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UNIFORM RECTIFIABILITY AND
ε-APPROXIMABILITY OF HARMONIC FUNCTIONS

IN Lp

by Steve HOFMANN & Olli TAPIOLA (*)

Abstract. — Suppose that E ⊂ Rn+1 is a uniformly rectifiable set of codi-
mension 1. We show that every harmonic function is ε-approximable in Lp(Ω) for
every p ∈ (1,∞), where Ω := Rn+1 \E. Together with results of many authors this
shows that pointwise, L∞ and Lp type ε-approximability properties of harmonic
functions are all equivalent and they characterize uniform rectifiability for codimen-
sion 1 Ahlfors–David regular sets. Our results and techniques are generalizations
of recent works of T. Hytönen and A. Rosén and the first author, J. M. Martell
and S. Mayboroda.
Résumé. — Soit E un ensemble uniformément rectifiable de codimension 1 dans

un espace euclidien de dimension n + 1 et soit Ω son complémentaire. Nous mon-
trons que toute fonction harmonique est ε-approchable dans Lp(Ω) pour tout p
fini strictement plus grand que 1. Cela montre, compte tenu de résultats précé-
dents par différents auteurs, que ponctuellement, les propriétés d’ε-approximation
de type L∞ et Lp de fonctions harmoniques sont équivalentes et elles caractérisent
la rectifiabilité uniforme des ensembles réguliers au sens d’Ahlfors–David de codi-
mension 1. Nos résultats et techniques sont des généralisations de travaux récents
de T. Hytönen, A. Rosén et du premier auteur, J. M. Martell et S. Mayboroda.

1. Introduction

In many branches of analysis, Carleson measure estimates are powerful
tools that are deeply connected to e.g. elliptic partial differential equations
and geometric measure theory. These estimates are particularly useful for
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measures of the type |∇u(Y )|dY (see e.g. [11, 12]) but the problem is that
even strong analytic properties of the function u are not enough to guaran-
tee that the distributional gradient defines a measure of this type. The idea
behind ε-approximability is that although a function may fail this Carleson
measure property, it can sometimes be approximated arbitrarily well in the
L∞ sense (typically, if it is the solution to an elliptic partial differential
equation) by a function ϕ such that |∇ϕ(Y )|dY is a Carleson measure.
Starting from the work of N. Th. Varopoulos [25] and J. Garnett [12], this
approximation technique has had an imporant role in the development of
the theory of elliptic partial differential equations. It has been used to e.g.
explore the absolute continuity properties of elliptic measures [15, 22] and,
very recently, give a new characterization of uniform rectifiability [13, 18].
In this article, we extend the recent results of the first author, J. M.

Martell and S. Mayboroda [18] and show that if E ⊂ Rn+1 is a uniformly
rectifiable (UR) set of codimension 1, then every harmonic function is ε-
approximable in Lp(Ω) for every ε ∈ (0, 1) and every p ∈ (1,∞), where
Ω := Rn+1\E. The Lp version of ε-approximability was recently introduced
by T. Hytönen and A. Rosén [20] who showed that any weak solution to
certain elliptic partial differential equations in Rn+1

+ is ε-approximable in
Lp for every ε ∈ (0, 1) and every p ∈ (1,∞).
Let us be more precise and recall the definition of ε-approximability:

Definition 1.1. — Suppose that E ⊂ Rn+1 is an n-dimensional ADR
set (see Definition 1.7) and let Ω := Rn+1 \ E and ε ∈ (0, 1). We say that
a function u such that ‖u‖L∞(Ω) 6 1 is ε-approximable if there exists a
constant Cε and a function ϕ = ϕε ∈ BVloc(Ω) satisfying

‖u− ϕ‖L∞(Ω) < ε and sup
x∈E,r>0

1
rn

¨
B(x,r)∩Ω

|∇ϕ(Y )|dY 6 Cε.

Here
˜
B(x,r)∩Ω |∇ϕ|dY stands for the total variation of ϕ over B(x, r)∩Ω

(see Section 1.5).

Sometimes W 1,1 [15] or C∞ [12, 22] is used in the definition instead of
BVloc. The first results about ε-approximability showed that every bounded
harmonic function u, normalized so that ‖u‖L∞ 6 1, enjoys this approxi-
mation property for every ε ∈ (0, 1) in the upper half-space Rn+1

+ [12, 25]
and in Lipschitz domains [6]. This is a highly non-trivial property since
there exist bounded harmonic functions u such that |∇u(Y )|dY is not a
Carleson measure [12]. The Lp version of the property was defined only
recently in [20]:
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Definition 1.2. — Suppose that E ⊂ Rn+1 is an n-dimensional ADR
set and let Ω := Rn+1 \E, ε ∈ (0, 1) and p ∈ (1,∞). We say that a function
u is ε-approximable in Lp if there exists a function ϕ = ϕε ∈ BVloc(Ω) and
constants Cp and Dp,ε such that{

‖N∗(u− ϕ)‖Lp(E) . εCp‖N∗u‖Lp(E)

‖C(∇ϕ)‖Lp(E) . Dp,ε‖N∗u‖Lp(E),

where N∗ is the non-tangential maximal operator (see Definition 1.24) and

C(∇ϕ)(x) := sup
r>0

1
rn

¨
B(x,r)∩Ω

|∇ϕ|dY.

Here, as above, we have written
˜
B(x,r)∩Ω |∇ϕ|dY to denote the total

variation of ϕ over B(x, r) ∩ Ω; we ask the reader to forgive this abuse of
notation. See Section 1.5 for details.
In [20], the authors showed that if Ω = Rn+1

+ and A ∈ L∞(Rn;L(Rn+1))
satisfies 〈A(x)v, v〉 > λA|v|2 for almost every x ∈ Rn and all v ∈ Rn+1\{0},
then any weak solution u to the t-independent real scalar (but possibly non-
symmetric) divergence form elliptic equation divx,tA(x)∇x,tu(x, t) = 0 is
ε-approximable in Lp for any ε ∈ (0, 1) and any p ∈ (1,∞).
If we move from Rn+1

+ to the UR context (see Definition 1.8) with no
assumptions on connectivity, things will not only get more complicated
but we also lose many powerful tools. For example, constructing objects
like Whitney regions and Carleson boxes becomes considerably more diffi-
cult and the harmonic measure no longer necessarily belongs to the class
weak-A∞ with respect to the surface measure [3]. Despite these difficul-
ties, there exists a rich theory of harmonic analysis and many results on
elliptic partial differential equations on sets with UR boundaries. Uniform
rectifiability can be characterized in numerous different ways and many of
these characterizations are valid in all codimensions (see the seminal work
of G. David and S. Semmes [7, 8]). For example, UR sets are precisely those
ADR sets for which certain types of singular integral operators are bounded
from L2 to L2. Recently, the first author, Martell and Mayboroda showed
that if E is a UR set of codimension 1, then every bounded harmonic func-
tion in Rn+1 \ E is ε-approximable for every ε ∈ (0, 1) [18]. After this,
it was shown by Garnett, Mourgoglou and Tolsa that ε-approximability
of bounded harmonic functions implies uniform rectifiability for n-ADR
sets [13]. This characterization result was then generalized for a class of
elliptic operators by Azzam, Garnett, Mourgoglou and Tolsa [1].
Our main result is the following generalization of the Hytönen–Rosén

approximation theorem [20, Theorem 1.3]:
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Theorem 1.3. — Let E ⊂ Rn+1 be a UR set of codimension 1 and
denote Ω := Rn+1\E. Then every harmonic function in Ω is ε-approximable
in Lp for every ε ∈ (0, 1) and every p ∈ (1,∞) with Cp = ‖MD‖Lp→Lp
and Dp = Cp‖M‖Lp→Lp/ε2, where M is the Hardy–Littlewood maximal
operator and MD is its dyadic version (see Section 1.1).

In fact, the key ideas of Hytönen and Rosén allow us to construct p-
independent approximating functions. To be more precise, let us consider
the following pointwise approximating property:

Definition 1.4. — Suppose that E ⊂ Rn+1 is an n-dimensional ADR
set and let Ω := Rn+1 \ E and ε ∈ (0, 1). We say that a function u is
pointwise ε-approximable if there exists a function ϕ = ϕε ∈ BVloc(Ω) and
a constant Dε such that{

N∗(u− ϕ)(x) . εMD(N∗u)(x)
CD(∇ϕ)(x) . DεM(MD(N∗u))(x)

for almost any x ∈ E, where CD is a dyadic version of D (see Section 1.6).

Since C(∇ϕ) and CD(∇ϕ) are Lp-equivalent by Lemma 1.23, Theorem 1.3
is an immediate corollary of the following result and the Lp-boundedness
of the Hardy–Littlewood maximal operator and its dyadic versions:

Theorem 1.5. — Suppose that E ⊂ Rn+1 is an n-dimensional UR set
and let Ω := Rn+1 \ E and ε ∈ (0, 1). Then every harmonic function in Ω
is pointwise ε-approximable.

Although the Lp version of ε-approximability seems like the weakest one
of all the properties, it is equivalent with the other properties in the codi-
mension 1 ADR context provided that p is large enough. This follows from
the recent results of S. Bortz and the second author [4]. Hence, combining
our results with the results in [4, 13, 18] gives us the following characteri-
zation theorem:

Theorem 1.6. — Suppose that E ⊂ Rn+1 is an n-dimensional ADR
set and let Ω := Rn+1 \ E. The following conditions are equivalent:

(1) E is UR.
(2) Bounded harmonic functions in Ω are ε-approximable for every ε ∈

(0, 1).
(3) Harmonic functions in Ω are pointwise ε-approximable for every

ε ∈ (0, 1).
(4) Harmonic functions in Ω are ε-approximable in Lp for some p >

n/(n− 1) and every ε ∈ (0, 1).

ANNALES DE L’INSTITUT FOURIER
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(5) Harmonic functions in Ω are ε-approximable in Lp for all p ∈ (1,∞)
and every ε ∈ (0, 1).

To prove the implication (1) ⇒ (3), we combine some techniques of
the proof of the Hytönen–Rosén theorem with the tools and techniques
from [18]. Some of the techniques can be used in a straightforward way
but with the rest of them we have take care of many technicalities and be
careful with the details.
We start by recalling the basic definitions and some results needed in our

statements and proofs. For the most part, our notation and terminology
agrees with [18].

1.1. Notation

We use the following notation.
(1) The set E ⊂ Rn+1 will always be a closed set of Hausdorff dimension

n. We denote Ω := Rn+1 \ E.
(2) The letters c and C denote constants that depend only on the di-

mension, the ADR constant (see Definition 1.7), the UR constants
(see Definition 1.8) and other similar parameters. We call them
structural constants. The values of c and C may change from one
occurence to another. We do not track how our bounds depend on
these constants and usually just write λ1 . λ2 if λ1 6 cλ2 for a
structural constant c and λ1 ≈ λ2 if λ1 . λ2 . λ1.

(3) We use capital letters X,Y, Z, and so on to denote points in Ω and
lowecase letters x, y, z, and so on to denote points in E.

(4) The (n + 1)-dimensional Euclidean open ball of radius r will be
denoted B(x, r) or B(X, r) depending on whether the center point
lies on E or Ω. We denote the surface ball of radius r centered at x
by ∆(x, r) := B(x, r) ∩ E.

(5) Given a Euclidean ball B := B(X, r) or a surface ball ∆ := ∆(x, r)
and constant κ > 0, we denote κB := B(X,κr) and κ∆ := ∆(x, κr).

(6) For every X ∈ Ω we set δ(X) := dist(X,E).
(7) We letHn be the n-dimensional Hausdorff measure and denote σ :=
Hn|E . The (n+ 1)-dimensional Lebesgue measure of a measurable
set A ⊂ Ω will be denoted by |A|.

(8) For a set A ⊂ Rn+1, we let 1A be the indicator function of A:
1A(x) = 0 if x /∈ A and 1A(x) = 1 if x ∈ A.

(9) The interior of a set A will be denoted by int(A). The closure of a
set A will be denoted by A.

TOME 70 (2020), FASCICULE 4



1600 Steve HOFMANN & Olli TAPIOLA

(10) For µ-measurable sets A with positive and finite measure we setffl
A
fdµ := 1

µ(A)fdµ.
(11) The Hardy–Littlewood maximal operator and its dyadic version

(see Section 1.3) in E will be denoted M and MD, respectively:

Mf(x) := sup
∆(y,r)3x

 
∆(y,r)

|f(z)|dσ(z),

MDf(x) := sup
Q∈D,Q3x

 
Q

|f(z)|dσ(z).

1.2. ADR, UR and NTA sets

Definition 1.7. — We say that a closed set E ⊂ Rn+1 is an n-ADR
(Ahlfors–David regular) set if there exists a uniform constant C such that

1
C
rn 6 σ(∆(x, r)) 6 Crn

for every x ∈ E and every r ∈ (0,diam(E)), where diam(E) may be infinite.

Definition 1.8. — Following [7, 8], we say that an n-ADR set E ⊂
Rn+1 is UR (uniformly rectifiable) if it contains “big pieces of Lipschitz
images” (BPLI) of Rn: there exist constants θ,Λ > 0 such that for every
x ∈ E and r ∈ (0,diam(E)) there is a Lipschitz mapping ρ = ρx,r : Rn →
Rn+1, with Lipschitz norm no larger that Λ, such that

Hn(E ∩B(x, r) ∩ ρ({y ∈ Rn : |y| < r})) > θrn.

Definition 1.9. — Following [21], we say that a domain Ω ⊂ Rn+1 is
NTA (nontangentially accessible) if

(1) Ω satisfies the Harnack chain condition: there exists a uniform con-
stant C such that for every ρ > 0, Λ > 1 and X,X ′ ∈ Ω with
δ(X), δ(X ′) > ρ and |X−X ′| < Λρ there exists a chain of open balls
B1, . . . , BN ⊂ Ω, N 6 C(Λ), withX ∈ B1,X ′ ∈ BN , Bk∩Bk+1 6= ∅
and C−1 diam(Bk) 6 dist(Bk, ∂Ω) 6 C diam(Bk),

(2) Ω satisfies the corkscrew condition: there exists a uniform constant
c such that for every surface ball ∆ := ∆(x, r) with x ∈ ∂Ω and 0 <
r < diam(∂Ω) there exists a point X∆ ∈ Ω such that B(X∆, cr) ⊂
B(x, r) ∩ Ω,

(3) Rn+1 \ Ω satisfies the corkscrew condition.

ANNALES DE L’INSTITUT FOURIER
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1.3. Dyadic cubes; Carleson and sparse collections

Theorem 1.10 (E.g. [5, 19, 24]). — Suppose that E is an ADR set.
Then there exists a countable collection D,

D :=
⋃
k∈Z

Dk, Dk := {Qkα : α ∈ Ak}

of Borel sets (that we call dyadic cubes) such that
(1) the collection D is nested: if Q,P ∈ D, then Q ∩ P ∈ {∅, Q, P},
(2) E =

⋃
Q∈Dk Q for every k ∈ Z and the union is disjoint,

(3) there exist constants c1 > 0 and C1 > 1 with the following property:
for any cubeQkα there exists a point zkα ∈ Qkα (that we call the center
point of Qkα) such that

(1.1) ∆(zkα, c12−k) ⊆ Qkα ⊆ ∆(zkα, C12−k) =: ∆Qkα
,

(4) if Q,P ∈ D and Q ⊆ P , then

(1.2) ∆Q ⊆ ∆P ,

(5) for every cube Qkα there exists a uniformly bounded number of
disjoint cubes Qk+1

βi
such that Qkα =

⋃
iQ

k+1
βi

, where the uniform
bound depends only on the ADR constant of E,

(6) the cubes form a connected tree under inclusion: if Q,P ∈ D, then
there exists a cube R ∈ D such that Q ∪ P ⊆ R.

Remark 1.11. — The last property in the previous theorem does not
appear in the constructions in [5, 19, 24], but it is easy to modify the
construction to get this property. The basic idea in the construction in [19]
is to choose first the center points zkα, then define a partial order among
those points and finally build the cubes by using density arguments. Thus,
if we simply choose the center points zkα in such a way that there exists
a point z0 ∈

⋂
k∈Z{zkα}α, then by (1.1) for any r > 0 there exists a cube

Qr that contains the ball B(z0, r). This implies the last property in the
previous theorem.

Notation 1.12.

(1) Since the set E may be bounded or disconnected, we may encounter
a situation where Qkα = Qlβ although k 6= l. In particular, in the
second to last property of Theorem 1.10 there might exist only one
cubeQk+1

βi
which equalsQkα as a set. Thus, we use the notation D(E)

for the collection of all relevant cubes Q ∈ D, i.e. if Qkα ∈ D(E),
then C12−k . diam(E) and the number k is maximal in the sense

TOME 70 (2020), FASCICULE 4
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that there does not exist a cube Qlβ ∈ D such that Qlβ = Qkα for
some l > k. Notice that the number k is bounded for each cube
since the ADR condition excludes the presence of isolated points in
E. This way in D(E) it is natural to talk about the children of a
cube Q (i.e. the largest cubes P ( Q) and the parent of a cube Q
(i.e. the smallest cube R ) Q).

(2) For every cube Qkα := Q ∈ D, we denote `(Q) := 2−k and zQ := zkα.
We call `(Q) the side length of Q.

(3) For every Q ∈ D, we denote the collection of dyadic subcubes of Q
by DQ.

Definition 1.13. — Suppose that Λ > 1. We say that a collection
A ⊂ D is Λ-Carleson (or that it satisfies a Carleson packing condition) if∑

Q∈A,Q⊂Q0

σ(Q) 6 Λσ(Q0)

for every cube Q0 ∈ D.

Definition 1.14. — Suppose that λ ∈ (0, 1). We say that a collection
A ⊂ D is λ-sparse if for every cube Q ∈ A there exists a subset EQ ⊂ Q

satisfying
(1) EQ ∩ EQ′ = ∅ if Q 6= Q′ and
(2) σ(EQ) > λσ(Q).

The following result will be useful for us with some technical estimates.

Theorem 1.15. — A collection A ⊂ D is Λ-Carleson if and only if it is
1
Λ -sparse.

Although it is very easy to show that sparseness implies the Carleson
property, the other implication is not obvious. For dyadic cubes in Rn,
it was first proven by I. Verbitsky [26, Corollary 2] and the result was
later rediscovered by A. Lerner and F. Nazarov with a different proof [23,
Lemma 6.3]. For general Borel sets, the result was proven by T. Hänni-
nen [14, Theorem 1.3]. Since the dyadic cubes in Theorem 1.10 are Borel
sets, the result of Hänninen is suitable for us.
In addition to sparseness arguments, we use a discrete Carleson em-

bedding theorem (Theorem A.1) to prove that local bounds imply global
bounds. In fact, we could use the embedding theorem instead of sparseness
arguments throughout the paper but this would give us slightly weaker
estimates.

ANNALES DE L’INSTITUT FOURIER
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Definition 1.16. — Let A ⊂ D be any collection of dyadic cubes. We
say that a cube P ∈ A is an A-maximal subcube of Q0 if there do not exist
any cubes P ′ ∈ A such that P ( P ′ ⊂ Q0.

1.4. Corona decomposition, Whitney regions and Carleson
boxes

Definition 1.17. — We say that a subcollection S ⊂ D(E) is coherent
if the following three conditions hold.

(1) There exists a maximal element Q(S) ∈ S such that Q ⊂ S for
every Q ∈ S.

(2) If Q ∈ S and P ∈ D(E) is a cube such that Q ⊂ P ⊂ Q(S), then
also P ∈ S.

(3) If Q ∈ S, then either all children of Q belong to S or none of them
do.

If S satisfies only conditions (1) and (2), then we say that S is semicoherent.

In this article, we do not work directly with Definition 1.8 but use the
bilateral corona decomposition instead:

Lemma 1.18 ([18, Lemma 2.2]). — Suppose that E ⊂ Rn+1 is a uni-
formly rectifiable set of codimension 1. Then for any pair of positive con-
stants η � 1 andK � 1 there exists a disjoint decomposition D(E) = G∪B
satisfying the following properties:

(1) The “good” collection G is a disjoint union of coherent stopping
time regimes S.

(2) The “bad” collection B and the maximal cubes Q(S) satisfy a Car-
leson packing condition: for every Q ∈ D(E) we have∑

Q′⊂Q,Q′∈B
σ(Q′) +

∑
S:Q(S)⊂Q

σ(Q(S)) 6 Cη,Kσ(Q).

(3) For every S, there exists a Lipschitz graph ΓS , with Lipschitz con-
stant at most η, such that for every Q ∈ S we have

sup
x∈∆∗

Q

dist(x,ΓS) + sup
y∈B∗

Q
∩ΓS

dist(y,E) < η`(Q),

where B∗Q := B(zQ,K`(Q)) and ∆∗Q := B∗Q ∩ E.

The proof of this decomposition is based on the use of both the unilateral
corona decomposition [7] and the bilateral weak geometric lemma [8] of
David and Semmes. The decomposition plays a key role in this paper.

TOME 70 (2020), FASCICULE 4
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In [18, Section 3], the bilateral corona decomposition is used to construct
Whitney regions UQ and Carleson boxes TQ with respect to the dyadic
cubes Q ∈ D(E) using a dyadic Whitney decomposition of Rn+1 \ E.
The Whitney regions are a substitute for the dyadic Whitney tiles Q ×
(`(Q)/2, `(Q)) and the Carleson boxes are a substitute for the dyadic boxes
Q × (0, `(Q)) in Rn+1

+ . We list some of their important properties in the
next lemma which we use constantly without specifically referring to it each
time.

Lemma 1.19. — The Whitney regions UQ, Q ∈ D(E), satisfy the fol-
lowing properties.

(1) The region UQ is a union of a bounded number of slightly fattened
Whitney cubes I∗ := (1+τ)I such that `(Q) ≈ `(I) and dist(Q, I) ≈
`(Q). We denote the collection of these Whitney cubes by WQ.

(2) The regions UQ have a bounded overlap property. In particular, we
have

∑
i |UQi | . |

⋃
i UQi | for cubes Qi such that Qi 6= Qj if i 6= j.

(3) If UQ ∩ UP 6= ∅, then `(Q) ≈ `(P ) and dist(Q,P ) . `(Q).
(4) For every Y ∈ UQ we have δ(Y ) ≈ `(Q).
(5) For every Q ∈ D(E), we have |UQ| ≈ `(Q)n+1 ≈ `(Q) · σ(Q).
(6) If Q ∈ G, then UQ breaks into exactly two connected components

U+
Q and U−Q such that |U+

Q | ≈ |U
−
Q |.

(7) If Q ∈ B, then UQ breaks into a bounded number of connected
components U iQ such that |U iQ| ≈ |U

j
Q| for all i and j.

(8) If diam(E) =∞, then
⋃
Q∈D(E) UQ = Ω.

(9) If diam(E) < ∞, then there exists a point z0 ∈ E and a constant
C > 1 such that B(z0, C ·diam(E))\E ⊂

⋃
Q∈D(E) UQ. The constant

C can be made large but this makes the implicit constant in the
bounded overlap property large as well.

For every Q ∈ G, the components U+
Q and U−Q have “center points” that

we denote by X+
Q and X−Q , respectively. We also set Y ±Q := X±

Q̃
, where Q̃ is

the dyadic parent of Q unless Q = Q(S), in which case we set Q̃ = Q. We
use these points in the construction in Section 5.1. For any cube Q ∈ G,
the collection WQ breaks naturally into two disjoint subcollection W+

Q and
W−Q .

For every Q ∈ D(E), we define the Carleson box as the set

TQ := int

 ⋃
Q′∈DQ

UQ

 .

ANNALES DE L’INSTITUT FOURIER
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For each A ⊂ D(E), we set

ΩA := int

 ⋃
Q′∈A

UQ′

 .

1.5. Local BV

Definition 1.20. — We say that a function f ∈ L1
loc(Ω) has locally

bounded variation (denote f ∈ BVloc(Ω)) if for any bounded open set
U ⊂ Ω such that U ⊂ Ω we have

sup
−→Ψ∈C1

0 (U),
‖
−→Ψ‖L∞61

¨
U

f(Y ) div−→Ψ(Y )dY <∞.

The latter expression can be shown to define a measure, by the Riesz
representation theorem. We have the following:

Theorem 1.21 ([10, Section 5.1]). — Suppose that f ∈ BVloc(Ω). Then
there exists a Radon measure µ on Ω such that

µ(U) = sup
−→Ψ∈C1

0 (U),
‖
−→Ψ‖L∞61

¨
U

f(Y ) div−→Ψ(Y )dY.

for any open set U ⊂ Ω; we call µ(U) the total variation of f on U .

Abusing notation, for an open set U ⊂ Ω, we shall write

µ(U) :=
¨
U

|∇f(Y )|dY,

which should not be mistaken for a usual Lebesgue integral. Indeed, we
may have situations where A ⊂ B and |A| = |B| but

˜
A
|∇f(Y )|dY �˜

B
|∇f(Y )|dY .

In particular, if f ∈ BVloc(Ω), the sets U,U1, . . . , Uk ⊂ Ω are open and
U ⊂

⋃
i Ui, then

(1.3)
¨
U

|∇f(Y )|dY 6
∑
i

¨
Ui

|∇f(Y )|dY.

Remark 1.22. — We emphasize that we write |∇f |dY to indicate the
variation measure of f , which is denoted by ‖Df‖ in [10]; thus, for f ∈
BVloc(Ω), and for any open set U ⊂ Ω, we let

˜
U
|∇f |dY denote the total

variation of f over U . We shall continue to use this (mildly abusive) nota-
tional convention in the sequel, when working with elements of BVloc(Ω).
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1.6. C and CD

For every k ∈ N, we let Fk be the ordered pair (E, k). In this section, we
let Q0 = E be the maximal dyadic cube if E is a bounded set. We define
the operators C and CD by setting

C(f)(x) := sup
r>0

1
rn

¨
B(x,r)\E

|f(Y )|dY,

CD(f)(x) := sup
Q∈D∗,x∈Q

1
`(Q)n

¨
TQ

|f(Y )|dY,

where

D∗ :=
{
D(E), if diam(E) =∞
D(E) ∪ {Fk : k = Λ0,Λ0 + 1, . . .}, if diam(E) <∞

and
TFk := B(z0, 2k diam(E)), `(Fk) := 2k diam(E)

for some fixed point z0 ∈ E and a number Λ0 such that TQ0 ⊂ TFΛ0
. We

will call also the pairs Fk cubes although their actual structure is irrelevant
and we will interpret x ∈ Fk simply as x ∈ E.
Usually these functions are not pointwise equivalent but we only have

the estimate CD(f)(x) . C(f)(x) for every x ∈ E (this follows from the
ADR property of E and the fact that TQ ⊂ B(zQ, C`(Q)) for a uniform
constant C). However, in Lp sense, these functions are always compara-
ble. This can be seen easily from the level set comparison formula that
we prove next. This comparability is convenient for us since we construct
the approximating function ϕ in Theorem 1.3 with the help of the dyadic
Whitney regions. Thus, it is more natural for us to prove the desired Lp

bound for CD(∇ϕ) instead of C(∇ϕ). We prove the comparison formula
by using well-known techniques from the proof of the corresponding for-
mula for the Hardy–Littlewood maximal function and its dyadic version [9,
Lemma 2.12].

Lemma 1.23. — Suppose that f ∈ BVloc(Ω). Then there exist uniform
constants A1 and A2 (depending on the dimension and the ADR constant)
such that for every λ > 0 we have

σ ({x ∈ E : C(∇f)(x) > A1λ}) 6 A2 · σ ({x ∈ E : CD(∇f)(x) > λ}) .

In particular, ‖C(f)‖Lp(E) 6 A1A
1/p
2 ‖CD(f)‖Lp(E) for every p ∈ (1,∞).

Proof. — We first note that if r � diam(E), then by the definition of CD
we have the bound 1

rn

˜
B(x,r)\E |∇f(Y )|dY . CD(∇f)(x). Thus, we may
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assume that the balls in this proof have uniformly bounded radii. diam(E)
and the cubes belong to D(E). Naturally, we may also assume that the right
hand side of the inequality is finite.
We notice that if CD(f)(x) > λ, then there exists a cube Q ∈ D(E) such

that x ∈ Q and 1
σ(Q)

˜
TQ
|∇f(Y )|dY > λ. By the definition of CD(f), we

also have CD(f)(y) > λ for every y ∈ Q. In particular, we have

{x ∈ E : CD(∇f)(x) > λ} =
⋃
i

Qi

for disjoint dyadic cubes Qi. We now claim that if A1 is large enough, then

(1.4) {x ∈ E : C(∇f)(x) > A1λ} ⊆
⋃
i

2∆Qi

where ∆Qi is the surface ball (1.1). Suppose that y /∈
⋃
i 2∆Qi and let r > 0.

Let us choose k ∈ Z so that 2k−1 6 r < 2k. Now there exist at most K
dyadic cubes R1, R2, . . . , Rm such that `(Rj) = 2k and Rj ∩∆(y, r) 6= ∅ for
every j = 1, 2, . . . ,m. We notice that none of the cubes Rj can be contained
in any of the cubes Qi since otherwise we would have y ∈ 2∆Rj ⊂ 2∆Qi

by (1.2). Thus, we have 1
`(Rj)n

˜
TRj
|∇f(Y )|dY 6 λ for every j. We can

use a straightforward geometric argument to show that B(y, r) ⊂
⋃m
j=1 TRj

(see [18, p. 2353–2354]). Hence, since r ≈ `(Rj) for every j, we have

1
rn

¨
B(y,r)

|∇f(Y )|dY
(1.3)
.

m∑
j=1

1
`(Rj)n

¨
TRj

|∇f(Y )|dY . λ

and y /∈ {x ∈ E : C(∇f)(x) > A1λ} for a large enough A1. In particu-
lar, (1.4) holds and we have

σ({x ∈ E : C(∇f)(x) > A1λ}) 6
∑
i

σ(2∆Qi)

.
∑
i

σ(Qi)

=σ

(⋃
i

Qi

)
=σ({x ∈ E : CD(∇f)(x)>λ}).

The Lp comparability C(∇f) and CD(∇f) follows immediately:

‖C(∇f)‖pLp(E) = p

ˆ ∞
0

λp−1σ({x ∈ E : C(∇f)(x) > λ})dλ

6 A2p

ˆ ∞
0

λp−1σ({x ∈ E : A1CD(∇f)(x) > λ})dλ

= Ap1A2‖CD(∇f)‖pLp(E). �
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1.7. Cones, non-tangential maximal functions and square
functions

We recall from [18, Section 3] that the Whitney regions UQ and the
fattened Whitney regions ÛQ, Q ∈ D, are defined using fattened Whitney
boxes I∗ := (1+ τ)I and I∗∗ := (1+2τ)I respectively, where τ is a suitable
positive parameter. Let us define the regions ÛQ using even fatter Whitney
boxes I∗∗∗ := (1 + 3τ)W .

Definition 1.24. — For any x ∈ E, we define the cone at x by setting

(1.5) Γ(x) :=
⋃

Q∈D(E),Q3x

ÛQ.

We define the non-tangential maximal function N∗u and, for u ∈W 1,2
loc (Ω),

the square function Su as follows:

N∗u(x) := sup
Y ∈Γ(x)

|u(Y )|, x ∈ E,

Su(x) :=
(ˆ

Γ(x)
|∇u(Y )|2δ(Y )1−ndY

)1/2

, x ∈ E.

The Hytönen–Rosén techniques in [20, Section 6] rely on the use of local
S . N and N . S estimates from [15]. Although a local S . N estimate
holds also in our context [17], a local N . S estimate does not hold without
suitable assumptions on connectivity. Thus, we cannot apply the Hytönen–
Rosén techniques directly but we have to combine them with the techniques
created in [18].
In Section 5 we consider the following modified versions of Γ(x) and N∗u

to bypass some additional technicalities:

Definition 1.25. — For every x ∈ E and α > 0 we define the cone of
α-aperture at x Γα(x) by setting

(1.6) Γα(x) :=
⋃

Q∈D(E),Q3x

⋃
P∈D(E),
`(P )=`(Q),
α∆Q∩P 6=∅

ÛP .

Using the cones Γα(x), we define the non-tangential maximal function of
α-aperture Nα

∗ u by setting Nα
∗ u(x) := supY ∈Γα(x) |u(Y )|.

Remark 1.26. — If the set E is bounded, then the cones (1.5) and (1.6)
are also bounded since we only constructed Whitney regions U such that
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diam(U) . diam(E). Thus, if E is bounded, we use the cones

Γ̂(x) := Γ(x) ∪B(z0, C · diam(E))c

and Γ̂α(x) := Γα(x) ∪B(z0, Cα · diam(E))c

for a suitable point z0 ∈ E and suitable constants C and Cα instead.

The usefulness of these modified cones and non-tangential maximal func-
tions lies in the fact that for a suitable choice of α the cone Γα(x) contains
some crucial points that may not be contained in Γ(x) and in the Lp sense
the function Nα

∗ u is not too much larger than N∗u. We prove the latter
claim in the next lemma but postpone the proof of the first claim to Sec-
tion 5.

Lemma 1.27. — Suppose that u is a continuous function and let α > 1.
Then ‖N∗u‖Lp(E) ≈α ‖Nα

∗ u‖Lp(E) for every p ∈ (0,∞).

Proof. — We only prove the claim for the case diam(E) = ∞ as the
proof for the case diam(E) <∞ is almost the same.

Since the set E is ADR, measures of balls with comparable radii are
comparable. Using this property makes it is simple and straightforward to
generalize the classical proof of C. Fefferman and E. Stein [11, Lemma 1]
from Rn+1

+ to Ω to show that ‖Nαu‖Lp(E) ≈α,β ‖Nβu‖Lp(E) where

Nγu(x) := sup
Y ∈Γ̃γ(x)

|u(Y )|, Γ̃γ(x) := {Y ∈ Ω: dist(x, Y ) < γ · δ(Y )} .

By the definition of the cones Γ(x), there exists γ0 > 0 such that Γ̃γ0(x) ⊂
Γ(x) for every x ∈ E. Thus, we only need to show that Γα(x) ⊂ Γ̃γ(x) for
some uniform γ = γ(α) for all x ∈ E since this gives us the estimate (∗) in
the chain

‖N∗u‖Lp(E) 6 ‖Nα
∗ u‖Lp(E)

(∗)
6 ‖Nγu‖Lp(E)

≈γ,γ0 ‖Nγ0u‖Lp(E) 6 ‖N∗u‖Lp(E).

Suppose that Q,P ∈ D(E), x ∈ Q, `(Q) = `(P ) and α∆Q ∩ P 6= ∅. By the
construction of the Whitney regions, for every Y ∈ ÛP we have

δ(Y ) ≈ `(P ) ≈ dist(Y, P ).

On the other hand, since α∆Q ∩P 6= ∅ and `(P ) = `(Q), we know that for
any y ∈ P we have

dist(x, y) . α`(Q) = α`(P ).
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Let us take any z ∈ P . Now for every Y ∈ ÛP we have

dist(x, Y ) 6 dist(x, z) + dist(z, Y ) . α`(P ) + `(P ) . α`(P ) ≈ α · δ(Y ).

In particular, there exists a uniform constant γ = γ(α) such that Γα(x) ⊂
Γ̃γ(x). �

2. Principal cubes

As in [20], we define the numbers MD(N∗u)(Q) by setting

MD(N∗u)(Q) := sup
Q⊆R∈D

 
R

N∗u(y)dσ(y)

for every Q ∈ D(E) =: D. We shall use a collection I ⊂ D(E) = D such
that

(2.1) I :=
{
Qi : i ∈ Ñ

}
, Qi ( Qi+1 ∀ i,

⋃
i

Qi = E,

where Ñ = {1, 2, . . . , n0} for some n0 ∈ N if E is bounded, and Ñ = N oth-
erwise. This type of a collection exists by the last property in Theorem 1.10
and by the properties of dyadic cubes, the collection is Carleson. Let us
construct a collection P ⊂ D of ”stopping cubes“ using the construction
described in [20, Section 6.1]. We set P0 := I and consider all the cubes
Q′ ∈ D(E) \ P0 such that

(1) for some Q ∈ P0 we have Q′ ( Q and

MD(N∗u)(Q′) = sup
Q′⊆R∈D

 
R

N∗u(y)dσ(y) > 2MD(N∗u)(Q),(2.2)

(2) Q′ is not contained in any such Q′′ ( Q such that either Q′′ ∈ P0
or (2.2) holds for the pair (Q′′, Q).

We denote by P1 the collection we get by adding all the cubes Q′ satisfying
both (1) and (2) to P0. We then continue this process for P1 in place of P0
and so on. We set P :=

⋃∞
k=0 Pk. We also set

πPQ = the smallest cube Q0 ∈ P such that Q ⊆ Q0.

Here we mean smallest with respect to the side length. Naturally, we have
πPQ = Q for every Q ∈ P, and since I ⊂ P, for every cube Q ∈ D there
exists some cube PQ ∈ P such that Q ⊂ PQ.
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Remark 2.1. — The collection P is an auxiliary collection that helps us
to simplify the proofs of several claims. We use it in the following way.
Suppose that we have a subcollectionW ⊂ D and we want to show thatW
satisfies a Carleson packing condition. Let Q0 ∈ D. Now for every Q ∈ W
such that Q ⊂ Q0, we have either πPQ = πPQ0 or πPQ = P = πPP for
some P ∈ P such that P ( πPQ0. In particular, we have∑

Q∈W,Q⊆Q0

σ(Q) =
∑
Q∈W,

πPQ=πPQ0

σ(Q) +
∑

P∈P,P(πPQ0

∑
Q∈W,
πPQ=P

σ(Q)

=: IQ0 +
∑

P∈P,P(πPQ0

IP .

We prove in Lemma 2.2 below that the collection P satisfies a Carleson
packing condition. Thus, if we can show that IQ0 . σ(Q0) for an arbitrary
cube Q0 ∈ P, we get∑

P∈P,P(πPQ0

IP .
∑

P∈P,P(πPQ0

σ(P ) . σ(Q0).

Thus, to show that the collectionW satisfies a Carleson packing condition,
it is enough to show that IQ0 . σ(Q0) for every cube Q0 ∈ D. The useful-
ness of this simplification is that if Q ∈ D \ P and πPQ = P , then by the
construction of the collection P we have

MD(N∗u)(Q) 6 2MD(N∗u)(P ).

We use this property several times in the proofs.

For any cube Q0 ∈ D, we say that R ∈ P is a P-proper subcube
of Q0 if we have MD(N∗u)(R) > 2MD(N∗u)(Q0) and MD(N∗u)(R′) 6
2MD(N∗u)(Q0) for every intermediate cube R ( R′ ( Q0.

Lemma 2.2. — For every Q0 ∈ D(E) we have

(2.3)
∑

P∈P,P⊆Q0

σ(P ) . σ(Q0).

Proof. — Let us start by noting that we may assume that Q0 ∈ P since
otherwise we can simply consider the P-maximal subcubes of Q0. To be
more precise, the P-maximal subcubes of Q0 are disjoint by definition and
thus, if we sum their measures together, it is at most σ(Q0). Now, if Q ∈ P
and Q ⊂ Q0, we know that Q is one of the P-maximal subsubes of Q0 or it
is contained properly in one of them. Hence, if we prove the estimate (2.3)
for the case Q0 ∈ P, it implies the same estimate even with the same
implicit constant for the case Q0 /∈ P.
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Suppose first that we have a collection of disjoint cubes Q′ ⊂ Q that
satisfy MD(N∗u)(Q′) > 2MD(N∗u)(Q). Then, for every such cube Q′ we
have MD(N∗u)(Q′) >

ffl
Q
N∗udσ and thus, for every point x ∈ Q′ we get

MD(1QN∗u)(x) = sup
R∈D,x∈R⊆Q

 
R

N∗udσ

> sup
R∈D,Q′⊆R(Q

 
R

N∗udσ

= MD(N∗u)(Q′) > 2MD(N∗u)(Q).

In particular, by the L1 → L1,∞ boundedness of MD we have∑
Q′

σ(Q′) 6 σ ({x ∈ E : MD(1QN∗u)(x) > 2MD(N∗u)(Q)})

6
1

2MD(N∗u)(Q)‖1QN∗u‖L
1(σ) =

ffl
Q
N∗udσ

M(N∗u)(Q)
σ(Q)

2 6
σ(Q)

2 .(2.4)

We notice that if R ∈ P \ I, then R is a P-proper subcube of some cube
Q ∈ P. To be more precise, if R ∈ P \ I, then there exists a chain of cubes
R = R1 ( R2 ( . . . ( Rk, Ri ∈ P, such that for every i = 1, 2, . . . , k − 1
Ri is a P-proper subcube of Ri+1 and Rk ∈ I. If such a chain of length
k from R to Q exists, we denote R ∈ PkQ. By using the property (2.4) k
times, we see that for each Q ∈ P we have∑

R∈Pk
Q

σ(R) 6
∑

R∈Pk−1
Q

∑
S∈Pk

Q
,S(R

σ(S) 6 1
2

∑
R∈Pk−1

Q

σ(R)

6 · · · 6 1
2k−1

∑
R∈P1

Q

σ(R) 6 σ(Q)
2k(2.5)

Now it is straightforward to prove the packing condition. We have∑
P∈P,P⊆Q0

σ(P ) =
∑

P∈I,P⊆Q0

σ(P ) +
∑

P∈P\I,P⊆Q0

σ(P )

6 CIσ(Q0) +
∑

Q∈I,Q⊆Q0

∞∑
k=1

∑
P∈Pk

Q

σ(P )

(2.5)
6 CIσ(Q0) +

∑
Q∈I,Q⊆Q0

∞∑
k=1

σ(Q)
2k

= CIσ(Q0) +
∑

Q∈I,Q⊆Q0

σ(Q) 6 CIσ(Q0) + CIσ(Q0)

which proves the claim. �

ANNALES DE L’INSTITUT FOURIER



UNIFORM RECTIFIABILITY AND ε-APPROXIMABILITY IN Lp 1613

3. “Large Oscillation” cubes

Before constructing the approximating function, we consider two collec-
tions of cubes that will act as the basis of our construction. In this section,
we show that the union of the collection of “large oscillation” cubes

R :=
{
Q ∈ D : osc

Ui
Q

u > εMD(N∗u)(Q) for some i
}
.

and the collection of “bad” cubes from the corona decomposition satis-
fies a Carleson packing condition. We apply this property in the technical
estimates in Section 5.

Lemma 3.1. — For every Q0 ∈ D(E) we have

(3.1)
∑

R∈R,R⊆Q0

σ(R) . 1
ε2σ(Q0).

Proof. — We break the proof into three parts.
Part 1: Simplification. — First, by Remark 2.1, it is enough to show that∑

R∈R,R⊂Q0
πPR=πPQ0

σ(R) . 1
ε2σ(Q0).

Also, since the “bad” collection in the bilateral corona decomposition is
Carleson, it suffices to consider the “good” cubes in R, i.e. the collection
R ∩ G. Thus, we may assume that Q0 ∈ R ∩ G since otherwise we may
simply consider the (R∩G)-maximal subcubes of Q0 similarly as with the
collection P in the proof of Lemma 2.2. Furthermore, since the Whitney
regions UR of the “good” cubes R break into two components U+

R and U−R ,
it is enough to bound the sum∑

R∈R+,R⊂Q0
πPR=πPQ0

σ(R) . σ(Q0),

where R+ := {Q ∈ R ∩ G : oscU+
Q
> εMD(N∗u)(Q)}, as the arguments for

the corresponding collection R− are the same.
Since Q0 ∈ G, there exists a stopping time regime S0 = S0(Q0) such that

Q0 ∈ S0. We note that if we have Q ⊂ Q0 for a cube Q ∈ R+, then either
Q ∈ S0 or, by the coherency and disjointness of the stopping time regimes,
Q0 ∈ S for such a S that Q(S) ( Q0. Let S = S(Q0) be the collection of
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the stopping time regimes S such that Q(S) ( Q0. Then we have∑
R∈R+,R⊂Q0
πPR=πPQ0

σ(R) =
∑

R∈R+∩S0,R⊂Q0
πPR=πPQ0

σ(R) +
∑
S∈S

∑
R∈R+∩S,R⊂Q0
πPR=πPQ0

σ(R)

=: IQ0 + IIQ0 .

Let us show that if IQ0 . σ(Q0) for every Q0 ∈ D, then IIQ0 . σ(Q0)
for every Q0 ∈ D. Suppose that Q ∈ S ∈ S. Since Q(S) ( Q0, we have
πPQ = πPQ0 only if πPQ = πPQ(S) = πPQ0. Thus, it holds that

IIQ0 =
∑
S∈S

∑
R∈R+∩S,R⊂Q0
πPR=πPQ0

σ(R) 6
∑
S∈S

∑
R∈R+∩S,R⊂Q0
πPR=πPQ(S)

σ(R)

=
∑
S∈S

IQ(S)

.
∑
S∈S

σ(Q(S))

. σ(Q0)

by the Carleson packing property of the collection {Q(S)}S . Hence, to
prove (3.1), it suffices to show IQ0 . σ(Q0).

Part 2: δ(Y ) . DA(Y ) in Û+
P . — Let A ⊂ G be a collection of cubes

and set

Ω∗A := int

 ⋃
Q∈A

Û+
Q

 = int

 ⋃
Q∈A

⋃
I∈W+

Q

I∗∗∗


and DA(Y ) := dist(Y, ∂Ω∗A). Recall the definitions of I∗∗ and I∗∗∗ from
Section 1.7. Let us fix a cube P ∈ A and a point Y ∈ Û+

P =
⋃
I∈W+

P
I∗∗.

We now claim that δ(Y ) . DA(Y ). We notice first that although the
regions Û+

Q may overlap, we have `(Q) ≈ `(Q′) ≈ `(P ) for all overlapping
regions Û+

Q and Û+
Q′ such that Y ∈ Û+

Q ∩ Û+
Q′ (see (3.2), (3.8) and related

estimates in [18]). Also, the fattened Whitney boxes I∗∗∗ may overlap, but
we have `(I∗∗∗) ≈ `(I) ≈ `(J) ≈ `(J∗∗∗) ≈ `(P ) if Y ∈ I∗∗∗ ∩ J∗∗∗. By a
simple geometrical consideration we know that

dist(Y, ∂I∗∗∗) ≈τ `(I).
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It now holds that DA(Y ) = dist(Y, ∂I∗∗∗) for some I∗∗∗ 3 Y or DA(Y ) >
dist(Y, ∂I∗∗∗) for every such I∗∗∗. In particular, we have

DA(Y ) > inf
Q∈A,Y ∈Û+

Q

inf
I∈W+

Q

dist(Y, ∂I∗∗∗)

≈ inf
Q∈A,Y ∈Û+

Q

inf
I∈W+

Q

`(I) ≈ inf
Q∈A,Y ∈Û+

Q

`(Q) ≈ `(P ).

Now we can take any I ∈ W+
P such that Y ∈ I∗∗ and notice that `(P ) ≈

`(I) ≈ `(I∗∗) ≈ dist(I∗∗, ∂Ω) ≈ dist(Y, ∂Ω). Hence DA(Y ) & δ(Y ) for
every Y ∈ Û+

P .
Part 3: The sum IQ0 . — To simplify the notation, let us write

R+
0 := {R ∈ R+ ∩ S0 : R ⊂ Q0, πPR = πPQ0}.

We consider the region Ω∗∗∗,

Ω∗∗∗ := int

 ⋃
R∈R+

0

Û+
R


and set D(Y ) := dist(Y, ∂Ω∗∗∗) for every Y ∈ Ω. Suppose that R ∈ R+

0 .
By Part 2, we know that

(3.2) δ(Y ) . D(Y ) for every Y ∈ Û+
R .

We also notice that

Ω∗∗∗ = int

 ⋃
R∈R+

0

Û+
R

 ⊂ int

 ⋃
R∈R+

0

⋃
x∈R

Γ(x)

 ,

so we have

sup
X∈Ω∗∗∗

|u(X)| = sup
R∈R+

0

sup
X∈Û+

R

|u(X)|

6 sup
R∈R+

0

inf
x∈R

N∗u(x)

6 sup
R∈R+

0

MD(N∗u)(R) .MD(N∗u)(πPQ0).(3.3)

In the last inequality we used the definition of R+
0 (see Remark 2.1).

By [18, (5.8)] (or [16, Section 4]), we have

(3.4)
(

osc
U+
R

u

)2

. `(R)−n
¨
Û+
R

|∇u(Y )|2δ(Y )dY

for every R ∈ R+. Notice also that if R ∈ R+
0 , then by the definition

of the numbers MD(N∗u)(Q) we have MD(N∗u)(πPQ0) 6 MD(N∗u)(R)
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simply because R ⊂ πPQ0. Thus, using (A) the definition of the num-
bers MD(N∗u)(Q), (B) the ADR property of E, (C) the definition of the
collection R+ and (D) the bounded overlap of the regions Û+

R we get

MD(N∗u)(πPQ0)2IQ0

(A)
6
∑
R∈R+

0

MD(N∗u)(R)2σ(R)(3.5)

(B)
.
∑
R∈R+

0

MD(N∗u)(R)2`(R)n

(C),(3.4)
.

1
ε2

∑
R∈R+

0

¨
Û+
R

|∇u(Y )|2δ(Y )dY

(3.2)
.

1
ε2

∑
R∈R+

0

¨
Û+
R

|∇u(Y )|2D(Y )dY

(D)
.

1
ε2

¨
Ω∗∗∗
|∇u(Y )|2D(Y )dY

Since Q0 ∈ R, we notice that the collection R+
0 forms a semi-coherent sub-

regime of S0. Thus, by [18, Lemma 3.24], the set Ω∗∗∗ is a chord-arc domain
(i.e. NTA domain with ADR boundary). Furthermore, by [2, Theorem 1.2],
∂Ω∗∗∗ is UR. Since Ω∗∗∗ ⊂ B(xQ0 , C`(Q0)) for a suitable structural con-
stant C (see [18, (3.14)]), the ADR property of ∂Ω and [18, Theorem 1.1]
give us

1
ε2

¨
Ω∗∗∗
|∇u(Y )|2D(Y )dY . 1

ε2 ‖u‖
2
L∞(Ω∗∗∗) · σ(Q0)

(3.3)
.

1
ε2MD(N∗u)(πPQ0)2 · σ(Q0).(3.6)

Since the numbers MD(N∗u)(πPQ0)2 cancel from (3.5) and (3.6), this con-
cludes the proof of the lemma. �

Since the bad collection B in the bilateral corona decomposition satisfies
a Carleson packing condition, we immediately get the following corollary:

Corollary 3.2. — For every Q0 ∈ D(E) we have

(3.7)
∑

R∈(R∪B),R⊆Q0

σ(R) . 1
ε2σ(Q0).
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4. Generation cubes

For every stopping time regime S, we construct a collection of generation
cubes G(S) as in [18, Section 5] but with modified stopping conditions. For
clarity, let us repeat the key details and definitions from [18, Section 5]
here. We set Q0 := Q(S) and G0 := {Q0}, start subdividing Q0 dyadically
and stop when we reach a cube Q ∈ DQ0 for which at least one of the
following conditions holds:

(1) Q is not in S,
(2) |u(Y +

Q )− u(Y +
Q0)| > εMD(N∗u)(Q),

(3) |u(Y −Q )− u(Y −Q0)| > εMD(N∗u)(Q).

The points Y ±Q were defined in Section 1.4. We denote the collection of
maximal subcubes of Q0 extracted by these stopping time conditions by
F1 = F1(Q0) and we let G1 = G1(Q0) := F1 ∩ S be the collection of first
generation cubes. We notice that the collection of subcubes of Q0 that are
not contained in any stopping cube Q ∈ F1 form a semicoherent subregime
of S. We denote this subregime by S ′ = S ′(Q0).
If G1 is non-empty, we repeat the construction above for the cubes Q1 ∈

G1 but replace Y ±Q0 by Y ±Q1 in conditions (2) and (3). Continuing like this
gives us collections Gk for k > 0 (notice that starting from some k the
collections might be empty), where

Gk+1(Q0) :=
⋃

Qk∈Gk(Q0)

G1(Qk).

To emphasize the dependency on S, we denote

Gk(S) := Gk(Q(S)),

and we set the collection of all generation cubes to be

G∗ :=
⋃
S
G(S).

By this construction, we have

(4.1) S =
⋃

Q∈G(S)

S ′(Q)

for each stopping time regime S, where S ′(Q) is a semicoherent subregime
of S with maximal element Q and the subregimes S ′(Q) are disjoint.

Our next goal is to prove that the collection G∗ satisfies a Carleson
packing condition:
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Lemma 4.1. — For every Q0 ∈ D we have

(4.2)
∑

S∈G∗,S⊆Q0

σ(S) . 1
ε2σ(Q0).

Before the proof, let us make two observations that help us to simplify
the proof.

(1) By arguing as in the proof of Lemma 3.1, we may assume that
Q0 ∈ G∗ and it suffices to show that∑

S∈G∗∩S0,S⊂Q0
πPS=πPQ0

σ(S) . 1
ε2σ(Q0),

where S0 is the unique stopping time regime such that Q0 ∈ S0.
(2) For every k > 0 and S ∈ Gk(S0), let G1(S) ⊂ G(S0) be the G∗-

children of S, i.e. the cubes P ∈ Gk+1(S0) such that P ( S. For
each such S we have

(4.3) MD(N∗u)(S)2
∑

Q∈G1(S)
πPQ=πPQ0

σ(Q) . 1
ε2

¨
ΩS (S)

|∇u(Y )|2δ(Y )dY,

where S (S) := S ′(S) ∩ {Q ∈ D : πPQ = πPQ0} is a semicoher-
ent subregime of S0 and ΩS (S) is the associated sawtooth region
(see (1.4)). The estimate (4.3) is a counterpart of [18, Lemma 5.11]
and it follows easily from the original proof. To be a little more
precise, instead of having ε2 6 100|u(Y +

Q ) − u(Y +
S )|2 for every

Q ∈ G1(S) as in [18, (5.13)], we have

ε2MD(N∗u)(S)2 6 ε2MD(N∗u)(Q)2 6 |u(Y +
Q )− u(Y +

S )|2

for every Q ∈ G1(S). The rest of the proof works as it is.

Proof of Lemma 4.1. — Let us follow the arguments in the proof of [18,
Lemma 5.16] and write∑
S∈G∗∩S0,S⊂Q0
πPS=πPQ0

σ(S) =
∑
k>0

∑
S∈Gk(Q0)
πPS=πPQ0

σ(S)

= σ(Q0) +
∑
k>1

∑
S′∈Gk−1(Q0)

∑
S∈G1(S′)
πPS=πPQ0

σ(S) =: σ(Q0) + I.
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Using (4.3) and the definition of the sawtooth regions gives us

MD(N∗u)(πPQ0)2I
(4.3)
.

1
ε2

∑
k>1

∑
S′∈Gk−1(Q0)

¨
ΩS (S′)

|∇u(Y )|2δ(Y )dY

6
1
ε2

∑
k>1

∑
S′∈Gk−1(Q0)

∑
S∈S′(S′)
πPS=πPQ0

¨
US

|∇u(Y )|2δ(Y )dY(4.4)

Let us denote Ω0 :=
⋃
S∈G∗

Q0
US where G∗Q0

:= {S ∈ D : πPS = πPQ0} ∩⋃
k>1

⋃
S′∈Gk−1(Q0) S ′(S′). By the construction,

⋃
k>1

⋃
S′∈Gk−1(Q0) S ′(S′)

is a coherent subregime of S0 with maximal element Q0 and thus, G∗Q0

is a semicoherent subregime of S0. In particular, the sawtooth region Ω0
splits into two chord-arc domains Ω±0 by [18, Lemma 3.24]. Furthermore,
by [2, Theorem 1.2], both ∂Ω+

0 and ∂Ω−0 are UR. We also note that Ω0 ⊂
B(xQ0 , C`(Q0)) (see [18, (3.14)]). Thus, since the triple sum in (4.4) runs
over a collection of disjoint cubes, we can use the bounded overlap of the
Whitney regions, [18, Theorem 1.1] and the ADR property of E to show
that

1
ε2

∑
k>1

∑
S′∈Gk−1(Q0)

∑
S∈S′(S′)
πPS=πPQ0

¨
US

|∇u(Y )|2δ(Y )dY

.
1
ε2

¨
Ω0

|∇u(Y )|2δ(Y )dY

.
1
ε2 ‖u‖

2
L∞(Ω0)σ(Q0).

Since πPS = πPQ0 for every S ∈ G∗Q0
, by (2.2) we have MD(N∗u)(S) 6

2MD(N∗u)(πPQ0) for every S ∈ G∗Q0
. In particular:

‖u‖2L∞(Ω0) 6 sup
S∈G∗

Q0

sup
Y ∈US

|u(Y )|2

6 sup
S∈G∗

Q0

inf
x∈S

N∗u(x)2

6 sup
S∈G∗

Q0

MD(N∗u)(S)2 .MD(N∗u)(πPQ0)2.

Since the numbers MD(N∗u)(πPQ0)2 cancel out, we have proven the Car-
leson packing condition of G∗. �
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5. Construction of the approximating function

Before we construct the function, we prove the following technical lemma
related to the modified cones Γα(x) that we defined in Section 1.7. Recall
that

(5.1) Γα(x) =
⋃

Q∈D(E),Q3x

⋃
P∈D(E),
`(P )=`(Q),
α∆Q∩P 6=∅

ÛP .

Lemma 5.1. — There exists a uniform constant α0 > 0 such that the
following holds: if Q ∈ D(E) is any cube and P ∈ G∗ is a generation cube
such that `(Q) 6 `(P ) and ΩS′(P ) ∩ TQ 6= ∅, then X±P , Y

±
P ∈ Γα0(x) for

every x ∈ Q.

Proof. — We start by noticing that there exists α > 0 (depending only
on the structural constants) such that

(5.2) if P appears in the union (5.1), then also P̃ appears in the same
union,

where P̃ is the dyadic parent of P . Indeed, if we have Q,P ∈ D(E), x ∈ Q,
`(Q) = `(P ) and α∆Q ∩ P 6= ∅, then also x ∈ Q̃, `(Q̃) = `(P̃ ) and
α∆

Q̃
∩ P̃ 6= ∅. The last claim follows from the fact that ∅ 6= α∆Q ∩ P ⊂

α∆
Q̃
∩ P̃ .

Let us then prove the claim of the lemma by following the argument in
the proof of [18, Lemma 5.20]. Since ΩS′(P ) ∩ TQ 6= ∅, there exist cubes
P ′ ∈ S ′(P ) and Q′ ⊂ Q such that UP ′ ∩ UQ′ 6= ∅. By the properties of the
Whitney regions, we have dist(Q′, P ′) . `(Q′) ≈ `(P ′). Let us consider two
cases:

(1) Suppose that `(P ′) > `(Q). Then there exists a cube Q′′ such that
Q ⊂ Q′′ and `(Q′′) = `(P ′). Since Q′ ⊂ Q′′, we have dist(Q′′, P ′) 6
dist(Q′, P ′) . `(Q′) 6 `(Q′′). Thus, for a large enough α0, we have
ÛP ′ ⊂ Γα0(x) for every x ∈ Q and the claim follows from (5.2).

(2) Suppose that `(P ′) < `(Q). Then by the semicoherency of S ′(P ),
there exists a cube P ′′ ∈ S ′(P ) such that P ′ ⊂ P ′′ ⊂ P and `(P ′′) =
`(Q). Since P ′ ⊂ P ′′ and Q′ ⊂ Q, we know that dist(P ′′, Q) 6
dist(P ′, Q′) . `(Q′) 6 `(Q). Thus, for a large enough α0, we have
ÛP ′′ ⊂ Γα0(x) for every x ∈ Q. Again, the claim follows now
from (5.2). �
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5.1. Constructing the function in TQ0

In this section we adopt the terminology from other papers (includ-
ing [18]) and say that a component U iQ is blue if oscUi

Q
u 6 εMD(N∗u)(Q)

and red if oscUi
Q
u > εMD(N∗u)(Q).

We recall the construction of the local functions ϕ0, ϕ1 and ϕ from [18,
Section 5]. We start by defining an ordered family of good cubes {Qk}k>1
relative to a fixed cube Q0 ∈ D. If Q0 ∈ G, then Q0 ∈ S for some stopping
time regime S and thus, Q0 ∈ S ′1 for some subregime in (4.1). In this
case, we set Q1 = Q(S ′1). If Q0 /∈ G, then we let Q1 be any good subcube
of Q0 such that Q1 is maximal with respect to the side length; such a
cube much exist since B is Carleson. Since Q1 ∈ G, we have Q1 ∈ S
for some stopping time regime S, and by the coherency of S, we have
Q1 = Q(S ′1) for some subregime in (4.1). Once the cube Q1 has been
chosen in these two cases, we let Q2 be a subcube of maximum side length
in (DQ0 ∩G) \ S ′1 and so on. This gives us a sequence of cubes Qk ∈ G such
that `(Q1) > `(Q2) > `(Q3) > · · · , Qk = Q(S ′k) and G ∩ DQ0 ⊂

⋃
k>1 S ′k.

We define recursively

A1 := ΩS′1 , Ak := ΩS′
k
\

k−1⋃
j=1

Aj

 , k > 2.

and

A±1 := Ω±S′1 , A±k := Ω±S′
k
\

k−1⋃
j=1

Aj

 , k > 2,

where

ΩS′
k

:= int

 ⋃
Q∈S′

k

U±Q

 .

We also set

Ω0 :=
⋃
k

ΩS′
k

=
⋃
k

Ak and Ω±0 :=
⋃
k

A±k .

We now define ϕ0 on Ω0 by setting

ϕ0 :=
∑
k

(
u(Y +

Qk
)1A+

k
+ u(Y −Qk)1A−

k

)
.

As for the rest of the subcubes of DQ0 , we let {Q(k)}k be some fixed
enumeration of the cubes (R∪ B) ∩ DQ0 and define recursively

V1 := UQ(1), Vk := UQ(k) \

k−1⋃
j=1

Vj

 , k > 2.
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Each Whitney region UQ(k) splits into a uniformly bounded number of
connected components U iQ(k). Thus, we may further split

V i1 := U iQ(1), V ik := U iQ(k) \

k−1⋃
j=1

Vj

 , k > 2

and then define

ϕ1(Y ) :=
{
u(Y ), if U iQ(k) is red
u(XI), if U iQ(k) is blue,

Y ∈ V ik ,

on each V ik , where XI is the center of a fixed Whitney cube I ⊂ U iQ(k). We

then denote Ω1 := int
(⋃

Q∈(B∪R)∩DQ0
UQ

)
= int (

⋃
k Vk), set the values of

ϕ0 and ϕ1 to be 0 outside their original domains of definition and define
the function ϕ on the Carleson box TQ0 as

ϕ(Y ) :=
{
ϕ0(Y ), Y ∈ TQ0 \ Ω1

ϕ1(Y ), Y ∈ Ω1,

From the point of view of CD, the values of ϕ on the boundary of Ω1 are
not important since the (n+ 1)-dimensional measure of ∂Ω1 is 0. Thus, we
may simply set ϕ|∂Ω1 = u since this is convenient from the point of view
of N∗(u− ϕ).

5.2. Verifying the estimates on Q0

Let us fix a cube Q0 ∈ D(E). We start by verifying the following three
estimates on Q0.

Lemma 5.2. — Suppose that x ∈ Q0, Q′ ∈ DQ0 and −→Ψ ∈ C1
0 (WQ′)

with ‖−→Ψ‖L∞ 6 1, where WQ′ ⊂ Ω is any bounded and open set satisfying
TQ′ ⊂WQ′ . Then the following estimates hold:

(1) N∗(1TQ0
(u− ϕ))(x) 6 εMD(N∗u)(x),

(2)
¨
TQ′\Ω1

ϕ0 div−→Ψ . 1
ε2

ˆ
β∆Q′

Nα0
∗ udσ,

(3)
¨
TQ′

ϕ1 div−→Ψ . 1
ε2

ˆ
β∆Q′

N∗udσ,

where β > 0 is a uniform constant and α0 > 0 is the constant in Lemma 5.1.

Proof. —
(1). — Let us estimate the quantity |u(Y )−ϕ(Y )| for different Y ∈ TQ0 .
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(1) Suppose that Y ∈ V ik such that U iQ(k) is a red component. Then we
have ϕ(Y ) = u(Y ) and |u(Y )− ϕ(Y )| = 0.

(2) Suppose that Y ∈ V ik such that U iQ(k) is a blue component. Then
ϕ(Y ) = u(XI) for a Whitney cube I ⊆ U iQ(k) and |u(Y )− ϕ(Y )| 6
oscUi

Q(k)
u 6 εMD(N∗u)(Q(k)).

(3) Suppose that Y ∈ TQ0 \ Ω1. Then Y ∈ A±k for some k such that
Qk /∈ R. Without loss of generality, we may assume that Y ∈ A+

k .
Now ϕ(Y ) = u(Y +

Qk
) and, since Qk /∈ R, we have |u(Y )− ϕ(Y )| 6

oscU+
Qk

6 εMD(N∗u)(Qk).

Combining the previous estimates gives us

N∗(1TQ0
(u− ϕ))(x) = sup

Y ∈Γ(x)∩TQ0

|u(Y )− ϕ(Y )|

= sup
Q∈DQ0
Q3x

sup
Y ∈UQ

|u(Y )− ϕ(Y )|

6 sup
Q∈DQ0
Q3x

εMD(N∗u)(Q)

6 εMD(N∗u)(x).

(2). — We first notice that since Ψ is compactly supported in Ω, we have
dist(suppΨ, E) > 0. Thus, for each Ak, the set (TQ′ ∩ Ak ∩ suppΨ) \ Ω1
consists of a union of boundedly overlapping sets that are “nice” enough
for integration by parts. The divergence theorem gives us
¨
TQ′\Ω1

ϕ0 div−→Ψ 6
∑
k

¨
(TQ′∩Ak)\Ω1

ϕ0 div−→Ψ

=
∑
k

¨
(TQ′∩Ak)\Ω1

div(ϕ0
−→Ψ)

6
∑
k

(¨
∂((TQ′∩A

+
k

)\Ω1))
ϕ0
−→Ψ · −→N

+
¨
∂((TQ′∩A

−
k

)\Ω1))
ϕ0
−→Ψ · −→N

)
6
∑
k

|u(Y +
Qk

)| · Hn(TQ′ ∩ ∂(A+
k \ Ω1))

+
∑
k

|u(Y −Qk)| · Hn(TQ′ ∩ ∂(A−k \ Ω1)) =: I+ + I−.
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We only consider the sum I+ since the sum I− can be handled the same
way as I+. We get

Hn(TQ′ ∩ ∂(A+
k \ Ω1)) 6 Hn(TQ′ ∩ ∂A+

k ) +Hn(TQ′ ∩A+
k ∩ ∂Ω1)

and thus, we have

I+ 6
∑
k

|u(Y +
Qk

)| · Hn(TQ′ ∩ ∂A+
k )

+
∑
k

|u(Y +
Qk

)| · Hn(TQ′ ∩A+
k ∩ ∂Ω1) =: I+

1 + I+
2 .

Let us consider the sum I+
1 first. We split

I+
1 =

∑
k : Qk⊂Q′

|u(Y +
Qk

)| · Hn(TQ′ ∩ ∂A+
k )

+
∑

k : Qk 6⊂Q′
|u(Y +

Qk
)| · Hn(TQ′ ∩ ∂A+

k ) =: J+
1 + J+

2 .

By [18, Proposition A.2, (5.21)] we know that ∂A+
k satisfies an upper ADR

bound. Thus, since ∂(TQ′ ∩A+
k ) ⊂ ΩS′

k
and diam(ΩS′

k
) . `(Qk), we get

J+
1 .

∑
k:Qk⊂Q′

|u(Y +
Qk

)| · `(Qk)n ≈
∑

k:Qk⊂Q′
|u(Y +

Qk
)| · σ(Qk)

6
∑

k:Qk⊂Q′
inf
Qk

N∗u · σ(Qk).

Since the collection of generation cubes is Cε−2-Carleson by Lemma 4.1,
it is Cε2-sparse by Theorem 1.15. Thus, we get∑

k:Qk⊂Q′
inf
Qk

N∗u · σ(Qk) . 1
ε2

∑
k:Qk⊂Q′

inf
Qk

N∗u · σ(EQk)

6
1
ε2

∑
k:Qk⊂Q′

ˆ
EQk

N∗udσ

6
1
ε2

ˆ
Q′
N∗udσ

Let us then consider the sum J+
2 . By the same argument as in [18, p. 2370],

we know that the number of the cubes Qk such that TQ′ ∩ ∂A+
k 6= ∅ and

`(Qk) > `(Q′) is uniformly bounded. Thus, by Lemma 5.1 and the fact

ANNALES DE L’INSTITUT FOURIER



UNIFORM RECTIFIABILITY AND ε-APPROXIMABILITY IN Lp 1625

that ∂A+
k satisfies an upper ADR bound (as we noted above), we get∑

k : Qk 6⊂Q′,
TQ′∩∂A

+
k
6=∅,

`(Q′)6`(Qk)

|u(Y +
Qk

)| · Hn(TQ′ ∩ ∂A+
k )

6
∑

k : Qk 6⊂Q′,
TQ′∩∂A

+
k
6=∅,

`(Q′)6`(Qk)

inf
Q′
Nα0
∗ u · Hn(TQ′ ∩ ∂A+

k )

. inf
Q′
Nα0
∗ u · (diam(TQ′))n ≈ inf

Q′
Nα0
∗ u · σ(Q′)

6
ˆ
Q′
Nα0
∗ udσ.

For the cubes Qk in J+
2 such that `(Qk) 6 `(Q′) we may use the same

argument as in [18, p. 2370] to see that every such cube is contained in some
nearby cube Q′′ of Q′ of the same side length as Q′ with dist(Q′, Q′′) .
`(Q′). The number of such Q′′ is uniformly bounded. By using the same
techniques as with the sum J+

1 , we get∑
k : Qk 6⊂Q′,
TQ′∩∂A

+
k
6=∅,

`(Q′)>`(Qk)

|u(Y +
Qk

)| · Hn(TQ′ ∩ ∂A+
k ) .

∑
Q′′

1
ε2

ˆ
Q′′

N∗udσ

6
1
ε2

ˆ
β0∆Q′

N∗udσ

for some uniform constant β0. Thus, we get

J+
2 .

1
ε2

ˆ
β0∆Q′

Nα0
∗ udσ.

Let us then consider the sum I+
2 . We first notice that

Hn(TQ′ ∩A+
k ∩ ∂Ω1) 6

∑
m

Hn(TQ′ ∩A+
k ∩ ∂Vm).

Thus, we get

I+
2 6

∑
k

∑
m

|u(Y +
Qk

)| · Hn(TQ′ ∩A+
k ∩ ∂Vm)

=
∑

k:Qk⊂Q′

∑
m

|u(Y +
Qk

)| · Hn(TQ′ ∩A+
k ∩ ∂Vm)

+
∑

k:Qk 6⊂Q′

∑
m

|u(Y +
Qk

)| · Hn(TQ′ ∩A+
k ∩ ∂Vm)

=: J+
3 + J+

4 .
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Suppose that A+
k ∩∂Vm 6= ∅. Then, by the construction, we have `(Q(m)) .

`(Qk) and dist(Q(m), Qk) . `(Qk). Thus, there exists a uniform constant
β1 > 0 such that Q(m) ⊂ β1∆Qk and the set β1∆Qk can be covered by a
uniformly bounded number of disjoint cubes with approximately the same
side length asQk. In particular, since TQ′∩A+

k ∩∂Vm satisfies an upper ADR
bound for every m by the construction and [18, (5.25), Proposition A.2],
we get

J+
3 =

∑
k:Qk⊂Q′

∑
m

|u(Y +
Qk

)| · Hn(TQ′ ∩A+
k ∩ ∂Vm)

.
∑

k:Qk⊂Q′
|u(Y +

Qk
)|

∑
m:Q(m)⊂β1∆Qk

`(Q(m))n

.
∑

k:Qk⊂Q′
|u(Y +

Qk
)|

∑
m:Q(m)⊂β1∆Qk

σ(Q(m))

(3.7)
.

1
ε2

∑
k:Qk⊂Q′

|u(Y +
Qk

)| · σ(Qk).

Now we can use exactly the same arguments as with the sum J+
1 to see that

J+
3 .

1
ε2

ˆ
Q′
N∗udσ.

Finally, let us handle the sum J+
4 . Just as above with the sum J+

3 , for some
uniform constant β2 > 0 we get∑

k:Qk 6⊂Q′
`(Q′)6`(Qk)

∑
m

|u(Y +
Qk

)| · Hn(TQ′ ∩A+
k ∩ ∂Vm)

6
∑

k:Qk 6⊂Q′
TQ′∩A

+
k
6=∅

`(Q′)6`(Qk)

|u(Y +
Qk

)|
∑

m:Vm⊂β2∆Q′

σ(Q(m))

(3.7)
.

1
ε2

∑
k:Qk 6⊂Q′
TQ′∩A

+
k
6=∅

`(Q′)6`(Qk)

|u(Y +
Qk

)| · σ(Q′)

Lem.5.1
6

1
ε2

∑
k:Qk 6⊂Q′
TQ′∩A

+
k
6=∅

`(Q′)6`(Qk)

inf
Q′
Nα0
∗ u · σ(Q′)

.
1
ε2

ˆ
Q′
Nα0
∗ udσ,
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where we used the fact that there exists only a uniformly bounded number
of cubes Qk that satisfy the condition of the sum by [18, Lemma 5.20]. By
using the same argument as with the latter half of the sum J+

2 , we get the
bound

∑
k:Qk 6⊂Q′

`(Q′)>`(Qk)

∑
m

|u(Y +
Qk

)| · Hn(TQ′ ∩A+
k ∩ ∂Vm) . 1

ε2

ˆ
β3∆Q′

N∗udσ

for some uniform contant β3 > 0. Thus, we have

J+
4 .

1
ε2

ˆ
β3∆Q′

Nα0
∗ udσ.

Combining the estimates for J+
1 , J+

2 , J+
3 and J+

4 gives us the claim.

(3). — By [18, (5.25)], we have

(5.3) Hn(∂V ik ) 6 Hn(∂Vk) . `(Q(k))n ≈ σ(Q(k))

for every Q(k) and i. We also note that ∂TQ′ satisfies an upper ADR
bound [18, Proposition A.2]. Recall that the function ϕ1 is supported on
Ω1. Thus, since the sets Vl are disjoint, we get

¨
TQ′

ϕ1 div−→Ψ =
∑
l

¨
TQ′∩Vl

ϕ1 div−→Ψ

=
∑
l

∑
i

¨
TQ′∩V il

ϕ1 div−→Ψ

=
∑
l

∑
i

(¨
TQ′∩V il

div(ϕ1
−→Ψ)−

¨
TQ′∩V il

∇ϕ1 ·
−→Ψ
)

6
∑
l

∑
i

(∣∣∣∣∣
¨
TQ′∩V il

div(ϕ1
−→Ψ)

∣∣∣∣∣+
¨
TQ′∩V il

|∇ϕ1|

)
.

Let us first assume that U iQ(l) is a blue component. Recall that since the
collection R ∪ B is Cε−2-Carleson by Corollary 3.2, it is Cε2-sparse by
Theorem 1.15. Thus, by the definition of ϕ1 and the divergence theorem,

TOME 70 (2020), FASCICULE 4



1628 Steve HOFMANN & Olli TAPIOLA

we have∣∣∣∣∣
¨
TQ′∩V il

div(ϕ1
−→Ψ)

∣∣∣∣∣+
¨
TQ′∩V il

|∇ϕ1| =

∣∣∣∣∣
¨
TQ′∩V il

div(ϕ1
−→Ψ)

∣∣∣∣∣
6
¨
TQ′∩∂V il

|u(XI(l,i))|

(5.3)
6 inf

Q(l)
N∗u · σ(Q(l))

.
1
ε2 inf

Q(l)
N∗u · σ(EQ(l)).

Suppose then that U iQ(l) is a red component. Since ∂V il ⊂ Γ(y) for every

y ∈ Q(l), we get
∣∣∣˜TQ′∩V il

div(u−→Ψ)
∣∣∣ 6 1

ε2 infQ(l)N∗u ·σ(EQ(l)) by the same
argument as above. Also, by the definition of the function ϕ1, Caccioppoli’s
inequality and the sparseness arguments, we have¨

TQ′∩V il
|∇ϕ1| =

¨
V i
l

|∇u|

.

(¨
V i
l

|∇u|2
)1/2

`(Q(l))(n+1)/2

.
1

`(Q(l))

(¨
ÛQ(l)

|u|2
)1/2

`(Q(l))(n+1)/2

.
1

`(Q(l))

(¨
ÛQ(l)

inf
Q(l)

(N∗u)2

)1/2

`(Q(l))(n+1)/2

.
1

`(Q(l)) inf
Q(l)

(N∗u) · `(Q(l))n+1

≈ σ(Q(l)) · inf
Q(l)

(N∗u)

.
1
ε2σ(EQ(l)) · inf

Q(l)
N∗u.

Thus, since every Whitney region UQ has only a uniformly bounded number
of components U iQ, we get

¨
TQ′

|∇ϕ1| .
∑
l

1
ε2σ(EQ(l)) · inf

Q(l)
N∗u.

Since Vl meets TQ′ , we know that dist(Q(l), Q′) . `(Q′). In particular,
all the relevant cubes Q(l) are contained in some nearby cubes Q′′ such
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that `(Q′′) ≈ `(Q′) and dist(Q′′, Q′) . `(Q′). The number of such Q′′ is
uniformly bounded. Thus, since the sets EQ(l) are disjoint, we get

∑
l

1
ε2σ(EQ(l)) · inf

Q(l)
N∗u 6

1
ε2

∑
Q′′

ˆ
Q′′

N∗u .
1
ε2

ˆ
β0∆Q′

N∗u

for some uniform constant β0. �

Let us then consider the dyadic total variation of the whole approximat-
ing function ϕ:

Proposition 5.3. — Suppose that Q′ ∈ DQ0 and −→Ψ ∈ C1
0 (WQ′) with

‖
−→Ψ‖L∞ 6 1, where WQ′ ⊂ Ω is any bounded and open set satisfying
TQ′ ⊂WQ′ . Then

¨
TQ′

ϕdiv−→Ψ . 1
ε2

ˆ
β∆Q′

Nα0
∗ udσ,

where β > 0 is a uniformly bounded constant and α0 > 0 is the constant
in Lemma 5.1.

Proof. — We start by splitting the integral with respect to ϕ0 and ϕ1.

¨
TQ′

ϕdiv−→Ψ =
¨
TQ′\Ω1

ϕ0 div−→Ψ +
¨
TQ′∩Ω1

ϕ1 div−→Ψ .

For the first integral, we can simply use the part (2) of Lemma 5.2. For the
second integral we get

¨
TQ′∩Ω1

ϕ1 div−→Ψ =
∑
k

¨
Vk∩TQ′

ϕ1 div−→Ψ

=
∑
k

(¨
Vk∩TQ′

div(ϕ1
−→Ψ)−

¨
Vk∩TQ′

∇ϕ1 ·
−→Ψ
)

6
∑
k

∣∣∣∣∣
¨
Vk∩TQ′

div(ϕ1
−→Ψ)

∣∣∣∣∣+
∑
k

¨
Vk∩TQ′

|∇ϕ1|.

The second sum is just as in the proof of part (3) of Lemma 5.2 and thus, we
can bound it by Cε−2 ´

β0∆Q′
N∗u. For the first sum, we use the divergence
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theorem and Theorem 1.15 and get∑
k

∣∣∣∣∣
¨
Vk∩TQ′

div(ϕ1
−→Ψ)

∣∣∣∣∣ 6∑
k

¨
∂(Vk∩TQ′ )

∣∣∣ϕ1
−→Ψ · −→N

∣∣∣
6
∑
k

sup
UQ(k)

|u| · Hn(Vk ∩ ∂TQ′)

6
∑

k: dist(Q(k),Q′).`(Q′)

inf
Q(k)

N∗u · σ(Q(k))

.
1
ε2

∑
k: dist(Q(k),Q′).`(Q′)

inf
Q(k)

N∗u · σ(EQ(k)).

By the structure of the Whitney regions, we know Vk∩TQ′ = ∅ if `(Q(k))�
`(Q′) or dist(Q(k), Q′) � `(Q′). Thus, there exists a uniform constant
β1 > 0 such that Q(k) ⊂ β1∆Q′ for every k in the sum above. We may
cover β1∆Q′ by a uniformly bounded number of disjoint cubes Pj such that
`(Pj) ≈ `(Q′). This gives us∑
k: dist(Q(k),Q′).`(Q′)

inf
Q(k)

N∗u · σ(EQ(k)) 6
∑

k: dist(Q(k),Q′).`(Q′)

ˆ
EQ(k)

N∗u

6
∑
j

ˆ
Pj

N∗udσ

6
ˆ
β2∆Q′

N∗udσ

for some uniform constant β2 > β1. Combining the previous bounds finishes
the proof. �

Remark 5.4. — We notice that the previous proposition holds also in the
following form: If we have cubes Q′, Q1, Q2 ∈ DQ0 and −→Ψ ∈ C1

0 (WQ′) with
‖
−→Ψ‖L∞ 6 1 for an open and bounded set WQ′ containing TQ′ , then
¨

(TQ′∩TQ1 )\TQ2

ϕdiv−→Ψ . 1
ε2 min

{ˆ
β2∆Q′

N∗udσ,
ˆ
β2∆Q1

N∗udσ
}

for some uniform constant β2. Indeed, in the previous two proofs, we needed
only the upper ADR estimates for the boundaries of Am and Vk and these
estimates remain valid if we remove a finite number of pieces whose bound-
aries satisfy an upper ADR estimate. By [18, Proposition A.2], ∂TQ is ADR
for every Q ∈ D(E). Also, by the stucture of the regions, these modified
sets are “nice” enough to justify integration by parts that we used in the
proofs.
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5.3. From local to global

Let us now construct the global approximating function. Although our
construction is a little different than the construction in [18, p. 2373], the
basic ideas are the same.

5.3.1. E is a bounded set

Let us first assume that diam(E) < ∞. In this case, we have a cube
Q0 ∈ D(E) such that E = Q0 and `(Q0) ≈ diam(E). We now set

ϕ(X) :=
{
ϕQ0(X), if X ∈ TQ0

u(X), if X ∈ Ω \ TQ0 ,

where ϕQ0 is the function constructed in Section 5.1. By part (1) of Lem-
ma 5.2, we have N∗(u−ϕ)(x) 6 εMD(N∗u)(x) on E. As for the CD bound,
we first notice that for any Q ∈ DQ0 Proposition 5.3 gives us

(5.4) 1
σ(Q)

¨
TQ

|∇ϕ| . 1
ε2M(Nα0

∗ u)(x)

for every x ∈ Q since σ(Q) ≈ σ(β∆Q). Let us now fix a cube Fk ∈ D∗ (recall
the definition of D∗ in Section 1.6), take any −→Ψ ∈ C1

0 (TFk) with ‖−→Ψ‖L∞ 6 1
and modify the argument in [18, p. 2353]. We denote R := 2k diam(E)
and thus have TFk = B(z0, R). By a suitable choice of parameters in the
construction of the Whitney regions in [18], the Carleson box TQ0 is so large
that we may fix a ball B(z0, r) ⊂ TQ0 such that r > 2 diam(E). Because
of this, we may fix a uniform constant α1 such that a small enlargement of
B(z0, R) \B(z0, r) is contained in Γ̂α1(x) (recall the definition of Γ̂α1(x) in
Section 1.7) for every x ∈ E. We split

1
`(Fk)n

¨
TFk

ϕdiv−→Ψ = 1
`(Fk)n

¨
TQ0

ϕdiv−→Ψ + 1
`(Fk)n

¨
TFk\TQ0

ϕdiv−→Ψ .

By Proposition 5.3, we can bound the first integral byM(Nα0
∗ u)(x) for any

x ∈ Q0. As for the second integral, we use the smoothness of u, Hölder’s
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inequality and Caccioppoli’s inequality to get¨
TFk\TQ0

ϕdiv−→Ψ =
¨
TFk\TQ0

udiv−→Ψ

6
¨
B(z0,R)\TQ0

|∇u|

6
¨
B(z0,R)\B(z0,r)

|∇u|

.

(¨
B(z0,R)\B(z0,r)

|∇u|2
)1/2

R
n+1

2

6

 ∑
06j6log2(R/r)

¨
2jr6|z0−X|<2j+1r

|∇u(X)|2
1/2

R
n+1

2

. inf
E
Nα1
∗ u ·

 ∑
06j6log2(R/r)

(2jr)n−1

1/2

R
n+1

2

. inf
E
Nα1
∗ u ·R

n−1
2 R

n+1
2

6 RnM(Nα1
∗ u)(x)

for every x ∈ Q0. Combining the calculations and the cases gives us the
desired CD bound.

5.3.2. E is an unbounded set

Suppose then that diam(E) =∞. We fix a sequence of cubes Qi ∈ D(E),
i ∈ N, such that

⋃
iQi = E and Qi ( Qi+1 and `(Qi) < γ0`(Qi+1) for every

i, where we fix the value of the constant γ0 later. We set

W1 := TQ1 , Wk := TQk \ TQk−1

and
ϕk := 1Wk

ϕQk , ϕ :=
∑
k

ϕk.

Here ϕQk is the function constructed in Section 5.1 for the cube Qk. The
setsWk cover the whole space Ω and since TQi ⊂ TQi+1 for every i, they are
also pairwise disjoint. Let us consider the pointwise bound for N∗(u− ϕ).
Fix x ∈ E and let Qm be the smallest of the previously chosen cubes such
that x ∈ Qm. Now, if Γ(x)∩TQj = ∅ for every j = 1, 2, . . . ,m− 1, then the
pointwise bound follows directly from part (2) of Lemma 5.2. Suppose then
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that there exists a point Y ∈ Γ(x) ∩ TQj for some j < m. We may assume
that Y /∈ TQi for all i < j. By the structure of the sets, there exist now
cubes P1 ⊂ Qm and P2 ⊂ Qj such that `(P1) ≈ `(P2), dist(P1, P2) . `(P1),
Y ∈ UP1 ∩UP2 and ϕ(Y ) = ϕ|UP2

(Y ). By the considerations in the proof of
part (1) of Lemma 5.2, we know that |u(Y )− ϕ(Y )| 6 εMD(N∗u)(P2). By
the properties of P1 and P2, there exists a uniform constant β0 such that
P1 ⊂ β0∆Q for any Q ∈ D(E) such that Q ⊇ P2. In particular,

εMD(N∗u)(P2) = ε sup
Q∈D(E),P2⊆Q

 
Q

N∗udσ

. ε sup
Q∈D(E),P2⊆Q

 
β0∆Q

N∗udσ

6 εM(N∗u)(x).

Thus,

N∗(u− ϕ)(x) = sup
Y ∈Γ(x)

|u(Y )− ϕ(Y )|

= sup
k∈N

sup
Y ∈Γ(x)∩Wk

|u(Y )− ϕ(Y )|

. εMD(N∗u)(x).

Let us then prove the CD estimate. We fix a point x ∈ E and a cube
Q ∈ D(E) such that x ∈ Q and split the proof to three different cases.
Below, β and α are uniform constants and m is the smallest such number
that TQ ⊂ TQm .

(1) TQ ⊂ TQm such that TQ∩TQk = ∅ for every k < m. Now we simply
have ¨

TQ

|∇ϕ| =
¨
TQ

|∇ϕm| .
1
ε2

ˆ
β∆Q

Nα
∗ udσ

by Proposition 5.3.
(2) TQ ⊂ TQm and Qk ⊂ Q for every k < m. Take any −→Ψ ∈ C1

0 (TQ)
with ‖−→Ψ‖L∞ 6 1. We get

¨
TQ

ϕdiv−→Ψ =
¨
TQ\TQm−1

ϕm div−→Ψ +
m−2∑
i=1

¨
TQm−i\TQm−(i+1)

ϕm−i div−→Ψ

+
¨
TQ1

ϕ1 div−→Ψ

.
1
ε2

ˆ
β∆Q

Nα
∗ udσ +

k−1∑
i=1

1
ε2

ˆ
β∆Qi

Nα
∗ udσ
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by Remark 5.4. We note that the balls β∆Qi form an increasing
sequence with respect to inclusion. If we choose the constant γ0 to
be large enough, the balls β∆Qi satisfy a Carleson packing condition
independent of m. Thus, for a large enough γ0, we get

1
ε2

ˆ
β∆Q

Nα
∗ udσ +

k−1∑
i=1

1
ε2

ˆ
β∆Qi

Nα
∗ udσ . 1

ε2

ˆ
β∆Q

MD(Nα
∗ u)dσ.

by a simple dyadic covering argument and the discrete Carleson
embedding theorem (Theorem A.1).

(3) TQ ⊂ TQm , Qk 6⊂ Q for every k < m and TQ ∩TQm−1 6= ∅. Without
loss of generality, we may assume that `(Q) ≈ `(Qm−1). Take any
−→Ψ ∈ C1

0 (TQ) with ‖−→Ψ‖L∞ 6 1. We get

¨
TQ

ϕdiv−→Ψ

=
¨
TQ\TQm−1

ϕm div−→Ψ +
m−2∑
i=1

¨
(TQ∩TQm−i )\TQm−(i+1)

ϕm−i div−→Ψ

+
¨
TQ∩TQ1

ϕ1 div−→Ψ

.
1
ε2

ˆ
β∆Q

Nα
∗ udσ +

k−1∑
i=1

1
ε2

ˆ
β∆Qi

Nα
∗ udσ

by Remark 5.4. Again, if we choose the constant γ0 to be large
enough, we get

1
ε2

ˆ
β∆Q

Nα
∗ udσ +

k−1∑
i=1

1
ε2

ˆ
β∆Qi

Nα
∗ udσ . 1

ε2

ˆ
β∆Q

MD(Nα
∗ u)dσ

by a simple dyadic covering argument and the discrete Carleson
embedding theorem (Theorem A.1).

Since σ(Q) ≈ σ(β∆Q), combining the three cases gives us

1
σ(Q)

¨
TQ

|∇ϕ| . 1
ε2

1
σ(Q)

ˆ
β∆Q

MD(Nα
∗ u)dσ

.
1
ε2M(MD(Nα

∗ u))(x)

for almost every x ∈ Q. This completes the proof of Theorem 1.5.
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Appendix A. Discrete Carleson embedding theorem

For the convenience of the reader, we prove here the version of the Car-
leson embedding theorem that we used in Section 5.3.2.

Theorem A.1. — Suppose that µ is a locally finite doubling Borel mea-
sure in a (quasi)metric space X satisfying µ(B(x, r)) > 0 for any r > 0 and
D is a dyadic system in X. Let f > 0 be a locally integrable function. If
A ⊂ D is a collection that satisfies a Carleson packing condition with a
constant Λ > 1, then ∑

Q∈A,Q⊂Q0

ˆ
Q

fdµ 6 Λ
ˆ
Q0

MDfdµ

for any Q0 ∈ D.

Proof. — For every m ∈ Z, we define the averaging operator Tm by
setting

Tmf(x) =
∑
Q∈D

`(Q):=2−m

1Q(x)
 
Q

fdµ,

and we define the measure ν by setting

dν(x,m) =

 ∑
Q∈A,`(Q)=2−m

1Q(x)

dµ(x).

Now we have∑
Q∈A,Q⊂Q0

ˆ
Q

fdµ =
∑

Q∈A,Q⊂Q0

µ(Q)
 
Q

fdµ

=
∑

m: 2−m6`(Q0)

∑
Q∈A

`(Q)=2−m

ˆ
Q0

1Q
( 

Q

f

)
dµ

=
∑

m: 2−m6`(Q0)

ˆ
Q0

Tmf(x)dν(x,m)

=
ˆ ∞

0
ν(E∗λ)dλ,

where E∗λ := {(x,m) : x ∈ Q0, 2−m 6 `(Q0), Tmf(x) > λ}. Thus, to prove
the claim, we only need to show that ν(E∗λ) 6 Λµ(Eλ), where Eλ := {x ∈
Q0 : supm Tmf(x) > λ}. If µ(Eλ) =∞, the claim is trivial. Thus, we may
assume that µ(Eλ) <∞.
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We notice that if x ∈ Eλ, then there exists a subcube Q′ ⊂ Q0 such that
x ∈ Q′ and

ffl
Q′
fdµ > λ. By the definition of Tm, we also have y ∈ Eλ for

every y ∈ Q′. In particular, we have maximal disjoint subcubes Rj ⊂ Q0
such that Eλ =

⋃
j Rj . We further observe the following two things:

(1) If x ∈ Q0 \
⋃
j Rj , then by the maximality of the cubes Rj we have

supm Tmf(x) 6 λ.
(2) If x ∈ Q ⊂ Q0 and Tmf(x) > λ for some m such that 2−m > `(Q),

then there exists a cube Q̃ ) Q such that
ffl
Q̃
fdµ > λ. In particular,

Q ⊂ Eλ but Q is not a maximal cube.
Based on these observations, we have

E∗λ ⊂
⋃
j

Rj × {m : 2−m 6 `(Rj)}.

By the Carleson packing condition, we get

ν(Rj × {m : 2−m 6 `(Rj)}) =
∑

m: 2−m6`(Rj)

∑
Q′⊂Rj ,Q′∈A
`(Q′)=2−m

µ(Q′) 6 Λµ(Rj)

for every j. In particular, since the cubes Rj are disjoint, we get

ν(E∗λ) 6
∑
j

ν(Rj × {m : 2−m 6 `(Rj)}) 6
∑
j

Λµ(Pj) = Λµ(Eλ),

which completes the proof. �

BIBLIOGRAPHY

[1] J. Azzam, J. B. Garnett, M. Mourgoglou & X. Tolsa, “Uniform rectifiability,
elliptic measure, square functions, and ε-approximability via an ACF monotonicity
formula”, https://arxiv.org/abs/1612.02650, 2016.

[2] J. Azzam, S. Hofmann, J. M. Martell, K. Nyström & T. Toro, “A new char-
acterization of chord-arc domains”, J. Eur. Math. Soc. 19 (2017), no. 4, p. 967-981.

[3] C. J. Bishop & P. W. Jones, “Harmonic measure and arclength”, Ann. Math. 132
(1990), no. 3, p. 511-547.

[4] S. Bortz & O. Tapiola, “ε-approximability of harmonic functions in Lp implies
uniform rectifiability”, Proc. Am. Math. Soc. 147 (2019), no. 5, p. 2107-2121.

[5] M. Christ, “A T (b) theorem with remarks on analytic capacity and the Cauchy
integral”, Colloq. Math. 60/61 (1990), no. 2, p. 601-628.

[6] B. E. J. Dahlberg, “Approximation of harmonic functions”, Ann. Inst. Fourier 30
(1980), no. 2, p. 97-107.

[7] G. David & S. Semmes, Singular integrals and rectifiable sets in Rn: Beyond Lips-
chitz graphs, Astérisque, vol. 193, Société Mathématique de France, 1991, 152 pages.

[8] ———, Analysis of and on uniformly rectifiable sets, Mathematical Surveys and
Monographs, vol. 38, American Mathematical Society, 1993, xii+356 pages.

[9] J. Duoandikoetxea, Fourier analysis, Graduate Studies in Mathematics, vol. 29,
American Mathematical Society, 2001, translated and revised from the 1995 Spanish
original by David Cruz-Uribe, xviii+222 pages.

ANNALES DE L’INSTITUT FOURIER

https://arxiv.org/abs/1612.02650


UNIFORM RECTIFIABILITY AND ε-APPROXIMABILITY IN Lp 1637

[10] L. C. Evans & R. F. Gariepy, Measure theory and fine properties of functions,
Studies in Advanced Mathematics, CRC Press, 1992, viii+268 pages.

[11] C. L. Fefferman & E. M. Stein, “Hp spaces of several variables”, Acta Math.
129 (1972), no. 3-4, p. 137-193.

[12] J. B. Garnett, Bounded analytic functions, Pure and Applied Mathematics,
vol. 96, Academic Press Inc., 1981, xvi+467 pages.

[13] J. B. Garnett, M. Mourgoglou & X. Tolsa, “Uniform rectifiability from Car-
leson measure estimates and ε-approximability of bounded harmonic functions”,
Duke Math. J. 167 (2018), no. 8, p. 1473-1524.

[14] T. S. Hänninen, “Equivalence of sparse and Carleson coefficients for general sets”,
Ark. Mat. 56 (2018), no. 2, p. 333-339.

[15] S. Hofmann, C. E. Kenig, S. Mayboroda & J. C. Pipher, “Square function/non-
tangential maximal function estimates and the Dirichlet problem for non-symmetric
elliptic operators”, J. Am. Math. Soc. 28 (2015), no. 2, p. 483-529.

[16] S. Hofmann & J. M. Martell, “Uniform rectifiability and harmonic measure I:
Uniform rectifiability implies Poisson kernels in Lp”, Ann. Sci. Éc. Norm. Supér.
47 (2014), no. 3, p. 577-654.

[17] S. Hofmann, J. M. Martell & S. Mayboroda, “Uniform rectifiability, Carleson
measure estimates, and approximation of harmonic functions”, unpublished.

[18] ———, “Uniform rectifiability, Carleson measure estimates, and approximation of
harmonic functions”, Duke Math. J. 165 (2016), no. 12, p. 2331-2389.

[19] T. Hytönen & A. Kairema, “Systems of dyadic cubes in a doubling metric space”,
Colloq. Math. 126 (2012), no. 1, p. 1-33.

[20] T. Hytönen & A. Rosén, “Bounded variation approximation of Lp dyadic mar-
tingales and solutions to elliptic equations”, J. Eur. Math. Soc. 20 (2018), no. 8,
p. 1819-1850.

[21] D. S. Jerison & C. E. Kenig, “Boundary behavior of harmonic functions in non-
tangentially accessible domains”, Adv. Math. 46 (1982), no. 1, p. 80-147.

[22] C. E. Kenig, H. Koch, J. C. Pipher & T. Toro, “A new approach to absolute
continuity of elliptic measure, with applications to non-symmetric equations”, Adv.
Math. 153 (2000), no. 2, p. 231-298.

[23] A. K. Lerner & F. Nazarov, “Intuitive dyadic calculus: the basics”, Expo. Math.
37 (2019), no. 3, p. 225-265.

[24] E. T. Sawyer & R. L. Wheeden, “Weighted inequalities for fractional integrals on
Euclidean and homogeneous spaces”, Am. J. Math. 114 (1992), no. 4, p. 813-874.

[25] N. T. Varopoulos, “A remark on functions of bounded mean oscillation and
bounded harmonic functions”, Pac. J. Math. 74 (1978), no. 1, p. 257-259, Ad-
dendum to: “BMO functions and the ∂-equation” (Pac. J. Math. 71 (1977), no. 1,
p. 221–273).

[26] I. E. Verbitsky, “Imbedding and multiplier theorems for discrete Littlewood-Paley
spaces”, Pac. J. Math. 176 (1996), no. 2, p. 529-556.

Manuscrit reçu le 24 octobre 2017,
révisé le 28 novembre 2018,
accepté le 12 mars 2019.

Steve HOFMANN
Department of Mathematics,
University of Missouri,
Columbia, MO 65211 (USA)
hofmanns@missouri.edu

TOME 70 (2020), FASCICULE 4

mailto:hofmanns@missouri.edu


1638 Steve HOFMANN & Olli TAPIOLA

Olli TAPIOLA
Department of Mathematics and Statistics,
P.O. Box 35 (MaD),
FI-40014 University of Jyväskylä (Finland)
olli.m.tapiola@gmail.com

ANNALES DE L’INSTITUT FOURIER

mailto:olli.m.tapiola@gmail.com

	1. Introduction
	1.1. Notation
	1.2. ADR, UR and NTA sets
	1.3. Dyadic cubes; Carleson and sparse collections
	1.4. Corona decomposition, Whitney regions and Carleson boxes
	1.5. Local B
	1.6. C and CD
	1.7. Cones, non-tangential maximal functions and square functions

	2. Principal cubes
	3. ``Large Oscillation'' cubes
	4. Generation cubes
	5. Construction of the approximating function
	5.1. Constructing the function in TQ0
	5.2. Verifying the estimates on Q0
	5.3. From local to global
	5.3.1. E is a bounded set
	5.3.2. E is an unbounded set


	Appendix A. Discrete Carleson embedding theorem
	References

