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JET DIFFERENTIALS ON TOROIDAL
COMPACTIFICATIONS OF BALL QUOTIENTS

by Benoît CADOREL (*)

Abstract. — We give explicit estimates for the volume of the Green–Griffiths
jet differentials of any order on a toroidal compactification of a ball quotient.
To this end, we first determine the growth of the logarithmic Green–Griffiths jet
differentials on these objects, using a natural deformation of the logarithmic jet
space of a given order, to a suitable weighted projective bundle. Then, we estimate
the growth of the vanishing conditions that a logarithmic jet differential must
satisfy over the boundary to be a standard one.
Résumé. — On donne des estimées explicites pour le volume des différentielles

de jets de Green–Griffiths à tout ordre sur une compactification toroïdale d’un quo-
tient de la boule. Pour ce faire, on détermine tout d’abord l’ordre de croissance des
différentielles de jets de Green–Griffiths logarithmiques sur ces objets, en utilisant
une déformation naturelle de l’espace des jets logarithmiques d’un ordre fixé, vers
un fibré projectivisé à poids adéquat. Ensuite, on estime la croissance du nombre
de conditions d’annulation au bord qu’une différentielle de jets logarithmique doit
satisfaire pour être une différentielle de jets standard.

1. Introduction

When dealing with complex hyperbolicity problems, finding global jet
differentials on manifolds is an important question, since they permit to
give restrictions on the geometry of the entire curves. Let us recall a few
basic facts concerning Green–Griffiths jet differentials, which can be found
in [9]. Let X be a complex projective manifold. Then, for any k, there exists
a (singular) variety XGG

k
πk−→ X, and an orbifold line bundle OXGG

k
(1) on

it, such that for any m, EGGk,mΩX = (πk)∗Ok(m) is a vector bundle whose
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2332 Benoît CADOREL

sections are holomorphic differential equations of order k, and degree m,
for some suitable notion of weighted degree.
In [8], Demailly proves that if V is a complex projective manifold of gen-

eral type, then for any k large enough, the Green–Griffiths jet differentials
of order k will have maximal growth, or equivalently, OXGG

k
(1) is big. Find-

ing an effective k for which this property holds is an interesting question,
whose answer depends on the context: in [8], Demailly uses his metric tech-
niques to give an effective lower bound on k in the case of hypersurfaces of
Pn.
We propose here a method to obtain a similar effective result in the

case of toroidal compactifications of ball quotients (see [14] for the main
properties of these manifolds). Specifically, we will find a combinatorial
lower bound on the volume of EGGk,• ΩX , valid for any k :

Theorem 1.1. — LetX be a toroidal compactification of a ball quotient
by a lattice with only unipotent parabolic isometries. Then, for any k ∈ N,
we have the following lower bound on the volume of the k-th order Green–
Griffiths jet differentials:

(1.1) vol(EGGk,• ΩX) > 1
(k!)n

 (KX +D)n

(n+ 1)n
∑

{u16···6un}⊂Sk,n

1
u1 . . . un


+ (−D)n

∑
16i16···6in6k

1
i1 . . . in

 ,
where Sk,n is the ordered set

Sk,n = {11 < · · · < 1n+1 < 21 < · · · < 2n+1 < · · · < k1 < · · · < kn+1} .

Here, the fractions 1
u1...un

are to be computed by forgetting the indexes
on the integers in the set Sk,n. In [5], the particular case where k = 1
(i.e. the case of symmetric differentials) was already proved, under the
additional assumption that ΩX is nef. Our formula removes this hypothesis,
and extends the result to any order k.
Using the results of [3], it is not hard to derive explicit orders k for

EGGk,• ΩX to have maximal growth:

Corollary 1.2. — Let X = Bn/Γ be a toroidal compactification of a
ball quotient. Let k ∈ N. Then, under any of the following hypotheses:

(1) n ∈ [|4, 5|] and k > e−γe−(−D)n((n−2)n!+1) ;

(2) n > 6 and k > e−γe

π2
6 (n−2)n!+1
n+1
2π −1 ,
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the line bundle O
X
GG

k

(1) is big. For the first values of n > 4, this yields the
lower bounds for log k displayed in Table 1.1.

Table 1.1. Effective lower bounds on log k to have O
X
GG

k

(1) big

n 4 5 6 7 8
log k −γ + 5 (−D4) −γ + 361 (D5) 41 534 151 711 920 325

The starting point to prove Theorem 1.1 consists in giving a more alge-
braic interpretation of the central metric construction of [8]. Let us give
the main ideas about this construction. For any complex manifold X, the
Green–Griffiths jet differential spacesXGG

k can be deformed into a weighted
projective bundle, using the standard construction of the Rees algebra.
More specifically, there exists a family XGGk −→ X × C such that for any
λ ∈ C∗, the specialization (XGGk )λ −→ X×{λ} is isomorphic to XGG

k , and
the specialization (XGGk )0 −→ X×{0} is isomorphic to the weighted projec-
tive bundle P(T (1)

X ⊕· · ·⊕T
(k)
X ). This last bundle is defined to be the quotient

of TX ⊕ · · · ⊕TX −→ X by the C∗-action λ · (v1, . . . , vk) = (λv1, . . . , λ
kvk).

Moreover, there is a natural orbifold line bundle OXGG
k

(1) on the family
XGGk whose restriction to the fibers

(
XGGk

)
λ
gives the tautological bundles

of XGG
k and P(T (1)

X ⊕ · · · ⊕ T (k)
X ). The metric used in [8] can actually be

seen as a singular metric on OXGG
k

(1); it is constructed in such a way that
its specialization to the zero fiber P(T (1)

X ⊕ · · · ⊕ T (k)
X ) is induced by some

metric on TX .
One convenient feature about this family XGGk is the fact that it permits

to interpret the intersection products on the jet spaces XGG
k in terms of

the intersection theory on P(T (1)
X ⊕ · · · ⊕ T (k)

X ). When dealing with Chow
groups computations, these last spaces share many properties with the
usual weightless projective spaces. In the first part of our work, we will
recall some results about the intersection theory with rational coefficients
for a weighted projective spaces P(E(a1)

1 ⊕ · · · ⊕E(ap)
p ), which were proved

first by Al-Amrani [1]. Since we work with rational coefficients instead of
integer ones, the study is somewhat simplified; for the reader’s convenience,
we will explain how we could prove these results by following [11] in a
standard way.
The other reason why studying the family XGGk is interesting is the

fact that the main positivity properties (e.g. nefness, ampleness) of the
tautological line bundle O(1) −→ P(T (1)

X ⊕ · · · ⊕ T
(k)
X ) can be extended

TOME 70 (2020), FASCICULE 6



2334 Benoît CADOREL

from the fiber over 0 to other fibers over λ ∈ C∗, i.e. to the line bundle
OXGG

k
(1). Moreover, the positivity properties of O(1) on P(T (1)

X ⊕· · ·⊕T
(k)
X )

are directly related to the ones of the vector bundle TX . More generally,
we will show in Section 3 that if E∗1 , . . . , E∗p are ample (resp. nef), then the
orbifold line bundle O(1) −→ P(E(a1)

1 ⊕ · · · ⊕E(ap)
p ) is ample (resp. nef) in

the orbifold sense for any choice of weights a1, . . . , ap. This will imply in
particular the following result:

Proposition 1.3. — Let X be a complex projective manifold. Assume
that ΩX is ample (resp. nef). Then for any k ∈ N∗, OXGG

k
(1) is ample (resp.

nef) in the orbifold sense.

Getting back to the case of a ball quotient, we will use the logarith-
mic version of the previous discussion, and Riemann–Roch theorem in the
orbifold case (see [17]) to obtain an estimate for the volume of the Green–
Griffiths logarithmic jets differentials EGGk,• ΩX(logD) in terms of the Segre
class of the weighted direct sum TX(− logD)(1) ⊕ · · · ⊕ TX(− logD)(k).
This last Segre class can be in turn expressed in terms of the standard
Segre class s•(TX(− logD)). An application of Hirzebruch proportionality
principle in the non-compact case (see [15]) will give our final estimate on
vol(EGGk,• ΩX(logD)), which will be the first member of the estimate (1.1).
Finally, it will remain to relate the growth of the logarithmic jet differen-

tials to the growth of the standard ones. To do this, we will simply bound
from above the sections of the coherent sheaves Qk,m, defined for any k

and m by the exact sequence

0 −→ EGGk,mΩX −→ EGGk,mΩX(logD) −→ Qk,m −→ 0.

We will find a suitable filtration on the sheaves Qk,m, in such a way that the
graded terms are locally free above the boundary D, and can be expressed
in terms of the vector bundles ΩD and ND/X . Then, using Riemann–Roch
computations and the fact that D is a disjoint union of abelian varieties,
we will be able to bound h0(Qk,m) from above, for a fixed k, and m going
to +∞. This will give the second term in the estimate (1.1).
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2. Segre classes of weighted projective bundles

We will now recall some results, first proved by Al-Amrani [1], permitting
to construct Chern classes of weighted projective bundles. We will state the
results in the simpler setting of Chow rings with rational coefficients.

Definition 2.1. — Let X be a complex algebraic projective variety.
Consider a family (Ei, ai)16i6p, where the Ei are vector bundles on X, and
the ai are positive integers. The weighted projectivized bundle associated
with the datum (Ei, ai) is the projectivized scheme of the graded OX -
algebra Sym(E(a1)

1 ⊕ · · · ⊕ E(ap)
p )∗, defined as

Sym(E(a1)
1 ⊕ · · · ⊕ E(ap)

p )∗ = Sym E∗1
(a1) ⊗OX · · · ⊗OX Sym E∗p

(ap),

where, for any i, SymE∗i
(ai) is the graded OX -algebra generated by sections

of E∗i (ai) in degree ai. We will denote this scheme by P(E(a1)
1 ⊕· · ·⊕E(ap)

p );
remark that we use here the geometric convention for projectivized bundles.
We will say, by abuse of language, that E(a1)

1 ⊕ · · · ⊕E(ap)
p is a weighted

direct sum, or even a weighted vector bundle.

Proposition 2.2. — The variety P(E(a1)
1 ⊕ · · · ⊕ E(ap)

p ) has a natural
orbifold structure (or a structure of Deligne–Mumford stack), for which the
tautological line bundle O(1) is naturally defined as an orbifold line bundle.
Moreover, this orbifold line bundle is locally ample, in the sense that the
local isotropy groups of the orbifold structure act transitively on the fibres
of O(1) (see for example [16]). Besides, if lcm(a1, . . . , ap)|m, the bundle
O(m) can be identified to a standard line bundle on P(E(a1)

1 ⊕· · ·⊕E(ap)
r ).

Proof. — We can naturally endow P(E(a1)
1 ⊕· · ·⊕E(ap)

r ) with a structure
of Artin stack P, since it can be considered as a quotient stack

E1 ⊕ · · · ⊕ Ep
/
C∗ ,

where C∗ acts by λ · (v1, . . . , vp) = (λa1v1, . . . , λ
apvp).

Locally on X, the weighted projectivized bundle can be trivialized as
a product of the base with a weighted projectivized space P(a1, . . . , ap),
where each ai appears rkEi times. Consequently, the Artin stack P has
locally an orbifold structure, which makes it an orbifold stack. The claims
on O(1) are local, and they can be proved directly using [10] and [16]. �

Let us start our review of the properties of the Chow groups with rational
coefficients of the weighted projectivized bundles.

TOME 70 (2020), FASCICULE 6
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Proposition 2.3. — Let E(a1)
1 ⊕ · · · ⊕E(ap)

p be a weighted direct sum.
Let us denote the natural projection by p : PX(E(a1)

1 ⊕ · · · ⊕E(ap)
p ) −→ X.

For any k, there is an isomorphism

(2.1) Ak PX
(
E

(a1)
1 ⊕ · · · ⊕ E(ap)

p

)
Q
∼=

r⊕
j=0

(Ak−r+jX)Q,

where r =
∑p
j=1 rkEj − 1.

To prove this result, we can start by checking it in the case where X is
an affine scheme. In that case, the weighted projective bundle is a quotient
of a standard (trivial) projective bundle by a finite group, and it suffices to
use the fact that such a quotient induces an isomorphism on the Chow rings
with rational coefficients. We can then use the localization exact sequence
to prove the general result.
Using the isomorphism (2.1), we can now define the Segre classes asso-

ciated with a weighted direct sum E
(a1)
1 ⊕ · · · ⊕ E(ap)

p .

Definition 2.4. — LetX be a projective algebraic variety of dimension
n, and let E(a1)

1 ⊕ · · · ⊕ E
(ap)
p be a weighted direct sum on X. Let q :

P(E(a1)
1 ⊕ · · · ⊕ E(ap)

p ) −→ X be the natural projection.
If k ∈ [|0, n|], the k-th Segre class of E(a1)

1 ⊕ · · · ⊕ E(ap)
p is defined as an

endomorphism of (A∗X)Q. If α ∈ (AlX)Q, let

sk
(
E

(a1)
1 ⊕ · · · ⊕ E(ap)

p

)
∩ α = 1

mk+r q∗
(
c1O(m)r+k ∩ q∗α

)
.

where r =
∑
i rkEi − 1, and m = lcm(a1, . . . , ap).

Remark 2.5. — In Definition 2.4, we could have replaced m by any inte-
ger divisible by lcm(a1, . . . , ap). The important fact used here is that O(m)
is a standard line bundle, which allows us to define its first Chern class in
the usual way.

There is a Whitney formula for the weighted projective bundles, which
permits to express the Segre classes sj(E(a1)

1 ⊕ · · · ⊕E(ap)
p ) in terms of the

s•(Ej) and of the weights (aj):

Proposition 2.6. — Let E(a1)
1 ⊕ · · · ⊕ E(ap)

p be a weighted projective
sum. We have

(2.2) s•
(
E

(a1)
1 ⊕ · · · ⊕ E(ap)

p

)
= gcd(a1, . . . , ap)

a1 . . . ap

∏
16j6p

s•
(
E

(aj)
j

)
,

where, for any vector bundle E and any weight a ∈ N, we have s•
(
E(a)) =

1
arkE−1

∑
j>0

sj(E)
aj .
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To prove this result, we can use the “splitting principle” to get back to the
case where the Ei are all line bundles Li. Now, denote P = P(L(a0)

0 ⊕ · · ·⊕
L

(ar)
r ), and p : P −→ X the canonical projection. Then, for some m ∈ N,

there exists a section of (p∗L0)⊗l0 ⊗ OP (m) cutting out the subvariety
P(L(a1)

1 ⊕· · ·⊕L(ar)
r ) with some computable multiplicity. As in [11], we can

use this fact to relate the Segre class s•(L(a1)
1 ⊕· · ·⊕L(ar)

r ) with the classes
s•(L(a0)

0 ⊕ · · · ⊕ L(ar)
r ) and c•(L0). The formula then follows by induction.

3. Positivity of weighted vector bundles

We now study the extension of the usual positivity properties of vector
bundles to the case of weighted vector bundles.

Definition 3.1. — Let E = E
(a1)
1 ⊕ · · · ⊕ E(ap)

p be a weighted direct
sum. We say that E∗ = E∗1

(a1) ⊕ · · · ⊕E∗p (ap) is ample (resp. nef) if for any
m ∈ N divisible enough, the (standard) line bundle O(m) is ample (resp.
nef) on P(E).

Remark 3.2. — With the terminology of [16], saying that E∗ is ample
amounts to saying that O(1) is orbi-ample on PX(E), the tautological orb-
ifold line bundle being locally ample by [10].

We will see that the positivity properties of weighted vector bundles are
exactly similar to the ones of the usual vector bundles, and can be proved
in the same manner, following [13].

Proposition 3.3. — Assume that E∗1 ,. . . , E∗p are ample on X. Then,
(1) For any coherent sheaf F on X, there exists m1 ∈ N such that, for

any m > m1, the sheaf

F ⊗

 ⊕
a1l1+···+aplp=m

Sl1E∗1 ⊗ . . . SlpE∗p


is globally generated.

(2) For any ample divisor H on X, there exists m2 ∈ N such that for
any m > m2, the sheaf⊕

a1l1+···+aplp=m
Sl1E∗1 ⊗ · · · ⊗ SlpE∗p

is a quotient of a direct sum of copies of OX(H).
(3) If lcm(a1, . . . , ap)|m, then O(m) is ample on P(E(a1)

1 ⊕· · ·⊕E(ap)
p ).

In particular, O(1) is orbi-ample.

TOME 70 (2020), FASCICULE 6
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Proof. — (1) This is easy to prove by induction on p using the similar
characterization of ample vector bundles.
(2) It suffices to apply the point 1. to the sheaf F = O(−H).
(3) Because of (2), there exist m,N ∈ N and a surjective morphism

OX(H)⊕N −→
⊕

a1l1+...aplp=m
Sl1E∗1 ⊗ · · · ⊗ SlpE∗p .

Besides, because of Lemma 3.4, increasingm if necessary, we can suppose
that for any q ∈ N, the following natural morphism of vector bundles on
X is surjective:

Sq

 ⊕
a1l1+...aplp=m

Sl1E∗1 ⊗ · · · ⊗ SlpE∗r


−→

⊕
a1l1+···+aplp=mq

Sl1E∗1 ⊕ · · · ⊕ SlpE∗p .

We obtain a surjective morphism of graded OX -algebras

⊕
q>0

Sq
(
OX(H)⊕N

)
−→

⊕
q>0

 ⊕
a1l1+···+aplp=mq

Sl1E∗1 ⊗ · · · ⊗ SlpE∗p

 .
which determines an embedding

P
(
E

(a1)
1 ⊕ · · · ⊕ E(ap)

p

)
↪→ P

(
OX(−H)⊕N

)
,

with
OP(OX(−H)⊕N )(1)|P(E(a1)

1 ⊕···⊕E(ap)
p )

∼= O(qm).

Since the tautological line bundle on P(OX(−H)⊕N ) is ample (cf. [13]),
this ends the proof. �

Lemma 3.4. — Let E1, . . . , Ep be C-vector spaces, and let a1, . . . , ap ∈
N∗. Then, for any m ∈ N divisible enough, the natural linear maps

Sq

 ⊕
a1l1+···+aplp=m

Sa1E1 ⊗ · · · ⊗ SapEp


−→

⊕
a1l1+···+aplp=mq

Sa1E1 ⊗ · · · ⊗ SapEp

are onto for all q > 1.

Proof. — Because of [10], if m is sufficiently large and divisible by all
a1, . . . , ar, the (standard) line bundle O(m) on the weighted projective
space Ppt(E∗1 (a1) ⊕ · · · ⊕ E∗p (ap)) is very ample. Consequently, there exists

ANNALES DE L’INSTITUT FOURIER
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an integer q ∈ N such that SpH0(O(mq)) −→ H0(O(mqp)) is onto for all
p > 1, which gives the result. �

We will now study the case of nef line bundles. We will prove the following
result.

Proposition 3.5. — Let E(a1)
1 ⊕ · · · ⊕E(ap)

p be a weighted direct sum.
Assume that E∗1 , . . . , E∗p are nef. Then, if m is sufficiently divisible, the line
bundle O(m) is nef on P(E(a1)

1 ⊕ · · · ⊕ E(ap)
p ).

To this aim, we will use the formalism of vector bundles twisted by
rational classes (see [13] for the definition and the positivity properties of
these objects). As in the weightless case, we naturally define the notion of
ampleness for a weighted sum of twisted vector bundles:

Definition 3.6. — We say that a weighted direct sum of twisted vector
bundles of the form

E1〈a1δ〉(a1) ⊕ · · · ⊕ Ep〈apδ〉(ap)

is ample, if for anym, divisible by lcm(a1, . . . , ap) the Q-line bundleO(m)⊗
π∗OX (mδ) is ample on P(E∗1 (a1) ⊕ . . . E∗p (ap)).

Remark 3.7. — In Definition 3.6, we consider twists of the form a1δ, . . . ,

arδ with δ ∈ N1(X)Q. This is related to the fact that if E1, . . . , Er are
vector bundles, and if L is a line bundle, we have, for any m,⊕

a1l1+···+arlr=m
Sl1(E∗1 ⊗ L⊗a1)⊗ · · · ⊗ (E∗r ⊗ L⊗ar )

= L⊗m ⊗
⊕

a1l1+···+arlr=m
Sl1E∗1 ⊗ · · · ⊗ E∗r ,

which implies in particular that the weighted projective bundle P ′ =
P
(
(E1 ⊗ L∗⊗a1)(a1) ⊗ · · · ⊗ (Ep ⊗ L∗⊗ap)(ap)) is identified to the variety

P = P(E(a1)
1 ⊕ · · · ⊕ E(ar)

r ), with OP ′(m) ∼= OP (m)⊗ p∗L⊗m.

Lemma 3.8. — Let E1〈a1δ〉, . . . , Er〈arδ〉 be twisted vector bundles on
X. Assume that each E∗i 〈−aiδ〉 is ample. Then the weighted direct sum

E∗1 〈−a1δ〉(a1) ⊕ · · · ⊕ E∗r 〈−arδ〉(ar)

is ample.

Proof. — We follow directly the proof presented in [13]. Because of
Bloch–Gieseker theorem about ramified covers (see [13, Theorem 4.1.10]),

TOME 70 (2020), FASCICULE 6
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there exist a finite, surjective, flat morphism f : Y −→ X, where Y is a
variety, and a divisor A such that f∗δ ≡lin A. We have a fibered diagram

P ′ = PY (f∗E∗1 (a1) ⊕ ···⊕ f∗E∗r (ar))

��

g // PX(E∗1 (a1) ⊕ ···⊕ E∗r (ar)) = P

��
Y

f // X.

Let Q = PY
(
(f∗E∗1 ⊗O(a1A)) (a1) ⊕ · · · ⊕ (f∗E∗r ⊗O(arA)) (ar)). Then,

we have a canonical identification Q ∼= P ′, which leads to identifying
the line bundle OQ(m) with OP ′(m) ⊗ π∗YOY (mA), as mentioned in Re-
mark 3.7.
Besides, the Q-line bundle

(3.1) g∗ (OP (m)⊗ π∗OX (mδ))

is canonically identified to OP ′(m)⊗π∗YOY (mA), thus to OQ(m). However,
since each E∗i 〈−aiδ〉 is ample, and since f is finite, each vector bundle
f∗E∗i ⊗ O(−aiA) is ample. Because of Proposition 3.3, the line bundle
OQ(m) is ample, so the line bundle (3.1) is ample. But g is finite and
surjective, soOP (m)⊗π∗OX (mδ) is ample on P , which gives the result. �
Proof of Proposition 3.5. — It suffices to show that for any ample class

h ∈ N1(X)Q, the class O(m) ⊗ π∗O(mh) is ample. Let h be such a class.
Then since each E∗i is nef, the twisted vector bundles E∗i 〈aih〉 are ample for
any i. Consequently, by Lemma 3.8 and Definition 3.6, if lcm(a1, . . . , ar)|m,
the line bundle O(m) ⊗ π∗OX(mh) is ample on P(E∗1 (a1) ⊕ · · · ⊕ E∗r (ar)).
This gives the result. �

3.1. An example of combinatorial application

We present a simple example of application of the previous discussion,
which will turn out to be useful in Section 5, where we deal with jet bundles
on a toroidal compactification of a quotient of the ball.

Proposition 3.9. — Let k, n ∈ N. We have the following asymptotic
upper bound, as r −→ +∞ :

∑
j1+2j2+···+kjk=r

(j1 + · · ·+ jk)n

n! 6
1
k!

 ∑
16i16···6in6k

1
i1 . . . in

 rn+k−1

(n+ k − 1)!

+O(rn+k−2).
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Proof. — Let X be an abelian variety of dimension n, endowed with
an ample line bundle L. Because of Proposition 3.3, the weighted direct
sum L(1) ⊕ · · · ⊕ L(k) is ample on X. This means that the orbifold line
bundle O(1) is orbi-ample on P = PX

(
L∗(1) ⊕ · · · ⊕ L∗(k)). By orbifold

asymptotic Riemann–Roch theorem ([17], see also [16]), we have then, for
any m ∈ N,

h0
orb(P,O(m)) 6

∫
P

c1O(1)n+k−1 mn+k−1

(n+ k − 1)! +O(mn+k−1).

However, because of Definition 2.4 and Proposition 2.6,
∫
X
c1O(1)n+k−1

can be computed as∫
P

c1O(1)n+k−1 =
∫
X

sn

(
L∗(1) ⊕ · · · ⊕ L∗(k)

)
= 1
k!

∫
X

{(∑
i

Hi

)
. . .

(∑
i

Hi

li

)
. . .

(∑
i

Hi

ki

)}
n

,

where H = c1(L). Expending the computation yields∫
P

c1O(1)n+k−1 = (Ln)
k!

[ ∑
l1+···+lk=n

1
1l1 . . . klk

]

= (Ln)
k!

 ∑
16i16···6in6k

1
i1 . . . ik

 .
To obtain the result, it suffices to remark that we can identify the vector
space H0(X,

⊕
j1+2j2+···+kjk=m L

⊗(j1+···+jk)) to a subspace of the orbifold
global sections of O(m). Thus :

h0

(
X,

⊕
j1+2j2+···+kjk=m

L⊗(j1+···+jk)

)
6 h0

orb(P,O(m)).

Besides, a direct application of Riemann–Roch–Hirzebruch theorem and
Kodaira vanishing theorem on X gives

h0(X,L⊗(j1+···+jk)) = (j1 + · · ·+ jk)n

n! (Ln)

if j1 + . . . jk 6= 0. Combining all these equations, we get the inequality. �

We can also get back the following classical result.
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Proposition 3.10. — Let a0, . . . , an ∈ N∗. Let X = P(a0, . . . , an) be
the associated weighted projective space, endowed with its tautological orb-
ifold line bundle OX(1). We then have the asymptotic estimate

h0
orb(X,OX(m)) = gcd(a0, . . . , an)∏

j aj

mn

n! +O(mn−1).

Proof. — It is clear that the weighted direct sum C(a0)⊕· · ·⊕C(an) −→
SpecC is ample, which means that OX(1) is orbi-ample. Then, using [16]
and Definition 2.4,

h0
orb(X,OX(m)) =

∫
X

c1O(1)n · m
n

n! +O(mn−1)

= s0(C(a0) ⊕ · · · ⊕ C(an))m
n

n! +O(mn−1).

Besides, because of Proposition 2.6, we have

s0(C(a0) ⊕ · · · ⊕ C(an)) = gcd(a0, . . . , an)∏
j aj

,

which gives the result. �

4. Green–Griffiths jet bundles

4.1. Deformation of the jet spaces

We first remark that for any projective complex manifold, there is a
natural deformation of its Green–Griffiths jets spaces to a weighted projec-
tivized bundles, which will permit us to apply the previous discussion to
the study of jet differentials.

Let X be a projective complex manifold. For k ∈ N, we consider the
Green–Griffiths jet differentials algebra EGGk,• ΩX . Recall (cf. [9]) that
EGGk,• ΩX is endowed with a natural filtration, which can be described as
follows.

For each (n1, . . . , nk) ∈ Nk, and any coordinate chart U ⊂ X, we define
the (n1, . . . , nk)-graded term as the following space of local jet differentials:

F (l1,...,lk)EGGk,mΩX(U)

=

 ∑
I=(I1,...,Ik)

aI (f ′)I1 . . . (f (k))Ik

∣∣∣∣∣∣ (|I1|, . . . , |Ik|) 6 (l1, . . . , lk)

 .
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where for each Il = (p1, . . . , pn), we write (f (l))Il = (f (l)
1 )r1 . . . (f (l)

n )rn .
In the above formula, the lexicographic order on Nk is defined so that
(p1, . . . , pk) < (n1, . . . , nk) means that either pk < nk, or pk = nk and
(p1, . . . , pk−1) < (n1, . . . , nk−1) in the lexigraphic order for Nk−1.

The formula of derivatives of composed maps implies that these local def-
initions glue together to give a well defined Nk-filtration F •EGGk,mΩX , com-
patible with the OX -algebra structure on EGGk,• ΩX , and which is increasing
with respect to the lexicographic order. Moreover, the graded terms occur
only for (l1, . . . , lk) such that l1 + 2l2 + · · ·+ klk = m, and we have, in this
case:

Gr(l1,...,lk)
F

(
EGGk,m

)
= Syml1 ΩX ⊗ · · · ⊗ Symlk ΩX .

By Definition 2.1, this means exactly that, as an OX -algebra,

(4.1) GrF
(
EGGk,•

) ∼= Sym Ω(1)
X ⊗ · · · ⊗ Sym Ω(k)

X .

We can use the Rees deformation construction (see, e.g., [4]), to construct
a OX×C-algebra EGGk,• on X × C, such that for any λ ∈ C∗, EGGk,• |X×{λ} is
identified to EGGk,• ΩX , and EGGk,• |X×{0} is identified to GrF (EGGk,• ).
Let us give a few details about the construction. We first define a graded

OX×Ck -algebra ẼGGk,• , as follows:

ẼGGk,m(U×Ck) =

 ∑
l1,...,lk

ul1,...,lkt
l1
1 . . . t

lk
k

∣∣∣∣∣∣ ul1,...,lk ∈ F (l1,...,lk)EGGk,mΩX(U)


where (t1, . . . , tk) are coordinates on Ck. It is easy to check that for any
(λ1, . . . , λk) ∈ Ck such that each λj 6= 0, we have ẼGGk,m|X×{(λ1,...,λk)} ∼=
EGGk,mΩX , and that ẼGGk,m|X×{(0,...,0)} ∼= GrF (EGGk,mΩX). Now, define EGGk,• to
be the pullback of ẼGGk,• by the embedding (x, t) ∈ X × C 7→ (x, t, . . . , t) ∈
X × Ck.

Remark 4.1. — While ẼGGk,• seems to be the natural object arising in the
construction above, it is more tractable to work over X ×C with the sheaf
EGGk,• . To define the latter, we could have used any embedding t ∈ C 7−→
(tα1, . . . , tαk) ∈ Ck, with αi 6= 0, so our choice (α1, . . . , αk) = (1, . . . , 1) is
rather arbitrary. The same phenomenon occurs in [8], where the metric on
OXGG

k
(m) constructed by Demailly depends on some auxiliary parameters

ε1, . . . , εk ∈ R∗+.

Applying the Proj functor, we obtain the following result.
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Proposition 4.2. — For any complex projective manifold X, and for
any k ∈ N∗, there exists a morphism of varieties XGGk −→ X × C, and an
orbifold line bundle OXGG

k
(1) on XGGk , such that :

(1) for any λ ∈ C∗, XGGk
∣∣
λ
is identified to XGG

k , and OXGG
k

(1)
∣∣∣
λ
iden-

tified to OXGG
k

(1) ;

(2) the fibre XGGk
∣∣
0 is identified to the variety ProjX

(
GrF

(
EGGk,•

))
∼=

PX
(
T

(1)
X ⊕ · · · ⊕ T (k)

X

)
, and OXGG

k
(1)
∣∣∣
0
is identified to the tauto-

logical line bundle of this weighted projective bundle.

Remark 4.3. — By construction, the identifications mentioned above al-
ready occur at the level of sheaves of algebras. To obtain the identifications
when taking Proj functors, we just need to check that the gradings on these
sheaves of algebras are compatible under these identifications.

Proof. — Let us prove the second point, the first one being similar. By
construction, we have a natural identification between

EGGk,• |X×{0} =
⊕
m>0
EGGk,m|X×{0}

and
GrF (EGGk,• ΩX) =

⊕
m>0

GrF (EGGk,mΩX)

Moreover, this identification is compatible with the grading in m. Besides,
by (4.1), the latter sheaf is identified, as a sheaf of graded algebras, with

Sym Ω(1)
X ⊗ · · · ⊗ Sym Ω(k)

X

=
⊕
m>0

( ⊕
l1+2l2+···+klk=m

Syml1 ΩX ⊗ · · · ⊗ Symlk ΩX

)
.

Now, by Definition 2.1, the projectivized bundle associated to the latter
sheaf of graded algebras, with respect to the grading in m, is P(T (1)

X ⊕· · ·⊕
T

(k)
X ). This implies immediately the identifications of varieties and orbifold

line bundles mentioned in the second point. �

We can now show that some usual positivity properties of the cotangent
bundle can be transmitted to the higher order jet differentials.

Proposition 4.4. — If ΩX is ample (resp. nef), then for any k ∈ N∗,
EGGk,• ΩX is ample (resp. nef), meaning that OXGG

k
(1) is ample (resp. nef)

as an orbifold line bundle.
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Proof. — Let XGGk −→ X × C be the variety given by Proposition 4.2,
endowed with its orbifold line bundle OXGG

k
(1).

Assume first that ΩX is ample. Then, because of Proposition 3.3, a suit-
able power of the tautological line bundle O(m) is ample on P(T (1)

X ⊕ · · ·⊕
T

(k)
X ) if m is sufficiently divisible. Because of Proposition 4.2, it means that
OXGG

k
(1)|0 is ample. By semi-continuity of the ampleness property, for any

λ ∈ C∗ in a Zariski neighborhood of 0, the orbifold line bundle OXGG
k

(1)|λ is
ample. Again because of Proposition 4.2, this means exactly that EGGk,• ΩX
is ample.
The case where ΩX is nef is dealt with in the same manner, using Propo-

sition 3.5, and the fact that if OXGG
k

(1)|0 is nef, then OXGG
k

(1)|λ is nef for
any very general λ ∈ C (see [12]). �

The previous discussion extends naturally to the case of logarithmic jet
differentials. We then have the following proposition.

Proposition 4.5. — Let (X,D) be a smooth log-pair. For any k ∈ N∗,
there exists a morphism XGG,log

k −→ X × C and an orbifold line bundle
OXGG,log

k
(1) on XGG,log

k such that

(1) for any λ ∈ C∗, XGG,log
k |λ is identified toXGG,log

k , and OXGG,log
k

(1)|λ
identified to OXGG

k
(1) ;

(2) the fibre XGG,log
k |0 is identified to

ProjX GrF (EGGk,• ) ∼= PX
(
TX(− logD)(1) ⊕ · · · ⊕ TX(− logD)(k)),

and OXGG,log
k

(1)|0 is identified to the tautological orbifold line bun-
dle of this weighted projectivized bundle.

Proof. — As before, it suffices to use the fact that EGGk,mΩX(logD) admits
a filtration whose graded algebra is

Sym ΩX(logD)(1) ⊗ · · · ⊗ Sym ΩX(logD)(k). �

In this setting, Proposition 4.4 extends naturally:

Proposition 4.6. — Let (X,D) be a smooth log-pair. If ΩX(logD) is
nef (resp. ample), then for any k ∈ N∗, EGGk,• ΩX(logD) is nef (resp. ample),
meaning that OXGG,log

k
(1) is nef (resp. ample) as orbifold line bundle.

Remark 4.7. — Proposition 4.6 is actually only relevant for the nef prop-
erty. Indeed, except when X is a curve, the bundle ΩX(logD) cannot be
ample in general: if D is smooth and dimX > 2, we have the residue map

ΩX(logD) −→ OD −→ 0,
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and the restriction of this map to D shows that ΩX(logD)|D has a trivial
quotient. This implies that ΩX(logD) is not ample.

The following result, combining two theorems of Campana and Păun [7],
and Demailly [8], shows that the bigness of the canonical orbifold line
bundleO(1) on P(T (1)

X ⊕· · ·⊕T
(k)
X ) for k large enough suffices to characterize

the manifolds of general type.

Proposition 4.8. — Let X be a projective smooth manifold. The fol-
lowing assertions are equivalent.

(1) X is of general type;
(2) for large k, EGGk,• X is big, meaning that the usual line bundle
O(m) −→ XGG

k is big for m sufficiently divisible ;
(3) for large k, the orbifold line bundle O(1) −→ PX(T (1)

X ⊗ · · · ⊗ T (k)
X )

is big, i.e. the line bundle O(m) is big for m sufficiently divisible.

Proof.
(1)⇒ (2). — This is the main result of [8].
(2) ⇒ (3). — Let k ∈ N∗ large enough, and consider a sufficiently

divisible m ∈ N∗. Let XGGk −→ X × C be the variety given by Proposi-
tion 4.2, endowed with its tautological orbifold line bundle OXGG

k
(1). For

any λ ∈ C∗, OXGG
k

(m)|λ is identified to OXGG
k

(m), which is big. Conse-
quently, there exists a constant C > 0, such that for any λ ∈ C∗,

h0(XGGk |λ,OXGG
k

(m)|λ) > Cmn+nk−1.

Since OXGG
k

(m) is flat on the base C, we deduce by semi-continuity that

h0(XGGk |0,OXGG
k

(m)|0) > Cmn+nk−1.

Besides, XGG
k |0 and OXGG

k
(1)|0 are identified with PX(T (1)

X ⊕ · · · ⊕ T (k)
X )

and to its tautological line bundle, so the previous inequality means exactly
that O(1) is big on P(T (1)

X ⊕ · · · ⊕ T (k)
X ).

(3)⇒ (1). — This result is proved in [7]. �

5. Application to the toroidal compactifications of ball
quotients

Let Γ ∈ Aut(Bn) be a lattice with only unipotent parabolic isometries.
Then, by [2] and [14], we can compactify the quotient X = Bn/Γ into a
toroidal compactification X = XtD, where D is a disjoint union of abelian
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varieties. From now, on, X will always denote such a toroidal compactifi-
cation of a ball quotient.
Let k ∈ N∗, and let XGG,log

k −→ X × C be the family given by Propo-
sition 4.5. Denote by PGG,log

k ⊂ XGG,log
k the fibre above 0 ⊂ C, which is

isomorphic to PX(TX(− logD)(1)⊕· · ·⊕TX(− logD)(k)). Let us also denote
by OP (1) the orbifold tautological line bundle on this weighted projective
bundle.

Proposition 5.1. — The orbifold line bundle O
X
GG,log
k

(1) −→ X
GG,log
k

is nef.

Proof. — The vector bundle ΩX(logD) is nef because of [5]. Thus, the
result comes from Proposition 4.4. �

Ifm0 = lcm(1, . . . , k), the standard line bundle O
X
GG,log
k

(m0) is nef. This
gives the following asymptotic expansion:

(5.1) h0(X,EGGk,lm0
ΩX(logD))

= h0(XGG

k ,O
X
GG,log
k

(lm0))

= χ(XGG

k ,O
X
GG,log
k

(lm0)) +O(ln+nk−2)

=
(∫

X
GG,log
k

c1O(m0)m+nk−1

)
ln+nk−1 +O(ln+nk−2).

By Proposition 4.5, XGG,log
k and PGG,log

k are members of the same flat
family XGG,log

k −→ C. Thus, since the first Chern class is a topological
invariant, we can compute the leading coefficient of this last expansion, as
follows: ∫

X
GG,log
k

c1O(m0)m+nk−1 =
∫
PGG,log
k

c1OP (m0)m+nk−1.

Then, using Definition 2.4, we find

∫
X
GG,log
k

c1O(m0)m+nk−1

= mn+nk−1
0

∫
X

sn(TX(− logD)(1) ⊕ · · · ⊕ TX(− logD)(k)).
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If we insert this equation in (5.1), we see that if m ∈ N is divisible by
m0, we have

h0(X,EGGk,mΩX(logD))

=
∫
X

sn(TX(− logD)(1) ⊕ · · · ⊕ TX(− logD)(k)) mn+nk−1

(n+ nk − 1)!
+O(mn+nk−2).

This gives the following value for the volume of EGGk,• ΩX(logD):

(5.2) vol
(
EGGk,• ΩX(logD)

)
=
∫
X

sn(TX(− logD)(1) ⊕ · · · ⊕ TX(− logD)(k)).

5.1. Combinatorial expression of the volume. Uniform lower
bound in k

The volume (5.2) can be expressed as a certain universal polynomial
with rational coefficients in the Chern classes of TX(− logD). The same
polynomial, applied to the Chern classes of TPn over Pn, permits to compute∫
Pn sn(T (1)

Pn ⊕ · · · ⊕ T
(k)
Pn ), and Hirzebruch proportionality principle in the

non-compact case (see [15]) implies∫
X

sn(TX(− logD)(1) ⊕ · · · ⊕ TX(− logD)(k))

= (−1)n
(KX +D)n

(n+ 1)n

∫
Pn
sn(T (1)

Pn ⊕ · · · ⊕ T
(k)
Pn )

Using Proposition 2.6, we can give an explicit combinatorial expression
of this last quantity. Indeed, if we let H = c1OPn(1), since s•(TPn) =(∑n

i=1(−1)iHi
)n+1, we find

(−1)n
∫
Pn
sn(T (1)

Pn ⊕ · · · ⊕ T
(k)
Pn )

= (−1)n

(k!)n


(

n∑
i=1

(−1)iHi

)n+1( n∑
i=1

(−1)iH
i

2i

)n+1

· · · · ·

(
n∑
i=1

(−1)iH
i

ki

)n+1

· [Pn]


0

= 1
(k!)n

∑
l1,1+l1,2+···+ln+1,k=n

1
1l1,1+l2,1+···+ln+1,1 · . . . · kl1,k+···+ln+1,k

(Hn · [Pn]).

where each index li,j (i ∈ [|1, n+ 1|], j ∈ [|1, k|]) represents a possible choice

of power for H in the i-th factor of the product
(∑n

l=1(−1)l H
l

jl

)n+1
. Thus,
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we see that choosing exponents (li,j)16i6n+1,16j6k such that
∑
i,j li,j = n

amounts to choosing a non-decreasing sequence u1 6 · · · 6 un of elements
of the ordered set

Sk,n = {11 < · · · < 1n+1 < 21 < · · · < 2n+1 < · · · < k1 < · · · < kn+1} ,

where each integer between 1 and k is repeated n+ 1 times. The bijection
between the set of choices of (li,j) and the set of sequences u1 6 · · · 6 un
can easily be made explicit : to (li,j), we associate the sequence (ui), where
the element jm is repeated lm,j times. Thus, we find

(−1)n
∫
Pn
sn

(
T

(1)
X
⊕ · · · ⊕ T (k)

X

)
= 1

(k!)n
∑

{u16···6un}⊂Sk,n

1
u1 . . . un

,

where, in the quotient appearing on the right hand side, we compute the
product by treating the elements of S as ordinary integers (we forget their
indexes).
We then find an explicit combinatorial formula for the volume of loga-

rithmic jet differentials of order k :

(5.3) vol
(
EGGk,• ΩX (logD)

)
=
(
KX +D

)n
(n+ 1)n(k!)n

∑
{u16···6un}⊂Sk,n

1
u1 . . . un

.

It is not hard to use this formula to obtain a more tractable lower bound
on the volume. Indeed, we have:

(5.4) n!
∑

{u16···6un}⊂Sk,n

1
u1 . . . un

>
∑

(u1,...,un)∈Sn
k,n

1
u1 . . . un

=

 ∑
u∈Sk,n

1
u

n

= (n+ 1)n (1 + 1/2 + · · ·+ 1/k)n > (n+ 1)n(log k + γ)n

where, in the first inequality, we use the fact that for any ordered set
{u1 6 · · · 6 un}, the number of distinct n-uples (v1, . . . , vn) having the
same elements is at least n!. The letter γ represents the Euler–Mascheroni
constant.
We obtain the following lower bound, valid for any k > 1:

vol
(
EGGk,• ΩX(logD)

)
>
(
KX +D

)n (log k + γ)n

(k!)n n! .

This formula can be seen as an effective version of the asymptotic estimates
of [8], in the case of logarithmic jet differentials on a toroidal compactifi-
cation of a ball quotient.
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6. Upper bound on the vanishing conditions on the
boundary

We will now study the number of vanishing conditions on the boundary
that a logarithmic jet differential must satisfy to be a standard one.

For any k ∈ N∗, and any m ∈ N, we define a sheaf Qk,m, supported on
D, in the following manner:

(6.1) 0 −→ EGGk,mΩX −→ EGGk,mΩX(logD) −→ Qk,m −→ 0.

Then, we have:

(6.2) h0(X,EGGk,mΩX) > h0(X,EGGk,mΩX(logD))− h0(X,Qk,m).

6.1. Filtration on the quotient Qk,m

Our goal is to obtain an upper bound on h0(Qk,m), as m −→ +∞, with
fixed k ∈ N. To do this, we will produce a sufficiently sharp filtration on the
sheaf Qk,m, so that the graded terms are locally free OD-modules. We will
then the bound from above the number of global sections of these graded
terms.

Proposition 6.1. — The inclusion of (6.1) preserves the natural fil-
trations on EGGk,mΩX and EGGk,mΩX(logD).

Proof. — We only need to check this locally: this inclusion sends an jet
differential equation of the form

∏
i,l(f

(l)
i )ai,l on∏

i 6=n,l
(f (l)
i )ai,l ·

∏
l

z
ai,l
n

(
f

(l)
n

zn

)ai,l
.

The exponents of the different f (l)
i are then preserved by the inclusion, so

the natural filtrations are also preserved. �

Consequently, Qk,m admits a induced filtration F1, whose graded terms
can be written as a quotient of the corresponding graded terms in EGGk,mΩX
and EGGk,mΩX(logD) :

(6.3) GrF1
• (Qk,m)

=
⊕

l1+2l2+···+klk=m

[
Sl1ΩX(logD)⊗ · · · ⊗ SlkΩX(logD)

]
Im
[
Sl1ΩX ⊗ · · · ⊗ SlkΩX

] .

We will now produce successive refinements of the filtration F1, until we
obtain a filtration whose graded terms are all locally free OD-modules. We
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can already simplify the quotient appearing in (6.3), using the following
elementary result.

Lemma 6.2. — Let E1, . . . El be OX -modules. For any i, we consider a
sub-module E ′i ↪→ Ei. Then the quotient E1 ⊗ · · · ⊗ El

/
Im (E ′1 ⊗ · · · ⊗ E ′l )

admits a filtration whose i-th graded term can be identified with

E ′1 ⊗ · · · ⊗ E ′i−1 ⊗
(
Ei
/
E ′i
)
⊗ Ei+1 ⊗ · · · ⊗ El.

Proof. — It suffices to consider the filtration induced on the quotient
sheaf E1 ⊗ . . . El

/
Im (E ′1 ⊗ · · · ⊗ E ′l ) by the images of any of the sheaves

appearing in the sequence of morphisms

E ′1⊗· · ·⊗E ′l −→ . . . −→ E ′1⊗· · ·⊗E ′i−1⊗Ei⊗· · ·⊗El −→ . . . −→ E1⊗· · ·⊗El.

�

We deduce from this proposition and the previous one the existence of a
filtration F2 on Qk,m, whose graded module can be written

GrF2
• (Qk,m) =

⊕
l1+2l2+···+klk=m

k⊕
i=1

Sl1ΩX⊗· · ·⊗Sli⊗· · ·⊗S
lkΩX(logD),

where Sl = SlΩX(logD)
/
SlΩX .

The OX -modules Sl can be in turn filtered in OD-modules, using a fil-
tration that was first introduced in [6]. For completeness, we will describe
this filtration in our special case.

Proposition 6.3. — For any l ∈ N, Sl is endowed with a filtration,
whose graded terms are OD-modules, written

Gr•(Sl) =
l⊕

j=0

j⊕
s=0

(
N∗
D/X

)⊗s
⊗ Sl−jΩD.

Proof. — According to [14], each boundary component Tb admits a tubu-
lar neighborhood U , quotient of its universal cover Û ⊂ Cn−1 × C by a
lattice Λ ⊂ Cn−1. The component Tb can be identified to the quotient of
Cn−1 × {0} by Λ. Let D◦ = Cn−1 × {0} ⊂ Û . The elements a ∈ Λ act on
Ω
Û

(logD0) in the following way:{
a · d zn

zn
= d zn

zn
+
∑n−1
i=1 γi(a) d zi;

a · d zi = d zi if 1 6 i 6 n− 1,

where the γi : Cn−1 −→ C are R-linear maps. The natural filtration by the
degree of d zn

zn
in SlΩ

Û
(logD◦) is consequently preserved by Λ, and induces
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a filtration Gl on SlΩU (logD)) whose graded terms are globally trivial and
can be written

GrGlj (SlΩU (logD)) =
[(

d zn
zn

)j]
· Sl−jΩD.

This expression in local coordinates shows that the induced filtration by
Gl on SlΩU admits as general graded term

GrGl∩SlΩUj (SlΩU ) = IjD ⊗OU

[(
d zn
zn

)j]
· Sl−jΩD,

where IjD is the sheaf of ideals of the divisor jD. Consequently, Gl induces
a new filtration on the quotient SlΩU (logD)

/
SlΩU , whose graded terms

are
Gr•(Sl) = OjD ⊗OU Sl−jΩD.

To obtain the proposition, it suffices to refine this last filtration, remark-
ing that OjD = OX

/
IjD is itself filtered by

0 ⊂ I(j−1)D
/
IjD ⊂ · · · ⊂ IlD

/
IjD ⊂ · · · ⊂ OjD,

whose successive quotients can be identified to

IlD
/
I(l+1)D '

(
N∗
D/X

)⊗l
. �

We can consequently refine the filtration F2, to obtain a new one F3,
whose graded module is

GrF3
• (Qk,m)

=
k⊕
i=1

⊕
l1+2l2+···+klk=m

li⊕
ji=0

ji⊕
si=0

(
Sl1ΩX ⊗ · · · ⊗ S

li−1ΩX

⊗
[(
N∗
D/X

)⊗si⊗Sli−jiΩD]⊗ Sli+1ΩX(logD)⊗ . . .⊗SlkΩX(logD)
)
.

Each one of the terms of this direct sum can be seen as an OD-module.
Besides, we have seen in the proof of Proposition 6.3 that SlΩX(logD)|D
admits a natural filtration whose graded terms are trivial:

Gr•(SlΩX(logD)) =
l⊕

j=0
SjΩD.

On the other hand, since each boundary component admit a tubular neigh-
borhood, we have

ΩX |D = N∗
D/X

⊕ ΩD,
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so SlΩX |D '
⊕l

j=0

(
N∗
D/X

)j
⊗Sl−jΩD. We can consequently refine a last

time the filtration on Qk,m, to obtain the following proposition.

Proposition 6.4. — For any k,m∈N∗, there exists a filtration F•Qk,m,
whose graded module is an OD-module written

GrF• (Qk,m)(6.4)

=
k⊕
i=1

⊕
l1+2l2+···+klk=m

li⊕
j1=0

. . .

lk⊕
jk=0

ji⊕
si=0

(
N∗
D/X

)⊗(j1+···+ji−1+si)

⊗ Sl1−j1ΩD ⊗ · · · ⊗ Slk−jkΩD.
where all tensor products are taken over OD.

6.2. Upper bound on the graded terms of the filtration

We want to obtain an asymptotic upper bound on h0
(
D,GrF• (Qk,m)

)
when m −→ 0. We start by changing the indexing of the direct sums, so
that we sum over r = j1 + 2j2 + · · ·+kjk. If we proceed to the substitution
li ← li − ji, we find:

GrF• (Qk,m) =
m⊕
r=0

 ⊕
j1+2j2+···+kjk=r

k⊕
i=1

ji⊕
si=0

(
N∗
D/X

)⊗(j1+···+ji−1+si)


⊗

[ ⊕
l1+2l2+···+klk=m−r

Sl1ΩD ⊗ · · · ⊗ SlkΩD

])
The term on the right is a trivial vector bundle, because D is made of

disjoint abelian varieties. Consequently, we have

(6.5) h0
(
D,GrF• (Qk,m)

)
=

m∑
r=0

 ∑
j1+2j2+···+kjk=r

k∑
i=1

ji∑
si=0

h0
(
D,
(
N∗
D/X

)⊗(j1+···+ji−1+si)
)

· rk
[ ⊕
l1+2l2+···+klk=m−r

Sl1ΩD ⊗ · · · ⊗ SlkΩD

])
.

For a fixed (j1, . . . , jk), we now compute
k∑
i=1

ji∑
si=0

h0
(
D,
(
N∗
D/X

)⊗(j1+···+ji−1+si)
)
.
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Recall that the line bundle N∗
D/X

is ample (cf. [14]). Consequently, since
the boundary is made of abelian varieties, Kodaira vanishing theorem yields

χ(D, (N∗
D/X

)⊗(j1+j2+···+si)) = h0(D, (N∗
D/X

)⊗(j1+j2+···+si)),

as soon as j1 + j2 + · · ·+ si 6= 0.
Besides, still because the boundary is a union of abelian varieties, Hirze-

bruch–Riemann–Roch theorem gives

χ(D, (N∗
D/X

)⊗(j1+j2+...ji−1+si))

= 1
(n− 1)! (j1 + · · ·+ ji−1 + si)n−1 [−(−D)n].

We can sum this last term on si, to find

ji∑
si=0

(j1 + · · ·+ ji−1 + si)n−1

=
∑

l1+···+li=n−1

(
n− 1

l1, . . . , li

)
jl11 . . . j

li−1
i−1

ji∑
si=0

slii

=
∑

l1+···+li=n−1

(
n− 1

l1, . . . , li

)
jl11 . . . j

li−1
i−1 [ j

li+1
i

li + 1 +O(jli−1
i )]

=
∑

l1+···+(li+1)=n

1
n

(
n

l1 . . . , li + 1

)
jl11 . . . jli+1

i

+O

( ∑
l1+···+li=n−1

(
n− 1

l1, . . . , li

)
jl11 . . . jlii

)

= 1
n

[(j1 + · · ·+ ji)n − (j1 + · · ·+ ji−1)n] +O((j1 + · · ·+ ji)n−1),

where we use the multinomial formula at the second and fourth lines.
If we sum over i, and using the fact that for a fixed i, there is only one

term for which j1 + · · ·+ ji−1 + si = 0, we finally find

(6.6)
k∑
i=1

ji∑
si=0

h0
(
D,
(
N∗
D/X

)⊗(j1+···+ji−1+si)
)

= 1
n! (j1 + · · ·+ jn)n [−(−D)n]

n! +O

(∑
i

(j1 + · · ·+ ji)n−1

)
.
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6.3. Final asymptotic estimate over h0(Qk,m) as m −→ +∞

Applying Proposition 3.9, we can sum (6.6) over the j1, . . . , jk such that
j1 + 2j2 + · · ·+ kjk = r, to find

∑
j1+2j2+···+kjk=r

k∑
i=1

ji∑
si=0

h0
(
D,
(
N∗
D/X

)⊗(j1+···+ji−1+si)
)

6
rn+k−1

(n+ k − 1)

 1
k!

∑
16i16···6in6k

1
i1 . . . in

 [−(−D)n] +O(rn+k−2).

Moreover, according to Proposition 3.10, we have

rk
( ⊕
l1+2l2+···+klk=r

Sl1ΩD ⊗ · · · ⊗ SlkΩD

)

= 1
(k!)n−1

m(n−1)k−1

((n− 1)k − 1)! +O(mnk−2).

If we put these two asymptotic expressions in (6.5), we obtain the fol-
lowing final estimate on h0(Qk,m), when m −→ +∞ :

(6.7) h0(Qk,m) 6 h0(GrF• (Qk,m))

6
m∑
r=0

 rn+k−1

(n+ k − 1)

 1
k!

∑
16i16···6in6k

1
i1 . . . in

 [−(−D)n]


·
[

1
(k!)n−1

(m− r)(n−1)k−1

((n− 1)k − 1)

]
+O(mn+nk−2)

= [−(−D)n]
(k!)n

 ∑
16i16···6in6k

1
i1 . . . ik

 mn+nk−1

(n+ nk − 1)! +O(mn+nk−2).

6.4. Uniform lower bound in k on vol(EGGk,mΩX)

Combining (6.2) with (5.3) and (6.7), we finally obtain the lower
bound (1.1) on vol(EGGk,• ΩX), which proves Theorem 1.1. The expres-
sion (1.1) being valid for any k, we can use the results of [3] to determine
an order k after which the algebra EGGk,• ΩX has maximal growth.
For example, it is not hard to obtain an asymptotic expansion of (1.1),

with leading coefficient
1

n!(k!)n (log k)n
(
(KX +D)n + (−D)n

)
= 1
n!(k!)n (log k)k(KX)n.
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When KX is nef and big, we get back the asymptotic lower bound of [8].

vol(EGGk,mΩX) > (log k)n

n!(k!)n
(
vol(KX) +O((log k)−1)

)
.

6.5. Explicit orders k to have a big EGGk,• ΩX

In this section, we prove Corollary 1.2. We will use (1.1) to determine
an effective k after which EGGk,• ΩX is big. Let us begin by determining an
upper bound on

∑
16i16···6in6k

1
i1...in

. We have

∑
16i16···6in6k

1
i1 . . . ik

=
n∑
p=1

∑
l1+···+lp=n
∀i, li> 0

∑
16j1<···<jp6k

1
jl11 . . . j

lp
p

,

the datum of n integers 1 6 i1 6 · · · 6 in 6 k in non-decreasing order
being equivalent to the one of an integer p giving the number of distinct
ij , of p integers 1 6 j1 < · · · < jp 6 k, and of positive exponents l1, . . . , lp
such that

∑
k lk = n. Now, for any p > 1, we have:∑

16j1<···<jp6n

1
j1 . . . jp

6
1
p!

∑
16j1,...,jp6k

1
j1 . . . jp

= 1
p!

 k∑
j=1

1
j

p

6
1
p!

(
log k + γ + 1

2

)p
.

Let p 6 n − 1, and choose l1, . . . , lp such that l1 + · · · + lp = n and li 6= 0
for any i. Necessarily, at least one li is larger than 2, so∑

16j1<···<jp6n

1
jl11 . . . j

lp
p

6
∑

16j1<···<jp−16n

∑
16jp6n

1
j1 . . . jp−1j2

p

6
∑

16j1<···<jp−16n

1
j1 . . . jp−1

· π
2

6

6
1

(p− 1)!

(
log k + γ + 1

2

)p−1
· π

2

6 .
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Thus,

∑
16i16···6in6k

1
i1 . . . ik

6
1
n!

(
log k + γ + 1

2

)n

+ π2

6

n−1∑
p=1

 ∑
l1+···+lp=n
∀i, li> 0

1

 · 1
(p− 1)!

(
log k + γ + 1

2

)p−1
.

It is easy to see that
∑

l1+···+lp=n
∀i, li> 0

1 =
(
n−1
p−1
)
(choosing the integers li

amounts to choosing p− 1 cuts in the set [|1, n|], i.e. among n− 1 possible
cuts). Consequently, we find

∑
16i16···6in6k

1
i1 . . . in

6

(
log k + γ + 1

2
)n

n!

+ π2

6

n−1∑
p=1

(
n− 1
p− 1

)
1

(p− 1)!

(
log k + γ + 1

2

)p−1
.

We can use the following upper bound:

n−1∑
p=1

(
n− 1
p− 1

)
1

(p− 1)!

(
log k + γ + 1

2

)p−1

=
n−2∑
p=0

(
n− 1
p

)
1
p!

(
log k + γ + 1

2

)p

6
n−2∑
p=0

(
n− 1
p

)(
log k + γ + 1

2

)p

=
(

log k + γ + 3
2

)n−1
−
(

log k + γ + 1
2

)n−1

6 (n− 2)
(

log k + γ + 3
2

)n−2
,

where we used the mean value inequality in the last line. Thus,

(6.8)
∑

16i16···6in6k

1
i1 . . . in

6

(
log k + γ + 1

2
)n

n! + π2

6 (n− 2)
(

log k + γ + 3
2

)n−2
.
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Inserting (5.4) and (6.8), in (1.1), we find a lower bound of the form

vol
(
EGGk,• ΩX

)
> Ck

[(
KX +D

)n +A(k, n)(−D)n
]

for a certain Ck ∈ R∗, and

A(k, n) =
[ log k + γ + 1

2
log k + γ

]n
+ (n− 2)n!π

2

6

(
log k + γ + 3

2
)n−2

(log k + γ)n

Let us first deal with the case where n > 6. According to [3], we have
(KX +D)n + α(−D)n > 0 for all α ∈ ]0, (n+1

2π )n[. The only thing left now
is to determine an integer k such that A(k, n) <

(
n+1
2π
)n.

Let j = log k + γ. We have

A(k, n) =
(

1 + 1
2j

)n
+ π2

6
(n− 2)n!

j

(
1 + 3

2j

)n−2

6

(
1 + 3

2j

)n−2(
(1 + 1

2j )2 + π2

6
(n− 2)n!

j

)
.

We see that if j >
π2
6 (n−2)n!+1

n+1
2π −1 , then A(k, n) <

(
n+1
2π
)n.

Besides, if n ∈ [|4, 5|], then (KX)n =
(
KX +D

)n + (−D)n > 0. Conse-
quently, since (KX)n is an integer, (KX +D)n + (−D)n > 1, and

(KX +D)n + λ(−D)n > 0

for any λ ∈ ]0, 1 + 1
−(−D)n [. Thus, vol(EGGk,• ΩX) > 0 as soon as A(k, n) <

1 + 1
(−D)n . Performing the same computations as before, we see that it is

true if
log k + γ > −(−D)n ((n− 2)n! + 1) .

We have consequently proved Corollary 1.2.
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