∑
j=1

(∫
Vj,δ

|∇u|2 dx− α
∫
∂∗Vj,δ

u2 ds+ α2
∫
Vj,δ

u2 dx
)

+
M∑
j=1

(∫
Wj,δ

|∇u|2 dx− α
∫
∂∗Wj,δ

u2 ds+ α2
∫
Wj,δ

u2 dx
)

+
∫

Ωc
δ

|∇u|2 dx+ α2
∫

Ωc
δ

u2 dx+ (M+a) logα
α

∫
Ω
u2 dx

>
M∑
j=1

(
NV
j [vj , vj ] + α2‖vj‖2

)

+
M∑
j=1

(
NW
j [wj , wj ] + α2‖wj‖2

)
+ α2‖uc‖2 + (M + a) logα

α
‖u‖2.

Using (4.21) and (4.22) we obtain

(4.25)
M∑
j=1

(
NV
j [vj , vj ] + α2‖vj‖2

)

>
α2

a log2 α

1
2

(
M∑
j=1
‖vj‖2 + 1

α

M∑
j=1

∫
∂extVj,δ

v2
j ds

)
− M logα

α
‖u‖2.

On the other hand, with the help of (4.23) we estimate

(4.26)
M∑
j=1

(
NW
j [wj , wj ] + α2‖wj‖2

)

>
M∑
j=1

∥∥(Pju)′
∥∥2 − a logα

α
‖u‖2 + α2

M∑
j=1

(
‖wj‖2 − ‖Pju‖2

)
,
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where we use
∑
j ‖Pju‖2 6

∑
j‖wj‖2 6 ‖u‖2. Using (4.25) and (4.26)

in (4.24) we arrive at

(4.27) B[u, u] > α2

2a log2 α

M∑
j=1
‖vj‖2

+ α

2a log2 α

M∑
j=1

∫
∂extVj,δ

v2
j ds+

M∑
j=1

∥∥(Pju)′
∥∥2

+ α2
M∑
j=1

(
‖wj‖2 − ‖Pju‖2

)
+ α2‖uc‖2.

Each term on the right-hand side is non-negative and, hence, the left-hand
side is an upper bound for each term on the right-hand side. It also implies
that B is positive and then

E1(B) ≡ EK+1(RΩ
α) + α2 + (M + a) logα

α
> 0.

By (4.9), for any fixed n ∈ N there is µn > 0 independent of α such that

(4.28) 0 6 En(B) 6 µn,
(
1 + En(B)

)−1
> (1 + µn)−1.

In order to construct a suitable identification map J : Q(B) → Q(B′)
we pick functions ρ±j ∈ C1([0, `j ]) such that

ρ+
j =

{
1 in a neighborhood of 0,
0 in a neighborhood of `j ,

j ∈ J∗,

ρ−j =
{

0 in a neighborhood of 0,
1 in a neighborhood of `j ,

j ∈ J∗,

and then choose a constant ρ0 > 0 such that

(4.29) ‖ρ±j ‖L∞(0,`j) + ‖(ρ±j )′‖L∞(0,`j) 6 ρ0 for all j ∈ J∗.

Recall that Ij,δ := (λjδ, `j − λj+1δ) =: (ιj , τj), hence,

ρ+
j (ιj) = 1, ρ+

j (τj) = 0, ρ−j (ιj) = 0, ρ−j (τj) = 1,

as α is sufficiently large. Therefore, the map

J : Q(B)→ Q(B′) ≡
M⊕
j=1

H1
0 (Ij,δ), Ju = (Jju),

(Jju)(s) := (Pju)(s)− (Pju)(ιj)ρ+
j (s)− (Pju)(τj)ρ−j (s)
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is well-defined. We estimate, using the Cauchy–Schwarz inequality,

(4.30)
∣∣Pju(ιj)

∣∣2 +
∣∣Pju(τj)

∣∣2
=
(∫ δ

0
ψ(t)wj

(
Φj(ιj , t)

)
dt
)2

+
(∫ δ

0
ψ(t)wj

(
Φj(τj , t)

)
dt
)2

6
∫ δ

0
wj
(
Φj(ιj , t)

)2
dt+

∫ δ

0
wj
(
Φj(τj , t)

)2 dt ≡
∫
∂extWj,δ

w2
j ds.

Recall the inequality (x+ y)2 > (1− ε)x2− y2/ε valid for any x, y ∈ R and
ε > 0. Then

‖Jju‖2 =
∫
Ij,δ

∣∣∣(Pju)(s)− (Pju)(ιj)ρ+
j (s)− (Pju)(τj)ρ−j (s)

∣∣∣2 ds

> (1− ε)
∫
Ij,δ

∣∣∣(Pju)(s)
∣∣∣2 ds

− 1
ε

∫
Ij,δ

∣∣∣(Pju)(ιj)ρ+
j (s) + (Pju)(τj)ρ−j (s)

∣∣∣2 ds,

and, using (4.30) and the constant ρ0 from (4.29) we have∫
Ij,δ

∣∣∣(Pju)(ιj)ρ+
j (s) + (Pju)(τj)ρ−j (s)

∣∣∣2 ds

6 2`jρ2
0

(∣∣Pju(ιj)
∣∣2 +

∣∣Pju(τj)
∣∣2) 6 2`jρ2

0

∫
∂extWj,δ

w2
j ds,

‖Jju‖2 > (1− ε)‖Pju‖2 −
2`ρ2

0
ε

∫
∂extWj,δ

w2
j ds, ` := max `j .

Therefore, using (4.19) we arrive at

‖u‖2 − ‖Ju‖2 =
M∑
j=1
‖vj‖2 +

M∑
j=1
‖wj‖2 + ‖uc‖2 −

M∑
j=1
‖Jju‖2

6
M∑
j=1
‖vj‖2 +

M∑
j=1
‖wj‖2 + ‖uc‖2

− (1− ε)
M∑
j=1
‖Pju‖2 + 2`ρ2

0
ε

M∑
j=1

∫
∂extWj,δ

w2
j ds

=
M∑
j=1
‖vj‖2 +

M∑
j=1

(
‖wj‖2 − ‖Pju‖2

)
+ ε

M∑
j=1
‖Pju‖2 + 2`ρ2

0
ε

M∑
j=1

∫
∂extVj,δ

v2
j ds+ ‖uc‖2
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6
M∑
j=1
‖vj‖2 +

M∑
j=1

(
‖wj‖2 − ‖Pju‖2

)
+ ε‖u‖2 + 2`ρ2

0
ε

M∑
j=1

∫
∂extVj,δ

v2
j ds+ ‖uc‖2.

Using (4.27) we obtain an upper bound for all terms on the right-hand side
except ε‖u‖2:

‖u‖2 − ‖Ju‖2 6
(

2a log2 α

α2 + 2
α2 + 4`ρ2

0a log2 α

εα

)
B[u, u] + ε‖u‖2.

Taking ε := logα/
√
α and choosing c1 > 0 sufficiently large we obtain

(4.31) ‖u‖2 − ‖Ju‖2 6 c1 logα√
α

(
B[u, u] + ‖u‖2

)
.

To study the difference B′[Ju, Ju] − B[u, u] recall that B′[Ju, Ju] =∑M
j=1 ‖(Jju)′‖2. Using the inequality (x+ y)2 6 (1 + ε)x2 + 2y2/ε valid for

all x, y ∈ R and ε ∈ (0, 1) we estimate

∥∥(Jju)′
∥∥2 =

∫
Ij,δ

∣∣∣(Pju)′(s)− (Pju)(ιj)(ρ+
j )′(s)− (Pju)(τj)(ρ−j )′(s)

∣∣∣2 ds

6 (1 + ε)
∫
Ij,δ

∣∣∣(Pju)′(s)
∣∣∣2 ds

+ 2
ε

∫
Ij,δ

∣∣∣(Pju)(ιj)(ρ+
j )′(s) + (Pju)(τj)(ρ−j )′(s)

∣∣∣2 ds.

Using (4.30) for the last term and the constant ρ0 from (4.29) we have∫
Ij,δ

∣∣∣(Pju)(ιj)(ρ+
j )′(s) + (Pju)(τj)(ρ−j )′(s)

∣∣∣2 ds 6 2`ρ2
0

∫
∂extWj,δ

w2
j ds,

B′[Ju, Ju] 6 (1 + ε)
M∑
j=1

∥∥(Pju)′
∥∥2 + 4`ρ2

0
ε

M∑
j=1

∫
∂extWj,δ

w2
j ds

Recall that due to (4.27) we have B[u, u] >
∑M
j=1

∥∥(Pju)′
∥∥2 and

B[u, u] > α

2a log2 α

M∑
j=1

∫
∂extVj,δ

v2
j ds ≡ α

2a log2 α

M∑
j=1

∫
∂extWj,δ

w2
j ds,
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where we have used (4.19). Therefore,

B′[Ju, Ju]−B[u, u] 6 ε
M∑
j=1

∥∥(Pju)′
∥∥2 + 4`ρ2

0
ε

M∑
j=1

∫
∂extWj,δ

w2
j ds

6

(
ε+ 4`ρ2

0
ε
· 2a log2 α

α

)
B[u, u].

Therefore, by setting ε = logα/
√
α and by choosing c2 > 0 sufficiently

large we arrive at

(4.32) B′[Ju, Ju]−B[u, u] 6 c2 logα√
α

B[u, u] 6 c2 logα√
α

(
B[u, u] + ‖u‖2

)
.

With the inequalities (4.31) and (4.32) at hand, we are in the situation of
Proposition 2.3 with εj := cj logα/

√
α, j ∈ {1, 2}. Remark that for each

fixed n the assumption ε1 < 1/
(
1+En(B)

)
is satisfied due to (4.28). Hence,

for each fixed n we have

(4.33) En

(
M⊕
j=1

Dj,δ

)
≡ En(B′)

6 En(B) + logα√
α
·
(
c1En(B) + c2

)(
1 + En(B)

)
1− c1

(
1 + En(B)

)
logα/

√
α
.

By (4.28) we have En(B) = O(1) for each fixed n, and the substitution
into (4.33) gives

EK+n(RΩ
α) > −α2 + En

(
M⊕
j=1

Dj,δ

)
+O

( logα√
α

)
,

and it remains to note that for fixed n and j one has

En(Dj,δ) = En(Dj) +O(δ) = En(Dj) +O
(

logα
α

)
= En(Dj) + o

(
logα√
α

)
,

which implies En(
⊕M

j=1Dj,δ) = En(
⊕M

j=1Dj) + O( logα√
α

). This concludes
the proof of Proposition 4.6. �

5. Robin eigenvalues in curvilinear polygons

If one tries to adapt the preceding proof scheme to curvilinear polygons,
a number of points require more attention:

TOME 70 (2020), FASCICULE 5



2264 M. Khalile, T. Ourmières-Bonafos & K. Pankrashkin

(a) The initial construction of the vertex neighborhood Vj,δ become
more technical: the shape of these neighborhoods cannot be chosen
at random, as the subsequent analysis need the presence of two
straight sides to which the side neighborhoods Wj,δ are glued.

(b) A suitable control of eigenvalues of Robin–Dirichlet/Neumann
Laplacians in Vj,δ is needed. Remark that these neighborhoods are
not truncated sectors anymore, but curvilinear polygons. Hence,
a suitable analog of the non-resonance condition is needed. This
can be achieved using a suitable diffeomorphism between Vj,δ and
truncated convex sectors.

(c) We need an analog of the radial cut-off functions ϕδ to prove an
analog of Lemma 4.4 for the curvilinear case. The cut-off functions
are needed to satisfy the Neumann boundary condition at ∂Ω, in
order to ensure that the truncated eigenfunction are still in the do-
main of the Robin laplacian. This is important for the constructions,
as it allows one to apply Proposition 2.5 to estimate the distance
between two subspaces.

(d) The analysis of the Robin laplacians in side neighborhoods Wj,δ

become more involved, as a non-trivial curvature contribution ap-
pears.

(e) The lower bound for the eigenvalues in Proposition 4.6 is in part
based on the fact that the individual eigenvalues of the operators B
and B′ are bounded for large α. This is an important point when us-
ing Proposition 2.3: if the eigenvalues of B become large, it becomes
difficult to satisfy the initial assumption on ε1

(
1 +E1(B)

)
< 1, see

the discussion in Subsection 6.2.
We remark that the points (a)–(c) are purely geometric, and can be of

importance for the analysis of other problems in curvilinear polygons. We
are not aware of any suitable construction in the literature (due to the very
specific shape of the vertex neighborhoods), and we have decided to give a
self-contained discussion in Appendix A, to which we refer in the main text.
In the present text we were not able to overcome completely the difficulties
mentioned under (d) and (e), and we concentrate ourselves on two special
but important cases.

5.1. Decomposition of curvilinear polygons

Let us describe more precisely the class of domains Ω we are going to
deal with as well as its decomposition into pieces of special shape. Once the
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(a) (b)

Figure 5.1. The construction of the neighborhoods Vj,δ: (a) convex
vertex, (b) concave vertex. The partial boundary ∂∗Vj,δ is shown with
the thick solid line, the part ∂extVj,δ is indicated with the thick dashed
line, and the part ∂outVj,δ with the gray dotted line.

geometric justifications has been made, see Appendix A, the latter differs
only in minor details from the case of straight polygons. A bounded domain
Ω ⊂ R2 will be called a curvilinear polygon with M > 1 vertices if there
exist A1, . . . , AM ∈ R2 and `1, . . . , `M > 0 such that:

• there are injective C3 maps γj : R→ R2 with |γ′j | = 1 such that

γj(0) = Aj , γj(`j) = Aj+1, j ∈ {1, . . . ,M},

where we identify A0 ≡ AM and AM+1 ≡ A1, and the same num-
bering convention applies to the finite arcs Γj := γj

(
(0, `j)

)
which

we assume mutually disjoint and such that Γ := ∂Ω =
⋃M
j=1 Γj .

• The orientation of each γj is assumed to be chosen in such a way
that if νj(t) is the outer unit normal to ∂Ω at a point γj(t), then
νj(s)∧γ′j(s) = 1, i.e. νj(s) is obtained by rotating the tangent vector
γ′j(t) by π

2 in the clockwise direction, and the curvature Hj(t) of Γj
at the point γj(s) is defined by ν′j(s) = Hj(t) γ′j(s).

• By θj ∈ [0, π] we denote the half-angle of the boundary at a vertex
Aj , i.e. the number θj ∈ [0, π] is characterized by the conditions

cos(2θj) = γ′j−1(`j−1) ·
(
− γ′j(0)

)
, sin(2θj) = γ′j(0) ∧

(
− γ′j−1(`j−1)

)
.

Our assumption is that there are neither zero angles nor artificial
vertices, i.e. θj /∈

{
0, π2 , π

}
for j = 1, . . . ,M .

The above points Aj ∈ ∂Ω will be called the vertices of Ω. Furthermore, one
says that Aj is a convex vertex if θj < π

2 and is a concave one otherwise,
and we denote

Jcvx := {j : Aj is convex}.
We refer to Figure 1.1 in the introduction for an illustration, and in that
case one has Jcvx = {1, 2}. Let us now proceed with a special decomposition
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of Ω. For small δ > 0, denote

Ωδ =
{
x ∈ Ω : dist(x, ∂Ω) < δ

}
, Ωcδ := Ω \ Ωδ.

We further decompose Ωδ near each vertex as follows:
• Let Aj be a convex vertex. The following constructions are con-
sequences of Lemma A.1 and are illustrated in Figure 5.1(a). For
sufficiently small δ there exists a unique point Yj,δ ∈ Ω such that
dist(Yj,δ,Γj−1) = dist(Yj,δ,Γj) = δ, and there are uniquely defined
numbers λ±j (δ) > 0 such that the points

A−j,δ := γj−1
(
`j − λ−j (δ)

)
, A+

j,δ := γj
(
λ+
j (δ)

)
satisfy |Yj,δ − A−j,δ| = |Yj,δ − A+

j,δ| = δ. The quantities λ±j (δ) > 0
satisfy

(5.1) λ±j (δ) = δ cotan θj +O(δ2) for δ → 0+.

We denote by Vj,δ the curvilinear quadrangle whose boundary con-
sists of the arcs γj−1

([
`j − λ−j (δ), `j

])
, γj
([

0, λ+
j (δ)

])
and the seg-

ments A±j,δYj,δ, and we decompose its boundary into the following
parts:

∂∗Vj,δ := ∂Vj,δ ∩ ∂Ω, ∂extVj,δ := ∂Vj,δ \ ∂∗Vj,δ, ∂outVj,δ := ∅.

• Let Aj be a concave vertex. The constructions are illustrated in
Figure 5.1(b). Let L−j be the half-line emanating from Aj , orthog-
onal to Γj−1 at Aj and directed inside Ω. By L+

j we denote the
half-line emanating from Aj , orthogonal to Γj at Aj and directed
inside Ω. Denote by Sj the infinite sector bounded by L−j and L+

j

which lies inside Ω near Aj . Then we set

Vj,δ := Sj ∩B(Aj , δ), λ±j (δ) := 0,

and decompose its boundary as follows:

∂∗Vj,δ := ∅, ∂outVj,δ := ∂Vj,δ ∩ ∂Ωcδ, ∂extVj,δ := ∂Vj,δ \ ∂outVj,δ.

The “length deficiency” λ+
j (δ) + λ−j (δ) is exactly the length of ∂∗Vj,δ for

both convex and concave vertices.
The set Wδ := Ωδ \

⋃M
j=1 Vj,δ is the union of M disjoint curvilinear

rectangles: if one denotes

Ij,δ :=
(
λ+
j (δ), `j − λ−j+1(δ)

)
, Πj,δ := Ij,δ × (0, δ),

Wj,δ := Φj(Πj,δ), Φj(s, t) := γj(s)− tνj(s),
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Figure 5.2. Decomposition of a curvilinear polygon.

thenWδ =
⋃M
j=1Wj,δ. We decompose the boundary of eachWj,δ as follows:

∂∗Wj,δ := ∂Wj,δ ∩ ∂Ω, ∂outWj,δ := ∂Wj,δ ∩ ∂Ωcδ,
∂extWj,δ := ∂Wj,δ \

(
∂∗Wj,δ ∪ ∂outWj,δ

)
.

The resulting decomposition of Ω is illustrated in Figure 5.2, and we always
have

(5.2)
M⋃
j=1

∂extVj,δ =
M⋃
j=1

∂extWj,δ.

5.2. Some estimates for curvilinear neighborhoods

With each j ∈ {1, . . . ,M} we associate the corresponding number κ(θj)
of discrete eigenvalues of the Robin Laplacians in the infinite sector of
aperture 2θj (see Section 2.6) and set

K := κ(θ1) + · · ·+ κ(θM ) ≡
∑

j∈Jcvx

κ(θj),

E := the disjoint union of
{
En(θj), n = 1, . . . , κ(θj)

}
for j ∈ Jcvx,

En := the nth element of E when numbered in the non-decreasing order,

(see Subsection 2.6 for a detailed notation). For what follows we introduce
several operators:

NV
j := the Laplacian in Vj,δ with α-Robin condition at ∂∗Vj,δ and

Neumann condition at the rest of the boundary,
DV
j := the Laplacian in Vj,δ with α-Robin condition at ∂∗Vj,δ and

Dirichlet condition at the rest of the boundary.
RVj := the Laplacian in Vj,δ with α-Robin condition at the whole

boundary.

TOME 70 (2020), FASCICULE 5



2268 M. Khalile, T. Ourmières-Bonafos & K. Pankrashkin

We remark that for concave vertices Aj , the respective operators (N/D)Vj
are just the Neumann/Dirichlet Laplacians in Vj,δ due to ∂∗Vj,δ = ∅. Fur-
thermore, denote

NW
j := the Laplacian in Wj,δ with α-Robin condition at ∂∗Wj,δ

and Neumann condition at the rest of the boundary,
DW
j := the Laplacian in Wj,δ with α-Robin condition at ∂∗Wj,δ

and Dirichlet condition at the rest of the boundary,
Finally, introduce

Nc := the Neumann Laplacian in Ωcδ.

Due to Lemma A.3 (Appendix A), for each j ∈ Jcvx one can find a bi-
Lipschitz map Ψj between a neighborhood of the origin and a neighborhood
of Aj , a rotation Zj with Ψ′j(x) = Zj +O

(
|x|
)
for x→ 0 and a C2 smooth

function rj defined near 0 with r(0) = 0 and r′(0) = cotan θj such that for
all sufficiently small δ > 0 one has

Ψj(Sr(δ)θj
) = Vj,t, Ψj(∂∗Sr(δ)θj

) = ∂∗Vj,δ, Φj(∂extSr(δ)θj
) = ∂extVj,δ.

Hence, for u ∈ H1(Vj,δ) one can use u ◦ Ψj ∈ H1(Sr(δ)θj
) as test func-

tions in truncated sectors, which implies in the standard way, see e.g. [10,
Lemma 3.3], the following estimates for the eigenvalues of NV

j ,DV
j and RVj :

Lemma 5.1. — There exist a > 0, a0 > 0, δ0 > 0 such that for all
δ ∈ (0, δ0), α > 0, n ∈ N, j ∈ Jcvx there holds

(1− a0δ)En(Nr(δ)
θj ,α(1+aδ)) 6 En(NV

j ) 6 (1 + a0δ)En(Nr(δ)
θ,α(1−aδ)),

(1− a0δ)En(Dr(δ)
θj ,α(1+aδ)) 6 En(DV

j ) 6 (1 + a0δ)En(Dr(δ)
θ,α(1−aδ)),

(1− a0δ)En(Rr(δ)θj ,α(1+aδ)) 6 En(RVj ) 6 (1 + a0δ)En(Rr(δ)θ,α(1−aδ)).

Here we recall that the operators (D/N/R)rθ,α in truncated sectors Srθ
were defined in (3.1). Using the estimates of Lemmas 3.3 and 3.6 for the
eigenvalues in truncated sectors and by literally repeating the proof to
obtain an Agmon estimate in Lemma 3.8, we arrive then at first estimates
for (D/N/R)Vj :

Corollary 5.2. — There is b > 0 such that for δ → 0+ and αδ → +∞
one has

En(DV
j ) = En(θj)α2 +O(α2δ + α2e−bαδ), n ∈

{
1, . . . , κ(θ)

}
,

En(NV
j ) = En(θj)α2 +O(α2δ + 1/δ2), n ∈

{
1, . . . , κ(θ)

}
,
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and Eκ(θj)+1(DV
j ) > Eκ(θj)+1(NV

j ) > −α2 + o(α2). In addition, there exist
c > 0 and C > 0 such that if n ∈

{
1, . . . , κ(θj)

}
and ψn is an eigenfunction

of NV
j for the nth eigenvalue, then for δ → 0+ and αδ → +∞ there holds∫

Vj,δ

ecα|x|
(

1
α2

∣∣∇ψn(x)
∣∣2 +

∣∣ψn(x)
∣∣2) dx 6 C ‖ψn‖2L2(Vj,δ).

There exists a > 0 such that E1(RVj ) > −aα2 for δ → 0+ and αδ → +∞.

Like in the case of straight polygons, we introduce the following sub-
spaces:

L := the subspace of L2(Ω) spanned by the first K
eigenfunctions of RΩ

α ,
Lj := the subspace of L2(Vj,δ) spanned by the first κ(θj)

eigenfunctions of NV
j , with j ∈ Jcvx,

σj : L2(Ω)→ L2(Vj,δ) the operator of restriction,
(σju)(x) = u(x) for x ∈ Vj,δ,

then the adjoint operators σ∗j : L2(Vj,δ) → L2(Ω) are the operators of
extension by zero. The following distance estimate will again be of impor-
tance:

Lemma 5.3. — Let j ∈ Jcvx, then in the limit δ → 0+ and αδ → +∞
there holds d(σ∗jLj , L) = O(e−cαδ) with some fixed c > 0.

Proof. — Pick 0 < a < b < 1, then due to Lemma A.5 one can find
smooth cut-off functions ϕδ ∈ C2(Ω) with the following properties:

• 0 6 ϕδ 6 1, and for all β ∈ N2 with 1 6 |β| 6 2 there holds
‖∂βϕδ‖∞ 6 Cδ−|β|,

• ϕδ = 1 in Vj,aδ, and ϕδ = 0 in Ω \ Vj,bδ,
• the normal derivative of ϕδ at ∂Ω is zero,

where C > 0 is some fixed constant. By Corollary A.4 one can find a0 > 0
such that |x−Aj | > a0δ for x ∈ Vj,δ \Vj,aδ. As the normal derivative of ϕδ
at ∂Ω is zero, it follows that for any v ∈ D(NV

j ) we have then ϕδv ∈ D(RΩ
α),

and the proof works literally as for the straight case (Lemma 4.4), as all
other necessary components are contained in Corollary 5.2. �

Let us now give some first estimates for the eigenvalues of NW
j . Recall

that Hj stands for the curvature of the jth side of Ω. We denote

(5.3) Hj,∗ := max
s∈[0,`j ]

Hj(s), H∗ := max
j∈{1,...,M}

Hj,∗, J∗ :={j : Hj,∗=H∗}.
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As in the case of straight polygons, let us consider the one-dimensional
operators

Dj := the Dirichlet Laplacian on (0, `j),
Dj,δ := the Dirichlet Laplacian on Ij,δ,
Nj := the Neumann Laplacian on (0, `j),
Nj,δ := the Neumann Laplacian on Ij,δ.

A literal repetition of the constructions of [57, Section 6] gives the following
result:

Proposition 5.4. — For any j ∈ {1, . . . ,M}, n ∈ N and δ := α−κ with
κ ∈ [ 2

3 , 1], for α→ +∞ there holds

(5.4)
En(NW

j ) = −α2 + En(Nj,δ − αHj) +O(1),

En(DW
j ) = −α2 + En(Dj,δ − αHj) +O(1).

In particular,

En(Nj,δ − αHj) = −Hj,∗α+ o(α),
En(Dj,δ − αHj) = −Hj,∗α+ o(α),

(5.5)

En(NW
j ) = −α2 −Hj,∗α+ o(α),

En(DW
j ) = −α2 −Hj,∗α+ o(α).

(5.6)

The preceding estimates work for all half-angles angle θj . For the rest of
the section we assume that

(5.7) θj is non-resonant for all j ∈ Jcvx.

5.3. Estimates for non-resonant convex sectors

Let us pick any j ∈ Jcvx, which is then non-resonant by assumption.
The estimates for NV

j given in this subsection will be of crucial impor-
tance for the subsequent analysis. They slightly differ from the respective
estimates for the straight case (Subsection 3.3), as some more parameters
will be needed later. For the rest of the section we assume that δ is chosen
depending on α such that

(5.8) αδ → +∞, δ → 0+, α2δ3 → 0+ as α→ +∞.

An exact choice of δ will be made at a later stage.
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Corollary 5.5. — For any A ∈ R there exists c > 0 such that under
the assumption (5.8) there holds Eκ(θj)+1(DV

j ) > Eκ(θj)+1(NV
j ) > −α2 +

Aα+ c/δ2.

Proof. — By Lemma 5.1 one has En(NV
j ) > (1 − a0δ)En(Nr(δ)

θj ,α(1+aδ)).
As θj is non-resonant, with some C > 0 we have Eκ(θj)+1(Nr

θj ,α
) > −α2 +

C/r2 as αr is large. In the asymptotic regime under consideration we have
α(1 + aδ)rj(δ) ∼ αδ cotan θj → +∞, hence,

En(Nr(δ)
θj ,α(1+aδ)) > −α

2(1 + aδ)2 + C

r(δ)2

> −α2 − 3aα2δ + C0

δ2 , C0 := C tan2 θj
2 ,

(1− a0δ)En(Nr(δ)
θj ,α(1+aδ)) > (1− a0δ)

(
−α2 − 3aα2δ + C0

δ2

)
> −α2 − 3aα2δ + C0

δ2 −
a0C0

δ

> −α2 − 3aα2δ + C0

2δ2

= −α2 +Aα+ 1
δ2

(
1
2 C0 − 3aα2δ3 −Aαδ2

)
.

For α2δ3 → 0+ one has αδ2 = α2δ3/(αδ) → 0+, and for any fixed c ∈
(0, C0/2) there holds

Eκ(θj)+1(NV
j ) > −α2 +Aα+ c/δ2.

The inequality Eκ(θj)+1(DV
j ) > Eκ(θj)+1(NV

j ) follows from the min-max
principle. �

Proceeding almost literally as in the straight case (Lemma 3.11) one puts
the preceding assertion into the following special form:

Corollary 5.6. — For any A ∈ R there exists b > 0 such that un-
der the assumption (5.8) there following inequalities holds for any u ∈
H1(Vj,δ)∩L⊥j :

‖v‖2L2(Vj,δ) 6 b δ
2
(
NV
j [v, v] + (α2 −Aα)‖v‖2L2(Vj,δ)

)
,(5.9) ∫

∂extVδ

v2 ds 6 bαδ2
(
NV
j [v, v] + (α2 −Aα)‖v‖2L2(Vj,δ)

)
.(5.10)

By combining the eigenvalues and eigenfunction estimates of Coroll-
ary 5.6 with the distance estimate of Lemma 5.3 like in the proof of
Lemma 4.5 we arrive then to the following estimate:
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Lemma 5.7. — For any A ∈ R one can find b > 0 and c > 0 such that
under the assumption (5.8) there holds, for any j = 1, . . . ,M , and any
u ∈ H1(Ω) with u ⊥ L,

‖σju‖2L2(Vj,δ) 6 bδ
2
(
NV
j [σju, σju] + (α2 −Aα)‖σju‖2L2(Vj,δ)

)
+ bα2δ2e−cαδ‖u‖2L2(Ω),∫

∂extVj,δ

(σju)2 ds 6 bαδ2
(
NV
j [σju, σju] + (α2 −Aα)‖σju‖2L2(Vj,δ)

)
+ bα3δ2e−cαδ‖u‖2L2(Ω).

We are now able to obtain an analog of Proposition 4.2 for curvilinear
polygons.

Corollary 5.8. — For any fixed n ∈ N and α→ +∞ there holds

(5.11) En

(
M⊕
j=1

NW
j

)
6 EK+n(RΩ

α) 6 En

(
M⊕
j=1

DW
j

)
,

in particular,

− α2 + En

( ⊕
j∈J∗

(Nj,δ − αHj)
)

+O(1) 6 EK+n(RΩ
α)

6 −α2 + En

( ⊕
j∈J∗

(Dj,δ − αHj)
)

+O(1).

Proof. — The standard Dirichlet–Neumann bracketing gives

(5.12) En

(
N c ⊕

(
M⊕
j=1

NV
j

)
⊕

(
M⊕
j=1

NW
j

))
6 En(RΩ

α)

6 En

((
M⊕
j=1

DV
j

)
⊕

(
M⊕
j=1

DW
j

))
.

In the asymptotic regime (5.8), thanks to Corollary 5.2, we have

En

(
M⊕
j=1

DV
j

)
= Enα2 + o(α2),

En

(
M⊕
j=1

NV
j

)
= Enα2 + o(α2) for n ∈ {1, . . . ,K},
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while for any A > 0 and some c > 0 one has, by Corollary 5.5,

EK+1

(
M⊕
j=1

DV
j

)
> EK+1

(
M⊕
j=1

NV
j

)
> −α2 +Aα+ c/δ2.

By Proposition 5.4, for each n ∈ N we have En(DW
j ) = −α2 + O(α) and

En(NW
j ) = −α2 +O(α), hence

EK

(
M⊕
j=1

NV
j

)
6 En(NW

j ) = −α2 +O(α) 6 EK+1

(
M⊕
j=1

NV
j

)
,

EK

(
M⊕
j=1

DV
j

)
6 En(DW

j ) = −α2 +O(α) 6 EK+1

(
M⊕
j=1

DV
j

)
.

It follows that for any n ∈ N one has

EK+n

((
M⊕
j=1

DV
j

)
⊕

(
M⊕
j=1

DW
j

))
= En

(
M⊕
j=1

DW
j

)
,

EK+n

(
N c ⊕

(
M⊕
j=1

NV
j

)
⊕

(
M⊕
j=1

NW
j

))
= En

(
M⊕
j=1

NW
j

)
,

and (5.12) implies (5.11). Now it is sufficient to apply Proposition 5.4 to
each of the operators in the direct sums. In particular, due to (5.5) only
j ∈ J∗ contribute to the asymptotics of the individual eigenvalues. �

5.4. Curvatures taking their maxima away from corners: Proof
of Theorem 1.4

Remark that the estimate of Corollary 5.8 only gives a rough asymptotics
in general, as there is a discrepancy between the lower and upper bounds
due to the different boundary conditions (Neumann/Dirichlet). In the par-
ticular case of constant curvatures one obtains the same asymptotics for
each individual eigenvalue. We remark nevertheless that the discrepancy
can be very small under suitable geometric assumptions. The considera-
tions of the present subsection rely on some general and well-known ideas
of the semiclassical analysis (see e.g. Helffer’s monograph [29]), so we only
give a sketch of the proofs.

Namely, in the present subsection we consider the case when the maxi-
mum curvature H∗ is not attained at any corner:

(5.13) for all j ∈ {1, . . . ,M} there holds Hj(0) 6= H∗ and Hj(`j) 6= Hj .
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The analysis of both En(Nj,δ − αHj) and En(Dj,δ − αHj) is covered by
the standard framework of the semiclassical analysis: the eigenfunctions for
the lowest eigenvalues are exponentially localized near the set at which Hj

takes its maximum value, and the boundary conditions only influence the
eigenvalue asymptotics in exponentially small terms, see [29, Section 3].
One obtains then the following assertion:

Proposition 5.9. — Under the assumption (5.13), there exists c > 0
such that for each j ∈ J∗ and each n ∈ N the following estimates hold in
the asymptotic regime (5.8):

En(Dj,δ − αHj) = En(Dj − αHj) +O(e−c
√
α),

En(Nj,δ − αHj) = En(Nj − αHj) +O(e−c
√
α),

En(Dj − αHj)− En(Nj − αHj) = O(e−c
√
α).

By combining Corollary 5.8 with Proposition 5.9 one obtains then the
following main result:

Proposition 5.10. — Let Ω be a curvilinear polygon whose half-angles
satisfy (5.7) and the side curvatures satisfy (5.13). Then for any fixed n ∈ N
one has

EK+n(RΩ
α) = −α2 + En

( ⊕
j∈J∗

(Dj − αHj)
)

+O(1)

= −α2 + En

( ⊕
j∈J∗

(Nj − αHj)
)

+O(1).

We finally note that the analysis can be made more precise under ad-
ditional geometric assumptions. In particular, the construction of Helffer–
Kachmar [30] can be easily adapted in order to obtain the following result:

Proposition 5.11. — Let Ω be a curvilinear polygon whose half-angles
satisfy (5.7). Assume that there exists a unique k ∈ {1, . . . ,M} and a
unique s∗ ∈ (0, `k) such that Hk(s∗) = H∗ and h∗ := −H ′′j (s∗) > 0 and
that γk is C∞ in a neighborhood of s∗, then, for any n ∈ N there exists a
sequence (βi,n)i>0 such that for any m ∈ N there holds

EK+n(RΩ
α) = −α2 −H∗α+ (2n− 1)

√
h∗
2
√
α+

m∑
i=0

βi,nα
− i

2 + o(α−m2 ).
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For the proof one remarks first that due to (5.6) one has

En

(
M⊕
j=1

NW
j

)
= En(NW

k ), En

(
M⊕
j=1

DW
j

)
= En(DW

k ),

and then En(NW
k ) 6 EK+n(RΩ

α) 6 En(DW
k ) by (5.11). The eigenvalues

of NW
k and DW

k are then analyzed literally as in [30, Theorem 1.1], since
all the analysis is done in a small neighborhood of γk(s∗). Remark that
the first three terms can also be deduced directly from Proposition 5.10 by
applying the standard WKB analysis to the 1D operators Nk − αHk and
Dk − αHk, [16, Section 3].

5.5. Constant curvatures: Proof of Theorem 1.5

The main assumption in the present subsection is as follows:

(5.14) each function Hj is constant, and H∗ := max
j=1,...,M

Hj ,

and we recall that the we still assume the non-resonance condition (5.7),
and that in the beginning of the section we introduced the diffeomorphisms
Φj by Φj(s, t) := γj(s)− tνj(s) and the open sets

Wj,δ := Φj(Πj,δ), Πj,δ = Ij,δ × (0, δ).

We will need some constructions in curvilinear coordinates in Wj,δ. In
order to avoid the use of special functions we prefer to use tubular coor-
dinates instead of polar coordinates. The following lemma is obtained by
direct computations using the standard change of variables.

Lemma 5.12. — Consider the unitary transform

(5.15) Gj : L2(Wj,δ)→ L2(Πj,δ), (Gju)(s, t) = (1− tHj)
1
2u
(
Φj(s, t)

)
,

then u ∈ H1(Wj,δ) if and only if g := Gju ∈ H1(Πj,δ), and there exists
b > 0 such that for sufficiently small δ, all u and g as above and all α > 0
one has the two-sided estimate

B−[g, g] 6
∫
Wj,δ

|∇u|2 dx− α
∫
∂∗Wj,δ

u2 ds 6 B+[g, g],

B±[g, g] :=
∫
Ij,δ

∫ δ

0

[(
1± bδ

)(∂g
∂s

)2
+
(
∂g

∂t

)2
−
(
H2
j

4 ∓ bδ
)
g2

]
dtds

−
∫
Ij,δ

(
α+ Hj

2

)
g(s, 0)2 ds± b

∫
Ij,δ

g(s, δ)2 ds
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The above change of variables will be now used for some constructions
involving (D/N)Wj . We start with an eigenvalue estimate for DW

j :

Lemma 5.13. — One can find b > 0 such that for δ → 0+ and αδ → +∞
there holds

En(DW
j ) 6 −α2 − αHj −

H2
j

2 + (1 + bδ)En(Dj) + b(δ + α2e−αδ), n ∈ N.

Proof. — Due to Lemma 5.12, for some b0 > 0 one has En(DW ) 6
En(B+), where B+ is the self-adjoint operator in H1(Πj,δ) with

Q(B+) =
{
g ∈ H1(Ij,δ × (0, δ)

)
:
g( · , δ) = 0,
g(ι, · ) = 0 for each ι ∈ ∂Ij,δ

}
,

B+[g, g] =
∫
Ij,δ

∫ δ

0

[(
1 + b0δ

)
(gs)2 + (gt)2 −

(
H2
j

4 − b0δ
)
g2
]

dtds

−
∫
Ij,δ

(
α+ Hj

2

)
g(s, 0)2 ds,

where we have set gs := ∂g/∂s and gt := ∂g/∂t. As Hj is constant, the
operator B+ admits a separation of variables and is unitarily equivalent to

C+ := (1 + b0δ)Dj,δ ⊗ 1 + 1⊗ LD − (H2
j /4− b0δ),

where LD is the Laplacian on (0, δ) with (α+Hj/2)-Robin condition at 0
and Dirichlet condition at δ, so using Proposition 2.8 with some b1 > 0 we
have E1(LD) = −(α+Hj/2)2 + b1α

2e−αδ and E2(LD) > 0. Therefore, for
each fixed n ∈ N due to En(Dj,δ) = O(1) we have

En(DW
j ) 6 En(B+) = En(C+)

= E1(LD) + (1 + b0δ)En(Dj,δ)−
(
H2
j

4 − b0δ
)
,

6 −α2 − αHj −
H2
j

2 + (1 + b0δ)En(Dj,δ) + b0δ + b1α
2eαδ.

One arrives at the sought result by taking b := max{b0, b1} and by noting
that En(Dj,δ) = En(Dj) +O(δ) for any fixed n ∈ N. �

By applying the estimate of Lemma 5.13 to each operator in the right-
hand side of (5.11) with δ := (3 logα)/α so that (5.8) is satisfied, we arrive
to an improved upper bound for EK+n(RΩ

α):

Proposition 5.14. — Under the assumptions (5.7) and (5.14), for any
fixed n ∈ N there holds

EK+n(RΩ
α) 6 −α2−H∗α−

H2
∗

2 +En

( ⊕
j∈J∗

Dj

)
+O

(
logα
α

)
as α→ +∞.
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Now we will bring the Robin–Neumann Laplacian NW
j to a special form

to use during subsequent proofs:

Lemma 5.15. — Let Gj be defined by (5.15). There are functions ψj ∈
L2(0, δ) with ‖ψ‖2L2(0,δ) = 1 such that if one defines the map

Pj : L2(Wj,δ)→ L2(Ij,δ), (Pju)(s) :=
∫ δ

0
ψj(t)(Gju)(s, t) dt,(5.16)

then one has for δ → 0+ and αδ → +∞, with some b > 0,

(5.17) NW
j [u, u] > −

(
α2 + αHj +

H2
j

2

)
‖Pju‖2L2(Ij,δ)

+
(
1−bδ

)∥∥(Pju)′
∥∥2
L2(Ij,δ)

−b
(
δ+α2e−αδ

)
‖Pju‖2L2(Ij,δ)

for all u ∈ H1(Wj,δ).

In particular,

(5.18) E1(NW
j ) > −

(
α2 + αHj +

H2
j

2

)
+O(δ + α2e−cαδ).

Proof. — We drop the index j in the notation. Denote g := Gu ∈ L2(Πδ),
then due to the standard change of variables (Lemma 5.12) one can find
b0 > 0 and β > 0 to have, for all u ∈ H1(Wδ),

NW [u, u] > B−[g, g]

:=
∫
Iδ

∫ δ

0

[(
1− b0δ

)
g2
s + g2

t −
(
H2

4 + b0δ

)
g2
]

dtds

−
∫
Iδ

(
α+ H

2

)
g(s, 0)2 ds− β

∫
Iδ

g(s, δ)2 ds,

Denote by LN the one-dimensional Laplacian in (0, δ) with the (α+H/2)-
Robin boundary condition at 0 and the β-Robin boundary condition at
δ, and let ψ be its eigenfunction for the first eigenvalue, normalized by
‖ψ‖L2(0,δ) = 1. With this choice of ψ, define the map P as in (5.16).
For shortness we denote f := Pu and define z ∈ L2(Πδ) by z(s, t) :=
g(s, t)− f(s)ψ(t), then, with zs := ∂z/∂s, we have the identities

(5.19)

∫ δ

0
ψ(t)z( · , t) dt = 0,

∫ δ

0
ψ(t)zs( · , t) dt = 0,

‖u‖2L2(Wδ) = ‖g‖2L2(Πδ) = ‖f‖2L2(Iδ) + ‖z‖2L2(Πδ),
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and due to the spectral theorem for the operator LN there holds∫
Iδ

∫ δ

0
g2
t dtds−

∫
Iδ

(
α+ H

2

)
g(s, 0)2 ds− β

∫
Iδ

g(s, δ)2 ds

>
∫
Iδ

∫ δ

0

(
E1(LN )f(s)2ψ(t)2 + E2(LN )z(s, t)2

)
dtds

= E1(LN )‖f‖2L2(Iδ) + E2(LN )‖z‖2L2(Πδ),

an using the second equality in (5.19) we also have∫
Iδ

∫ δ

0
g2
s dtds = ‖f ′‖2L2(Iδ) + ‖zs‖2L2(Πδ) > ‖f

′‖2L2(Iδ).

Therefore,

B−[g, g] > (1− b0δ)‖f ′‖2L2(Iδ) +
(
E1(LN )− H2

4 − b0δ
)
‖f‖2L2(Iδ)

+
(
E2(LN )− H2

4 − b0δ
)
‖z‖2L2(Πδ).

Using Proposition 2.9 in order to estimate the eigenvalues of LN one has
then, with a suitable a0 > 0,

E1(LN )− H2

4 − b0δ = −
(
α+ H

2

)2
− a0α

2e−αδ − H2

4 − b0δ

> −α2 − αH − H2

2 − a1
(
δ + α2e−αδ),

a1 := max{a0, b0},

E2(LN )− H2

4 − b0δ >
1
δ2 −

H2

4 − b0δ > 0,

and then

B−[g, g] > (1− b0δ)‖f ′‖2L2(Iδ) −
(
α2 + αH + H2

2

)
‖f‖2L2(Iδ)

− a1
(
δ + α2e−αδ)‖f‖2L2(Iδ).

Hence, one arrives at the sought inequality (5.17) by taking b :=max{b0, a1}.
To prove the lower bound (5.18) it remains to use the inequality ‖f‖L2(Iδ) 6
‖u‖L2(Wδ). �

As in the straight case we will obtain the sought lower bound for the
eigenvalues EK+n(RΩ

α) with the help of the Proposition 2.3 by construct-
ing a suitable identification map. Nevertheless, the construction involves a
number of new components, so we prefer to give a sketch.
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Proposition 5.16. — Under the assumptions (5.7) and (5.14) and for
any fixed n ∈ N one has, as α→ +∞,

EK+n(RΩ
α) > −α2 −H∗α−

H2
∗

2 + En

( ⊕
j∈J∗

Dj

)
+O

(
logα√
α

)
.

Proof. — With the above preparations and with a suitable redefinition of
the main objects, the proof becomes almost identical to the one of Proposi-
tion 4.6. We are not giving all details, but just introducing the main objects
and identifying the main steps.

Assume first that δ satisfies (5.8) and consider the Hilbert spaces

H := the orthogonal complement of L in L2(Ω), H′ :=
⊕
j∈J∗

L2(Ij,δ).

During the proof for u ∈ H we denote

vj := the restriction of u to Vj,δ, ‖vj‖ := ‖vj‖L2(Vj,δ),

wj := the restriction of u to Wj,δ, ‖wj‖ := ‖wj‖L2(Wj,δ),

uc := the restriction of u to Ωcδ, ‖uc‖ := ‖uc‖L2(Ωc
δ
),

and remark that due to the constructions and the equality (4.2) we have

(5.20)
M∑
j=1

∫
∂extVj,δ

v2
j ds =

M∑
j=1

∫
∂extWj,δ

w2
j ds.

Applying Lemma 5.7 with A := −Hj we obtain, with some b > 0 and c > 0,
the inequalities

‖vj‖2 6 bδ2(NV
j [vj , vj ] + (α2 +Hjα)‖vj‖2

)
+ bα2δ2e−cαδ‖u‖2,∫

∂extVj,δ

v2
j ds 6 bαδ2(NV

j [vj , vj ] + (α2 +Hjα)‖vj‖2
)

+ bα3δ2e−cαδ‖u‖2.

Furthermore, by applying Lemma 5.15 to eachWj,δ we conclude that there
are functions ψj ∈ L2(0, δ) with ‖ψj‖2L2(0,δ) = 1 such that if one defines

Pj : H → L2(Ij,δ), (Pju)(s) :=
∫ δ

0
ψj(t)

√
1−Hjt wj

(
Φj(s, t)

)
dt,

then, with some b1 > 0,

NW
j [wj , wj ] > −

(
α2 + αHj +

H2
j

2

)
‖Pju‖2 +

(
1− b1δ

)∥∥(Pju)′
∥∥2

− b1
(
δ + α2e−cαδ

)
‖Pju‖2,
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and we recall that, using the Cauchy–Schwarz inequality and ‖ψj‖L2(0,δ) =1,

(5.21) ‖Pju‖2 =
∫
Ij,δ

(∫ δ

0
ψ(t)

√
1−Hjt wj

(
Φj(s, t)

)
dt
)2

ds

6
∫
Ij,δ

∫ δ

0
(1−Hjt)wj

(
Φj(s, t)

)2 dtds =
∫
Wj,δ

w2
j dx = ‖wj‖2.

Now let us set δ := (c′ logα)/α with c′ > 3/c, then the conditions (5.8)
for the choice of δ are satisfied, and α2e−cαδ = o(δ), which implies
α2δ2e−cαδ = o(δ3) and α3δ2e−cαδ = o(αδ3). This simplifies the remain-
ders in the above inequalities, and one can pick a sufficiently large a > 0
such that, for the same choice of ψj ,

‖vj‖2 6
a log2 α

α2

(
NV
j [vj , vj ] + (α2 +Hjα)‖vj‖2

)
+ a log3 α

α3 ‖u‖2,∫
∂extVj,δ

v2
j ds 6 a log2 α

α

(
NV
j [vj , vj ] + (α2 +Hjα)‖vj‖2

)
+ a log3 α

α2 ‖u‖2,

NW
j [wj , wj ] > −

(
α2 + αHj +

H2
j

2

)
‖Pju‖2 +

(
1− a logα

α

)∥∥(Pju)′
∥∥2

− a logα
α

‖Pju‖2.

Consider the self-adjoint operators

B := RΩ
α +

(
α2 + αH∗ + H2

∗
2

)
+ (M + a) logα

α

viewed as an operator in H,

B′ :=
⊕
j∈J∗

Dj,δ in H′,

with Q(B) = H1(Ω)∩H and Q(B′) =
⊕

j∈J∗ H
1
0 (Ij,δ). By combining the

preceding estimates as in the proof of Proposition 4.6 one arrives at the
estimate

(5.22) B[u, u] > α2

2a log2 α

M∑
j=1
‖vj‖2 + α

2a log2 α

M∑
j=1

∫
∂extVj,δ

v2
j ds

+ a0α
∑
j /∈J∗

‖Pju‖2 +
(

1− a logα
α

) ∑
j∈J∗

∥∥(Pju)′
∥∥2

+ α2

2

M∑
j=1

(
‖wj‖2 − ‖Pju‖2

)
+ α2

2 ‖uc‖
2;
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the new summand
∑
j /∈J∗ ‖Pju‖

2 is due to the modified definition of B′.
Each term on the right-hand side is non-negative and, hence, the left-hand
side is an upper bound for each term on the right-hand side. It also implies
that B is positive and then

E1(B) ≡ EK+1(RΩ
α) +

(
α2 + αH∗ + H2

∗
2

)
+ (M + a) logα

α
> 0.

By combining with Proposition 5.14 we see that for any fixed n ∈ N one
can choose λn > 0 which is independent of α and such that

(5.23) 0 6 En(B) 6 λn,
(
1 + En(B)

)−1
> (1 + λn)−1.

In order to construct a suitable identification map J : Q(B) → Q(B′)
we pick functions ρ±j ∈ C1([0, `j ]) such that

ρ+
j =

{
1 in a neighborhood of 0,
0 in a neighborhood of `j ,

j ∈ J∗,

ρ−j =
{

0 in a neighborhood of 0,
1 in a neighborhood of `j ,

j ∈ J∗,

and then choose a constant ρ0 > 0 such that

(5.24) ‖ρ±j ‖L∞(0,`j) + ‖(ρ±j )′‖L∞(0,`j) 6 ρ0 for all j ∈ J∗.

We have Ij,δ :=
(
λ+
j (δ), `j − λ−j+1(δ)

)
=: (ιj , τj), and that due to λ±j (δ) =

O(δ) we have ιj = O(δ) and τj = `j +O(δ), hence,

ρ+(ιj) = 1, ρ+(τj) = 0, ρ−(ιj) = 0, ρ−(τj) = 1

as α is sufficiently large. Therefore, the following map is well-defined:

J : Q(B)→ Q(B′) ≡
⊕
j∈J∗

H1
0 (Ij,δ), Ju = (Jju),

(Jju)(s) := (Pju)(s)− (Pju)(ιj)ρ+
j (s)− (Pju)(τj)ρ−j (s)
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For large α one has 1−Hjt 6 2 for t ∈ (0, δ), therefore, by Cauchy–Schwarz,

(5.25)
∣∣Pju(ιj)

∣∣2 +
∣∣Pju(τj)

∣∣2
=
(∫ δ

0
ψj(t)

√
1−Hjt wj

(
Φj(ιj , t)

)
dt
)2

+
(∫ δ

0
ψj(t)

√
1−Hjt wj

(
Φj(τj , t)

)
dt
)2

6
∫ δ

0
(1−Hjt)wj

(
Φj(ιj , t)

)2 dt+
∫ δ

0
(1−Hjt)wj

(
Φj(τj , t)

)2 dt

6 2
(∫ δ

0
wj
(
Φj(ιj , t)

)2 dt+
∫ δ

0
wj
(
Φj(τj , t)

)2 dt
)

≡ 2
∫
∂extWj,δ

w2
j ds.

Using (x+ y)2 > (1− ε)x2 − y2/ε for any x, y ∈ R and ε > 0 we estimate

‖Jju‖2 =
∫
Ij,δ

∣∣∣(Pju)(s)− (Pju)(ιj)ρ+
j (s)− (Pju)(τj)ρ−j (s)

∣∣∣2 ds

> (1− ε)
∫
Ij,δ

∣∣∣(Pju)(s)
∣∣∣2 ds

− 1
ε

∫
Ij,δ

∣∣∣(Pju)(ιj)ρ+
j (s) + (Pju)(τj)ρ−j (s)

∣∣∣2 ds.

Using (5.25) and the constant ρ0 from (5.24) we have∫
Ij,δ

∣∣∣(Pju)(ιj)ρ+
j (s) + (Pju)(τj)ρ−j (s)

∣∣∣2 ds 6 4`jρ2
0

∫
∂extWj,δ

w2
j ds,

‖Jju‖2 > (1− ε)‖Pju‖2 −
4`ρ2

0
ε

∫
∂extWj,δ

w2
j ds, ` := max

j∈J∗
`j .

Therefore, using (5.22),

‖u‖2 − ‖Ju‖2 6
M∑
j=1
‖vj‖2 +

M∑
j=1

(
‖wj‖2 − ‖Pju‖2

)
+
∑
j /∈J∗

‖Pju‖2

+ ε‖u‖2 + 4`ρ2
0

ε

M∑
j=1

∫
∂extVj,δ

v2
j ds+ ‖uc‖2

6

(
2a log2 α

α2 + 4
α2 + 1

a0α
+ 8`ρ2

0a log2 α

εα

)
B[u, u] + ε‖u‖2.
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Taking ε := logα/
√
α and choosing c1 > 0 sufficiently large we obtain

(5.26) ‖u‖2 − ‖Ju‖2 6 c1 logα√
α

(
B[u, u] + ‖u‖2

)
.

To study the difference B′[Ju, Ju] − B[u, u] recall that B′[Ju, Ju] =∑
j∈J∗ ‖(Jju)′‖2. Using the elementary inequality (x + y)2 6 (1 + ε)x2 +

2y2/ε valid for all x, y ∈ R and ε ∈ (0, 1) we estimate∥∥(Jju)′
∥∥2 =

∫
Ij,δ

∣∣∣(Pju)′(s)− (Pju)(ιj)(ρ+
j )′(s)− (Pju)(τj)(ρ−j )′(s)

∣∣∣2 ds

6 (1 + ε)
∫
Ij,δ

∣∣∣(Pju)′(s)
∣∣∣2 ds

+ 2
ε

∫
Ij,δ

∣∣∣(Pju)(ιj)(ρ+
j )′(s) + (Pju)(τj)(ρ−j )′(s)

∣∣∣2 ds.

Using the estimate (5.25) for the last term and the constant ρ0 from (5.24)
we have∫

Ij,δ

∣∣∣(Pju)(ιj)(ρ+
j )′(s) + (Pju)(τj)(ρ−j )′(s)

∣∣∣2 ds 6 4`ρ2
0

∫
∂extWj,δ

w2
j ds,

B′[Ju, Ju] 6 (1 + ε)
∑
j∈J∗

∥∥(Pju)′
∥∥2 + 8`ρ2

0
ε

∑
j∈J∗

∫
∂extWj,δ

w2
j ds

6 (1 + ε)
∑
j∈J∗

∥∥(Pju)′
∥∥2 + 8`ρ2

0
ε

M∑
j=1

∫
∂extWj,δ

w2
j ds.

Recall that due to (5.22) we have

B[u, u] >
(

1− a logα
α

) ∑
j∈J∗

∥∥(Pju)′
∥∥2
,

B[u, u] > α

2a log2 α

M∑
j=1

∫
∂extVj,δ

v2
j ds ≡ α

2a log2 α

M∑
j=1

∫
∂extWj,δ

w2
j ds,

where we used (5.20) on the last step. Therefore,

B′[Ju, Ju]−B[u, u] 6
(
ε+ a logα

α

) ∑
j∈J∗

∥∥(Pju)′
∥∥2

+ 8`ρ2
0

ε

M∑
j=1

∫
∂extWj,δ

w2
j ds

6

(
ε+ a logα

α

1− a logα
α

+ 8`ρ2
0

ε
· 2a log2 α

α

)
B[u, u].
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By setting ε = logα/
√
α and choosing c2 > 0 sufficiently large we arrive at

(5.27) B′[Ju, Ju]−B[u, u] 6 c2 logα√
α

B[u, u] 6 c2 logα√
α

(
B[u, u] + ‖u‖2

)
.

In virtue of (5.26) and (5.27) we can apply Proposition 2.3. Remark that for
each fixed n the assumption ε1 < 1/

(
1 +En(B)

)
is satisfied due to (5.23).

Hence, for each fixed n there holds

En

( ⊕
j∈J∗

Dj,δ

)
≡ En(B′) 6 En(B) + logα√

α

(
c1En(B) + c2

)(
1 + En(B)

)
1− c1

(
1 + En(B)

)
logα/

√
α
.

By (5.23) we have En(B) = O(1) for each fixed n, and the preceding
inequality implies

EK+n(RΩ
α) > −α2 − αH∗ −

H2
∗

2 + En

( ⊕
j∈J∗

Dj,δ

)
+O

(
logα√
α

)
.

It remains to remark that En
(⊕

j∈J∗ Dj,δ

)
= En

(⊕
j∈J∗ Dj

)
+O(δ), while

δ = (c′ logα)/α = o
( logα√

α

)
. �

The combination of Propositions 5.14 and 5.16 gives Theorem 1.5.

6. Concluding remarks

6.1. Resonant angles: equilateral triangle

As already mentioned in the introduction, we are going to show that
there are some angles which do not satisfy the non-resonance condition.
This will be done in an indirect way. First, remark that if Ω is a convex
polygon (with straight sides) with non-resonant vertices, K corner-induced
eigenvalues, and side lengths `j , then

(6.1) lim
α→+∞

(
EK+1(RΩ

α) + α2) = E1

(
M⊕
j=1

Dj

)
≡ π2/`2 > 0,

where Dj is the Dirichlet Laplacian on (0, `j) and ` := max `j . Let us show
that this can be violated for some particular polygons Ω and lead to a
different eigenvalue asymptotics.
The paper by McCartin [46] contains a detailed analysis of the operator

RΩ
α for the case when Ω is an equilateral triangle using a separation of

variables in a suitably chosen coordinate system. To be more precise, we
assume that the side length of the triangle is 1. Let us give a short account
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of the results of [46] concerning the behavior of the eigenvalues as α→ +∞
(which corresponds to σ → −∞ in the reference).
One constructs first a complete orthogonal system of eigenfunctions,

noted Tm,ns with n > m > 0 and Tm,na with n > m > 0 and m,n ∈ N∪{0},
and RΩ

αT
m,n
◦ = Eα(m,n)Tm,n◦ for ◦ ∈ {s, a}, i.e. Tm,ns and Tm,na share the

same eigenvalue for n > m. It is then shown that Eα(m,n) > 0 for m > 2,
therefore, only m ∈ {0, 1} contribute to the negative spectrum. One shows
then the following asymptotics for α → +∞ (we cite the respective equa-
tions in Subsection 7.2 of [46]):

Eα(0, 0) = −4α2 + o(1), Eq. (37),

Eα(0, 1) = −4α2 + o(1), Eq. (50),

Eα(0, n) = −α2 + 4
27

[
π

r

(
n− 3

2

)]2
+ o(1) for n > 2, Eq. (53),

Eα(1, 1) = −α2 + o(1), Eq. (67),

Eα(1, n) = −α2 + 4
27

[
π

r
(n− 1)

]2
+ o(1) for n > 2, Eq. (80),

where r := 1/(2
√

3) is the inradius. The eigenvalues Eα(0, 0) and Eα(0, 1)
(twice) are corner-induced: the half-angle at each corner is π/6, and
κ(π/6) = 1 (see Subsection 2.6), hence K = 3 (we remark that a more
precise remainder for the first three eigenvalues was obtained in [32]). Fur-
thermore, by inspecting the above expressions and by taking into account
the multiplicities one sees that for any fixed n ∈ N one has the asymptotics
EK+n(RΩ

α) = −α2 + zn + o(1), where zn is the nth element (when enumer-
ated in the non-decreasing order) of the multiset Z :=

{(
2πm/3

)2 : m ∈
Z
}
. In particular, one has z1 = 0 and EK+1(RΩ) = −α2 + o(1), which is in

contradiction to (6.1). Hence, the half-angle π/6 is resonant. In fact, in the
above multiset Z one easily recognizes the spectrum of the Laplacian on a
circle of length 3, i.e. on the three sides of the triangles glued to each other
without any obstacle at the vertices. This operator can be then viewed as
the effective operator on the boundary.
We remark that the text of the paper [46] is included into McCartin’s

book [47] as Chapter 7, but due to a typesetting error some of the im-
portant formulas are missing on page 105 of [47], which complicates the
understanding of the eigenvalue asymptotics. An interested reader should
better refer to the original paper [46] for full details.
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6.2. Variable curvature

By analogy with the works on smooth domains, see e.g. [57] one might
expect the following asymptotics to be valid for general curvilinear polygons
(i.e. without assuming that Hj are constant): if all corners are concave or
convex non-resonant, then EK+n(RΩ

α) = −α2 +En
(⊕

j(Dj−αHj)
)

+r(α)
with a suitable error term r(α). Some steps of the above scheme are still
easily transferable, but the whole machinery appears to fail when trying to
prove the lower bound. The main obstacles, when projected to the proof of
Proposition 5.16, are that the eigenvalues of the comparison operator B′ =⊕

j(Dj−αHj)+αH∗+ρ(α) with suitably chosen constants ρ(α) and H∗ :=
maxj maxHj , may become infinitely large for large α, and much smaller
value of εj are needed to satisfy the initial assumption of Proposition 2.3
and to have a non-trivial resulting estimate. In a sense, the machinery we
use implicitly aims at showing that the eigenfunctions are suitably small
near vertices by controlling their norms and traces using the values in the
rest of the domain (Lemma 4.5 and 5.7). For non-constant curvatures, the
eigenfunctions are localized near the points of maximal curvature, similarly
as in the smooth case [30]. In particular, if the curvature takes its maximum
at one of the corners, then the respective eigenfunctions should be localized
near the corner, so the strategy of showing that it asymptotically vanishes
at the corners (which then gives an effective operator with the Dirichlet
boundary conditions) becomes contradictory. One might expect that a more
precise analysis in this case can be done under explicit hypotheses on the
curvatures (e.g. an isolated maximum at a corner) by showing first some
semiclassical localization properties for the eigenfunctions, which might be
a task of a higher complexity.

6.3. Resonance and non-resonance conditions

Our non-resonance condition introduced in Definition 3.9 and used in the
proof is a slightly naive adaptation of a condition appearing in the spectral
analysis of Laplacians on domain collapsing onto a graph. The topic is
presented in a systematic way e.g. in the papers by Grieser [26], Molchanov
and Vainberg [48], and in the monograph by Post [59]. Let us recall some
basic notions of the theory, mostly following the short presentation given
in the paper [55] by Pankrashkin.

Let d > 2 and ω ⊂ Rd−1 be a bounded connected Lipschitz domain.
We denote by µ the first Dirichlet eigenvalue of ω. By a star waveguide
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Figure 6.1. Star waveguide Λ with two branches and a dark-shaded center.

we mean a connected Lipschitz domain Λ ⊂ Rd for which one can find
n non-intersecting half-infinite cylinders B1, . . . , Bn ⊂ Λ, all isometric to
(0,∞) × ω, such that Λ coincides with the union B1 ∪ . . .∪Bn outside a
compact set, see Figure 6.1. The cylinders Bj will be called branches, the
connected bounded domain C := Λ \ B1 ∪ . . .∪Bn will be called center,
which is also assumed Lipschitz. We call such a domain Λ a star waveguide.
Remark that centers of star waveguides are not defined uniquely: one can
attach finite pieces of Bj to a given center to obtain a new center.
For small ε > 0, let Ωε ⊂ Rd be a domain composed of finite cylinders

Bj,ε isometric to Ij × (εω) with Ij := (0, `j), `j > 0, j ∈ {1, . . . , J},
connected to each other through some bounded Lipschitz domains Ck,ε,
see Figure 6.2(a). In the context of the problem, it is natural to refer to
Bj,ε as to edges and to Ck,ε as to vertices. We assume that the vertices Ck,ε
are isometric to εCk with some ε-independent domains Ck, k ∈ {1, . . . ,K},
and that if one considers a vertex Ck,ε and extends the attached cylindrical
edges to infinity, then one obtains a domain isometric to εΛk with some
ε-independent star waveguide Λk having Ck as its center.
In various applications one is interested in the eigenvalues of the Dirichlet

laplacian −∆Ωε
D in Ωε as ε→ 0+. As the domain Ωε collapses onto its one-

dimensional skeleton X composed from the segments Ij coupled at the
vertices, see Figure 6.2(b), it is natural to expect that the behavior of the
eigenvalues should be determined by an effective operator associated with
X. The results of [26, Theorems 2 and 3] can be summarized informally

(a) (b)

Figure 6.2. (a) An example of a domain Ωε with dark shaded vertices.
(b) The associated one-dimensional skeleton X.
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as follows. Consider the Dirichlet Laplacians −∆Λk
D in the star waveguides

Λk associated with each vertex as described above: the spectrum consists
of the essential part [µ,+∞) and of discrete eigenvalues Ej(−∆Λk

D ), j ∈
{1, . . . , N(Λk)}, k ∈ {1, . . . ,K}. Then with someN > N(Λ1)+· · ·+N(ΛK),
an ∈ (0, µ] and b > 0 there holds, as ε→ 0+:

• for n ∈ {1, . . . , N} there holds En(−∆Ωε
D ) = an/ε

2 +O(e−b/ε),
• for any fixed n ∈ N there holds EN+n(−∆Ωε

D ) = µ/ε2 + En(L) +
O(ε), where L is a self-adjoint operator in L2(X) '

⊕J
j=1 L

2(0, `j)
acting as (fj) 7→ (−f ′′j ) with suitable self-adjoint boundary condi-
tions determined by the scattering matrices of −∆Λk

D at the thresh-
old energy µ (see e.g. the paper [28] by Guiloppé for the definition
and properties of the scattering matrices).

The operator L, which is the so-called quantum graph laplacian on X

(see the monograph [6] by Berkolaiko and Kuchment for an introduction
and a review), represents the sought “effective operator” on X, and the
associated boundary conditions describe the way how the branches of the
network interact through the vertices in the limit ε→ 0. At the same time,
finding explicitly the boundary condition in the general case represents a
very difficult task.
The above general construction admits an important particular case,

which can be formulated in simpler terms. One says that a star waveguide Λ
admits a threshold resonance if there exists a non-zero function Φ ∈ L∞(Λ)
satisfying −∆Φ = µΦ in Λ and Φ = 0 at ∂Λ, then the following result
holds [26, Section 8]:

Proposition 6.1. — Assume that none of Λk admits a threshold reso-
nance, then for ε→ 0+ the following asymptotics are valid:

• Denote N := N(Λ1)+ · · ·+N(ΛK) and let a1, . . . , aN be the family
of the eigenvalues Ej(−∆Λk

D ), j ∈ {1, . . . , N(Λk)}, k ∈ {1, . . . ,K},
enumerated in the non-decreasing order, then for n ∈ {1, . . . , N}
one has En(−∆Ωε

D ) = an/ε
2 +O(e−b/ε), with some b > 0,

• For any fixed n > 1 there holds

EN+n(−∆Ωε
D ) = µ/ε2 + Ej

(
J⊕
j=1

Dj

)
+O(ε)

with Dj being the Dirichlet Laplacians on (0, `j).

In other word, in the absence of threshold resonances the effective op-
erator L is decoupled and corresponds to the Dirichlet boundary condi-
tions at the vertices. In view of this result, it is important to be able to
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identify if star waveguides admits no threshold resonance. The following
sufficient condition was obtained in [55], which was in turn motivated by
the analysis of particular configurations carried out by Bakharev, Nazarov,
Matveenko [2], Nazarov [49, 50], Nazarov, Ruotsalainen, Uusitalo [51]. For
a star waveguide Λ with a center C we denote by −∆C

DN the Laplacian
in C with the Dirichlet boundary condition of ∂C ∩ ∂Λ and the Neumann
boundary condition at the remaining boundary, then if for some center C
one has the strict inequality

(6.2) EN(Λ)+1(−∆C
DN ) > µ,

then Λ has no threshold resonance. In the recent preprint [3] Bakharev and
Nazarov prove that the condition (6.2) for some center C is also necessary
for the absence of threshold resonance (hence, it is a necessary and sufficient
condition).
By comparing Proposition 6.1 with our main Theorem 1.1 one sees that

role of the star waveguides attached to the vertices is quite similar to the
role of the infinite sectors for the Robin laplacians. In fact our condition
of non-resonance (Definition 3.9) is a translation of the condition (6.2)
into the framework of Robin sectors. Namely, one may rewrite (6.2) using
the center εC of the scaled waveguide εΛ as EN(Λ)+1(−∆εC

DN ) = µ/ε2 +
c/ε2 with c := EN(Λ)+1(−∆C

DN ) − µ > 0 and remark that µ/ε2 is the
bottom of the essential spectrum of the Dirichlet laplacian on εΛ. This
should be compared with the scaled form of the non-resonance condition
Eκ(θ)+1(Nδ

θ,α) > −α2 + c/δ2, c > 0, as αδ is large, by noting that −α2

is the bottom of the spectrum of the α-Robin laplacian in the infinite
sector. We also remark that the result of Proposition 6.1 was obtained
earlier by Post [58] under the assumption that each Λk admits a center
Ck such that E1(−∆Ck

DN ) > µ, which is exactly the condition (6.2) for
N(Λ) = 0. In fact, the final steps of our proof (especially the construction
of the identification map J) are an adaption of those from [58]. In view of
the preceding analogies with the waveguides, it would be interesting to find
alternative reformulations of our non-resonance condition e.g. in terms of
generalized eigenfunctions at the bottom of the essential spectrum, which
might help to extend our result to a larger range of angles. It would also be
of interest to understand the eigenvalue asymptotics for general angles (i.e.
without assuming that the angles are non-resonant), which might involve
a development of the scattering theory in infinite sectors similar to the one
for waveguides.
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Appendix A. Some geometric constructions in curvilinear
sectors

Let us introduce a geometric setting which will be used throughout the
whole section.

Let Γ± be two C3 curves meeting at a point at an angle 2θ ∈ (0, π).
In this section we would like to construct some neighborhoods and cut-off
functions near the intersection point. More precisely, let s∗ > 0 and γ± :
[−s∗, s∗] → R2 be the arc length parametrizations of Γ±, i.e. both γ± are
injective C3 functions with |γ′±| = 1 and Γ± = γ±

(
[−s∗, s∗]

)
. By applying

suitable rotations and translations we assume without loss of generality
that

(A.1) γ±(0) = (0, 0), γ′±(0) = (cos θ,± sin θ), θ ∈
(

0, π2

)
.

In view of the above assumptions, near the point (0, 0) the curves Γ± are
the graphs of C3 functions F± with ±F+(t) > ±F−(t) for ±t > 0, and we
will be interested in some constructions in the curvilinear sector

U :=
{

(x1, x2) : 0 < x1 < b, F−(x1) < x2 < F+(x1)
}
, b > 0,

see Figure A.1. For subsequent use we also introduce unit normal vectors
n±(s) to Γ± at γ±(s) which depend smoothly on s and point to the outside
of U for small s. In particular, one has then n±(0) = (− sin θ,± cos θ).
As n± are unit vectors, one has n′±(s) = k±(s)γ′±(s), where k± are C1

functions (which coincide up to the sign with the algebraic curvatures on
Γ±), and γ′±(s) ∧ n±(s) ≡ ±1.

Figure A.1. The curves Γ± and the curvilinear sector U . The thin
dotted lines correspond to the tangents to Γ± at the origin.
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Lemma A.1. — There exist t1 > 0 and a C2 smooth function Y :
(−t1, t1) → R2 such that for t ∈ (0, t1) the point Y (t) is the unique point
of U which is at the distance t from both Γ+ and Γ−, and the points
A±(t) ∈ Γ± satisfying

∣∣A±(t) − Y (t)
∣∣ = t are uniquely defined. Further-

more, A±(t) := γ±
(
λ±(t)

)
, where λ± are C2 functions defined near 0, and

λ±(0) = 0, λ′±(0) = cotan θ, Y (0) =
(

0
0

)
, Y ′(0) = 1

sin θ

(
1
0

)
.

The resulting curve

Σ :=
{(
t, Y (t)

)
: t ∈ (−t1, t1)

}
,(A.2)

can be viewed as the curvilinear angle bisector due to its geometric prop-
erty: each point of Σ is at equal distances from the curved sides Γ±.

Proof. — For t0 > 0 and s0 ∈ (0, s∗) consider the maps (see Figure A.2)

Φ± : (−s0, s0)× (−t0, t0)→ R2, Φ±(s, t) = γ±(s)− tn±(s).

It is a well known result from the differential geometry that Φ± are injective
for t0 > 0 small enough, and that dist

(
Φ±(s, t),Γ±

)
= |t| and that they

are C2-diffeomorphisms from (−s0, s0)× (−t0, t0) to its images under Φ±.
One has

∂Φ±
∂s

(s, t) = γ′±(s)− tn′±(s) =
(
1− tk±(s)

)
γ′±(s).

Define G : (−s0, s0)× (−s0, s0)× (−t0, t0)→ R2 by

G(s+, s−, t) := Φ+(s+, t)− Φ−(s−, t),

then G(0, 0, 0) = γ+(0) − γ−(0) = (0, 0) and ∂G/∂s±(s+, s−, t) =
±
(
1− tk±(s±)

)
γ′±(s±), and the two vectors ∂G/∂s±(0, 0, 0) = ±γ′±(0) are

linearly independent. Hence, it follows by the implicit function theorem that
there exist t1 > 0 and s1 > 0 and C2 functions λ± : (−t1, t1) → (−s1, s1)

Figure A.2. The maps Φ±.
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with λ±(0) = 0 such that for (s+, s−, t) ∈ (−s1, s1)× (−s1, s1)× (−t1, t1)
one has the equivalence: G(s+, s−, t) = 0 if and only if s± = λ±(t). If
one defines a C2 function Y : (−t1, t1) → R2 by Y (t) := Φ±

(
λ±(t), t

)
,

then for any t ∈ (0, t1) the point Y (t) is the unique point of U satisfying
dist

(
Y (t),Γ±) = t, and the points A±(t) of Γ± which are the closest to

Y (t) are A±(t) = γ±
(
λ±(t)

)
. One differentiates G

(
λ+(t), λ−(t), t

)
= 0 in t

to arrive at

λ′+(t)
[
1− tk+

(
λ+(t)

)]
γ′+
(
λ+(t)

)
− λ′−(t)

[
1− tk−

(
λ−(t)

)]
γ′−
(
λ−(t)

)
−
[
n+
(
λ+(t)

)
− n−

(
λ−(t)

)]
= 0.

For t = 0 one has λ′+(0)γ′+(0)− λ′−(0)γ′−(0) = n+(0)− n−(0), i.e.(
cos θ − cos θ
sin θ sin θ

)(
λ′+(0)
λ′−(0)

)
=
(

0
2 cos θ

)
,

which gives(
λ′+(0)
λ′−(0)

)
= 1

2 sin θ cos θ

(
sin θ cos θ
− sin θ cos θ

)(
0

2 cos θ

)
=
(

cotan θ
cotan θ

)
.

Then

Y ′(t) = d
dt Φ+

(
λ+(t), t

)
= λ′+(t)

[
1− tk+

(
λ+(t)

)]
γ′+
(
λ+(t)

)
− n+

(
λ+(t)

)
,

Y ′(0) = λ′+(0)γ′+(0)− n+(0)

= cotan θ
(

cos θ
sin θ

)
−
(
− sin θ
cos θ

)
= 1

sin θ

(
1
0

)
. �

Using the objects defined in Lemma A.1 we introduce the following
sets Vt:

Figure A.3. Construction of the domain Vt
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Figure A.4. Parametrization with the arc-length. The unit vectors m±
are orthogonal to the boundary. The arrows indicate the length of the
corresponding arcs. For small σ one has ρ(σ) = σ sin θ + O(σ2) and
s±(σ) = σ cos θ +O(σ2).

Definition A.2. — For t ∈ (0, t1) denote by Vt the interior of the
curvilinear quadrangle bounded by the pieces of Γ± enclosed between the
points (0, 0) and A±(t) and by the straight line segments connecting Y (t)
to A±(t). We refer to Figure A.3 for an illustration. One will distinguish
between two parts of its boundary, i.e. one denotes

∂∗Vt := ∂Vt ∩ (Γ+ ∪Γ−), and ∂extVt := ∂Vt \ ∂∗Vt.

Then, we would like to “straighten” Vt in a controlable way in order to
obtain a truncated curvilinear sector Srθ (see Definition 3.1).

Lemma A.3. — There is a bi-Lipschitz map Φ between two neighbor-
hoods of the origin with Φ′(x) = I2 + O

(
|x|
)
for x → 0 and a C2 smooth

function r defined near 0 with r(0) = 0 and r′(0) = cotan θ such that
Φ(Sr(t)θ ) = Vt, Φ(∂∗Sr(t)θ ) = ∂∗Vt and Φ(∂extSr(t)θ ) = ∂extVt for all suffi-
ciently small t > 0.

Proof. — Without loss of generality we may assume that t1 > 0 is suf-
ficiently small such that Y ′(t) 6= 0 for t ∈ [−t1, t1]. Let us introduce an
arc-length parametrization of the curvilinear angle bisector Σ introduced
in (A.2): consider the function σ with σ(0) = 0 and σ′ = |Y ′|, i.e. σ(t) is the
length of Y

(
[0, t]

)
. One has σ′(0) =

∣∣Y ′(0)
∣∣ = 1/ sin θ and σ′ = |Y ′| > 0 on

[−t1, t1]. Hence, σ : [−t1, t1]→ [−σ−, σ+] is a C2 diffeomorphism for some
σ± > 0. Denote by ρ : [−σ−, σ+]→ [−t1, t1] its inverse, which is then also
C2 and satisfies ρ(0) = 0 and ρ′(0) = 1/σ′(0) = sin θ. Finally, let us pick
a small δ > 0 and define ε := Y ◦ ρ : (−δ, δ) → R2, then one has |ε′| = 1,
ε′(0) = (1, 0)T , and Y

(
[0, t]

)
= ε
([

0, σ(t)
])

for small t > 0, i.e. ε is an arc-
length parametrization of Σ near the origin. By construction, the point ε(σ)
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is then the unique point of U with dist
(
ε(σ),Γ±

)
= ρ(σ), and for small σ

one has ρ(σ) = σ sin θ+O(σ2). Furthermore, if one sets s±(σ) := λ±
(
ρ(σ)

)
,

then s±(·) are C2 functions with s′±(0) = λ′±(0)ρ′(0) = cos θ, and the points
B±(σ) := γ±

(
s±(σ)

)
of Γ± are the closest to ε(σ). We also reparametrize

the normal vectors to Γ± by setting m±(σ) := n±
(
s±(σ)

)
, then one has

B±(σ) = ε(σ) + ρ(σ)m±(σ). The above constructions are illustrated in
Figure A.4.
For the C2 maps Ψ± : (σ, τ) 7→ ε(σ) + τm±(σ) one has Ψ±(0, 0) = (0, 0)

and

Ψ′±(0, 0) =
(
∂Ψ±
∂σ (0, 0) ∂Ψ±

∂τ (0, 0)
)

=
(
ε′(0) m±(0)

)
=
(

1 − sin θ
0 ± cos θ

)
,

i.e. the Jacobian matrix Ψ′±(0, 0) is invertible. Therefore, the maps Ψ± are
diffeomorphisms between suitable neighborhoods of the origin. Further-
more, if for t > 0 one introduces the curvilinear triangles Λt :=

{
(σ, τ) :

0 < σ < σ(t), 0 < τ < ρ(σ)
}
, then the image Ψ±(Λt) is exactly

the closure of the upper/lower V ±t part of Vt, i.e. of the part of Vt ly-
ing above/below Σ, and Ψ+( · , 0) = Ψ−( · , 0). We now use this obser-
vation to construct a map Φ with the sought properties. Namely, in ad-
dition to the above curvilinear triangles Λt let us consider its “straight-
ened” version Lt =

{
(σ, τ) : 0 < σ < σ(t), 0 < τ < σ sin θ

}
. ob-

tained by replacing ρ through its linear approximation at 0. The map
H : (σ, τ) 7→

(
σ, ρ(σ)τ/(σ sin θ)

)
satisfies then H ′(0, 0) = I2, hence, it

is a diffeomorphism between suitable neighborhoods of the origin, and for
sufficiently small t > 0 it is bijective from Lt to Λt.
Now let us consider the truncated sector St := Sσ(t) cos θ

θ and their up-
per/lower parts S±t := St ∩{(x1, x2) : ±x2 > 0}. One easily sees that the

Figure A.5. The maps Ψ±, H and G± in the proof of Lemma A.3.
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maps

G± : R2 → R2, (σ, τ) 7→ σ

(
1
0

)
+ τ

(
− sin θ
± cos θ

)
are diffeomorphisms, and S±t = G±(Lt) for small t > 0, and the inverses
are given by

G−1
± (x1, x2) =

(
1 ± tan θ
0 ± 1

cos θ

)(
x1
x2

)
.

We refer to Figure A.5 for a graphical representation of the above maps.
Now let us define Φ by Φ(x1, x2) = Ψ± ◦H ◦ G−1

± (x1, x2) for ±x2 > 0,
which then extends by continuity to x2 = 0 due to

Ψ± ◦H ◦G−1
± (x1, 0) = Ψ± ◦H(x1, 0) = Ψ±(x1, 0) = ε(x1).

By construction, the map Φ is C2 on {±x2 > 0} and continuous along x2 =
0, hence it is Lipschitz. Furthermore, by construction it defines bijections
S±t → V ±t , St → Vt as well as ∂∗St → ∂∗Vt and ∂extSt → ∂extVt. To
estimate the Jacobian matrix Φ′ we compute

(Ψ± ◦H ◦G−1
± )′(0, 0) = Ψ′±(0, 0)H ′(0, 0)(G−1

± )′(0, 0)

=
(

1 − sin θ
0 ± cos θ

)(
1 0
0 1

)(
1 ± tan θ
0 ± 1

cos θ

)
=
(

1 0
0 1

)
.

As Φ± are C1, it follows that Φ′± = I2 + O(t) in Vt, which shows the
requested property for Φ′. As Φ−1

± are C1 near the origin and Φ−1 is con-
tinuous by construction, it follows that Φ−1 is Lipschitz, therefore, the map
Φ is bi-Lipschitz. Hence, we obtain the claim with r(t) = σ(t) cos θ, and
r′(0) = σ′(0) cos θ = cotan θ. �

For later references we mention explicitly the following corollary, which
is quite obvious from the geometric point of view:

Corollary A.4. — There exist 0 < a < b such that for all sufficiently
small t > 0 there holds |x| < bt for x ∈ Vt, and |x| > at for x ∈ Vs \ Vt and
s > t.

Proof. — Let us use a map Φ and a function r as in Lemma A.3. Remark
first that

(A.3)
|y| < r

cos θ for y ∈ Srθ and r > 0,

|y| > r for y ∈ SRθ \ Srθ and R > r > 0.

As v ∈ Vt iff v = Φ(y) with y ∈ Sr(t)θ and r(t) = O(t), by applying the
Taylor expansion of Φ near the origin one obtains 1

2 |y| 6 |v| 6 2|y|. Using
the estimates (A.3) one arrives at the result. �
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We complete this subsection by a construction of cut-off functions with
some special properties:

Lemma A.5. — Let 0 < a < b, then there exist δ0 > 0, η > 0, K > 0
and C2 functions ϕδ : Vη → R with δ ∈ (0, δ0) such that:

(a) 0 6 ϕδ 6 1, and for all β ∈ N2 with 1 6 |β| 6 2 there holds
‖∂βϕδ‖∞ 6 Kδ−|β|,

(b) ϕδ = 1 in Vaδ,
(c) ϕδ = 0 in Vη \ Vbδ,
(d) the normal derivative of ϕδ at Γ± is zero.

Proof. — For small t0 > 0 and s0 > 0 consider the maps

Φ± : (−s0, s0)× (−t0, t0)→ R2, Φ±(s, t) = γ±(s)− tn±(s).

It is a well known result of differential geometry that Φ± are injective for
t0 > 0 small enough, with dist

(
Φ±( · , t),Γ±

)
= |t| for |t| < t0, and that

they are C2-diffeomorphisms from (−s0, s0)× (−t0, t0) to its images under
Φ±. Remark that one has
∂Φ±
∂s

(s, t) = γ′±(s)− tn′±(s) =
(
1− tk±(s)

)
γ′±(s), ∂Φ±

∂t
(s, t) = −n±(s),

i.e. if one writes (τ±1 , τ
±
2 ) := γ′± and (n±1 , n

±
2 ) := n±, then

Φ′±(s, t) =
((

1− tk±(s)
)
τ±1 (s) −n±1 (s)(

1− tk±(s)
)
τ±2 (s) −n±2 (s)

)
.

By choosing η > 0 sufficiently small one can then invert the maps (s, t) 7→
Φ±(s, t) near the origin in order to obtain C2 functions s± and t± on Vη.
The inverse function theorem gives

(A.4)
∇s±(x) = ± 1

1− t±(x)K±(x)

(
N±2 (x),−N±1 (x)

)
,

K± := k± ◦ s±, N±j := n±j ◦ s±.

In particular, s±(0, 0) = 0 and ∇s±(0, 0) = (cos θ,± sin θ), therefore,

s±(x1, x2) = (cos θ,± sin θ) · (x1, x2) +O(x2
1 + x2

2) for (x1, x2)→ (0, 0).

We further remark that for small s one has obviously s±
(
γ±(s)

)
= s, while

(A.5) s±
(
γ∓(s)

)
= (cos θ,± sin θ) · γ′∓(0)s+O(s2)

≡ cos(2θ) s+O(s2) for s→ 0.

Let us pick some c ∈ (a cotan θ, b cotan θ) and then a sufficiently small ε > 0
satisfying

(A.6) [c− ε, c+ ε] ⊂ (a cotan θ, b cotan θ), cos(2θ)(c+ ε) < c− ε.
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We remark that the second condition follows from the first one for θ > π
4 .

Let ψ : R → [0, 1] be a C∞ function with ψ(s) = 1 for s < c − ε and
ψ(s) = 0 for s > c + ε. For small δ > 0 we define then ϕδ : Vη → R by
ϕδ(x) = ψ

(
s+(x)/δ

)
ψ
(
s−(x)/δ

)
. Note that the property (a) is automati-

cally satisfied due to the C2 smoothness of the functions s±.
In order to see the properties (b) and (c) we first remark that due to

Lemma A.1 the definition of the domain Vt for small t can be reformulated
as Vt :=

{
x ∈ Vη : s±(x) < λ±(t)

}
, and for small δ and a fixed A > 0

one has λ±(Aδ) = Aδ cotan θ + O(δ2). In particular, for x ∈ Vaδ one has
s±(x) 6 aδ cotan θ + O(δ2) < (c − ε)δ as δ is small, which shows that
ϕδ(x) = 1 and proves the claim(b). Furthermore, for x /∈ Vbβ one of the
following two inequalities holds: s±(x) > λ±(bδ). As λ±(bδ) = bδ cotan θ+
O(δ2) > (c+ε)δ, it follows that at least one of the terms s±(x)/δ is greater
than c + ε. As ψ vanishes in (c + ε,+∞), it follows that ϕδ(x) = 0. This
proves the claim (c).
Let us finally show the property (d). For a better readability we give the

computation of the normal derivative on Γ+ only, the case of Γ− is handled
in a completely similar way. For x = γ+(s) ∈ Γ+ with s > 0 one has

∂ϕδ
∂n+

(x) = n+(s) · (∇ϕδ)
(
γ+(s)

)
= 1
δ
n+(s) ·

[
(∇s+)

(
γ+(s)

)
ψ′
(
s+
(
γ+(s)

)
δ

)
ψ

(
s−
(
γ+(s)

)
δ

)

+ (∇s−)
(
γ+(s)

)
ψ′
(
s−
(
γ+(s)

)
δ

)
ψ

(
s+
(
γ+(s)

)
δ

)]
.

By (A.4) one has (∇s+)
(
γ+(s)

)
=
(
n+

2 (s),−n+
1 (s)

)
, which gives n+(s) ·

(∇s+)
(
γ+(s)

)
= 0, and the preceding expression simplifies to

∂ϕδ
∂n+

(
γ+(s)

)
=
[

1
δ
n+(s) · (∇s−)

(
γ+(s)

)]
ψ′
(
s−
(
γ+(s)

)
δ

)
ψ
(s
δ

)
.

Let us show that the product of the last two terms is zero for small δ, i.e.
that ψ′

(
ξ(s)

)
ψ(s/δ) = 0 for ξ(s) := s−

(
γ+(s)

)
/δ. First, by construction of

ψ the second factor vanishes for s > (c+ ε)δ. Therefore, one needs to show
that ψ′

(
ξ(s)

)
= 0 for all 0 < s 6 (c + ε)δ as δ is sufficiently small. Using

the Taylor expansion (A.5) for small δ we have ξ(s) = cos(2θ)s/δ +O(δ).
If θ > π

4 , then cos(2θ) 6 0, and ξ(s) 6 O(δ) < c − ε. If θ < π
4 , then

cos(2θ) > 0, and due to the choice of ε made in (A.6) one obtains ξ(s) 6
cos(2θ)(c+ ε) +O(δ) < c− ε. Therefore, in both cases one has ξ(s) < c− ε
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for all 0 < s < (c+ ε)δ as δ is sufficiently small. As ψ was chosen constant
on (−∞, c− ε), we have ψ′

(
ξ(s)

)
= 0. �
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