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EXPECTED NUMBER AND DISTRIBUTION OF
CRITICAL POINTS OF REAL LEFSCHETZ PENCILS

by Michele ANCONA

Abstract. — We give an asymptotic probabilistic real Riemann–Hurwitz for-
mula computing the expected real ramification index of a random covering over the
Riemann sphere. More generally, we study the asymptotic expected number and
distribution of critical points of a random real Lefschetz pencil over a smooth real
algebraic variety. Throughout the paper, we give similar results for the complex
case. Our main tool is Hörmander theory of peak sections.
Résumé. — Dans cet article, on donne une formule de Riemann–Hurwitz asymp-

totique et probabiliste qui calcule la valeur attendue de l’indice de ramification réel
d’un revêtement aléatoire de la sphère de Riemann. Plus généralement, on étudie
l’asymptotique de la valeur attendue du nombre et de la distribution des points
critiques réels d’un pinceau de Lefschetz réel sur une variété algébrique réelle. Tout
au long de l’article, on donne des résultats analogues pour le cas complexe. Notre
outil principal est la théorie des sections pics d’Hörmander.

1. Introduction

The Riemann–Hurwitz formula says that the total ramification index of
a degree d branched covering f : Σ → Σ′ between two compact Riemann
surfaces equals d · χ(Σ′)− χ(Σ). In particular, if Σ′ = CP1, the total rami-
fication index is 2d + 2g − 2, where g is the genus of Σ. More generally, if
u : X 99K CP1 is a Lefschetz pencil on a complex manifold X of dimension
n, then

(−1)n# crit(u) = χ(X)− 2χ(F ) + χ(Y )
where F is a smooth fiber of u and Y is the base locus of u.
The questions that motivate this paper are the following: how do these

critical points distribute on the variety? When u is defined over R, what
about the number of real critical points?

Keywords: real algebraic varieties, Lefschetz pencils, peak sections, random geometry.
2020 Mathematics Subject Classification: 14P99, 32U40, 60D05.



1086 Michele ANCONA

We answer these questions by computing the asymptotic expected num-
ber of real critical points of real Lefschetz pencils and also the asymptotic
distribution of such points.

The chosen random setting has already been considered by Shiffman and
Zelditch in [15] to study the integration current over the zero locus of a
random global section of a line bundle over a complex projective manifold.

In the real case, Kac [7], Kostlan [8] and Shub and Smale [16] computed
the expected number of real roots of a random real polynomial. In higher
dimensions, Podkorytov [14] and Bürgisser [1] computed the expected Euler
characteristic of random real algebraic submanifolds and Letendre [11] the
expected volume (see [12] for the expected length of a random lemniscate).
In [3, 4, 5] Gayet and Welschinger estimated from above and below the
Betti numbers of the real locus of real algebraic submanifolds (see also [9]).
For intersection of real quadrics, a precise asymptotic of the total Betti
number has been given by Lerario and Lundberg in [10]. In [13] Nicolaescu
computed the expected number of critical of a random smooth function on
a Riemannian manifold have and how they distruibute.

Statements of the results

Let X be a smooth real projective manifold of dimension n, that is a
complex projective manifold equipped with an anti-holomorphic involution
cX , called the real structure. We denote by RX = Fix(cX) its real locus.
Let L be a positive real line bundle over X. For large d, for almost all pairs
(α, β) ∈ H0(X;Ld)2 (resp. RH0(X;Ld)2) of (real) global section, the map
uαβ : X 99K CP1 defined by x 7→ [α(x) : β(x)] is a (real) Lefschetz pencil,
see Proposition 2.11. Recall that a real Lefschetz pencil is a Lefschetz pencil
u : X 99K CP1 such that conj ◦u = u ◦ cX .

Definition 1.1. — Wedenote the set of critical points ofuαβ by crit(uαβ)
and by R crit(uαβ) = crit(uαβ) ∩ RX the set of real critical points.

The number of real critical points of a real Lefschetz pencil depends
on the pair (α, β). The main theorem of this paper is the computation of
the expected value of this number. Recall that, by definition, the expected
value of #R crit(uαβ) equals

E[#R crit(uαβ)] =
∫

(α,β)∈RH0(X,Ld)2
(#R crit(uαβ))dµ(α, β).

ANNALES DE L’INSTITUT FOURIER
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Theorem 1.2. — Let X be a smooth real projective manifold of di-
mension n and (L, h) be a real Hermitian line bundle over X with positive
curvature. Then

lim
d→+∞

1
√
d
nE[#R crit(uαβ)] =

{
n!!

(n−1)!!eR(n)π2 Volh(RX) if n is odd
n!!

(n−1)!!eR(n) Volh(RX) if n is even.

In this theorem, Volh(RX) is the volume of RX with respect to the Rie-
mannian volume form dVh induced by the positive curvature of the metric
h. The probability measure we consider is a natural Gaussian probability
on RH0(X;Ld)2 (see Section 2.1) and eR(n) is the expected value of (the
absolute value) of the determinant of real symmetric matrices (for the ex-
plicit values of eR(n), see [5, Section 2]). We recall that eR(1) =

√
2
π , then

we have:

Corollary 1.3. — Let (Σ, cΣ) be a real Riemann surface and (L, h)
be a real Hermitian line bundle of degree 1. Then, for every pair (α, β) ∈
RH0(X;Ld)2 without common zeros, the map uαβ is a degree d branched
covering between Σ and CP1 and the expected real total ramification index
of uαβ is equivalent to √

π

2 Volh(RΣ)
√
d

as d tends to +∞.

Theorem 1.2 is a consequence of a more precise equidistribution result. In
order to introduce it, let us define a natural empirical measure associated
with the real critical points of a Lefschetz pencil as follows. For any pair
(α, β) ∈ RH0(X;Ld)2 of real global sections of Ld, we define

Rναβ =
∑

x∈R crit(uαβ)

δx.

Theorem 1.4. — Let X be a smooth real projective manifold of di-
mension n and (L, h) be a real Hermitian line bundle over X with positive
curvature ω. Then

lim
d→+∞

1
√
d
nE[Rναβ ] =

{
n!!

(n−1)!!eR(n)π2 dVh if n is odd
n!!

(n−1)!!eR(n)dVh if n is even.

weakly in the sense of distributions. Here, dVh is the Riemannian volume
form induced by the curvature ω.

TOME 70 (2020), FASCICULE 3
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Theorem 1.4 says that, for any continuous function ϕ ∈ C0(RX), we
have

lim
d→+∞

1
√
d
nE[Rναβ ](ϕ) =

{
n!!

(n−1)!!eR(n)π2
∫
RX ϕdVh if n is odd

n!!
(n−1)!!eR(n)

∫
RX ϕdVh if n is even.

where the expected value is defined by

E[Rναβ ](ϕ) =
∫
RH0(X;Ld)2

∑
x∈R crit(uαβ)

ϕ(x)dµ(α, β).

In the complex case, we obtain a similar equidistribution theorem, whose
proof follows along the same lines. For any pair (α, β) ∈ H0(X;Ld)2 of
global sections of Ld, we define

ναβ =
∑

x∈crit(uαβ)

δx

to be the empirical measure associated with the critical points of the pencil
uαβ .

Theorem 1.5. — Let X be a smooth complex projective manifold of
dimension n and (L, h) be a Hermitian line bundle over X with positive
curvature ω. Then

lim
d→+∞

1
dn

E[ναβ ] = (n+ 1)ωn

weakly in the sens of distribution.

As before, Theorem 1.5 says that, for any continuous function ϕ on X,
we have

lim
d→+∞

1
dn

E[ναβ ](ϕ) = (n+ 1) ·
∫
X

ϕωn.

Organisation of the paper

In Section 2.1, we introduce the Gaussian measure on H0(X;Ld)2 as-
sociated with a Hermitian line bundle (L, h) over a complex manifold X.
We also give the same construction for the real case. We follow the ap-
proach of [3, 5, 15]. In Section 2.2, we present some classical results about
Lefschetz pencils on complex manifolds. In Sections 2.3 and 2.4 we intro-
duce our main tools, namely the Hörmander peak sections (see also [5],
[17]) and the incidence manifold (see [16]). Section 3 is completely devoted
to the proofs of the Theorems 1.2, 1.4 and 1.5. In Sections 3.1 and 3.2,
we prove the equidistribution of critical points of a (real) Lefschetz pencil
over a (real) algebraic variety X. This will be done using coarea formula

ANNALES DE L’INSTITUT FOURIER
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and peak sections. These ideas are taken from [5]. In Section 3.3 we will
compute the universal constant by direct computation.
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2. Definitions and main tools

2.1. Notations

Let X be a complex manifold of dimension n. Let L → X be a holomor-
phic line bundle equipped with a Hermitian metric h of positive curvature
ω ∈ Ω(1,1)(X,R). The curvature form induces a Kähler metric and a nor-
malized volume form dx = ωn∫

X
ωn

on X. The Hermitian metric h induces a

Hermitian metric hd on Ld for any integer d > 0 and also a L2-Hermitian
product 〈 · , · 〉L2 on the space H0(X;Ld) of global holomorphic sections of
Ld. It is defined by

〈α, β〉L2 =
∫
X

hd(α, β)dx

for any α, β in H0(X;Ld). This L2-Hermitian product induces a Gaussian
measure on H0(X;Ld)2 defined by

µ(A)= 1
π2Nd

∫
A

e−‖α‖
2
L2−‖β‖2

L2dαdβ

for any open subset A ⊂ H0(X;Ld)2 where dαdβ is the Lebesgue measure
associated with 〈 · , · 〉L2 and Nd = dimCH

0(X;Ld). Finally, a Lefschetz
pencil on X is a rational map u : X 99K CP1 having only non degenerated
critical points and defined by two global sections of a holomorphic line
bundle with smooth and transverse vanishing loci.
All these definitions have a real counterpart.
• Let X be a real algebraic variety of dimension n, that is a complex
manifold equipped with an anti-holomorphic involution cX . We de-
note by RX = Fix(cX) its real locus.

TOME 70 (2020), FASCICULE 3
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• A real holomorphic line bundle p : L → X is a line bundle equipped
with an anti-holomorphic involution cL such that p ◦ cX = cL ◦ p
and cL is complex-antilinear in the fibers.

• We denote by RH0(X;L) the real vector space of real global section
of L, i.e. sections s ∈ H0(X;L) such that s ◦ cX = cL ◦ s.

• A real Hermitian metric on L is a Hermitian metric h such that
c∗Lh = h̄. If (L, h) is a line bundle over X with positive curvature ω,
then ω( · , i · ) is a Hermitian metric over X and its real part defines
a Riemannian metric over RX. We denote the Riemannian volume
form induced by this metric by dVh.

• The L2-Hermitian product 〈 · , · 〉L2 on H0(X;Ld) restricts to a L2-
scalar product on RH0(X;Ld), also denoted by 〈 · , · 〉L2 . Then, as in
the complex case, also in the real case we have a natural Gaussian
measure on RH0(X;Ld)2 defined by

µ(A) = 1
πNd

∫
A

e−‖α‖
2
L2−‖β‖2

L2 dαdβ

for any open subset A ⊂ RH0(X;Ld)2 where dαdβ is the Lebesgue
measure associated with 〈 · , · 〉L2 and Nd = dimCH

0(X;Ld) =
dimR RH0(X;Ld).

• A real Lefschetz pencil u : X 99K CP1 is a Lefschetz pencil such
that u ◦ cX = conj ◦u.

We conclude this section by introducing some notation on symmetric ma-
trices.

Definition 2.1. — For any n ∈ N∗, we denote by Sym(n,R) the real
vector space of real symmetric matrices of size n × n. It is a vector space
of dimension n(n+1)

2 . We equip it with the basis B given by Ẽjj and Ẽij =
Eij +Eji for 1 6 i < j 6 n, where, for any k, l with 1 6 k, l 6 n, we denote
by Ekl the elementary matrix whose entry at the i-th row and j-th column
equals 1 if (i, j) = (k, l) and 0 otherwise.

We equip Sym(n,R) with the scalar product turning B into an orthonor-
mal basis. Let µR the associated Gaussian probability measure. We then set

eR(n) =
∫
A∈Sym(n,R)

|detA|dµR(A).

2.2. Lefschetz pencils

In this section, we compute the asymptotic value of the number of critical
points of a Lefschetz pencil (see also [3, Section 1]).

ANNALES DE L’INSTITUT FOURIER
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Recall that a Lefschetz fibration is a map X → CP1 with only non
degenerate critical points. The following proposition is a kind of Riemann–
Hurwitz formula for Lefschetz fibrations, for a proof see [3, Proposition 1].

Proposition 2.2. — Let X be a smooth complex projective manifold
of positive dimension n equipped with a Lefschetz fibration p : X → CP1

and let F be a regular fiber of p. Then we have the following equality:

χ(X) = 2χ(F ) + (−1)n# crit(p).

Remark that if u : X 99K CP1 a Lefschetz pencil and we blow-up the
base locus Base(u) + Y , then we obtain a Lefschetz fibration ũ : X̃ +
BlYX → CP1. By additivity of the Euler characteristic, we have that
χ(X̃) = χ(X) + χ(Y ), then by Proposition 2.2 we have

(2.1) χ(X) = 2χ(F )− χ(Y ) + (−1)n# crit(u).

Proposition 2.3. — Let L be a holomorphic ample line bundle over a
complex manifold X of dimension n. For almost all pair of global sections
(α, β) ∈ H0(X;Ld)2, the map uαβ defined by x 7→ [α(x) : β(x)] is a
Lefschetz pencil (see Proposition 2.11). Then, as d goes to infinity, we have

(2.2) # crit(uαβ) = (n+ 1)
(∫

X

c1(L)n
)
dn +O(dn−1).

Proof. — We will follow the lines of Lemma 2, Lemma 3 and Proposi-
tion 4 of [3].

We have χ(F ) =
∫
F
cn−1(F ) and χ(Y ) =

∫
Y
cn−2(Y ). We remark that

the base locus is the intersection of the zero locus of α and β, that is
Y = Zα ∩ Zβ . A regular fiber F over [a, b] ∈ CP1 is the zero locus of the
section bα − aβ ∈ H0(X;Ld), thus the normal bundle NX/F is Ld|F To
compute χ(F ) we will use the adjunction formula. We have

0→ TF → TX|F → NX/F → 0

then we have c(X)|F = c(F ) ∧ c(Ld)|F , that is(
1 + c1(X) + · · ·+ cn(X)

)
|F = (1 + c1(F ) + · · ·+ cn−1(F )) ∧ (1 + dc1(L)).

If we develop this we have c1(X) = c1(F )+dc1(L) and, for j ∈ {2, . . . , n−1},
we have cj(X)|F = cj(F )+dc1(L)|F∧cj−1(F ). Then, summing up the term,

cj(F ) =
j∑

k=0
(−1)kdkc1(L)k|F ∧ cj−k(X)|F .

TOME 70 (2020), FASCICULE 3
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In particular, for j = n− 1 we have

cn−1(F ) =
n−1∑
k=0

(−1)kdkc1(L)k|F ∧ cn−k−1(X)|F .

Then χ(F ) is equal to
∫
F

∑n−1
k=0(−1)kdkc1(L)k)|F ∧ cn−k−1(X)|F . But, for

α ∈ H2n−2
dR (X), we have that∫

F

α|F =
∫
X

α ∧ c1(Ld)

so,

χ(F ) =
n−1∑
k=0

∫
X

(−1)kdk+1c1(L)k+1 ∧ cn−k−1(X)

and asymptotically we get

χ(F ) ∼ (−1)n−1
(∫

X

c1(L)n
)
dn.

For Y = Zα ∩ Zβ , the same argument gives us

cj(Y ) =
j∑

k=0
(−1)kdkc1(L)k|Y ∧ cj−k(Zα)|Y .

But, as before,

cj−k(Zα) =
j−k∑
h=0

(−1)hdhc1(L)h ∧ cj−k−h(X).

and so, replacing in the above equation

cj(Y ) =
j∑

k=0
(−1)kdkc1(L)k|Y ∧

(
j−k∑
h=0

(−1)hdhc1(L)h|Y ∧ cj−k−h(X)|Y

)
For j = n− 2 we have

cn−2(Y ) =
n−2∑
k=0

(−1)kdkc1(L)k|Y ∧
(
n−2−k∑
h=0

(−1)hdhc1(L)hY ∧ cn−2−k−h(X)|Y

)
and this is equivalent to

n−2∑
k=0

(−1)n−2dn−2c1(L)n−2
|Y = (−1)n−2(n− 1)dn−2c1(L)n−2

|Y

ANNALES DE L’INSTITUT FOURIER
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as d→∞. So we have, as d→∞,

χ(Y ) ∼ (−1)n−2(n− 1)dn−2
∫
Y

c1(L)n−2
|Y

= (−1)n−2(n− 1)dn−1
∫
Zα

c1(L)n−2 ∧ c1(L)

= (−1)n−2(n− 1)
(∫

X

c1(L)n
)
dn.

Combining this with χ(X) = 2χ(F )− χ(Y ) + (−1)n# crit(uαβ) we obtain
the result. �

2.3. Hörmander’s peak sections

In this section we recall the theory of Hörmander’s peak sections, an
essential tool for our proofs of Theorems 1.4 and 1.5 (see also [5, 6, 17]).
Let L be a holomorphic line bundle over a smooth complex projective
manifold equipped with a Hermitian metric h of positive curvature ω and
let dx = ωn∫

X
ωn

be the normalized volume form. Let x be a point of X.

There exists, in the neighborhood of x, a holomorphic trivialization e of
L such that the associated potential reaches a local minimum at x with
Hessian of type (1, 1). The following result was proved in [17] (see also [5]).

Lemma 2.4. — Let (L, h) be a holomorphic Hermitian line bundle of
positive curvature ω over a smooth complex projective manifold X. Let
x ∈ X, (p1, . . . , pn) ∈ Nn and p′ > p1 + · · ·+ pn. There exists d0 ∈ N such
that for every d > d0, the bundle Ld has a global holomorphic section σ

satisfying
∫
X
hd(σ, σ)dx = 1 and∫

X\B(x, log d√
d

)
hd(σ, σ)dx = O

(
1
d2p′

)
Moreover, if (x1, . . . , xn) are local holomorphic coordinates in the neigh-

borhood of x, we can assume that in a neighborhood of x,

σ(x1, . . . , xn) = λ(xp1
1 · · ·xpnn +O(‖x‖2p

′
))ed

(
1 +O

(
1
d2p′

))
where

λ−2 =
∫
B(x, log d√

d
)
|xp1

1 · · ·xpnn |2hd(ed, ed)dx

and e is a holomorphic trivialization of L in the neighborhood of x whose
potential φ = − log h(e, e) reaches a local minimum at x with Hessian
πω( · , i · ).

TOME 70 (2020), FASCICULE 3



1094 Michele ANCONA

This lemma is true also in the real setting, in the following sense:

Lemma 2.5. — Let (L, h) be a real holomorphic Hermitian line bundle
of positive curvature ω over a smooth real projective manifold X. Let x ∈
RX, (p1, . . . , pn) ∈ Nn and p′ > p1 + · · · + pn. There exists d0 ∈ N such
that for every d > d0, the bundle Ld has a global holomorphic section σ

satisfying
∫
X
hd(σ, σ)dx = 1 and∫

X\B(x, log d√
d

)
hd(σ, σ)dVh = O

(
1
d2p′

)
Moreover, if (x1, . . . , xn) are local real holomorphic coordinates in the
neighborhood of x, we can assume that in a neighborhood of x,

σ(x1, . . . , xn) = λ(xp1
1 · · ·xpnn +O(‖x‖2p

′
))ed

(
1 +O

(
1
d2p′

))
where

λ−2 =
∫
B(x, log d√

d
)
|xp1

1 · · ·xpnn |2hd(ed, ed)dx

and e is a real trivialization of L in the neighborhood of x whose potential
φ = − log h(e, e) reaches a local minimum at x with Hessian πω( · , i · ).

This real counterpart follows from Lemma 2.4 by averaging the peak sec-
tions with the real structure. Let σ0 be the section given by the Lemma 2.5
with p′ = 3 and pi = 0 for all i, σi the section given by Lemma 2.5 with
p′ = 3 and pj = δij , σij the section given by the Lemma 2.5 with pi = pj = 1
and pk = 0 otherwise and σkk the section given by the Lemma 2.5 with
pk = 2 and pl for l 6= k. These sections are called peak sections. Their
Taylor expansions are:

σ0(y) =
(
λ0 +O(‖y‖6)

)
ed
(

1 +O

(
1
d6

))
;

σi(y) =
(
λiyi +O(‖y‖6)

)
ed
(

1 +O

(
1
d6

))
∀ i;

σij(y) =
(
λijyiyj +O(‖y‖6)

)
ed
(

1 +O

(
1
d6

))
∀ i 6= j;

σkk(y) =
(
λkky

2
k +O(‖y‖6)

)
ed
(

1 +O

(
1
d6

))
∀ k.

The following lemma shows the asymptotic of the constants λ0, λi, λij
et λkk.

ANNALES DE L’INSTITUT FOURIER
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Lemma 2.6 ([5, Lemma 2.5]). — Under the hypothesis of Lemmas 2.4
and 2.5, we have

lim
d−→∞

1
√
d
nλ0 =

√
δL lim

d−→∞

1
√
d
n+1λi =

√
π
√
δL

lim
d−→∞

1
√
d
n+2λij = π

√
δL lim

d−→∞

1
√
d
n+2λkk = π√

2
√
δL

for the L2-product induced by dx = ωn∫
X
ωn

where δL =
∫
X
c1(L)n is the

degree of the line bundle L.

Set

H2x = {s ∈ H0(X;Ld) | s(x) = 0,∇s(x) = 0,∇2s(x) = 0}(
resp. RH2x = {s ∈ RH0(X;Ld) | s(x) = 0,∇s(x) = 0,∇2s(x) = 0}

)
.

This space is formed by sections whose 2-jet vanishes at x. The sections
(σi)06i6n (σij)16i6j6n provide a basis of a complement of H2x. This basis
is not orthonormal and its spanned subspace is not orthogonal to H2x.
However, this basis is aymptotically an orthonormal basis and its spanned
subspace is asymptotically orthonormal to H2x, in the following sense:

Proposition 2.7 ([17, Lemma 3.1]). — The section (σi)06i6n and
(σij)16i6j6n have L2-norm equal to 1 and their pairwise L2-scalar product
are O( 1

d ). Likewise, their scalar products with every unitary element of H2x
are O( 1

d3/2 ).

2.4. Incidence manifolds

Following [16], we define an incidence manifold associated with the com-
plex (resp. real) manifold X and to the (real) positive line bundle L.
We will use this incidence manifold to prove that, for almost all pairs
global sections (α, β) ∈ H0(X;Ld)2 (resp. (α, β) ∈ RH0(X;Ld)2), the
map uαβ : x 7→ [α(x) : β(x)] defines a Lefschetz pencil, see Proposition 2.3.
Let (L, h) be a (real) Hermitian line bundle with positive curvature ω

over a (real) algebraic variety X of dimension n.

Definition 2.8. — Let α, β ∈ H0(X;Ld) (resp. RH0(X;Ld)) be two
(real) global sections such that the map uαβ : x 7→ [α(x) : β(x)] is a
Lefschetz pencil. We define

(1) the base locus of a Lefschetz pencil as the points x such that α(x) =
β(x) = 0;
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(2) the critical points as the points x ∈ X \ Base(uαβ) such that
(α∇β−β∇α)(x) = 0 (this expression does not depend on the choice
of a connection ∇ on L). We denote by crit(uαβ) the set of critical
points of (uαβ) and by R crit(uαβ) = crit(uαβ)∩RX the set of real
critical points.

We denote by ∆ (resp. by R∆) the set of (α, β, x) ∈ H0(X;Ld)2 × X
(resp. (α, β, x) ∈ RH0(X;Ld)2 × RX) such that α(x) = β(x) = 0. Set

I =
{

(α, β, x) ∈
(
H0(X;Ld)2 ×X

)
\∆ | x ∈ crit(uαβ)

}(
resp. RI =

{
(α, β, x) ∈

(
RH0(X;Ld)2 × RX

)
\ R∆ | x ∈ crit(uαβ)

})
.

Proposition 2.9. — Let L be a (real) holomorphic line bundle over a
smooth complex (resp. real) projective manifold X. If Ld is 1-ample, that
is if the 1-jet map

H0(X;Ld)×X → J1(Ld)

(s, x) 7→ j1
x(s) = (s(x),∇s(x))

is surjective, then I (resp. RI) is a smooth manifold of complex (resp. real)
dimension 2Nd, where Nd = dimH0(X;Ld).

Proof. — We study the differential of the map

q :
(
H0(X;Ld)2 ×X

)
\∆→ T ∗X ⊗ L2d

defined by
(α, β, x) 7→ (α∇β − β∇α)(x) ∈ T ∗xX ⊗ L2d

x

defining I. If we prove that 0 is a regular value, then, by Implicit Function
Theorem, we have the result. Now, for (α, β, x) ∈ I we have

d|(α,β,x)q · (α̇, β̇, ẋ) =
(
α̇∇β − β∇α̇+ α∇β̇ − β̇∇α

+ α∇2
(ẋ,·)β − β∇

2
(ẋ,·)α+∇ẋα∇β −∇ẋβ∇α

)
(x).

For any η ∈ T ∗xX ⊗ L2d
x we have to prove that there exists (α̇, β̇, ẋ) such

that d|(α,β,x)q · (α̇, β̇, ẋ) = η. As (α, β, x) 6∈ ∆, we know that at least one
between α(x) and β(x) is not zero. Without loss of generality, suppose that
α(x) 6= 0, then, as Ld is 1-ample, there exists β̇ such that β̇(x) = 0 and
α(x)∇β̇(x) = η, then d|(α,β,x)q · (0, β̇, 0) = η. �

If L is ample, then, for large d, the line bundle Ld is 1-ample. Then, for
large d, I (resp. RI) is a smooth manifold, called the incidence manifold.
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The tangent space T(α,β,x)I of I at a point (α, β, x) (resp. T(α,β,x)RI of
RI) equals{

(α̇, β̇, ẋ) ∈ H0(X;Ld)2 × TxX

∣∣∣∣∣
(
α̇∇β − β∇α̇+ α∇β̇ − β̇∇α
+ α∇2

(ẋ,·)β − β∇
2
(ẋ,·)α

)
(x) = 0

}
(
resp.

{
(α̇, β̇, ẋ)
∈ RH0(X;Ld)2 × TxRX

∣∣∣∣∣
(
α̇∇β − β∇α̇+ α∇β̇ − β̇∇α
+ α∇2

(ẋ,·)β − β∇
2
(ẋ,·)α

)
(x) = 0

})
.

Remark 2.10.
• In the equation defining the tangent space there is also the term

(∇ẋα∇β −∇ẋβ∇α)(x).

However, it equals zero (both in the complex and real case) because
on I and RI we have the condition (α∇β − β∇α)(x) = 0 so that

(∇ẋα∇β −∇ẋβ∇α) (x) =
((
∇ẋα

β

α
−∇ẋβ

)
∇α
)

(x) = 0.

• The incidence manifold comes equipped with two natural projec-
tions

πH : I → H0(X;Ld)2 and πX : I → X(
resp. πRH : RI → RH0(X;Ld)2 and πRX : RI → RX

)
.

Proposition 2.11. — Let L be an ample holomorphic line bundle (resp.
real holomorphic) over a smooth complex projective manifold X (resp. real
projective). For large d and for almost all pairs (α, β) ∈ H0(X;Ld)2 (resp.
RH0(X;Ld)2), the map

uαβ : X 99K CP1

x 7→ [α(x) : β(x)].

is a Lefschetz pencil (resp. real Lefschetz pencil).

Proof. — The critical points of the projection πH (resp. πRH) are ex-
actly the triples (α, β, x) such that the Hessian (α∇2β − β∇2α)(x) is
degenerate. By Sard’s theorem valcrit(πH) has zero Lebesgue, and then
Gaussian, measure. Also, for large d, the set Γ composed by the pairs
(α, β) ∈ H0(X;Ld) × H0(X;Ld) such that {x ∈ X,α(x) = β(x) = 0} is
not smooth has zero Lebesgue and Gaussian measure (see for example [11,
Section 2.2]). Then (Γ∪ valcrit(πH)) has zero measure and its complement
is exactly the set of pairs of sections defining a Lefschetz pencil. �
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3. Proof of the main theorems

In this section we prove Theorems 1.2, 1.4 and 1.5. Hörmander’s peak
sections and the coarea formula play an important role here.

3.1. Coarea formula

In this section we use the incidence manifold defined in Section 2.4 and
the coarea formula to write the expected distribution of critical points of a
(real) Lefschetz pencil as an integral over X (resp. RX).

Definition 3.1. — The normal jacobian JacN f of a submersion f :
M → N between two Riemannian manifolds is the determinant of the
differential of the map restricted to the orthogonal complement of its kernel,
that is JacN f = Jac(df|(ker df)⊥). Equivalently, if dfp is the differential of
f at p, then the normal jacobian is equal to

√
det(dfpdf∗p ), where df∗p is

the adjoint of dfp with respect to the scalar product on TpM and Tf(p)N .

Let X be a smooth complex (resp. real) projective manifold of dimension
n and (L, h) be a (real) holomorphic line bundle with positive curvature ω.

Definition 3.2. — We define a Dirac measure for (real) critical points
of a (real) Lefschetz pencil uαβ associated with a pair (α, β) ∈ H0(X;Ld)2

(resp. (α, β) ∈ RH0(X;Ld)2) by

ναβ =
∑

x∈crit(uαβ)

δx

resp. Rναβ =
∑

x∈R crit(uαβ)

δx

 .

Let ϕ be a continuous function on RX. Then, by definition, we have

E[Rναβ ](ϕ) =
∫
RH0(X;Ld)2

∑
x∈Rcrit(uαβ)

ϕ(x)dµ(α, β)

where dµ is the Gaussian measure on RH0(X;Ld)2 constructed in Sec-
tion 2.1. Finally, recall that we denote by πRH and πRX the two natural
projections from RI to RH0(X;Ld)2 and RX. The projection πRH is (al-
most everywhere) a local isomorphism and, by a slight abuse of notation,
we will denote by π−1

RH any local inverse.

Proposition 3.3. — Following the notation of Section 2.4, we have

(3.1) E[Rναβ ](ϕ)

=
∫
RX

ϕ(x)
∫
πRH(π−1

RX(x))

1
|(π−1

RH)∗ JacN (πRX)|
dµ
|πRH

(
π−1
RX(x)

)dVh.
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where the measure dµ
|πRH

(
π−1
RX(x)

) is the following: first we restrict the

scalar product 〈 · , · 〉L2 on RH0(X;Ld)2 to πRH(π−1
RX(x)), which is a

codimension n submanifold, then we consider the Riemannian measure
associated with this metric, and finally we multiply it by the factor

1
πNd

e−‖α‖
2
L2−‖β‖2

L2 , where Nd = dimH0(X;Ld).

Proof. — We denote by π∗RHdµ the pull-backed measure on RI, which
is well defined since πRH is (almost everywhere) a local isomorphism. By
definition of the pull-backed measure, the integral

E[Rναβ ](ϕ) =
∫
RH0(X;Ld)2

∑
x∈Rcrit(uαβ)

ϕ(x)dµ(α, β)

which defines the expected value equals the following integral over the
incidence manifold RI∫

RI
(π∗RXϕ)(α, β, x)(π∗RHdµ)(α, β, x).

We use the coarea formula (see [2, Lemma 3.2.3] or [16, Theorem 1]) for
the map πRX and we obtain

E[Rναβ ](ϕ) =
∫
RX

ϕ(x)
∫
π−1
RX(x)

1
|JacN (πRX)| (π

∗
RHdµ)|π−1

RX(x)
dVh

where the measure (π∗RHdµ)|π−1
X

(x) is the following: first we restrict the
(singular) metric π∗H〈 · , · 〉L2 on RI to π−1

RX(x), that is a codimension n

submanifold, then we consider the Riemannian measure associated with
this metric, and finally we multiply it by the factor 1

πNd
e−‖α‖

2
L2−‖β‖2

L2 ,
where Nd = dimH0(X;Ld). Another application of coarea formula for the
map πRH gives us the result. �

The space πRH(π−1
RX(x)) is formed by pairs (α, β) ∈ RH0(X;Ld)2 such

that x ∈ R crit(uαβ). In the next section we will identify this space with
an intersection of some quadrics in the vector space RH0(X;Ld)2. In the
complex case, the same argument gives us, for any continuous function ϕ
on X

(3.2) E[ναβ ](ϕ)

=
∫
X

ϕ(x)
∫
πH(π−1

X
(x))

1
|(π−1

H )∗ JacN (πX)|
dµ|πH(π−1

X
(x))dVh.
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3.2. Computation of the normal jacobian

In this section we compute the normal jacobian that appears in (3.1)
and (3.2). We follow the notations of Sections 2.3, 2.4 and 3.1. The main
result of this section is the following proposition:

Proposition 3.4. — Following the notation of Sections 2.4 and 3.1,
under the hypothesis of Theorem 1.4, we have:

E[Rναβ ](ϕ) =
∫
x∈RX

ϕ(x)Rd(x)dVh,

where

Rd(x) =
√
πd

n

(∫
Q

|det(a0bij − b0aij)|√
det ((aiaj + bibj) + (a2

0 + b20) Id)
dµQ +O

(
1√
d

))
and Q ⊂ R2(n+1)+n(n+1) is the product of the intersection of quadrics

Q̃ =
{

(a0, b0, . . . , an, . . . , bn) ∈ R2(n+1)
∣∣∣ a0bi − aib0 = 0 ∀ i = 1, . . . , n

}
with the vector space Rn(n+1) of coordinates aij and bij for 1 6 i 6 j 6 n

and

dµQ = e
−
∑

i
a2
i−
∑

i
b2
i−
∑

i,j
a2
ij−
∑

i,j
b2
ij

πn+1+n(n+1)
2

dVQ

where dVQ is the Riemannian volume form of Q.

The remaining part of this section is devoted to the proof of Proposi-
tion 3.4. Our main tool will be the peak sections defined in Section 2.3.

We fix a point x ∈ X (resp. x ∈ RX) and we want to compute the
integral

(3.3)
∫
πRH(π−1

RX(x))

1
|(π−1

RH)∗ JacN (πRX)|
dµ|πRH(π−1

RX(x))

that appears in (3.1). We recall that the tangent space of I (resp. RI) at
(α, β, x) is{

(α̇, β̇, ẋ) ∈ H0(X;Ld)2 × TxX

∣∣∣∣∣
(
α̇∇β − β∇α̇+ α∇β̇ − β̇∇α
+ α∇2

(ẋ,·)β − β∇
2
(ẋ,·)α

)
(x) = 0

}
(
resp.

{
(α̇, β̇, ẋ)

∈ RH0(X;Ld)2 × TxRX

∣∣∣∣∣
(
α̇∇β − β∇α̇+ α∇β̇ − β̇∇α

+ α∇2
(ẋ,·)β − β∇

2
(ẋ,·)α

)
(x) = 0

}
.

)
We remark that dπH|(α,β,x) is (almost everywhere) an isometry, because
on I we put the (singular) metric π∗H〈 · , · 〉L2 . For any x ∈ X (resp.
x ∈ RX) we will compute the normal Jacobian (π−1

H )∗ JacN (πX) (resp.
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(π−1
RH)∗ JacN (πRX)) at a point (α, β) ∈ πH(π−1

X (x)) by using the following
two linear maps:

(3.4)
Aαβ : H0(X;Ld)×H0(X;Ld)→ T ∗xX ⊗ L2d

x(
resp. Aαβ : RH0(X;Ld)× RH0(X;Ld)→ R(T ∗X ⊗ L2d)x

)
and

(3.5)
Bαβ : TxX → T ∗xX ⊗ L2d

x(
resp. Bαβ : TxRX → R(T ∗X ⊗ L2d)x

)
defined by

Aαβ(α̇, β̇) =
(
α̇∇β − β∇α̇+ α∇β̇ − β̇∇α

)
(x)

and
Bαβ(ẋ) =

(
α∇2

(ẋ,·)β − β∇
2
(ẋ,·)α

)
(x)

On T ∗xX⊗L2d
x (resp. R(T ∗X⊗L2d)x) we have the Hermitian (resp. scalar)

product induced by h.

Proposition 3.5. — Following the notation of Sections 2.4 and 3.1,
for any x ∈ X (resp. x ∈ RX) and any (α, β) ∈ πH(π−1

X (x)) (resp.
πRH(π−1

RX(x))), we have(
(π−1
H )∗ JacN πX

)
(α, β) = JacN (Aαβ)

Jac(Bαβ) ,

where Aαβ and Bαβ are the linear maps defined in (3.4) and (3.5).

Proof. — Recall that a vector (α̇, β̇, ẋ) ∈ H0(X;Ld)2 × TxX is in the
tangent space of I at (α, β, x) if and only if(

α̇∇β − β∇α̇+ α∇β̇ − β̇∇α+ α∇2
(ẋ,·)β − β∇

2
(ẋ,·)α

)
(x) = 0.

In particular, the vector ẋ is uniquely determined by

(3.6) ẋ = −
(
α∇2β − β∇2α

)
(x)−1 ◦

(
α̇∇β − β∇α̇+ α∇β̇ − β̇∇α

)
(x).

The map
(
(π−1
H )∗dπX

)
(α, β) sends (α̇, β̇) to ẋ and then, by (3.6) and by

the definition of Aαβ and Bαβ , we have(
(π−1
H )∗dπX

)
(α, β) = −B−1

αβ ◦Aαβ .

Passing to the normal Jacobian and using that πH is a local isometry, we
get

(
(π−1
H )∗ JacN πX

)
(α, β) = Jac(Bαβ)−1 JacN (Aαβ). �
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Fix real holomorphic coordinates (x1, . . . , xn) in a neighborhood of a
point x ∈ RX such that ( ∂

∂x1
, . . . , ∂

∂xn
) is an orthonormal basis of TxX

(resp. TxRX). We want to compute the integral

(3.7)
∫
πRH(π−1

RX(x))

1
|(π−1

RH)∗ JacN (πRX)|
dµ|πRH(π−1

RX(x))

that appears in (3.1).
For any (α, β) ∈ H0(X;Ld)2 (resp. RH0(X;Ld)2) we have

α =
n∑
i=0

aiσi +
∑

16k6l6n
aklσkl + τ

β =
n∑
i=0

biσi +
∑

16k6l6n
bklσkl + τ ′

where τ, τ ′ ∈ ker J2
x and σi, σkl are the peak section of Lemma 2.5.

We remark that (α, β) ∈ πH(π−1
X (x)) if and only if a0bi − aib0 = 0

∀ i = 1, . . . , n, and also that the definition of JacN (πX) involves only the
2-jets of sections. With this remark in mind we define the following spaces:

• K2 + (ker J2
x × ker J2

x) ⊂ H0(X;Ld)2 (resp. RH0(X;Ld)2);
• H2 + Vect{(σi, 0), (σkl, 0), (0, σi), (0, σkl)} ⊂ H0(X : Ld)2 (resp.
RH0(X;Ld)2) for i = 0, . . . , n and 1 6 l 6 k 6 n;

• Q = H2 ∩ πH(π−1
X (x)).

We see Q as the product of the intersection of quadrics:

Q̃ =
{

(a0, b0, . . . , an, bn) ∈ R2(n+1)
∣∣∣ a0bi − aib0 = 0 ∀ i = 1, . . . , n

}
with the vector space Rn(n+1) of coordinates aij and bij for 1 6 i 6 j 6
n. Let π2 : K⊥2 → H2 be the orthogonal projection. A consequence of
Proposition 2.7 is that, for large d, the map π2 is invertible.

Proposition 3.6. — Following the notation of Section 2.4 and 3.1, let
Aαβ and Bαβ be the linear applications defined in (3.4) and (3.5). Then,
in the complex case, under the hypothesis of Theorem 1.5,

(π−1
2 )∗ JacN (Aαβ) = det

(
πδ2
Ld

2n+1
(

(aiāj + bib̄j)Eij

+ (|a0|2 + |b0|2) Id +O
(

1√
d

))
ij

)

(π−1
2 )∗ Jac(Bαβ) =

∣∣∣∣∣det
(
πδL
√
d

2n+2
(

(a0bij−b0aij)Ẽij+O
(

1√
d

))
ij

)∣∣∣∣∣
2
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and, in the real case, under the hypothesis of the Theorem 1.4,

(π−1
2 )∗ JacN (Aαβ)

=

√√√√det
(
πδ2
Ld

2n+1
(

(aiaj + bibj)Eij + (a2
0 + b20) Id +O

(
1√
d

))
ij

)

(π−1
2 )∗ Jac(Bαβ) = det

(
πδL
√
d

2n+2
(

(a0bij − b0aij)Ẽij +O

(
1√
d

))
ij

)

where Ẽij for 1 6 i 6 j 6 n and Eij for i, j = 1, . . . , n are the matrices
defined in Definition 2.1.

Proof. — Let e be a local trivialization of L at x as in Section 2.3 and
let (σi)i=0,...,n, (σkl)16k6l6n be as in Lemma 2.4 (resp. Lemma 2.5). For
any (α, β) ∈ H0(X;Ld)2 (resp. RH0(X;Ld)2) we have

α =
n∑
i=0

aiσi +
∑

16k6l6n
aklσkl + τ

β =
n∑
i=0

biσi +
∑

16k6l6n
bklσkl + τ ′

where τ, τ ′ ∈ ker J2
x . In particular, we have

α(x) = a0σ0(x), β(x) = b0σ0(x),

∇α(x) =
n∑
i=0

ai∇σi(x), ∇β(x) =
n∑
i=0

bi∇σi(x),

∇2α(x) =
n∑
i=0

ai∇2σi(x) +
∑
k,l

akl∇2σkl(x),

∇2β(x) =
n∑
i=0

bi∇2σi(x) +
∑
k,l

bkl∇2σkl(x).

As basis for TxX and T ∗xX⊗L2d
x (resp. TxRX and R(T ∗xX⊗L2d

x )) we choose
( ∂
∂x1

, . . . , ∂
∂xn

) and (dx1⊗e2d, . . . ,dxn⊗e2d) respectively. We choose (σi, 0)
and (0, σi), i = 0, . . . , n, as a basis of a complement of ker J1

x × ker J1
x .

Thanks to Lemma 2.7, this basis is asymptotically orthonormal for the
L2-Hermitian product 〈 · , · 〉L2 . By definition it is an orthonormal basis for
the scalar product (π−1

2 )∗〈 · , · 〉L2 restricted to H2. Then we obtain, using
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Lemma 2.6,〈
Aαβ(σ0, 0),dxj ⊗ e2d〉 = bj

√
πδL
√
d

2n+1
+O

(√
d

2n)
;〈

Aαβ(σi, 0),dxj ⊗ e2d〉 = −b0
√
πδL
√
d

2n+1
δij +O

(√
d

2n)
for i = 1, . . . , n;〈

Aαβ(0, σ0),dxj ⊗ e2d〉 = −aj
√
πδL
√
d

2n+1
+O

(√
d

2n)
;〈

Aαβ(0, σi),dxj ⊗ e2d〉 = a0
√
πδL
√
d

2n+1
δij +O

(√
d

2n)
for i = 1, . . . , n;〈

Bαβ

(
∂

∂xi

)
,dxj ⊗ e2d

〉
= (a0bij − b0aij)πδL

√
d

2n+2
+O

(√
d

2n+1)
for i 6= j;〈

Bαβ

(
∂

∂xk

)
,dxk ⊗ e2d

〉
=
√

2(a0bkk − b0akk)πδL
√
d

2n+2
+O

(√
d

2n+1)
.

where the Hermitian (resp. scalar) product 〈 · , · 〉 on T ∗xX ⊗ L2d
x (resp.

R(T ∗xX ⊗ L2d
x )) is induced by the Hermitian metric h on L. What we

have just computed are the coefficients of the matrices of Aαβ and Bαβ
with respect to our choice of basis and with respect to the scalar product
(π−1

2 )∗〈 · , · 〉L2 . We recall thatBαβ is a square matrix and that JacN (Aαβ) =√
Jac(AαβA∗αβ). More precisely, as d → ∞, Aαβ is equivalent to the fol-

lowing matrix:

√
πδL
√
d

2n+1


b1 −b0 0 . . . 0 −a1 a0 0 . . . 0
b2 0 −b0 . . . 0 −a2 0 a0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

bn 0 0 . . . −b0 −an 0 0 . . . a0


and Bαβ to the following one:

πδL
√
d

2n+2


√

2(a0b11 − b0a11) a0b12 − b0a12 . . . a0b1n − b0a1n

a0b21 − b0a21
√

2(a0b22 − b0a22) . . . a0b2n − b0a2n

. . . . . . . . . . . .

a0bn1 − b0an1 a0bn2 − b0an2 . . .
√

2(a0bnn − b0ann)


A direct computation shows us that AαβA∗αβ is the matrix

(πδ2
Ld

2n+1)
(

(aiāj + bib̄j)Eij + (|a0|2 + |b0|2) Id +O
(

1
d

))
.

The results follows. �
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By Proposition 3.6 we have

(π−1
2 )∗

1
JacN (πX)

= (πd)n
( JacR

(
(a0bij − b0aij)Ẽij

)
det
(
(aiāj + bib̄j)Eij + (|a0|2 + |b0|2) Id

) +O

(
1√
d

))
(π−1

2 )∗
1

JacN (πRX)

=
√
πd

n

(
det
(
(a0bij − b0aij)Ẽij

)√
det
(
(aiaj + bibj)Eij + (a2

0 + b20) Id
) +O

(
1√
d

))
.

We want to integrate this quantity over πRH
(
π−1
RX(x)

)
. We recall that the

measure dµ
|πRH

(
π−1
RX(x)

) is the following one: first we restrict the scalar

product 〈 · , · 〉L2 on RH0(X;Ld)2 to πRH(π−1
RX(x)), that is a codimension

n submanifold, then we consider the Riemannian measure associated with
this metric, and finally we multiply it by the factor 1

πNd
e−‖α‖

2
L2−‖β‖2

L2 ,
where Nd = dimH0(X;Ld). Then (3.3) is equal to

(3.8)
∫
πRH

(
π−1
RX(x)

) |Jac(Bαβ)|
|JacN (Aαβ)|dµ|πRH

(
π−1
RX(x)

)
=
∫
K⊥2 ∩πRH

(
π−1
RX(x)

)
⊕K2

|Jac(Bαβ)|
|JacN (Aαβ)|dµ|πH

(
π−1
RX(x)

)
=
∫
K⊥2 ∩πRH

(
π−1
RX(x)

) |Jac(Bαβ)|
|JacN (Aαβ)|dµ|K⊥2 ∩πRH

(
π−1
RX(x)

)
=
∫
Q

(π−1
2 )∗

|Jac(Bαβ)|
|JacN (Aαβ)| (π2∗dµ|K⊥2 ∩πRH

(
π−1
RX(x)

)).
By Proposition 2.7, the pushforward measure (π2)∗(µ|K⊥2 ) on H2 coin-

cides with the Gaussian measure associated with the orthonormal basis
{(σi, 0), (σkl, 0), (0, σi), (0, σkl)} 16i6n

16k6l6n
up to a O( 1√

d
) term. As a conse-

quence we have that (π2∗dµ|K⊥2 ∩πRH(π−1
RX(x))) is equal to

dµQ = e
−
∑

i
a2
i−
∑

i
b2
i−
∑

i,j
a2
ij−
∑

i,j
b2
ij

πn+1+n(n+1)
2

dVQ
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up to a O( 1√
d
) term, where dVQ is the Riemannian volume form of Q. We

then have that (3.8) is equal to

(3.9)
∫
Q

(π−1
2 )∗

|Jac(Bαβ)|
|JacN (Aαβ)|dµQ +O

(
1√
d

)
=
∫
ai,bi,aij ,bij
a0bi−b0ai=0

√
πd

n

( ∣∣det
(
(a0bij − b0aij)Ẽij

)∣∣√
det
(
(aiaj+bibj)Eij+(a2

0+b20)Id
)dµQ +O

(
1√
d

))
.

Putting (3.9) in (3.1) and using Proposition 3.5, we obtain Propos-
ition 3.4. �

3.3. Computation of the universal constant

The purpose of this section is the explicit computation of the function
Rd(x) that appears in Proposition 3.4. We use the notation of Section 3.2.
To understand Rd(x), we have to compute

√
πd

n
∫
Q

∣∣det
(
(a0bij − b0aij)Ẽij

)∣∣√
det
(
(aiaj + bibj)Eij + (a2

0 + b20) Id
)

× e
−
∑

i
a2
i−
∑

i
b2
i−
∑

i,j
a2
ij−
∑

i,j
b2
ij

πn+1+n(n+1)
2

dVQ.

The main result of this section is the following computation:

Proposition 3.7. — Let Q be as in Proposition 3.4. Then

√
πd

n
∫
Q

∣∣det
(
(a0bij − b0aij)Ẽij

)∣∣√
det
(
(aiaj + bibj)Eij + (a2

0 + b20) Id
)

× e
−
∑

i
a2
i−
∑

i
b2
i−
∑

i,j
a2
ij−
∑

i,j
b2
ij

πn+1+n(n+1)
2

dVQ

is equal to

(3.10)
{

n!!
(n−1)!!eR(n)π2

√
d
n if n is odd

n!!
(n−1)!!eR(n)

√
d
n if n is even.

where Ẽij and Eij are the matrices of Definition 2.1 and eR(n) is the
expected value of the determinant of (the absolute value of) the real sym-
metric matrices.
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We recall that Q ⊂ R2(n+1)+n(n+1) is the product of the intersection of
quadrics:

Q̃ =
{

(a0, b0, . . . , an, . . . , bn) ∈ R2(n+1)
∣∣∣ a0bi − aib0 = 0 ∀ i = 1, . . . , n

}

with Rn(n+1) of coordinates aij and bij for 1 6 i 6 j 6 n. We consider the
parametrization ψ : R(n+2) → Q̃ defined by

ψ(a, b, t1, . . . , tn) = (a, b, at1, bt1, . . . , atn, btn).

Lemma 3.8. — We have Jac(ψ) =
√

1 +
∑
i t

2
i

√
(a2 + b2)n.

Proof. — A computation gives us

Jacψ Jacψt = det


1+
∑n

i=1
t2i 0 t1a t2a ... ... tna

0 1+
∑n

i=1
t2i t1b t2b ... ... tnb

t1a t1b a2+b2 0 ... ... 0
t2a t2b 0 a2+b2 ... ... 0
... ... ... ... ... ... ...
... ... ... ... ... ... ...
tna tnb 0 0 ... ... a2+b2


We develop the last line and we obtain

(a2 + b2) det


1+
∑n

i=1
t2i 0 t1a t2a ... ... tn−1a

0 1+
∑n

i=1
t2i t1b t2b ... ... tn−1b

t1a t1b a2+b2 0 ... ... 0
t2a t2b 0 a2+b2 ... ... 0
... ... ... ... ... ... ...
... ... ... ... ... ... ...

tn−1a tn−1b 0 0 ... ... a2+b2



+ (−1)ntnb · det


1+
∑n

i=1
t2i t1a t2a ... ... tna

0 t1b t2b ... ... tnb
t1a a2+b2 0 ... ... 0
t2a 0 a2+b2 ... ... 0
... ... ... ... ... ...
... ... ... ... ... 0

tn−1a 0 0 ... a2+b2 0



+ (−1)n+1tna · det


0 t1a t2a ... ... tna

1+
∑n

i=1
t2i t1b t2b ... ... tnb

t1b a2+b2 0 ... ... 0
t2b 0 a2+b2 ... ... 0
... ... ... ... ... ...
... ... ... ... ... 0

tn−1b 0 0 ... a2+b2 0
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For the second matrix we have:

det


1+
∑n

i=1
t2i t1a t2a ... ... tna

0 t1b t2b ... ... tnb
t1a a2+b2 0 ... ... 0
t2a 0 a2+b2 ... ... 0
... ... ... ... ... ...
... ... ... ... ... 0

tn−1a 0 0 ... a2+b2 0



= (1 +
n∑
i=1

t2i ) det


t1b t2b ... ... ... tnb

a2+b2 0 ... ... 0 0
0 a2+b2 ... ... 0 0
... ... ... ... ... ...
... ... ... a2+b2 0 0
0 ... ... 0 a2+b2 0


= (−1)n+1

(
1 +

n∑
i=1

t2i

)
tnb(a2 + b2)n−1.

where the first equality is obtained by developping the first column and
remarking that, in the development, each time we clear the i-th line, the
(i− 1)-th column and the last column are linearly equivalent. Similarly,

det


0 t1a t2a ... ... tna

1+
∑n

i=1
t2i t1b t2b ... ... tnb

t1b a2+b2 0 ... ... 0
t2b 0 a2+b2 ... ... 0
... ... ... ... ... ...
... ... ... ... ... 0

tn−1b 0 0 ... a2+b2 0


= (−1)n

(
1 +

n∑
i=1

t2i

)
tna(a2 + b2)n−1.

Then we have

Jacψ Jacψt

= (a2 + b2) det


1+
∑n

i=1
t2i 0 t1a t2a ... ... tn−1a

0 1+
∑n

i=1
t2i t1b t2b ... ... tn−1b

t1a t1b a2+b2 0 ... ... 0
t2a t2b 0 a2+b2 ... ... 0
... ... ... ... ... ... ...
... ... ... ... ... ... ...

tn−1a tn−1b 0 0 ... ... a2+b2


−

(
1 +

n∑
i=1

t2i

)
t2n(a2 + b2)n.
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Continuing to develop in the same way, we obtain by induction

Jacψ Jacψt =
(

1 +
n∑
i=1

t2i

)2

(a2 + b2)n −
(

1 +
n∑
i=1

t2i

)
n∑
i=1

t2i (a2 + b2)n =
(

1 +
n∑
i=1

t2i

)
(a2 + b2)n.

Passing to the square root we obtain the result. �

Remark 3.9. — In the following we will not write the symbols Ẽij and
Eij defined in Definition 2.1 in order to simplify the notation.

After this change of variables, we have:

√
πd

n

∫
Q

|det(a0bij − b0aij)|√
det((aiaj + bibj) + (a2

0 + b2
0) Id)

e
−
∑

i
a2
i−
∑

i
b2
i−
∑

i,j
a2
ij−
∑

i,j
b2
ij

πn+1+n(n+1)
2

dVQ

=
√
πd

n

∫
a,b,aij ,bij ,ti∈R

∣∣det
(
abij − baij

)∣∣√
det
(

(a2 + b2)
(

(titj) + Id
))

×
e
−
(

1+
∑

i
t2
i

)
(a2+b2)−

∑
i,j

(a2
ij+b2

ij)

πn+1+n(n+1)
2

√(
1+
∑

i

t2i

)√
(a2+b2)

n
dadbdaijdbijdti

Now det
(
(a2 + b2)((titj)ij + Id)

)
= (1 +

∑
i t

2
i )(a2 + b2)n so we obtain

√
πd

n
∫
a,b,aij ,bij ,ti∈R

|det
(
(abij − baij)ij

)
|

× e
−(1+

∑
i
t2i )(a

2+b2)−
∑

i,j
(a2
ij+b

2
ij)

πn+1+n(n+1)
2

dadbdaijdbijdti.

It is more practical to see (a, b) as a complex number c ∈ C and also
(aij , bij) as eij ∈ C. With a slight abuse of notation, we denote dc and deij
instead of −1

2i dcdc̄ and −1
2i deijdēij . Then we have

√
πd

n
∫
c∈C,eij∈C,ti∈R

∣∣det
(

Im(c̄eij)
)∣∣e−(1+

∑
i
t2i )|c|

2−
∑

i,j
|eij |2

πn+1+n(n+1)
2

dcdeijdti.
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Now, set c̃ = (
√

1 +
∑
i t

2
i )c and then c̃ = reiϑ. We obtain

√
πd

n
∫
c̃∈C,eij∈C

∣∣det
(

Im(¯̃ceij)
)∣∣e−|c̃|2−∑i,j

|eij |2

π1+n(n+1)
2

dc̃deij

×
∫
ti∈R

1
πn
√

1 +
∑
i t

2
i

n+1 dti

=
√
πd

n
∫
ϑ∈(0,2π],eij∈C

∣∣det
(

Im(e−iϑeij)
)∣∣e−∑i,j

|eij |2

π
n(n+1)

2

deijdϑ

×
∫ +∞

r=0

rn+1e−r
2

π
dr ·

∫
ti∈R

1
πn
√

1 +
∑
i t

2
i

n+1 dti.

Then, we have to compute the three integrals appearing in the last equation.
For the first term, we have

∫
ϑ∈(0,2π],eij∈C

∣∣det
(

Im(e−iϑcij)
)∣∣e−∑i,j

|eij |2

π
n(n+1)

2

deijdϑ

= 2π
∫
eij∈C

|det(Im eij)|
e
−
∑

i,j
|eij |2

π
n(n+1)

2

deij

= 2π
∫
bij∈R

|det(bij)|
e
−
∑

i,j
b2
ij

√
π
n(n+1)

2

dbij = 2πeR(n).

Here, eR(n) =
∫
B∈Sym(n,R)|detB|dµR(B). For the explicit value of eR(n),

see [5, Section 2].
For the second term, we consider the change of variable r2 = ρ and we

obtain ∫ +∞

r=0

rn+1e−r
2

π
dr = 1

2

∫ +∞

ρ=0

ρ
n
2 e
−ρ

π
dρ =

Γ(n2 + 1)
2π

where Γ is the Gamma function.
For the third term we use spherical coordinates and we obtain∫

ti∈R

1√
1 +

∑
i t

2
i

n+1 dti = Vol(Sn−1)
∫ +∞

t=0

tn−1√
(1 + t2)n+1 dt.

where

Vol(Sn−1) = 2π n2
Γ(n2 )

ANNALES DE L’INSTITUT FOURIER



CRITICAL POINTS OF REAL LEFSCHETZ PENCILS 1111

is the volume of the (n− 1)-dimensional sphere. For

∫ +∞

t=0

tn−1

(
√

1 + t2)n+1
dt =

∫ +∞

t=0

√
t2

(1 + t2)

n−1
1

1 + t2
dt

we make the change t2

1+t2 = 1− u2 and we obtain

∫ 1

0

√
1− u2

n−2
du.

Finally, set u = sin(θ) and we have

∫ π/2

0
cosn−1(θ)dθ.

The formula∫
cosn−1(θ)du = sin(θ) cosn−2(θ)

n− 1 + n− 2
n− 1

∫
cosn−3(θ)du

tells us that
∫ π/2

0 cosn−1(θ)dθ is equal to

(n− 2)!!
(n− 1)!!

if n is even and it is equal to

(n− 2)!!
(n− 1)!!

π

2

if n is odd.
Putting together all the values of these three integrals and using that

Γ(n2 + 1)
Γ(n2 ) = n

2 ,

we obtain Proposition 3.7. �
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3.4. End of the proofs of Theorems 1.2, 1.4 and 1.5

We use the notations of Sections 3.1, 3.2 and 3.3. By Proposition 3.4, we
have

(3.11) E[Rναβ ](ϕ)

=
∫
RX

ϕ(x)
(∫

Q

|JacN (Aαβ)|
| Jac(Bαβ)| dµ(ai, bi, akl, bkl) +O

(
1
d

))
dVh

=
∫
RX

ϕ(x)
(∫

ai,bi,aij ,bij
a0bi−b0ai=0

√
πd

n

(
det(a0bij − b0aij)√

det
(
(aiaj + bibj) + (a2

0 + b20) Id
)

+O

(
1√
d

))
dµQ

)
dVh

where dµQ = e
−
∑

i
a2
i
−
∑

i
b2
i
−
∑

i,j
a2
ij
−
∑

i,j
b2
ij

πn+1+n(n+1)
2

dVQ. By Proposition 3.7 we
have that the inner term of the last equation
√
πd

n
∫
ai,bi,aij ,bij
a0bi−b0ai=0

|det(a0bij − b0aij)|√
det
(
(aiaj + bibj) + (a2

0 + b20) Id
)

× e
−
∑

i
a2
i−
∑

i
b2
i−
∑

i,j
a2
ij−
∑

i,j
b2
ij

πn+1+n(n+1)
2

dVQ

is equal to {
n!!

(n−1)!!eR(n)π2
√
d
n if n is odd

n!!
(n−1)!!eR(n)

√
d
n if n is even.

Theorem 1.4 is then obtained by dividing Equation (3.11) by
√
d
n and

then by passing to the limit. Theorem 1.2 is Theorem 1.4 for ϕ = 1. The
proof of Theorem 1.5 follows the lines the proof of Theorem 1.4. For the
computation of the universal constant in this case, we put ϕ = 1 and we
use Proposition 2.3. �
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