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SCATTERING FOR NLS WITH A SUM OF TWO
REPULSIVE POTENTIALS

by David LAFONTAINE

Abstract. — We prove the scattering for a defocusing nonlinear Schrödinger
equation with a sum of two repulsive potentials with strictly convex level surfaces,
thus providing a scattering result in a trapped setting similar to the exterior of two
strictly convex obstacles.
Résumé. — Nous montrons la diffusion pour une équation de Schrödinger non

linéaire défocalisante avec une somme de deux potentiels répulsifs dont les surfaces
de niveau sont strictement convexes. Il s’agit d’un résultat dans une géométrie
captante similaire à l’extérieur de deux obstacles strictement convexes.

1. Introduction

We are concerned by the following defocusing non-linear Schrödinger
equation with a potential

(1.1) i∂tu+ ∆u− V u = u|u|α, u(0) = ϕ ∈ H1.

in arbitray spatial dimension d > 1. Once good dispersive properties of the
linear flow, such as Strichartz estimates described below in the paper, are
established, the local well-posedness of (1.1) follows by usual fixed point
arguments. Because of the energy conservation law,

E(u(t)) := 1
2

∫
|∇u(t)|2 +

∫
V |u(t)|2 + 1

α+ 2

∫
|u(t)|α+2 = E(u(0))

this result extends to global well-posedness. Thus, it is natural to investi-
gate the asymptotic behavior of solutions of (1.1).

Keywords: nonlinear Schrödinger equation, scattering, trapped trajectories, Morawetz
estimates, concentration-compactness/rigidity.
2020 Mathematics Subject Classification: 35Q55, 35B40.



1848 David LAFONTAINE

It is well-known since Nakanishi’s paper [14] that for V = 0, in the
intercritical regime

(1.2) 4
d
< α <

{
+∞ d = 1, 2,

4
d−2 d > 3,

the solutions scatter inH1(Rd), that is, for every solution u ∈ C(R,H1(Rd))
of (1.1), there exists a unique couple of data ψ± ∈ H1(Rd) such that

‖u(t)− e− i t∆ ψ±‖H1(Rd) −→
t→±∞

0.

The inhomogeneous setting V 6= 0 was investigated more recently, for
example in [1, 4, 7, 11]. However, all these scattering results rely on a
non-trapping assumption, namely, that the potential is repulsive:

x · ∇V 6 0,

or, as in [2], that its non-repulsive part is sufficently small. The aim of this
paper is to establish a scattering result in a trapping situation. More pre-
cisely, we are interested in one of the simplest unstable trapping framework,
that is, the case where V is the sum of two positive, repulsive potentials
with strictly convex level surfaces. It is the potential-analog of the homo-
geneous problem outside two strictly convex obstacles, and this note can
be seen as a proxy for the scattering outside two strictly convex obstacles.
This more intricate problem, where reflexions at the boundary have to be
dealt with, will be treated in [13] using ideas developped here. Note that
the case of the exterior of a star-shaped obstacle was treated by [8, 15, 16].
Let us precise our setting. Let V1 and V2 be two positive, smooth po-

tentials. We will denote by V = V1 + V2 the total potential. We make the
following geometrical assumptions:
(G1) V1 and V2 are repulsive, that is, there exists a1 and a2 in Rd such

that
(x− a1,2) · ∇V1,2 6 0.

Without loss of generality, we assume that 0 ∈ [a1, a2].
(G2) The level surfaces of V1 and V2 are convex, and uniformly strictly

convex in the non-repulsive region: the eigenvalues of their second
fundamental forms are uniformly bounded below by a strictly pos-
itive universal constant in {x · ∇V > 0}.

(G3) All the trapped trajectories of the Hamiltonian flow associated with
−∆ + V belong to a same line R ⊂ {x · ∇V > 0}: for any pair
Θ1,Θ2 of level surfaces of V1 and V2, the unique trapped ray of the
geometrical optics of Rd\Θ1 ∪Θ2 is included in R.
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SCATTERING FOR NLS 1849

A non-trivial example of potential V = V1 + V2 verifying (G1)-(G2)-(G3)
is given by V1(x) := e−|x−a|2 , V2(x) := e−|x+a|2 , the uniformity in the con-
vexity assumption coming from the fact that this potential has a bounded
non-repulsive region.
We will, in addition, assume the following decay assumption

V ∈ L d
2 ((1 + |x|β)dx); ∇V1,∇V2 ∈ L

d
2 ; ∇V ∈ L d

2 (|x|βdx),(1.3)

with β > 4
3 . It is the (improved) multi-dimensional analog of the decay as-

sumption arising in [11]. And finally, that the pointwise dispersive estimate

(1.4) ‖ ei t(−∆+V ) ‖L1−→L∞ .
1
|t|d/2

holds. Note that, in the same way as remarked in [11] for the one dimen-
sional case, this last assumption is automaticaly verified using Goldberg
and Schlag’s result [6] under the non-negativity and decay assumptions
with β > 2 in dimension d = 3. Our main result reads

Theorem 1.1. — Assume that d > 3. Let V1 and V2 be two positive,
repulsive (G1) smooth potentials, with convex and uniformly strictly con-
vex in the non-repulsive region level surfaces (G2), and colinear trapped
trajectories (G3). Assume moreover that V = V1 +V2 verifies the decay as-
sumption (1.3), and the dispersive estimate (1.4). Then, in the intercritical
regime (1.2), every solutions of (1.1) with potential V = V1 +V2 scatter in
H1(Rd).

As in the aforementioned papers, we use the strategy of concentration,
compactness and rigidity first introduced by Kenig and Merle in [10]: as-
suming that there exists a finite energy above which solutions do not scat-
ter, one constructs a compact-flow solution and eliminates it. Notice that
in the case of a repulsive potential, this last rigidity part is immediate by
classical Morawetz estimates. It will be here the main difficulty to over-
come and the novelty of this note. After some preliminaries, we construct a
critical solution in the second section, following [11] and generalizing it to
any spatial dimension. In the last section, we eliminate it using a family of
Morawetz mulipliers for which the gradient almost vanishes on the trapped
trajectory.

Remark 1.2. — We assume that d 6= 2 because our proof relies on end-
point Strichartz estimates that are not true in dimension two, and the
convexity assumption we make on the potentials have no sense in the one
dimensional case.

TOME 70 (2020), FASCICULE 5



1850 David LAFONTAINE

Remark 1.3. — The first two sections of this paper generalize in partic-
ular the one-dimensional result of [11], to any spatial dimension d > 3.

Remark 1.4. — As mentionned earlier, the geometrical framework (G1)-
(G2)-(G3) is in many aspects the potential-analog of the homogeneous
problem outside two strictly convex obstacles. This is the subject of a work
in progress [13]. A rigidity argument in the particular case of two balls for
the energy critical wave equation can be found in [12].

Remark 1.5. — It is straightforward from the last section that the result
is still valid for an arbitrary finite sum of convex repulsive potentials V =
V1 + · · · + VN for which all trapped trajectories are included in the same
line. However, we present the proof for only two potentials in the seek of
simplicity.

2. Preliminaries

2.1. Usefull exponents

From now on, we will fix the three following Strichartz exponents

r = α+ 2, q = 2α(α+ 2)
dα2 − (d− 2)α− 4 , p = 2(α+ 2)

4− (d− 2)α.

Moreover, let η be the conjugate of the critical exponent 2?:

(2.1) 1
2? + 1

η
= 1.

Notice, for the sequel, the following two identities

(2.2) 2
d

+ 1
2? = 1

η
,

and

(2.3) 2
d

+ 2
2? = 1.

Finally, let γ be such that (γ, η′) follows the admissibility condition of
Theorem 1.4 of Foshi’s inhomogeneous Strichartz estimates [5]. Note that,
in the intercritical regime (1.2), all these exponents are well defined and
larger than one.

ANNALES DE L’INSTITUT FOURIER
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2.2. Strichartz estimates

Let us recall that e− i t(−∆+V ) verifies the pointwise dispersive estima-
tes (1.4), by [6] in dimension d = 3 for β > 2, or by assumption in other
cases. Interpolating it with the mass conservation law, we obtain immedi-
atly for all a ∈ [2,∞]

(2.4) ‖ ei t(−∆+V ) ψ‖La .
1

|t|
d
2 ( 1
a′−

1
a )
‖ψ‖La′ .

Moreover, it leads by the classical TT ? method (see for example [9]) to the
Strichartz estimates

(2.5) ‖ e− i t(−∆+V ) ϕ‖Lq1Lr1 +
∥∥∥∥∫ t

0
exp− i(t−s)(−∆+V ) F (s)ds

∥∥∥∥
Lq2Lr2

. ‖ϕ‖L2 + ‖F‖
L
q′3L

r′3

for all pairs (qi, ri) satisfying the admissibility condition
2
qi

+ d

ri
= d

2 , (qi, ri, d) 6= (2,∞, 2).

We will use moreover the following Strichartz estimates associated to non
admissible pairs:

Proposition 2.1 (Strichartz estimates). — For all ϕ ∈ H1, all F ∈
Lq
′
Lr
′ , all G ∈ Lq′Lr′ and all H ∈ Lγ′Lη

(2.6) ‖ e− i t(−∆+V ) ϕ‖LpLr . ‖ϕ‖H1

(2.7)
∥∥∥∥∫ t

0
e− i(t−s)(−∆+V ) F (s)ds

∥∥∥∥
LαL∞

. ‖F‖Lq′Lr′

(2.8)
∥∥∥∥∫ t

0
e− i(t−s)(−∆+V )G(s)� s

∥∥∥∥
LpLr

. ‖G‖Lq′Lr′

(2.9)
∥∥∥∥∫ t

0
e− i(t−s)(−∆+V )H(s)ds

∥∥∥∥
LpLr

. ‖H‖Lγ′Lη .

Proof. — The estimate (2.6) follows from admissible Strichartz estimate

‖ e− i t(−∆+V ) ϕ‖
LpL

2dp
dp−4

. ‖ϕ‖L2

together with a Sobolev embedding. The estimate (2.8) is contained in
Lemma 2.1 of [3]. Finally, (2.7) and (2.9) enters on the frame of the non-
admissible inhomogheneous Strichartz estimates of Theorem 1.4 of Foschi’s
paper [5]. �
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1852 David LAFONTAINE

2.3. Perturbative results

The three following classical perturbative results, follow immediatly from
the previous Strichartz inequalities with exact same proof as in [11].

Proposition 2.2. — Let u ∈ C(H1) be a solution of (1.1). If u ∈ LpLr,
then u scatters in H1.

Proposition 2.3. — There exists ε0 > 0, such that, for every data
ϕ ∈ H1 such that ‖ϕ‖H1 6 ε0, the corresponding maximal solution of (1.1)
scatters in H1.

Proposition 2.4. — For every M > 0 there exists ε > 0 and C > 0
such that the following occurs. Let v ∈ C(H1) ∩ LpLr be a solution of the
following integral equation with source term e(t, x)

v(t) = e− i t(∆−V ) ϕ− i
∫ t

0
e− i(t−s)(∆−V )(v(s)|v(s)|α)ds+ e(t)

with ‖v‖LpLr < M and ‖e‖LpLr < ε. Assume moreover that ϕ0 ∈ H1 is
such that ‖ e− i t(∆−V ) ϕ0‖LpLr < ε. Then, the solution u ∈ C(H1) to (1.1)
with initial condition ϕ+ ϕ0 satisfies

u ∈ LpLr, ‖u− v‖LpLr < C.

3. Construction of a critical solution

The aim of this section is to extend the construction of a critical element
of [11] to any dimension d 6= 2 – no repulsivity assumption is used in this
first part of this work. This previous paper follows itself [1] which deals with
a Dirac potential, which is more singular but for which explicit formulas
are at hand. More precisely, let

(3.1) Ec = sup
{
E>0

∣∣∣∣ ∀ ϕ ∈ H1, E(ϕ) < E

⇒ the solution of (1.1) with data ϕ is in LpLr
}
.

We will prove

Theorem 3.1. — If Ec < ∞, then there exists ϕc ∈ H1, ϕc 6= 0, such
that the corresponding solution uc of (1.1) has a relatively compact flow
{uc(t), t > 0} in H1 and does not scatter.

We assume all along this section that d > 3.

ANNALES DE L’INSTITUT FOURIER
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3.1. Profile decomposition

We first show, with the same method as in [11], extended to any dimen-
sion, that we can use the abstract profile decomposition obtained by [1]:

Theorem (Abstract profile decomposition, [1]). — Let A :L2⊃D(A)→
L2 be a self adjoint operator such that:

• for some positive constants c, C and for all u ∈ D(A),

(3.2) c‖u‖2H1 6 (Au, u) + ‖u‖2L2 6 C‖u‖2H1 ,

• let B : D(A) ×D(A) 3 (u, v) → (Au, v) + (u, v)L2 − (u, v)H1 ∈ C.
Then, as n goes to infinity

(3.3) B(τxnψ, τxnhn)→ 0 ∀ ψ ∈ H1

as soon as

xn → ±∞, sup ‖hn‖H1 <∞

or
xn → x̄ ∈ R, hn ⇀

H1
0,

• let (tn)n>1, (xn)n>1 be sequences of real numbers, and t̄, x̄ ∈ R.
Then

|tn| → ∞ =⇒ ‖ ei tnA τxnψ‖Lp → 0, ∀ 2 < p <∞, ∀ ψ ∈ H1(3.4)

tn → t̄, xn → ±∞ =⇒ ∀ ψ ∈ H1, ∃ ϕ ∈ H1, τ−xn ei tnA τxnψ
H1

→ ϕ(3.5)

tn → t̄, xn → x̄ =⇒ ∀ ψ ∈ H1, ei tnA τxnψ
H1

→ ei t̄A τx̄ψ.(3.6)

And let (un)n>1 be a bounded sequence in H1. Then, up to a subsequence,
the following decomposition holds

un =
J∑
j=1

ei tnj A τxjnψj +RJn ∀ J ∈ N

where
tnj ∈ R, xnj ∈ R, ψj ∈ H1

are such that
• for any fixed j,

tnj = 0 ∀ n, or tjn
n→∞→ ±∞(3.7)

xnj = 0 ∀ n, or xjn
n→∞→ ±∞,(3.8)

• orthogonality of the parameters:

(3.9) |tnj − tnk |+ |xnj − xnk |
n→∞→ ∞, ∀ j 6= k,

TOME 70 (2020), FASCICULE 5



1854 David LAFONTAINE

• decay of the reminder:

(3.10) ∀ ε > 0,∃ J ∈ N, lim sup
n→∞

‖ e− i tARJn‖L∞L∞ 6 ε,

• orthogonality of the Hilbert norm:

‖un‖2L2 =
J∑
j=1
‖ψj‖2L2 + ‖RJn‖2L2 + on(1), ∀ J ∈ N(3.11)

‖un‖2H =
J∑
j=1
‖τxjnψj‖

2
H + ‖RJn‖2H + on(1), ∀ J ∈ N(3.12)

where (u, v)H = (Au, v), and

(3.13) ‖un‖pLp =
J∑
j=1
‖ ei tnj A τxjnψj‖

p
Lp + ‖RJn‖

p
Lp + on(1),

∀ 2 < p < 2?, ∀ J ∈ N.

Let us show that the self-adjoint operator A := −∆ + V verifies the
hypothesis of the previous theorem.

Proposition 3.2. — Let A := −∆ + V . Then A satisfies the assump-
tions (3.2), (3.3), (3.4), (3.5), (3.6).

Proof. — Assumption (3.2). Because V is non-negative, by the Hölder
inequality, (2.3), and the Sobolev embedding H1 ↪→ L2? ,

‖u‖2H1 6 (Au, u) + ‖u‖L2 =
∫
|∇u|2 +

∫
V |u|2 +

∫
|u|2

6 ‖u‖2H1 + ‖V ‖Ld/2‖u‖2L2? 6 (1 + CSobolev‖V ‖Ld/2)‖u‖2H1 .

and (3.2) holds.
Assumption (3.3). We have

B(τxnψ, τxnhn) =
∫
V τxnψτxnhn.

Assume that xn → x̄ ∈ R and hn ⇀
H1

0. Notice that B can also be written

B(τxnψ, τxnhn) =
∫

(τ−xnV )ψhn.

By Sobolev embedding, hn ⇀ 0 weakly in L2? . Moreover, τ−xnV → τ−x̄V

strongly in Ld/2. Therefore, because ψ ∈ L2? by Sobolev embedding again,
it follows from (2.3) that B(τxnψ, τxnhn)→ 0.

Now, let us assume that

xn → +∞, sup ‖hn‖H1 <∞.

ANNALES DE L’INSTITUT FOURIER
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We fix ε > 0. By the Sobolev embedding H1 ↪→ L2? , we can choose Λ > 0
large enough so that

(3.14) ‖ψ‖L2? (|x|>Λ) 6 ε.

Because V ∈ Ld/2, Λ can also be choosen large enough so that

(3.15) ‖V ‖Ld/2(|x|>Λ) 6 ε.

Then, by the Hölder inequality – recall that η is defined in (2.1) as the
conjugate of 2? – by Sobolev embedding and the Minkoswski inequality

|B(τxnψ, τxnhn)| 6 ‖hn‖L2? ‖V τxn‖Lη

. sup
j>1
‖hj‖H1

(
‖V ψ(· − xn)‖Lη(|x−xn|>Λ) + ‖V ψ(· − xn)‖Lη(|x−xn|6Λ)

)
.

Thus, by the Hölder inequality again, using this time (2.2), we have

(3.16) |B(τxnψ, τxnhn)|
. ‖V ‖Ld/2‖ψ1|x|>Λ‖L2? + ‖V 1|x−xn|6Λ‖Ld/2‖ψ‖L2? .

Now, let n0 be large enough so that for all n > n0, xn > 2Λ. Then, for all
n > n0

|x− xn| 6 Λ⇒ |x| > Λ
and, for all n > n0 we get by (3.14), (3.15), (3.16)

|B(τxnψ, τxnhn)| . (ε‖V ‖Lδ + ε‖ψ‖L2? )

so (3.3) holds.
Assumption (3.4). The same proof as in [11] holds: it is an immediate

consequence of the pointwise dispersive estimate (2.4) and the translation
invariance of the Lp norms. Notice that the estimate

(3.17) ‖ ei tA f‖H1 . ‖f‖H1 ,

which is usefull to close the density argument of this previous paper, gen-
eralizes to dimensions d > 2 because, as V is positive and in Ld/2, by the
Hölder inequality together with the Sobolev embedding H1 ↪→ L2? we get

(3.18) ‖∇f‖2L2 6 ‖(−∆ + V ) 1
2 f‖2L2 =

∫
|∇u|2 +

∫
V |u|2

6 ‖f‖2H1 + ‖V ‖Ld/2‖u‖2L2? . ‖f‖2H1 ,

from which (3.17) follows because ei tA commute with (−∆ + V ) 1
2 and is

an isometry on L2.
Assumption (3.5). We will show that

tn → t̄, xn → +∞ ⇒ ‖τ−xn ei tn(−∆+V ) τxnψ − e− i t̄∆ ψ‖H1 → 0

TOME 70 (2020), FASCICULE 5
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and (3.5) will hold with ϕ = e− i t̄∆ ψ. As remarked in [11], it is sufficent to
show that

(3.19) ‖ ei tn(−∆+V ) τxnψ − e− i tn∆ τxnψ‖H1 → 0.

Notice e− i t∆ τxnψ − ei t(−∆+V ) τxnψ is a solution of the following linear
Schrödinger equation with zero initial data

i ∂tu−∆u+ V u = V e− i t∆ τxnψ.

Therefore, by the inhomogenous Strichartz estimates, as (2, 2?) is admissi-
ble in dimension d > 3 with dual exponent (2, η), and because the trans-
lation operator commutes with e− i t∆, we have for n large enough so that
tn ∈ (0, t̄+ 1)

‖ ei tn(−∆+V ) τxnψ − e− i tn∆ τxnψ‖L2

6 ‖ ei t(−∆+V ) τxnψ − e− i t∆ τxnψ‖L∞(0,t̄+1)L2

6 ‖V e− i t∆ τxnψ‖L2(0,t̄+1)Lη

= ‖(τ−xnV ) e− i t∆ ψ‖L2(0,t̄+1)Lη

6 (t̄+ 1)1/2‖(τ−xnV ) e− i t∆ ψ‖L∞(0,t̄+1)Lη .

Hence, estimating in the same manner the gradient of these quantities, it
is sufficient to obtain (3.19) to show that, as n goes to infinity

(3.20) ‖(τ−xnV ) e− i t∆ ψ‖L∞(0,t̄+1)W 1,η → 0.

Let us fix ε > 0. By Sobolev embedding in L2? , because e− i t∆ ψ ∈
C([0, t̄ + 1], H1) and using the compacity in time, there exists Λ > 0 such
that

(3.21) ‖ e− i t∆ ψ‖L∞(0,t̄+1)L2? (|x|>Λ) 6 ε.

On the other hand, as V ∈ Ld/2, Λ can also be taken large enough so that

(3.22) ‖V ‖Ld/2(|x|>Λ) 6 ε.

Let n0 be large enough so that for all n > n0, xn > 2Λ. Then, for n > n0

|x+ xn| 6 Λ⇒ |x| > Λ

ANNALES DE L’INSTITUT FOURIER
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and for all t ∈ (0, t̄+ 1) and all n > n0 we obtain, by Minkowski inequality,
Hölder inequality together with (3.21) and (3.22), and Sobolev embedding

‖(τ−xnV ) e− i t∆ ψ‖Lη

6 ‖V (·+ xn) e− i t∆ ψ‖Lη(|x+xn|>Λ) + ‖V (·+ xn) e− i t∆ ψ‖Lη(|x+xn|6Λ)

6 ε‖ e− i t∆ ψ‖L∞(0,t̄+1)L2? + ε‖V ‖Lδ

. ε(‖ e− i t∆ ψ‖L∞(0,t̄+1)H1 + ‖V ‖Lδ),

thus
‖(τ−xnV ) e− i t∆ ψ‖L∞(0,t̄+1)Lη → 0.

With the same argument, because ∇V ∈ Ld/2, we have

‖∇(τ−xnV ) e− i t∆ ψ‖L∞(0,t̄+1)Lη → 0.

Hence, to obtain (3.20), it only remains to show that

(3.23) ‖τ−xnV∇(e− i t∆ ψ)‖L∞(0,t̄+1)Lη → 0.

To this purpose, let ψ̃ be a C∞, compactly supported function such that

‖ψ − ψ̃‖H1 6 ε.

Notice that, by (2.1) we have
1
η

= 1
2 + 1

d
,

hence, by Minkowski and Hölder inequalities,

(3.24) ‖τ−xnV∇(e− i t∆ ψ)‖Lη

6 ‖τ−xnV∇(e− i t∆ ψ̃)‖Lη + ‖τ−xnV∇(e− i t∆(ψ − ψ̃))‖Lη

6 ‖τ−xnV∇(e− i t∆ ψ̃)‖Lη + ‖V ‖Ld‖∇(e− i t∆(ψ − ψ̃))‖L2

6 ‖τ−xnV∇(e− i t∆ ψ̃)‖Lη + ε‖V ‖Ld ,

where V ∈ Ld because of the (critical) Sobolev embedding W 1,d/2(Rd) ↪→
Ld(Rd).
Then, because ∇(e− i t∆ ψ̃) ∈ H1,

‖τ−xnV∇(e− i t∆ ψ̃)‖L∞(0,t̄+1)Lη

can be estimated as ‖(τ−xnV ) e− i t∆ ψ‖L∞(0,t̄+1)Lη , hence (3.23) follows
from (3.24) and the assumption is verified.
Assumption (3.6). It is a consequence of (3.17), the Lebesgue’s dominated

convergence theorem and the continuity of t ∈ R −→ ei tA τx̄ψ ∈ H1 with
the exact same proof as in [11]. �
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3.2. Non linear profiles

Similarly to [11], we will now see that for a data which escapes to infinity,
the solutions of (1.1) are the same as these of the homogeneous equation
(V = 0), in the sense given by the three next Propositions:

Proposition 3.3. — Let ψ ∈ H1, (xn)n>1 ∈ RN be such that |xn| →
∞. Then, up to a subsequence

(3.25) ‖ e− i t∆ τxnψ − e− i t(∆−V ) τxnψ‖LpLr → 0

as n→∞.

Proof. — We assume for example xn → +∞.
By the dispersive estimate and a density argument, the same proof as

in [11] gives

(3.26) sup
n∈N
‖ ei t(−∆+V ) τxnψ‖Lp(T,∞)Lr → 0

as T →∞. We are therefore reduced to show that for T > 0 fixed

‖ e− i t∆ τxnψ − ei t(−∆+V ) τxnψ‖Lp(0,T )Lr → 0

as n → ∞. Let us pick ε > 0. The differene e− i t∆ τxnψ − ei t(−∆+V ) τxnψ

is a solution of the following linear Schrödinger equation with zero initial
data

i ∂tu−∆u+ V u = V e− i t∆ τxnψ.

So, by the inhomogenous Strichartz estimate (2.9)

‖ e− i t∆ τxnψ − ei t(−∆+V ) τxnψ‖Lpt (0,T )Lr

. ‖V e− i t∆ τxnψ‖Lγ′t (0,T )Lη

. T
1
γ′ ‖V e− i t∆ τxnψ‖L∞(0,T )Lη

= T
1
γ′ ‖(τ−xnV ) e− i t∆ ψ‖L∞(0,T )Lη

because the translation operator τxn commutes with the propagator e− i t∆.
But

‖(τ−xnV ) e− i t∆ ψ‖L∞(0,T )Lη −→
n→∞

0

as seen in the proof of Proposition 3.2, point (3.5). �

Proposition 3.4. — Let ψ ∈ H1, (xn)n>1 ∈ RN be such that |xn| →
∞, U ∈ C(H1)∩LpLr be the unique solution to the homogeneous equation

i ∂tu+ ∆u = u|u|α
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with initial data ψ, and Un(t, x) := U(t, x−xn). Then, up to a subsequence

(3.27)
∥∥∥∥∫ t

0
e− i(t−s)∆ (Un|Un|α) (s)ds

−
∫ t

0
e− i(t−s)(∆−V ) (Un|Un|α) (s)ds

∥∥∥∥
LpLr

→ 0

as n→∞.

Proof. — In the exact same way as in [11], inhomogenous Strichartz
estimates, and the pointwise dispersive estimate together with Hardy–
Littlewood–Sobolev inequality leads

(3.28) sup
n∈N

∥∥∥∥∫ t

0
e− i(t−s)(∆−V ) (Un|Un|α) (s)ds

∥∥∥∥
Lp([T,∞))Lr

→ 0

as T goes to infinity. Thus; it remains to show that for T > 0 fixed,∥∥∥∥∫ t

0
e− i(t−s)∆ (Un|Un|α) ds−

∫ t

0
e− i(t−s)(∆−V )(Un|Un|α)ds

∥∥∥∥
Lp(0,T )Lr

→ 0

as n→∞. The difference∫ t

0
e− i(t−s)∆ (Un|Un|α) ds−

∫ t

0
e− i(t−s)(∆−V ) (Un|Un|α) ds

is the solution of the following linear Schrödinger equation, with zero initial
data

i ∂tu−∆u+ V u = V

∫ t

0
e− i(t−s)∆ (Un|Un|α) ds.

Hence, by the Strichartz estimate (2.9)∥∥∥∥∫ t

0
e− i(t−s)∆ (Un|Un|α) ds−

∫ t

0
e− i(t−s)(∆−V ) (Un|Un|α) ds

∥∥∥∥
Lp(0,T )Lr

.

∥∥∥∥V ∫ t

0
e− i(t−s)∆ (Un|Un|α) ds

∥∥∥∥
Lγ′ (0,T )Lη

. T
1
γ′

∥∥∥∥(τ−xnV )
∫ t

0
e− i(t−s)∆ (U |U |α) ds

∥∥∥∥
L∞(0,T )Lη

.

But
∫ t

0 e− i(t−s)∆(U |U |α)ds ∈ C([0, T ], H1), so by Sobolev embedding in
L2? and compacity in time there exists Λ > 0 such that∥∥∥∥∫ t

0
e− i(t−s)∆ (U |U |α) ds

∥∥∥∥
L∞(0,T )L2? (|x|>Λ)

6 ε
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therefore ∥∥∥∥(τ−xnV )
∫ t

0
e− i(t−s)∆ (U |U |α) ds

∥∥∥∥
L∞(0,T )Lη

−→
n→∞

0

in the same way as in the proof of Proposition 3.2, point (3.5). �

Proposition 3.5. — Let ψ ∈ H1, (xn)n>1, (tn)n>1 ∈ RN be such that
|xn| → ∞ and tn → ±∞, U be a solution to the homogeneous equationsuch
that

‖U(t)− e− i t∆ ψ‖H1 −→
t→±∞

0

and Un(t, x) := U(t− tn, x− xn). Then, up to a subsequence

(3.29) ‖ e− i(t−tn)∆ τxnψ − e− i(t−tn)(∆−V ) τxnψ‖LpLr → 0

and

(3.30)
∥∥∥∥∫ t

0
e− i(t−s)∆(Un|Un|α) ds−

∫ t

0
e− i(t−s)(∆−V )(Un|Un|α) ds

∥∥∥∥
LpLr
→0

as n→∞.

Proof. — The proof is the same as for Proposition 3.3 and Proposi-
tion 3.4, decomposing the time interval in {|t− tn| > T} and his comple-
mentary. �

Finaly, we will need the following Proposition of non linear scattering:

Proposition 3.6. — Let ϕ ∈ H1. Then there exists W± ∈ C(H1) ∩
LpR±L

r, solution of (1.1) such that

(3.31) ‖W±(t, ·)− e− i t(∆−V ) ϕ‖H1 −→
t→±∞

0

moreover, if tn → ∓∞ and

(3.32) ϕn = e− i tn(∆−V ) ϕ, W±,n(t) = W±(t− tn)

then

(3.33) W±,n(t) = e− i t(∆−V ) ϕn

+
∫ t

0
e− i(t−s)(∆−V )(W±,n|W±,n|α)(s)ds+ f±,n(t)

where

(3.34) ‖f±,n‖Lp
R±
Lr −→ 0

n→∞
.

Proof. — The same proof as [1, Proposition 3.5] holds, as it involves only
the analogous Strichartz estimates. �
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3.3. Conclusion

Theorem 3.1 is now a consequence of the linear profile decomposition
together with the nonlinear profiles results of Propositions 3.3, 3.4, 3.5,
3.6, perturbative result of Proposition 2.4 and Strichartz inequalities of
Proposition 2.1, in the exact same way as in [11, Section 5].

4. Extinction of the critical solution

The aim of this section is to prove the following ridity theorem

Theorem 4.1. — There is no non-trivial compact-flow solution of (1.1).

By compact flow solution, we mean here a solution u with a relatively
compact flow {uc(t), t > 0} in H1. Our key tool will be the following
Morawetz identity – or virial computation:

Lemma 4.2. — Let u ∈ C(H1) be a solution of (1.1) and χ ∈ C∞(Rd)
be a smooth function. Then

(4.1) ∂t

∫
χ|u|2 = 2 Im

∫
∇χ · ∇uū

(4.2) ∂2
t

∫
χ|u|2 = 4

∫
(D2χ∇u,∇u) + 2

α+ 2

∫
∆χ|u|α+2

− 2
∫
∇χ · ∇V |u|2 −

∫
∆2χ|u|2.

In the case of a repulsive potential, taking the weight χ = |x|2 gives the
result by a classical argument, as all the terms, and in particular

(4.3)
∫
∇χ · ∇V |u|2

have the right sign. However, with a non-repulsive potential, this straight-
forward choose of weight does not permit to conclude because (4.3) is no
signed anymore.
However, in our framework of the sum of two repulsive potentials veri-

fying the convexity assumptions (G1)-(G2)-(G3), we are able to construct
a family of weights that have the right behavior and for which the non-
negative part of (4.3) can be made small enough. The idea is to construct
it in such a way that ∇χ is almost orthogonal to the line R containing the
trapped trajectories. More precisely, we would like to take as a weight

|x− c|+ |x+ c|,
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where c is such that (−c, c) ⊂ R and will be sent to infinity.
The smallness of the non-negative part (4.3) will be a consequence of

the following lemma, where Θ1 and Θ2 have to be tought as level surfaces
of V1 and V2. The assumptions (2) and (3) of the lemma correponds to
assumptions (G2) and (G3). In the following, n is choosen as the outward-
pointing normal to Θ1 and Θ2.

Lemma 4.3. — Let α> 0, R∈C0([A,+∞[,R+) be such that R(c)/c −→
0 as c −→ +∞ and, for all c > A, (Θ1)(c), (Θ2)(c) be two families of
smooth convex subsets of Rd. We assume that, for all c > A and any
elements Θ1,Θ2 of (Θ1)(c), (Θ2)(c)

(1) Θ1 and Θ2 are contained in B(0, R(c)),
(2) in the non star-shaped region {x ∈ ∂(Θ1 ∪Θ2), x · n(x) < 0}, the

eigenvalues of the second fundamental forms of ∂Θ1 and ∂Θ2 are
bounded below by α,

(3) the trapped ray associated with Rd\(Θ1 ∪ Θ2) is a segment of the
line {x2 = · · · = xd = 0}.

Let c := (c, 0, . . . , 0). Then, for any elements Θ1,Θ2 of (Θ1)(c), (Θ2)(c) and
x ∈ ∂(Θ1 ∪Θ2), we have as c −→ +∞(

x− c

|x− c|
+ x+ c

|x+ c|

)
· n(x) > O

(
R(c)4

c4

)
.

Proof. — For x ∈ B(0, R), let us denote x = (x1, x̃) with x̃ ∈ Rd−1.
Remark that

|x+ c| = c+ x1 + 1
2c |x̃|

2 +O

(
R4

c3

)
and therefore

(4.4) x− c

|x− c|
+ x+ c

|x+ c|
= 1
|x− c||x+ c|

(
2c(0, x̃) + x

|x̃|2

c
+O

(
R4

c2

))
.

Notice that, in the star-shaped region {x ∈ ∂(Θ1 ∪Θ2)(c), x · n(x) > 0},
(4.4) together with the fact that x̃ · n > 0 by convexity of the obstacles,
and noticing that

(4.5) |x− c||x+ c| & c2

by the hypothesis R(c)/c −→ 0, gives the result.
Let us now consider x in the more intricate non star-shaped region

{x ∈ ∂(Θ1 ∪Θ2)(c), x · n(x) < 0} .

ANNALES DE L’INSTITUT FOURIER
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On ∂Θi, n is near the trapped ray associated with Rd\(Θ1 ∪ Θ2) of the
form

n(x) =
(
± x1

|x1|
, 0, . . . , 0

)
+ (0, λ2x2, . . . , λdxd) +O(|x̃|2)

with λk > 0. And thus(
2c(0, x̃) + x

|x̃|2

c

)
· n(x) >

(
2cminλk −

C

c

)
|x̃|2 +O(|x̃|2).(4.6)

Because of the uniform convexity assumption of Θ1,2 in the non star-shaped
region (assumption (2) of the lemma), minλk is bounded below, uniformly
in c, by a strictly positive, universal constant. Hence, by (4.6), there exists
ρ > 0 and D1 > 0 such that, for every c > D1 we have

(4.7) |x̃| 6 ρ =⇒
(

2c(0, x̃) + x
|x̃|2

c

)
· n(x) > 0.

On the other hand, there exists ε0 > 0 such that, for all x ∈ ∂(Θ1 ∪Θ2),

|x̃| > ρ =⇒ (0, x̃) · n(x) > ε0.

Notice that the uniformity in c is a consequence of assumption (2) again.
Hence, if |x̃| > ρ (

2c(0, x̃) + x
|x̃|2

c

)
· n(x) > 2cε0 −

C

c
,

and therefore, there exists D2 > 0 such that, if c > D2

(4.8) |x̃| > ρ =⇒
(

2c(0, x̃) + x
|x̃|2

c

)
· n(x) > 0.

Combining (4.4), (4.7), (4.8), and (4.5) gives the result. �

We are now in position to prove the rigidity theorem:
Proof of Theorem 4.1. By contradiction, let u 6= 0 be a solution of (1.1)

with a relatively compact flow {u(t), t ∈ R} in H1.
We choose a system of coordinates such that R = {x2 = · · · = xd = 0}.

Let c > 0 and c := (c, 0, . . . , 0). We would like to take

(4.9) |x− c|+ |x+ c|

as a weight. However, because of the singularities in ±c, it is not smooth
and we cannot use it explicitly. Therefore, we take instead

χc(x) := (|x− c|+ |x+ c|)ψ( x

c/4),

where ψ ∈ C∞ is such that ψ(x) = 1 for |x| 6 1 and ψ(x) = 0 for |x| > 2.
The idea is that now χc is smooth, and it coincides with (4.9) in B(0, c/4),
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but as c will be sent to infinity, the part outside this ball will not be seen
by compact flow solutions. Let us denote

z(t) =
∫
χc|u|2.

By (4.1), the Cauchy–Schwarz inequality and the conservation of mass and
energy

(4.10) |z′(t)| 6
√
CE(u)M(u).

Moreover, (4.2) writes

(4.11) z′′(t) = 4
∫

(D2χc∇u,∇u) + 2
α+ 2

∫
∆χc|u|α+2

− 2
∫
∇χc · ∇V |u|2 −

∫
∆2χc|u|2.

Let us write down D2χc, ∆χc and ∆2χc. To this purpose, let

χ−c (x) := |x− c|ψ
(
x

c/4

)
, χ+

c (x) := |x+ c|ψ
(
x

c/4

)
,

in such a way that χc = χ+
c + χ−c . We have

(4.12) ∆χ±c (x) = d− 1
|x± c|

ψ

(
x

c/4

)
+ 8
c

x± c

|x± c|
· ∇ψ

(
x

c/4

)
+ 16
c2
|x± c|∆ψ

(
x

c/4

)
,

(4.13) D2χ±c (x) = 1
|x± c|

(
Id− (x± c)(x± c)t

|x± c|2

)
ψ

(
x

c/4

)
+ 4
c

x± c

|x± c|

(
∇ψ

(
x

c/4

))t

+ 4
c
∇ψ

(
x

c/4

)(
x± c

|x± c|

)t
+ 16
c2
|x± c|D2ψ

(
x

c/4

)
,

(4.14) ∆2χ±c (x) = − (d−1)(d−3)
|x± c|3

ψ

(
x

c/4

)
− 16(d−1)

c

x±c

|x±c|
· ∇ψ

(
x

c/4

)
+ 32
c2

d+ 1
|x± c|

∆ψ
(
x

c/4

)
+ 256

c3
x± c

|x± c|
· ∇
(

∆ψ
(
x

c/4

))
− 64
c2

1
|x± c|3

(
D2ψ

(
x

c/4

)
(x± c), x± c

)
+ 256

c4
|x± c|∆2ψ

(
x

c/4

)
,
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where Xt denote the transpose of the column vector X ∈ Rd. Observe that

x ∈ Suppψ
(
·
c/4

)
=⇒ |x± c| > c

2 ,

therefore, by (4.12), (4.13) and (4.14)

(4.15) |∆χc|+ |D2χc|+ |∆2χc| .
1
c
.

In addition, as {u(t), t ∈ R} is relatively compact in H1 and by Sobolev
embedding in Lα+2 – recall that, by assumption (1.2), we are in particular
in the subcritical regime –, we have

(4.16) sup
t∈R

(
‖u‖Lα+2(|x|>c/4) + ‖u‖L2(|x|>c/4) + ‖∇u‖L2(|x|>c/4)

)
= ε(c),

where ε(c) −→ 0 as c −→ +∞. Therefore (4.11) together with (4.15)
and (4.16) yields

(4.17) z′′(t) =
∫
B(0,c/4)

4(D2χc∇u,∇u) + 2
α+ 2∆χc|u|α+2

−∆2χc|u|2 − 2
∫
Rd
∇χc · ∇V |u|2 + 1

c
ε(c).

Now, in B(0, c/4), χc coincides with (4.9) and:

∆χ±c = d− 1
|x± c|

, D2χ±c = 1
|x± c|

(
Id− (x± c)(x± c)t

|x± c|2

)
,

∆2χ±c = − (d− 1)(d− 3)
|x± c|3

, in B(0, c/4).

In particular, it verifies there

D2χc > 0, ∆χc &
1
c
,∆2χc 6 0 in B(0, c/4),

where the sign of ∆2χc is due to d > 3, and therefore, by (4.17), we have,
for all A 6 c/4

(4.18) z′′(t) & 1
c

∫
B(0,A)

|u|α+2 −
∫
Rd
∇χc · ∇V |u|2 + 1

c
ε(c).

Now, as u 6= 0 and {u(t), t ∈ R} is relatively compact in H1, there exists
µ > 0 and A > 0 such that

sup
t∈R

∫
B(0,A)

|u|α+2 > 2µ.
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We fix such an A > 0 and take c > 0 large enough so that A 6 c/4 and
|ε(c)| 6 µ. Then (4.18) gives

(4.19) z′′(t) & 1
c
µ−

∫
Rd
∇χc · ∇V |u|2.

Let R be a continuous function of c such that R(c)/c −→ 0 as c −→ +∞.
In the seek of readability, we will write R for R(c) in the sequel. Note that,
by the Hölder inequality and because ∇χc is bounded and |x|β∇V ∈ Ld/2

(4.20)

∣∣∣∣∣
∫
|x|>R

∇χc · ∇V |u|2
∣∣∣∣∣ 6 ‖∇V ‖Ld/2(|x|>R)‖u‖2L2? (|x|>R)

6
1
Rβ
‖|x|β∇V ‖Ld/2‖u‖2L2? (|x|>R),

but, because {u(t), t ∈ R} is relatively compact in H1 and by Sobolev em-
bedding in L2? ,

(4.21) sup
t∈R
‖u‖L2? (|x|>R) = ε(R),

where ε(R) −→ 0 when R −→ +∞ and thus, using (4.19), (4.20) and (4.21)

(4.22) z′′(t) & µ/c−
∫
B(0,R)

∇χc · ∇V |u|2 + 1
Rβ

ε(R).

Now, notice that as R(c) � c, χc coincides with (4.9) in B(0, R) and in
particular

∇χc(c) = x− c

|x− c|
+ x+ c

|x+ c|
in B(0, R).

Because V1 and V2 are repulsive (assumption (G1)), the outward-pointing
normal to their level surfaces is

− ∇V1,2

|∇V1,2|
.

Thus, by Lemma 4.3 applied to the level surfaces of V1 and V2, together
with assumptions (G2) and (G3), we get, in B(0, R)

−∇χc ·
∇V1,2

|∇V1,2|
> O

(
R4

c4

)
.
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Therefore, by Hölder inequality, Sobolev embedding and conservation of
energy

(4.23)

∣∣∣∣∣
∫
|x|6R,−∇χ·∇V (x)<0

−∇χc · ∇V |u|2
∣∣∣∣∣

.
R4

c4

∫ (
|∇V1|+ |∇V2|

)
|u|2

6
R4

c4
(
‖∇V1‖Ld/2 + ‖∇V2‖Ld/2

)
‖u‖2L2?

6
R4

c4
(
‖∇V1‖Ld/2 + ‖∇V2‖Ld/2

)
‖u‖2H1 .

R4

c4
E(u0)2.

Hence, (4.22) together with (4.23) gives

z′′(t) & µ

c
+O

(
R4

c4

)
+ 1
Rβ

ε(R).

Let us take R(c) = cν . Then we get

z′′(t) & 1
c

(µ+O(c4ν−3) + c1−βνε(cν)).

Thus, taking

ν = 1
β
,

and assuming

ν <
3
4 ⇐⇒ β >

4
3 ,

in such a way that R(c)/c −→ 0 and, in particular, 4ν − 3 < 0, we get, for
c > 0 fixed large enough

z′′(t) & µ

2c ,

and (4.10) is contradicted. �

Our main result now follows:

Proof of Theorem 1.1. If Ec <∞, then Theorem 3.1 allows us to extract
a critical element ϕc ∈ H1, ϕc 6= 0, such that the corresponding solution
uc of (1.1) verifies that {uc(t), t > 0} is relatively compact in H1. By The-
orem 4.1, such a solution cannot exist, so Ec =∞ and by Proposition 2.2,
all the solutions of (1.1) scatter in H1. �
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