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MINIMAL TIME ISSUES FOR THE OBSERVABILITY
OF GRUSHIN-TYPE EQUATIONS

by Karine BEAUCHARD,
Jérémi DARDÉ & Sylvain ERVEDOZA (*)

Abstract. — The goal of this article is to provide several sharp results on the
minimal time required for observability of several Grushin-type equations. Namely,
it is by now well-known that Grushin-type equations are degenerate parabolic
equations for which some geometric conditions are needed to get observability
properties, contrarily to the usual parabolic equations. Our results concern the
Grushin operator ∂t − ∆x − |x|2∆y observed from the whole boundary in the
multi-dimensional setting (meaning that x ∈ Ωx, where Ωx is a subset of Rdx with
dx > 1, y ∈ Ωy , where Ωy is a subset of Rdy with dy > 1, and the observation is
done on Γ = ∂Ωx ×Ωy), from one lateral boundary in the one-dimensional setting
(i.e. dx = 1), including some generalized version of the form ∂t−∂2

x− (q(x))2∂2
y for

suitable functions q, and the Heisenberg operator ∂t − ∂2
x − (x∂z + ∂y)2 observed

from one lateral boundary. In all these cases, our approach strongly relies on the
analysis of the family of equations obtained by using the Fourier expansion of the
equations in the y (or (y, z)) variables, and in particular the asymptotic of the
cost of observability in the Fourier parameters. Combining these estimates with
results on the rate of dissipation of each of these equations, we obtain observability
estimates in suitably large times. We then show that the times we obtain to get
observability are optimal in several cases using Agmon type estimates.
Résumé. — Le but de cet article est de fournir plusieurs estimées optimales sur

le temps minimal nécessaire pour avoir l’observabilité d’équations de type Grushin.
En effet, il est désormais bien connu que les équations de type Grushin sont des
équations paraboliques dégénérées pour lesquelles des conditions géométriques sont
nécessaires pour satisfaire des propriétés d’observabilité, contrairement aux équa-
tions paraboliques usuelles. Nos résultats concernent l’opérateur de Grushin ∂t −
∆x − |x|2∆y observé de tout le bord dans le cas multi-dimensionnel (dans le sens
où x ∈ Ωx, où Ωx est un ouvert de Rdx , avec dx > 1, y ∈ Ωy est un ouvert de Rdy

avec dy > 1, et l’observation est faite sur Γ = ∂Ωx × Ωy), d’un bord latéral dans
le cas uni-dimensionnel (i.e. dx = 1), incluant certaines généralisations de la forme
∂t− ∂2

x− (q(x))2∂2
y pour des fonctions q convenables, et l’opérateur de Heisenberg

∂t− ∂2
x− (x∂z + ∂y)2 observé d’un bord latéral. Dans tous ces cas, notre approche
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repose fortement sur l’analyse de la famille d’équations obtenues en développant la
solution en Fourier dans la variable y (ou (y, z)), et en particulier sur l’asymptotique
du coût de l’observabilité en fonction du paramètre de Fourier. En combinant ces
estimées avec les résultats sur le taux de dissipation de chacune de ces équations,
nous obtenons des inégalités d’observabilité en temps suffisamment grand. Nous
montrons ensuite que les temps que nous avons obtenus pour l’observabilité sont
optimaux dans plusieurs cas, en utilisant des estimées de Agmon.

1. Introduction

The goal of this article is to discuss observability properties of Grushin
type equations under various geometric settings. It is a remarkable result
known since [3] that observability properties for Grushin type equations,
which are degenerate parabolic equations, may require some non-trivial
positive time to hold, in strong contrast to what happens for the usual
heat equations. Thus, our results will focus on providing precise estimates
on the time horizon required for observability estimates for Grushin type
equations to hold. In many cases, we will show that our estimates are sharp.

1.1. Scientific context

Before going further, let us start by recalling the scientific context related
to our work. To begin with, we shall recall the observability results known
in the context of the usual heat equation: let Ω be a smooth bounded
domain of Rd and consider the heat equation

(1.1)


(∂t −∆x)u(t, x) = 0 , (t, x) ∈ (0,∞)× Ω ,

u(t, x) = 0 , (t, x) ∈ (0,∞)× ∂Ω ,

u(0, · ) = u0 ∈ H1
0 (Ω).

Given T > 0, the observability property for (1.1) at time T through an
open subset ω of Ω reads as follows: There exists a constant C > 0 such
that for all u solution of (1.1),

(1.2) ‖u(T )‖L2(Ω) 6 C ‖u‖L2((0,T )×ω) .

When considering the observability property for (1.1) at time T through
an open subset Γ of the boundary ∂Ω, the property reads as follows: There
exists a constant C > 0 such that for all u solution of (1.1),

(1.3) ‖u(T )‖L2(Ω) 6 C ‖∂νu‖L2((0,T )×Γ) ,
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where ∂ν denotes the exterior normal derivative of the solution on the
boundary of Ω.

Observability is well known to hold for the linear heat equation set in a
smooth bounded domain Ω in any arbitrary positive time T for any non-
empty observation set, whether it is a distributed domain ω or a non-empty
open subset Γ of the boundary. We refer to the works [22] and [28] for the
proof of this result (we shall also quote the work [20, Theorem 3.3] when the
observation is performed on the boundary of a one-dimensional domain Ω).

More recently, the community investigated this question of observability
for degenerate parabolic equations, and several works have shown that
they exhibit a wider range of behaviors: In particular, observability may
hold true or not depending on the strength of degeneracy of the parabolic
operator, the time horizon T , and the geometry.

Strength of the degeneracy. It has been shown in the literature that
only degenerate parabolic equations with weak enough degeneracies share
the same observability properties as the heat equation. We will not detail
the case of boundary degeneracy in one space dimension, which is by now
rather well understood and for which we refer to the works [1, 9, 10, 12, 13,
23, 29]. Fewer results are available for multidimensional problems, see [14]
and the recent book [15].
For parabolic equations with interior degeneracy, a fairly complete analy-

sis is available for the following Grushin type operators, set in the particular
geometry Ω := Ωx × Ωy, where Ωx is a bounded open subset of Rdx such
that 0 ∈ Ωx, Ωy is a bounded open subset of Rdy , and dx, dy ∈ N∗:

(1.4)


(∂t −∆x − |x|2γ∆y)u(t, x, y) = 0 , (t, x, y) ∈ (0, T )× Ω ,

u(t, x, y) = 0 , (t, x, y) ∈ (0, T )× ∂Ω ,

u(0, · , · ) = u0 ∈ H1
0 (Ω) ,

where γ > 0 is a fixed parameter which describes the degeneracy of the
parabolic operator.

The observability property at time T for (1.4) through a distributed
domain ω (respectively an open subset Γ of the boundary) then reads as
follows: There exists a constant C > 0 such that all solutions of (1.4)
satisfy (1.2) (respectively (1.3)).
It is proved in [3, 4] that the observability inequality holds in any positive

time T > 0 and with an arbitrary open set ω ⊂ Ω if and only if γ ∈ (0, 1).
Roughly speaking, this asserts that if the degeneracy is not too strong, i.e.
γ < 1, then the equations (1.4) satisfies the same observability properties
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as the classical heat equation (1.1), in the sense that observability holds
true for any time T > 0 and any non-empty open subset ω of Ω. Moreover,
[3, 4] show that if γ > 1 and ω ∩ {x = 0} = ∅ with dx = 1, then, whatever
T > 0 the Grushin equation (1.4) is not observable on (0, T ) × ω. The
critical value of γ is then γ = 1, which is precisely the case that we will
handle in this article.

Minimal time. For several degenerate parabolic equations, in specific
geometric configurations (Ω, ω), a positive minimal time is known to be
required for observability to hold. This is in particular the case for the
Grushin equation (1.4) with γ = 1 and dx = 1 when ω = ωx × Ωy and
ωx∩{x = 0} = ∅, see [3]. To be more precise, given a non-empty subdomain
ω = ωx×Ωy of Ω such that ωx ∩ {x = 0} = ∅, it is shown that there exists
a critical time T∗ = T∗(ω,Ω) such that

• The Grushin equation (1.4) (in the case γ = 1, dx = 1) is not
observable through ω in any time T < T∗;

• The Grushin equation (1.4) (in the case γ = 1, dx = 1) is observable
through ω in any time T > T∗.

The explicit value of this minimal time is obtained in [6] when Ωx = (−1, 1),
ωx = (−1,−a)∪ (a, 1) and a ∈ (0, 1), for which it is proved that T∗(ω,Ω) =
a2/2, but there are still many geometric settings for which the precise value
of the critical time is not known. Our goal precisely is to give the precise
values of the critical times in several geometric settings.

Geometric control condition. Let us also mention that, when consid-
ering the Grushin equation (1.4) with dx = dy = 1 and γ = 1, the work [26]
proves that when there exists an horizontal strip which does not intersect
ω, then the Grushin equation (1.4) is not observable through ω whatever
the time T > 0. This emphasizes the requirement of a geometric condition
on (Ω, ω) for the Grushin equation with γ = 1 to be observable on ω. In
that setting, the characterization of the sets ω for which observability holds
in some time T > 0 still seems to be a delicate matter.
This is why our work will focus on cases where the control set is ten-

sorized. Namely, we consider the case of boundary observations through
sets Γ of the form Γ = Γx × Ωy when Ω takes the form Ω = Ωx × Ωy.

Note that, by duality, the observability properties of Grushin equations
through Γ are equivalent to the null controllability of Grushin equations
with controls acting on Γ. We refer to the textbook [32] for an abstract
setting developing these equivalences, and to [3] for more details in the
context of Grushin-type equations. This is why we will not investigate the
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case of distributed observation sets ω, as our results can be extended to
cases of tensorized observation sets of the form ω = ωx × Ωy easily by
straightforward cut-off and extension arguments on the control problem.
In fact, after our work has been submitted, the article [19] obtained

several improvements on the determination of the minimal time for observ-
ability of the Grushin equation in the case Ωx = (−1, 1) and Ωy = (0, π)
for a large class of distributed observation sets ω. To be more precise, [19]
proves the following results:

• If there exists an ε-neighborhood ω0 of a curve going from y = 0
to y = π which is contained in ω, then observability of the Grushin
equation holds in any time greater than a2/2, where a is given by

a = sup
(x,y)∈Ω\ω0

{
|x|, ∃ x0 ∈ (−1, 1),

s.t.Sign(x) = Sign(x0), |x| < |x0|, Â and (x0, y) ∈ ω0

}
.

• If there exists an horizontal segment of the form (−a, a)×{y}, which
is disjoint from ω, then observability cannot hold in time smaller
than a2/2.

Let us point out that the first item strongly relies on Theorem 1.4 presented
below and suitable cut-off arguments. We refer the interested reader to [19]
for more details.

Other related models. The above discussion can be extended to opera-
tors of Grushin-type having singular lower order terms, see e.g. [11] and [31],
or for other models, such as Kolmogorov-type equations, see [5]. In fact,
we believe that the approach we present here may also allow to investigate
the precise value of the critical time of observability for Kolmogorov-type
equations in some cases.
Finally note that positive controllability results are also available for

hypoelliptic equations on the whole space, with appropriate smoothing
properties (in Gevrey or Gelfand–Shilov spaces) and under appropriate
geometric assumptions on the control support, see e.g. [7, 8, 27],.

1.2. The classical Grushin equations

The multi-dimensional case. First, we consider the multi-dimensional
classical Grushin equation in a domain Ω = Ωx × Ωy, where Ωx and Ωy
are smooth bounded domains of Rdx and Rdy respectively and dx, dy ∈ N∗,
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which reads as follows:

(1.5)


(∂t −∆x − |x|2∆y)u(t, x, y) = 0 , (t, x, y) ∈ (0, T )× Ω ,

u(t, x, y) = 0 , (t, x, y) ∈ (0, T )× ∂Ω ,

u(0, · , · ) = u0 ∈ H1
0 (Ω) .

To begin with, we are interested in the boundary observability in time T ,
when the observation is taken on the part Γ = ∂Ωx × Ωy of the boundary.
In other words, we ask if there exists C > 0 such that for any solution u
of (1.5) with u0 ∈ H1

0 (Ω),

(1.6)
∫

Ω
|u(T, x, y)|2dxdy 6 C

∫ T

0

∫
∂Ωx

∫
Ωy
|∂νxu(t, x, y)|2 dyds(x)dt,

where ∂νx denotes the exterior normal derivative on ∂Ωx and ds(x) is the
surface measure on ∂Ωx.

We will prove the following result.

Theorem 1.1. — Let Ωx and Ωy be smooth bounded domains of Rdx
and Rdy respectively, dx, dy ∈ N∗, and define

(1.7) L = sup
x∈Ωx

|x|, T∗ = L2

2dx
.

Then:
(1) For any time T > T∗, there exists a constant C such that for all so-

lutions u of (1.5) with u0 ∈ H1
0 (Ω), the observability estimate (1.6)

is satisfied.
(2) If Ωx = B(0, L), then for any T ∈ (0, T∗), there is no constant

C > 0 for which estimate (1.6) holds for all solutions u of (1.5)
with u0 ∈ H1

0 (Ω).

When considering the Grushin equation (1.5) in Ω = (−L,L) × (0, π),
corresponding to Ωx = (−L,L) and Ωy = (0, π), observed from both sides
Γ = {−L,L}×(0, π) (= ∂Ωx×Ωy), we know from [6](1) that the time T∗ =
L2/2 is indeed the critical time for observability. Therefore, Theorem 1.1
generalizes the positive result of null-controllability of [6] in large times for
the Grushin equation (1.5), and recovers the time known as the sharp time
of null-controllability when Ωx = (−L,L), Ωy = (0, π). Note also that [4]
derives positive null-controllability results for (1.5) in large times, but with
a time T which is not explicitly estimated.

(1) In fact, most of the references below are concerned with the case of a distributed
control. But, as mentioned in Section 1.1, easy cut-off / extension arguments also yield
similar results for the Grushin equations controlled from the boundary.
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Let us also point out that Theorem 1.1 is very likely sharp only in the
case of a ball. For instance, if 0 does not belong to Ω, usual Carleman
estimates (see e.g. [22]) apply and yield observability in any time T > 0.
When 0 belongs to Ω, the results afterwards in the case dx = dy = 1, see in
particular Theorem 1.4, also indicate that the critical time should rather
be related to the geometric quantity dΩx(0, ∂Ωx), where dΩx is the distance
in Ωx, instead of L in (1.7).
The proof of Theorem 1.1(1) is done in Section 2.2 and the proof of

Theorem 1.1(2), which closely follows the one of [3, Theorem 5 for γ = 1],
is postponed to Section 5.2.
Theorem 1.1(1) is shown by looking at observability properties of the

family of equations, indexed by n ∈ N,

(1.8)


(∂t −∆x + µ2

n|x|2)un(t, x) = 0 , (t, x) ∈ (0, T )× Ωx ,
un(t, x) = 0 , (t, x) ∈ (0, T )× ∂Ωx ,
un(0, · ) = u0,n ∈ H1

0 (Ωx),

which are obtained by expanding the solution u of (1.5) on the basis of
eigenfunctions of the operator −∆y with domain H2 ∩H1

0 (Ωy) on L2(Ωy),
where µ2

n is the n-th eigenvalue of this operator. This allows to reduce the
proof of Theorem 1.1 to the proof of observability properties for the family
of equations (1.8), uniformly with respect to the parameter n. Following [3],
such uniform observability properties for (1.8) are proved by combining the
following two ingredients:

• For T0 > 0 arbitrary, an estimate of the cost of observability of each
equation (1.8), with precise estimates in the asymptotics n→∞.

• Dissipation estimates for the semi-group defined by (1.8), with pre-
cise estimates in the asymptotics n→∞.

Concerning the family of equations (1.8), the most delicate part is the
analysis of the cost of observability of each equation (1.8). We do it using
a global Carleman estimate:

Lemma 1.2. — For every T0 > 0, there exists C = C(T0) > 0 and
n0 ∈ N such that, for every n > n0 and u0,n ∈ H1

0 (Ωx), the solution un
of (1.8) satisfies

(1.9)
∫

Ωx
|un(T0, x)|2e−µn coth(2µnT0)(L2−|x|2)dx

6 Cµn

∫ T0

0

∫
∂Ωx
|∂νxun(t, x)|2ds(x) dt ,

TOME 70 (2020), FASCICULE 1
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where L is as in (1.7).

The detailed proof of Theorem 1.1(1) is given in Section 2.2, including
the proof of Lemma 1.2 in Section 2.2.2.

Let us also point out that the proof of Theorem 1.1 in the one-dimensional
case provided by [6] also relies on an estimate on the cost of observability
of the equations (1.8) in the asymptotics n → ∞. But the proof of the
estimate in [6] is done using precise estimate on the cost of observability of
a family of wave type equations and transmutation techniques [30]. Thus,
it strongly differs from the approach we propose in Lemma 1.2, which is
based on direct Carleman estimates adapted to the equations (1.8).

The case Ωx = (0, L) and Ωy = (0, π). We now focus on the two-
dimensional case dx = dy = 1, and discuss the observability properties of
the Grushin equations in the case Ω = (0, L) × (0, π), depending on the
boundary conditions imposed at x = 0. To be more precise, we shall focus
on the equation

(1.10)


(∂t − ∂2

x − x2∂2
y)u(t, x, y) = 0, (t, x, y) ∈ (0, T )× Ω ,

u(t, x, y) = 0 , (t, x, y) ∈ (0, T )× ∂Ω ,

u(0, · , · ) = u0 ∈ H1
0 (Ω) ,

and on the equation
(1.11)

(∂t − ∂2
x − x2∂2

y)u(t, x, y) = 0, (t, x, y) ∈ (0, T )×Ω,
u(t, x, y) = 0 , (t, x, y) ∈ (0, T )×(∂Ω\({0}×(0, π))),
∂xu(t, 0, y) = 0 , (t, y) ∈ (0, T )×(0, π) ,
u(0, · , · ) = u0 ∈ H1

N (Ω),

where H1
N (Ω) denotes the set of functions of H1(Ω) whose trace on ∂Ω \

({0} × (0, π)) vanishes.
Here, we are interested in the following observability inequality at time T

for (1.10) (respectively (1.11)): There exists a constant C > 0 such that for
any solution u of (1.10) (respectively (1.11)) with initial datum u0 ∈ H1

0 (Ω)
(respectively H1

N (Ω)), we have

(1.12)
∫

Ω
|u(T, x, y)|2dxdy 6 C

∫ T

0

∫ π

0
|∂xu(t, L, y)|2 dydt.

We show the following result:
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Theorem 1.3. — Let Ω = (0, L)× (0, π) and define

(1.13) TD = L2

6 , TN = L2

2 .

Then
(1) For any time T > TD (respectively T > TN ), there exists a con-

stant C such that for all solutions u of (1.10)(respectively (1.11))
with u0 ∈ H1

0 (Ω) (respectively u0 ∈ H1
N (Ω)) the observability esti-

mate (1.12) is satisfied.
(2) For any T ∈ (0, TD) (respectively T ∈ (0, TN )), there is no constant

C > 0 for which estimate (1.12) holds for all solutions u of (1.10)
(respectively (1.11)) with u0 ∈ H1

0 (Ω) (respectively u0 ∈ H1
N (Ω)).

One may be surprised at first that the critical times of observability
for (1.10) and (1.11) differ, thus showing that the critical time of observ-
ability depends on the boundary conditions at x = 0. But one should keep
in mind that here the singularity of the Grushin operator precisely lies at
x = 0, and therefore the change of boundary conditions at x = 0 is of
paramount importance.
Theorem 1.3 is proved along the same lines as Theorem 1.1, and the main

idea is to prove uniform observability results for the following family of one-
dimensional heat equations, indexed by the integer n ∈ N: corresponding
to the case of Dirichlet boundary conditions in x = 0, we consider

(1.14)


∂tun − ∂2

xun + n2x2un = 0, in (0, T )× (0, L),
un(t, 0) = 0, un(t, L) = 0, in (0, T ),
un(0, x) = u0,n(x), in (0, L),

while, corresponding to the case of Neumann boundary conditions in x = 0,
we consider instead

(1.15)


∂tun − ∂2

xun + n2x2un = 0, in (0, T )× (0, L),
∂xun(t, 0) = 0, un(t, L) = 0, in (0, T ),
un(0, x) = u0,n(x), in (0, L).

As before, we shall proceed in two steps:
• For T0 > 0 arbitrary, an estimate of the cost of observability of
each equation (1.14), respectively (1.15), with precise estimates in
the asymptotics n→∞.

• Dissipation estimates for the semi-groups defined by (1.14), respec-
tively (1.15), with precise estimates in the asymptotics n→∞.
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In here, it turns out that the estimates on the cost of observability for
both families of equations (1.14) and (1.15) are the same, but the dissipa-
tion estimates differ, thus yielding to a difference of the critical times of
observability for (1.10) and for (1.11).

The proof of Theorem 1.3(1) is given in Section 2.3, while Theorem 1.3(2)
is proven in Section 5.3.

1.3. Two-dimensional Grushin equation observed on one
vertical side

Let L− > 0 and L+ > 0, and let us consider the Grushin-type equation,
in the two-dimensional rectangle domain Ω = (−L−, L+)× (0, π):

(1.16)


(∂t − ∂2

x − q(x)2∂2
y)u(t, x, y) = 0 , (t, x, y) ∈ (0, T )× Ω ,

u(t, x, y) = 0 , (t, x, y) ∈ (0, T )× ∂Ω ,

u(0, · , · ) = u0 ∈ H1
0 (Ω) .

Here, we shall assume that q satisfies the following conditions:

(1.17) q(0) = 0, q ∈ C3([−L−, L+]), inf
(−L−,L+)

{∂xq} > 0,

which encompasses the classical case q(x) = x and slightly generalizes
the Grushin type operators that we can handle. We refer to [3] for well
posedness results.
Here, we are interested in the boundary observability, when the ob-

servation is taken on one vertical side of the rectangle Ω, namely Γ =
{L+} × (0, π): System (1.16) is observable in time T through Γ if there
exists a constant C such that for all solutions u of (1.16) with u0 ∈ H1

0 (Ω),

(1.18)
∫

Ω
|u(T, x, y)|2dxdy 6 C

∫ T

0

∫ π

0
|∂xu(t, L+, y)|2dydt.

We then prove the following result:

Theorem 1.4. — Let Ω = (−L−, L+)× (0, π) with L− > 0 and L+ > 0
and set Γ = {L+} × (0, π). Assume (1.17).
The minimal time for observing system (1.16) through Γ is

(1.19) T∗ = 1
q′(0)

∫ L+

0
q(s) ds.

More precisely,
(1) for every T > T∗, system (1.16) is observable through Γ,
(2) for every T ∈ (0, T∗), system (1.16) is not observable through Γ.
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In fact, it was already known (see [3]) that the Grushin equation (1.16)
with q(x) = x and L+ = L− is not observable on (0, T ) × Γ if the time
T is smaller than T∗ = L2

+/2. Theorem 1.4 extends this negative result
to arbitrary L+, L− and q satisfying (1.17), and establishes the positive
counterpart for T > T∗.
When observing the Grushin equation (1.16) from both sides, that is

Γ = {−L,L} × (0, π), it was shown in [6] that the time T∗ = L2/2 was
indeed the critical time, in the particular case q(x) = x and L+ = L− = L.
Consequently, Theorem 1.4 proves that T∗ = L2/2 is also the critical time
for observing this equation from Γ = {L} × (0, π), i.e. from one side of the
domain only.
Let us also recall that if one horizontal strip does not meet the observa-

tion set, then the Grushin equation (1.16) with q(x) = x is not observable,
whatever the time T > 0 is, see [26]. It is therefore natural to restrict our-
selves to the case of a tensorized observation set of the form Γ = {L}×(0, π).
Again, the proof of Theorem 1.4 relies on the analysis of the observ-

ability properties of a family of one-dimensional equations obtained after
expanding the solution u of (1.16) in Fourier series in the variable y. To be
more precise, this allows to look at a family of one-dimensional parabolic
equations, indexed by n ∈ N∗:

(1.20)


(∂t − ∂2

x + n2q(x)2)un = 0 , (t, x) ∈ (0, T )× (−L−, L+) ,
un(t,−L−) = un(t, L+) = 0 , t ∈ (0, T ) ,
un(0, · ) = u0,n ∈ H1

0 (−L−, L+) .

Here again, we provide a precise estimate on the cost of observability
of (1.20) when n→∞:

Proposition 1.5. — Assume (1.17). For every T0 > 0 and ε > 0, there
exists C > 0 such that, for every n ∈ N, any solution un of (1.20) with
u0,n ∈ H1

0 (−L−, L+) satisfies

(1.21) ‖un(T0)‖L2(−L−,L+)

6 C exp
(
n

(∫ L+

0
q(s) ds+ ε

))
‖∂xun( · , L+)‖L2(0,T0) .

In particular, Proposition 1.5 states observability results for the fam-
ily of equations (1.20) in small times, but with an explicit dependence of
the observability constant with respect to n ∈ N∗. It can then be suit-
ably combined with dissipation estimates for the semi-groups correspond-
ing to (1.21) (see Lemma 3.7 and Section 4.3) to recover that the family of
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equations (1.20) are uniformly observable with respect to n ∈ N∗ provided
the time T is larger than T∗.

The proof of Proposition 1.5 is proved by a gluing argument between two
appropriate Carleman estimates:

• a dominant one on (0, L+) in which the weight function roughly
behaves like x 7→ n

∫ L+
x

q(s) ds, strongly inspired by the Agmon
distance associated to the potential n2q2(x).

• a second one on (−L−, 0) on which the weight function is essen-
tially constant equal to n

∫ L+
0 q(s) ds, up to lower order terms of

order
√
n.

The detailed proof of Proposition 1.5 is given in Section 3.2.2. We then
show how it implies Theorem 1.4(1) in Section 3.2.3. The proof of Theo-
rem 1.4(2) is postponed to Section 5.1.
Let us end this paragraph by considering briefly the case of an obser-

vation on both lateral boundaries, i.e. the following observability inequal-
ity: there exists a constant C such that for all solutions u of (1.16) with
u0 ∈ H1

0 (Ω),

(1.22)
∫

Ω
|u(T, x, y)|2dxdy

6 C
∫ T

0

∫ π

0
(|∂xu(t, L+, y)|2 + |∂xu(t,−L−, y)|2)dydt.

Then straightforward symmetries arguments show that, under the setting
of Theorem 1.4, the observability estimate (1.22) holds when

(1.23) T > T∗ = 1
q′(0) min

{∫ L+

0
q(s) ds,

∫ 0

−L−
|q(s)|ds

}
.

In fact, as we will briefly explain in Remark 5.3, the arguments developed
to prove Theorem 1.4(2) immediately provide that T∗ in (1.23) indeed is
the critical time for the observability inequality (1.22) to hold.

1.4. Further results

The 3-dimensional Heisenberg equation. The techniques developed
to prove Theorem 1.4 apply also to the 3-d Heisenberg equation. More
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precisely, we consider the heat equation on the Heisenberg group

(1.24)


(
∂t − ∂2

x − (x∂z + ∂y)2)u = 0 , (t, x, y, z) ∈ (0, T )× Ω ,

u(t,−L−, y, z) = u(t, L+, y, z) = 0 , (t, y, z) ∈ (0, T )× T× T ,
u(0, x, y, z) = u0(x, y, z) , (x, y, z) ∈ Ω ,

where T is the 1-d torus and Ω = (−L−, L+)×T×T. We refer to [4] for well
posedness results for system (1.24). We are interested in the observability
of equation (1.24) through one side Γ = {L+}×T×T of the cubic domain
Ω. More precisely, we will say that system (1.24) is observable in time T
from Γ = {L+} × T× T if there exists a constant C > 0 such that, for all
solution u of (1.24) with u0 ∈ H1

0 (Ω),

(1.25)
∫

Ω
|u(T, x, y, z)|2dxdydz 6 C

∫ T

0

∫
T

∫
T
|∂xu(t, L+, y, z)|2dydzdt .

We prove the following

Theorem 1.6. — Let Ω = (−L−, L+)×T×T with L− > 0 and L+ > 0.
The minimal time for observing system (1.24) through Γ = {L+}×T×T is

(1.26) T∗ = (L+ + L−)2

2 .

More precisely

(1) for every T > T∗, system (1.24) is observable in time T through Γ,
(2) for every T ∈ (0, T∗), system (1.24) is not observable in time T

through Γ.

By giving the precise value of the minimal time T∗, this statement im-
proves [2, Theorem 2], that only establishes the lower bound T∗ > (L+ +
L−)2/8.

The proof of Theorem 1.6(1) is given in Section 3.3, and 1.6(2) is proven
in Section 5.4.

In the case of the 3-d Heisenberg equation (1.24) observed from both
sides of the cubic domain Ω, that is Γ = {−L−, L+} ×T×T, it is possible
to obtain the following result:
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Theorem 1.7. — Let Ω = (−L−, L+)×T×T with L− > 0 and L+ > 0,
and set T∗ = (L+ + L−)2/8. Then for any T > T∗, there exists a constant
C > 0 such that for any function u solution of (1.24) with u0 ∈ H1

0 (Ω),

∫
Ω
|u(T, x, y, z)|2dxdydz

6 C
∫ T

0

∫
T

∫
T

(
|∂xu(t,−L−, y, z)|2 + |∂xu(t, L+, y, z)|2

)
dydzdt .

In other words, for every T > T∗, system (1.24) is observable in time T
through Γ.

On the other hand, it is already known, see [2, Theorem 2], that in that
configuration, T∗ > (L+ + L−)2/8, so that Theorem 1.7 is sharp. A sketch
of the proof of Theorem 1.7 is given in Section 3.3.6.
It is worth noticing that, for the Heisenberg equation on (−L,L)×T×T,

the minimal time for observing on one side is exactly four times the one
for observing on the two sides. This contrasts with the case of the Grushin
equation on (−L,L)×(0, π), for which the two minimal times are the same.
The fundamental reason is the following one:

• the 2D Grushin operator (−∂2
x − x2∂2

y) on (−L,L)× (0, π) is asso-
ciated to the family of 1D operators −∂2

x + n2x2 on (−L,L), n ∈ Z
being the Fourier parameter;

• the 3D Heisenberg operator (−∂2
x− (x∂z +∂y)2) on (−L,L)×T×T

is associated to the family of 1D operators −∂2
x + n2(x+ p/n)2 on

(−L,L), n and p in Z being the Fourier parameters.

Therefore, if we keep the ratio α = p/n fixed, the operators −∂2
x + n2(x+

p/n)2 on (−L,L) in fact correspond (after a translation) to the operators
−∂2

x + n2x2 on (−L + α,L + α), for which from Theorem 1.4 one has
observability from the right boundary if T > (L+ α)2/2 and observability
from both sides if T > min{−L + α,L + α}2/2 (recall (1.23)). Thus, if
we observe from the right boundary, the worst case corresponds to α = L,
for which the critical time is (2L)2/2 = 2L2, while the worst case when
observing from both lateral boundaries corresponds to α = 0, for which
the critical time is L2/2.

Inverse source problems. We shall also provide, as a corollary of
Proposition 1.5 (or of a slightly stronger version of it, see Proposition 3.6),
some result on an inverse source problem previously studied in [4].
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As before, let L− > 0 and L+ > 0, and consider the Grushin-type
equation, in the two-dimensional rectangle domain Ω = (−L−, L+)×(0, π):

(1.27)


(∂t − ∂2

x − x2∂2
y)u = f , (t, x, y) ∈ (0, T )× Ω ,

u(t, x, y) = 0 , (t, x, y) ∈ (0, T )× ∂Ω ,

u(0, · , · ) = u0 ∈ H1
0 (Ω) ,

with f a source term of the form

(1.28) f(t, x, y) = R(t, x)k(x, y) for (t, x, y) ∈ (0, T )× Ω,

where R = R(t, x) is assumed to be known and to satisfy

(1.29) R ∈ H1((0, T );L∞(−L−, L+)) , and inf
[−L−,L+]

|R(T1, x)| > 0,

for some T1 ∈ [0, T ], and k ∈ L2(Ω) is an unknown function.
Here, our goal is to recover the unknown function k from informations

at time T1 ∈ [0, T ] in the whole domain Ω and on the time interval (T0, T )
on the boundary Γ = {L+} × (0, π), for suitable choices of T0, T1.

We will establish in Section 3.4 a Lipschitz stability estimate for this
inverse problem when T1 − T0 > T∗ and T1 < T in the following sense.

Theorem 1.8. — Let Ω = (−L−, L+) × (0, π) and Γ = {L+} × (0, π).
Let T0, T1 be such that

(1.30) 0 < T0 < T1 < T and T1 − T0 > T∗, where T∗ =
L2

+
2 ,

and assume that R satisfies (1.29).
There exists C > 0 such that, for every k ∈ L2(Ω) and u0 ∈ H1

0 (Ω), the
solution u of (1.27) satisfies

(1.31)
∫

Ω
|k(x, y)|2dxdy 6 C

(∫ T

T0

∫ π

0
|∂x∂tu(t, L+, y)|2dydt

+
∫

Ω
|(∂2

x + x2∂2
y)u(T1, x, y)|2dxdy

)
.

Note that Theorem 1.8 is similar to the one obtained in [4] but yields
an explicit estimate on the time interval of observation during which the
measurements are done, which can be made of any length T1 − T0 > T∗.
Whether T∗ is the minimal time for the Lipschitz stability estimate above
is an open problem.
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To conclude, we mention that one could prove stability estimates for sim-
ilar inverse source problems corresponding to the multidimensional Grushin
equation (1.5), and to the Heisenberg equation (1.24), using the same ar-
guments as the one developed to prove Theorem 1.8.

1.5. Outline

Theorems 1.1, 1.3, 1.4, and 1.6 are all stating two results: one positive
result provided that the time T is large enough, namely T > T∗ (the value
of T∗ varies in each theorem), and one optimality result asserting that if
T < T∗, then the observability inequality cannot hold. We therefore made
the choice to gather all the proofs of the positive results together, and
postpone the proof of their optimality to Section 5.

Each of the positive results, i.e. items (1) in Theorems 1.1, 1.3, 1.4,
and 1.6 and Theorems 1.7 and 1.8, relies on the same strategy:

• a precise estimate on the cost of observability for a family of heat
equations obtained by expanding the solution in Fourier series, in
particular with respect to the Fourier parameter;

• a precise estimate on the rate of dissipation for a family of heat
equations obtained by expanding the solution in Fourier series.

The second step is more classical. We have therefore chosen to state the
dissipation results we need during the proof of each of the positive results
(Lemmas 2.3, 2.7, 3.7, and 3.11), and postpone their proof in an indepen-
dent section, namely Section 4.
The first step, however, deserves more attention, and really corresponds

to the main improvements of this article with respect to the literature. We
shall therefore focus on this step in most of the article. We thus present in
Section 2 the proofs of Theorems 1.1(1) and 1.3(1), while Section 3 gives
the proofs of Theorems 1.4(1) and 1.6(1) and of Theorems 1.7 and 1.8.

To sum up, the outline of the article is as follows. The positive results
corresponding to Theorems 1.1(1) and 1.3(1) are proved in Section 2. The-
orems 1.4(1) and 1.6(1) and Theorems 1.7 and 1.8 are proved in Section 3.
Section 4 proves the various dissipation results stated in Sections 2 and 3.
Section 5 proves items (2) in Theorems 1.1, 1.3, 1.4 and 1.6. Finally, in
Section A, we recall one of the results of [21] on how the observability con-
stant of the heat equation with a potential depends on the norm of the
potential, which will be used all along the article.
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2. The classical Grushin equation

The goal of this section is to prove items (1) of Theorem 1.1 and of
Theorem 1.3 using an appropriate global Carleman estimate proved in the
following subsection.

2.1. A global Carleman estimate

Lemma 1.2 is the main step of the proof of Theorem 1.1 and relies on the
observability property of the solutions un of (1.8). Following the statement
of Lemma 1.2, it is interesting to introduce, for each un solving (1.8), the
function

zn(t, x) = un(t, x) exp
(
−µn2 coth(2µnt)

(
L2 − |x|2

))
,

(t, x) ∈ (0, T )× Ωx,

which solve

∂tzn −∆xzn + µn coth(2µnt) (2x · ∇xzn + dx zn)

− L2µ2
n

sinh(2µn t)2 zn = 0, in (0, T )× Ωx,

zn(t, x) = 0, on (0, T )× ∂Ωx,
limt→0 ‖zn(t)‖L2(Ωx) = 0,
limt→0 t ‖∇xzn(t)‖L2(Ωx) = 0.

Thus, in this section, for a generic parameter µ ∈ R+, we consider the
system

(2.1)



∂tz −∆xz + µ coth(2µt) (2x · ∇xz + d z)

− L2µ2

sinh(2µ t)2 z = 0, in (0, T )× Ω,

z(t, x) = 0, on (0, T )× ∂Ω,
limt→0 ‖z(t)‖L2(Ω) = 0,
limt→0 t ‖∇xz(t)‖L2(Ω) = 0,

where T, µ > 0 are fixed, Ω is a bounded domain of Rd, d > 1, and L =
supΩ |x|. We then have the following result:
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Proposition 2.1. — Any smooth solution z of (2.1) verifies the fol-
lowing estimate:

(2.2)
∫

Ω

(
|∇xz(T )|2 − µ2L2

sinh(2µT )2 |z(T )|2
)

dx

6 µL
∫ T

0

(
sinh(4µ t)

sinh(2µT )2

∫
Γ+

|∇xz(t, x) · ν|2 ds(x)
)

dt

where Γ+ = {x ∈ ∂Ω; 〈x, νx〉 > 0} and L = sup{|x|, x ∈ Ω}.

Proof. — We denote θ(t) = µ coth(2µ t). It is readily seen that

θ′′ = −4θθ′′, t ∈ (0, T ],(2.3)

lim
t→0

2 t θ(t) = 1, and lim sup
t→0

t2 |θ′(t)| <∞.(2.4)

We define the following spatial operators

S z = −∆xz + θ′(t)L
2

2 z, A z = θ(t) (2x · ∇xz + d z)

so that z solution of (2.1) verifies

∂tz + Sz +Az = 0 in (0, T )× Ω.

Note that S and A respectively correspond to the symmetric and skew-
symmetric parts of the operator in (2.1). We then consider

D(t) =
∫

Ω

(
|∇xz|2 + θ′(t)L

2

2 |z|
2
)

dx =
∫

Ω
Sz z̄ dx.

A direct calculation shows that

D′(t) = θ(t)′′L
2

2

∫
Ω
|z|2 dx− 2

∫
Ω
|S z|2 dx− 2<

(∫
Ω
S z A z dx

)
.

Furthermore, as A is a skew-symmetric operator, we have

−2
∫

Ω
Sz Az dx = 2

∫
Ω

∆xz Az dx = 2 θ(t)
∫

Ω
∆xz (2x · ∇xz̄ + d z̄) dx.

On one hand, we obviously have∫
Ω

∆xz d z̄ dx = −d
∫

Ω
|∇xz|2 dx.
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On the other hand, we note that∫
Ω

∆xz 2x · ∇xz̄dx

= 2
∫
∂Ω

(∇xz · ν) (x · ∇xz̄) ds(x)− 2
∫

Ω
∇xz · ∇x (x · ∇xz̄) dx

= 2
∫
∂Ω

(x · ν)|∇xz · ν|2 ds(x)− 2
∫

Ω
∇xz · ∇x (x · ∇xz̄) dx.

Here, we have used that as z = 0 on ∂Ω, ∇xz = (∇xz · ν)ν on ∂Ω. As

< (∇xz · ∇x (x · ∇xz̄)) = |∇xz|2 + x

2 · ∇x
(
|∇xz|2

)
,

we have

<
(∫

Ω
∇xz · ∇x (x · ∇xz̄) dx

)
=
∫

Ω
|∇xz|2 dx+

∫
Ω

x

2 · ∇x
(
|∇xz|2

)
dx

=
∫

Ω
|∇xz|2 dx+ 1

2

∫
∂Ω

(x · ν)|∇xz|2 ds(x)− d

2

∫
Ω
|∇xz|2 dx

=
∫

Ω
|∇xz|2 dx+ 1

2

∫
∂Ω

(x · ν)|∇xz · ν|2 ds(x)− d

2

∫
Ω
|∇xz|2 dx.

Gathering the above computations with (2.3), we get that

D′(t) + 2
∫

Ω
|Sz|2 dx = θ′′(t)L

2

2

∫
Ω
|z|2 dx− 4θ(t)

∫
Ω
|∇xz|2 dx

+ 2 θ(t)
∫
∂Ω

(x · ν)|∇xz · ν|2 ds(x).

Using (2.3), we finally obtain

D′(t) + 4 θ(t)D(t) + 2
∫

Ω
|Sz|2 dx = 2 θ(t)

∫
∂Ω

(x · ν)|∇xz · ν|2 ds(x).

Denoting

Ψ(t) = −4
∫ T

t

θ(s) ds = ln
(

sinh(2µ t)2

sinh(2µT )2

)
,

we get in particular,

(2.5) (D(t)eΨ(t))′ 6 2 eΨ(t) θ(t)
∫

Γ+

(x · ν)|∇xz · ν|2 ds(x) .

Using the assumption on z in (2.1)(3,4) and the behavior of θ and θ′ as
t → 0 (see (2.4)), one easily checks limt→0D(t) exp(Ψ(t)) = 0, hence we
can integrate (2.5) between 0 and T , which gives (2.2), as |(x · ν)| 6 L for
all x ∈ Ω. �
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2.2. Proof of Theorem 1.1(1)

2.2.1. Proof of Theorem 1.1(1) up to technical lemmas

This section aims at proving Theorem 1.1(1) and we then place ourselves
in the setting of this statement.

We use the tensorized structure of the equation (1.5) and decompose the
solution u on the basis adapted to the Laplace operator −∆y defined on
L2(Ωy) with domain H2 ∩ H1

0 (Ωy), whose eigenvalues will be denoted by
(µ2
n)n∈N. The observability estimate (1.6) is then equivalent to the existence

of a constant C > 0 such that for all n ∈ N, any solution un of (1.8) satisfies

(2.6) ‖un(T )‖L2(Ωx) 6 C ‖∂νxun‖L2((0,T )×∂Ωx) .

We are thus back to prove a uniform observability estimate (2.6) for the
family of heat equations (1.8). We shall mainly focus on the case of large
values of n > n0, for some n0 ∈ N to be determined, as the small values of
n can be handled using classical observability estimates (see Theorem A.1)
for the heat equation as the corresponding potentials (µ2

n|x|2)16n6n0 are
uniformly bounded.
We thus restrict ourselves to the proof of uniform observability esti-

mates (2.6) for the Grushin equations (1.8) for n > n0, for some n0 to be
determined. In order to do this, given T > L2/(2dx) with L as in (1.7), we
introduce

(2.7) T0 < T − L2

2dx
,

and we will decompose the time interval in (0, T0), in which the cost of
observation and its dependence on n will be of paramount importance,
and a time interval (T0, T ) during which we use the dissipation rate of the
solutions of (1.8).
More precisely, Theorem 1.1 relies on the following two results, whose

proofs are postponed to Section 2.2.2 and Section 4.1 respectively:

Lemma 2.2. — For all T0 > 0 and δ > 0, there exists C = C(T0, δ) > 0
and n0 = n0(T0, δ) ∈ N such that, for every n > n0 and u0,n ∈ H1

0 (Ωx),
the solution of (1.8) satisfies

(2.8)
∫

Ωx
|un(T0, x)|2dx

6 C µn exp
(
µn(1 + δ)L2) ∫ T0

0

∫
∂Ωx
|∂νxun(t, x)|2ds(x) dt ,

where L is as in (1.7).

ANNALES DE L’INSTITUT FOURIER



MINIMAL TIME OF OBSERVABILITY 267

Lemma 2.3. — For all n ∈ N, any solution un of (1.8) with initial
datum u0,n ∈ L2(Ωx) satisfies, for all t > 0,

(2.9) ‖un(t)‖L2(Ωx) 6 exp(−dxµnt) ‖u0,n‖L2(Ωx) .

Let us finish the proof of Theorem 1.1(1) assuming Lemma 2.2 and
Lemma 2.3. For T > L2/(2dx), we set ε > 0 so that

T − L2

2 dx
= ε

L2

2 dx
,

and we choose

T0 = ε

2
L2

2 dx
and δ = ε

4 .

From one hand, we have (2.8), while from the other hand Lemma 2.3 implies

(2.10)
∫

Ωx
|un(T, x)|2 dx 6 exp (−2 dx µn(T − T0))

∫
Ωx
|un(T0, x)|2dx,

whose combination easily leads to (2.6) for n > n0(T0, δ), as

sup
n>n0

(
µn exp

(
µn(1 + δ)L2 − 2dxµn(T − T0)

))
= sup
n>n0

(
µn exp

(
−µnε

L2

4

))
<∞.

This is enough to prove (2.6) for all n ∈ N as for n ∈ {0, . . . , n0}, the
potentials n2|x|2 are uniformly bounded by n2

0L
2, so that their observability

constant can be bounded uniformly for n ∈ {0, . . . , n0} from Theorem A.1.
Lemma 2.2 is in fact a straightforward consequence of Lemma 1.2 as µn

goes to infinity as n → ∞. Therefore, we shall prove Lemma 1.2 and 2.2
together below in Section 2.2.2. This step is in fact the most original part
of the proof of Theorem 1.1.
Lemma 2.3 is more classical and can be found in [3]. We nevertheless

recall how it can be proved in Section 4.1 for the convenience of the reader.

2.2.2. Proof of Lemma 1.2 and Lemma 2.2

Proof of Lemma 1.2. — Let n ∈ N and set

(2.11) zn(t, x) = un(t, x) exp
(
−µn2 coth(2µnt)(L2 − |x|2)

)
,

(t, x) ∈ (0, T0)× Ωx.
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Easy computations show that zn satisfies (2.1) on Ω = Ωx with µ = µn
and T = T0. Hence, applying Proposition 2.1 yields:

(2.12)
∫

Ωx

(
|∇xzn(T0)|2 − µ2

nL
2

sinh(2µnT0)2 |zn(T0)|2
)

dx

6 µn L
∫ T0

0

(
sinh(4µnt)

sinh(2µnT0)2

∫
∂Ωx
|∂νxzn(t, x)|2ds(x)

)
dt

6 2µn coth(2µnT0)L
∫ T0

0

∫
∂Ωx
|∂νxzn(t, x)|2ds(x)dt.

Now, as Ωx is bounded, Poincaré inequality holds and there exists a con-
stant CΩx > 0 such that for all g ∈ H1

0 (Ωx),

(2.13)
∫

Ωx
|g|2 dx 6 CΩx

∫
Ωx
|∇xg|2 dx.

Recalling that µn →∞ as n→∞, we now choose n0 ∈ N such that

∀ n > n0,
2µ2

nL
2

sinh(2µnT0)2 6
1
CΩx

, and coth(2µnT0) 6 2.

Combining the estimate (2.12) with the Poincaré inequality (2.13) applied
to zn(T0), we get a constant C > 0 such that for all n > n0,∫

Ωx
|zn(T0, x)|2 dx 6 C µn

∫ T0

0

∫
∂Ωx
|∇νxzn(t, x)|2 ds(x)dt.

Recalling the definition of zn in (2.11) concludes the proof of Lem-
ma 1.2. �

Proof of Lemma 2.2. — Here, we simply remark that for any δ > 0 and
T0 > 0, there exists nδ ∈ N such that for all n > nδ,

coth(2µnT0) < 1 + δ.

Thus, for any n > max{nδ, n0}, where n0 is the integer given by Lemma 1.2,
a straightforward lower bound on (1.9) immediately yields (2.8). �

Remark 2.4. — The weight function

(2.14) exp
(
−µn2 coth(2µnt)(L2 − |x|2)

)
used in the proof of Lemma 1.2 is closely related to the fundamental solution
of the harmonic oscillator in Rd, also known as Melher kernel (see e.g. [18,
Proposition 4.3.1] for the one-dimensional case, the d-dimensional kernel
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being immediately obtained as it is the tensor product of d one-dimensional
kernels):

K(t;x, y) =
exp

(
− coth(2 t)

(
|x|2+|y|2

2

)
− 2x·y

sinh(2 t)

)
(2π sinh(2 t))d/2

.

More precisely, the change of variable t↔ µnt, x↔
√
µnx and y ↔ √µny

gives the kernel

Kn(t;x, y) =
exp

(
−µn coth(2µn t)

(
|x|2+|y|2

2

)
− 2µn x·y

sinh(2µn t)

)
(2π sinh(2µn t))d/2

which is the fundamental solution associated to the operator defined on Rd

∂t −∆x + µ2
n |x|2.

For any y ∈ Cd, the function Kn,y : (t, x) 7→ Kn(t;x, y) solves (∂t −
∆x + µ2

n |x|2)Kn,y = 0. Thus, in a spirit close to the variation of constants
method, by considering un/Kn,y, we expect nice terms cancellations and
a simpler equation. Now, one of the difficulties in getting observability
estimates is that we would like an estimate on the solution at time t = T

from informations on the boundary and without information at the initial
time t = 0. Thus, it is natural to choose y such that the kernel Kn,y is
infinite as t → 0 on the domain Ωx, so that the value of un/Kn,y simply
vanishes at time t = 0. It turns out that this is precisely the case when
taking y = ıỹ, with ỹ ∈ Rd such that |ỹ| = L, L being as in (1.7).

Now, instead of working with the weight Kn(t, x, ıỹ)−1, which contains
oscillatory terms, we only keep its exponential envelop, given by (2.14)
(which obviously does not depend on the choice of ỹ ∈ Rd satisfying |ỹ| =
L). This is somehow justified by the fact that we want to get L2 estimates,
for which the oscillations play no role.
This method is closely related to the one developed in [16, 17] to obtain

precise estimates for the heat equation: the starting point in both works is
the use of the fundamental solution of the heat equation translated in the
complex plane as a Carleman weight function.

Remark 2.5. — For the sake of simplicity, we have chosen to state Lem-
ma 1.2, Lemma 2.2, and Theorem 1.1(1) with observations on ∂Ωx × Ωy.
However, as all these results derive from Proposition 2.1, all these results
can be adapted in a straightforward manner to obtain an observability
estimate for (1.5) with an observation localized on Γx,+×Ωy, where Γx,+ =
{x ∈ ∂Ωx, 〈x, νx〉 > 0}, where νx is the exterior normal of ∂Ωx at the point
x ∈ ∂Ωx.
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2.3. Proof of Theorem 1.3(1): the effect of the boundary
condition at x = 0

We assume that we are in the setting of Theorem 1.3, i.e. that the equa-
tions (1.10) (respectively (1.11)) are set on Ω = (0, L) × (0, π), observed
through the flux at Γ = {L} × (0, π), and have Dirichlet (resp. Neumann)
boundary conditions on {0} × (0, π).
As before, we can expand the solution u of (1.10) (respectively (1.11))

in Fourier series. Here, it simply means that we write

u(t, x, y) =
∑
n∈N

un(t, x) sin(ny), (t, x, y) ∈ (0, T )× Ω,

where, due to the tensorized structure of the equation (1.10) (resp. (1.11)),
the function u solves (1.10) (resp. (1.11)) with initial datum u0 if and only
if for all n, un solves the (1.14) (resp. (1.15)) with initial datum u0,n, where

u0(x, y) =
∑
n∈N

u0,n(x) sin(ny), (x, y) ∈ Ω.

Consequently, the observability estimate (1.12) for (1.10) (resp. (1.11))
is equivalent to the observability property

(2.15) ‖un(T, · )‖L2(0,L) 6 C ‖∂xun(·, L)‖L2(0,T )

for all smooth solutions un of (1.14) (resp. (1.15)) uniformly with respect
to n, i.e. with C > 0 independent of n.

In order to prove the uniform observability property (2.15) for (1.14)
(resp. (1.15)), we do as before and rely on a precise estimate on the de-
pendence of the cost of observability of (1.14) (resp. (1.15)) in small times
and an estimate on the rate of dissipation of the semigroups corresponding
to (1.14) (resp. (1.15)).

In fact, a direct application of Lemma 2.2 shows the following estimate
on the cost of observability of (1.14) (resp. (1.15)).

Lemma 2.6. — For all T0 > 0 and δ > 0, there exists a constant C =
C(T0, δ) > 0 and n0 = n0(T, δ) ∈ N such that for all n > n0, any solution
u of (1.14) (resp. (1.15)) with initial datum u0,n ∈ H1

0 (0, L) (resp. u0,n ∈
H1
N (0, L)) satisfies

(2.16)
∫ L

0
|un(T0)|2dx 6 Cn exp(n(1 + δ)L2)

∫ T0

0
|∂xun(t, L)|2dt.
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Proof. — The proof relies on a simple symmetrization argument. More
precisely, if un solves (1.14), for t ∈ (0, T0) and x ∈ (−L,L), we define

ũn(t, x) =
{
un(t, x) if x > 0
−un(t,−x) if x < 0.

It is readily seen that ũn satisfies (1.8) with µn = n and Ωx = (−L,L). We
can thus apply Lemma 2.2 to ũn from which we immediately deduce (2.16).

When considering un solving the equation (1.15), a similar argument can
be done by introducing the even extension ũn of un, namely for t ∈ (0, T0)
and x ∈ (−L,L),

ũN (t, x) =
{
un(t, x) if x > 0
un(t,−x) if x < 0.

This easily proves (2.16) for solutions un of (1.15). �

We have the following dissipation estimate:

Lemma 2.7.

(1) Any function un solution of (1.14) satisfies for all t ∈ (0, T ]

(2.17) ‖un(t)‖L2(0,L) 6 e
−3n t‖un(0)‖L2(0,L).

(2) Any function un solution of (1.15) satisfies for all t ∈ (0, T ]

(2.18) ‖un(t)‖L2(0,L) 6 e
−n t‖un(0)‖L2(0,L).

The proof of Lemma 2.7 is postponed to Section 4.2.
Based on Lemma 2.6 and on Lemma 2.7, we can conclude the proof of

Theorem 1.3 as previously.
If we consider the case of Dirichlet boundary conditions, i.e. the case

of equation (1.10) and its corresponding family of equations (1.14), for
T > L2/6, we set ε > 0 such that

T − L2

6 = ε
L2

6 ,

and we choose
T0 = ε

2
L2

6 and δ = ε

4 .

Applying the Lemma 2.6 on (0, T0) and the dissipation estimate (2.17) on
(T0, T ), we get, for all n > n0, and all solutions un of (1.14) with initial
data in H1

0 (0, L),

‖un(T )‖2L2(0,L) 6 Cn exp
(
−εnL

2

4

)
‖∂xun(·, L)‖2L2(0,T0) .
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This proves the observability estimate (2.15) for (1.14) uniformly with re-
spect to n > n0 when T > L2/6. As before, the case of n ∈ {0, . . . , n0}
follows from classical results on the heat equation with potential, see Theo-
rem A.1. This shows that the observability estimate (2.15) for (1.14) holds
uniformly with respect to n ∈ N, hence the proof of Theorem 1.3(1) in the
Dirichlet case.
If we consider the case of Neumann boundary conditions, i.e. the case

of equation (1.11) and its corresponding family of equations (1.15), for
T > L2/2, we set ε > 0 such that

T − L2

2 = ε
L2

2 ,

and we choose

T0 = ε

2
L2

2 and δ = ε

4 .

The same arguments as in the Dirichlet case allows to prove Theorem 1.3(1)
in the Neumann case.

3. Observability results for the generalized Grushin
equation

The goal of this section is to prove Theorem 1.4(1), Theorem 1.6(1),
Theorem 1.7 and Theorem 1.8. The proof of each of these results strongly
rely on Carleman estimates, that we will present separately in a “generic”
form in Section 3.1 for later use.

3.1. Carleman estimates: computations

For later use, we will present computations together on a “generic” ver-
sion of (1.20). Namely, we will consider a generic bounded interval (a, b)
with a < b, and the following equation, indexed by n ∈ N:

(3.1)


∂tun − ∂xxun + n2q(x)2un = fn, in (0,∞)× (a, b),
un(t, a) = 0, un(t, b) = 0, in (0,∞),
un(0, x) = u0,n(x), in (a, b),

where fn is assumed to be in L2((0, T )× (a, b)) and u0,n ∈ H1
0 (a, b).
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Proposition 3.1. — Let T > 0, a, b ∈ R with a < b, q ∈ C1([a, b],R),
n ∈ N and ϕ be a weight function such that

lim
t→0

inf
x∈[a,b]

{ϕ(t, x)} =∞, ∀ x ∈ (a, b), lim
t→0

∂xϕ(t, x)e−ϕ(t,x) = 0,(3.2)

lim
t→T

inf
x∈[a,b]

{ϕ(t, x)} =∞, ∀ x ∈ (a, b), lim
t→T

∂xϕ(t, x)e−ϕ(t,x) = 0,(3.3)

ϕ ∈ C2((0, T );C4([a, b])).(3.4)

Then, for any solution un of (3.1) with u0,n ∈ H1
0 (a, b) and fn ∈ L2((0, T )×

(a, b)), the function

vn(t, x) = un(t, x) exp(−ϕ(t, x)), (t, x) ∈ (0, T )× (a, b),

satisfies

(3.5) 2
∫ T

0

[
|∂xvn|2∂xϕ

]x=b

x=a
dt+

∫ T

0

∫ b

a

(
− 4∂xxϕ|∂xvn|2 + |vn|2Gϕ

)
dxdt

6
∫ T

0

∫ b

a

|fne−ϕ|2dxdt

where we have set

(3.6) Gϕ(t, x) = 2 ∂xϕ∂xFϕ − ∂tFϕ + ∂4
xϕ,

in which Fϕ is given by

(3.7) Fϕ(t, x) = ∂tϕ− |∂xϕ|2 + n2q(x)2.

Proof. — In the proof of Proposition 3.1 below, we drop the index n to
simplify the notations.
Under the assumptions of Proposition 3.1, we compute

Pϕv = e−ϕ(∂t − ∂xx + n2q(x)2)(eϕv)

= ∂tv − ∂xxv − 2∂xv∂xϕ+ v
(
∂tϕ− |∂xϕ|2 − ∂xxϕ+ n2q(x)2) .(3.8)

In particular, if u denotes a “smooth” solution of (3.1) (e.g. u belongs to
L2(0, T ;H2(a, b)) ∩H1(0, T ;L2(a, b))), introducing the functions

(3.9) v = ue−ϕ, g = fe−ϕ,

v is a “smooth” (up to the regularity of ϕ in (3.4)) solution to

(3.10)
{
Pϕv = g, in (0, T )× (a, b)
v(t, a) = v(t, b) = 0, in (0, T ),

with

(3.11) v(0, · ) = v(T, · ) = 0, ∂xv(0, · ) = ∂xv(T, · ) = 0 in (a, b).
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We then decompose the operator Pϕ as

(3.12) Pϕv = P1v + P2v with
{
P1v = −∂xxv + vFϕ,

P2v = ∂tv − 2∂xv∂xϕ− v∂xxϕ .

We therefore have

(3.13) ‖P1v‖2L2((0,T )×(a,b)) + ‖P2v‖2L2((0,T )×(a,b))

+ 2
∫ T

0

∫ b

a

P1vP2v dxdt = ‖g‖2L2((0,T )×(a,b)) .

This basic identity will be the main point of our argument. We then com-
pute the cross product∫ T

0

∫ b

a

P1vP2v dtdx =
2∑
i=1

3∑
j=1

Ii,j ,

where Ii,j is the cross product between the i-th term of P1v and the j-th
term of P2v.

I1,1 = 0,

I1,2 = −
∫ T

0

∫ b

a

|∂xv|2∂xxϕdxdt+
∫ T

0
|∂xv|2∂xϕ

∣∣∣∣∣
x=b

x=a

dt,

I1,3 = −
∫ T

0

∫ b

a

|∂xv|2∂xxϕdxdt+ 1
2

∫ T

0

∫ b

a

|v|2∂4
xϕdxdt,

I2,1 = −1
2

∫ T

0

∫ b

a

|v|2∂tFϕ dxdt,

I2,2 =
∫ T

0

∫ b

a

|v|2∂x (∂xϕFϕ) dxdt,

I2,3 = −
∫ T

0

∫ b

a

|v|2∂xxϕFϕ dxdt.

Hence we obtain the estimate (3.5). �

Remark 3.2. — Of course, Proposition 3.1 is closely related to Lemma 2.2
and Proposition 2.1. However, the reader will notice that the proof of
Proposition 3.1 differs from the one of Proposition 2.1. This is due to the
fact that Lemma 1.2 and Proposition 2.1 rather prove a Carleman esti-
mate for the problem (1.8), for which the fundamental solution on R is
available, see Remark 2.4, and its exponential envelop is used as a Carle-
man weight, so that many terms cancel in the proof of Lemma 1.2. This
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is no longer the case when considering Carleman estimates for (3.1) for
general q ∈ C1([a, b];R).

3.2. The 2D Grushin equation observed from one side: Proof of
Theorem 1.4(1)

The goal of this section is to prove Theorem 1.4(1). In order to do this, as
in the previous sections, we use a Fourier expansion to reduce the observ-
ability property (1.18) for (1.16) to prove a uniform observability property
for solutions of (1.20). As before, the analysis of the observability property
of (1.20) will be based on the analysis of the cost of observability in the
asymptotics n → ∞ for (1.20), and on the dissipation of the semi-group
corresponding to (1.20). Here again, the main difficulty of our result is the
asymptotics of the cost of observability of the family of equations (1.20) as
n → ∞, which is stated in Proposition 1.5 and is based on suitable Car-
leman estimates. In particular, we shall do two Carleman estimates, see
Section 3.2.1, one on the space interval (a0, L+), where a0 will be a small
enough negative number, and the other on the space interval (−L−, 0), and
we will then use a cut-off argument to prove Proposition 1.5 in Section 3.2.2.
We finally explain how we conclude Theorem 1.4(1) in Section 3.2.3.

3.2.1. Specific choices of weights

From the right end of the domain to the left. — Here, we prove the
following result:

Proposition 3.3. — Let T ∈ (0, 4), a0, L+ ∈ R be such that a0 < L+,

(3.14) q ∈ C3([a0, L+],R) such that inf
[a0,L+]

{q′} > 0,

and

(3.15) B ∈ R∗+ such that q(a0) +B > 0.

We define

(3.16) ϕR,n(t, x) = nθ(t)ΨR(x) + θ(t), (t, x) ∈ (0, T )× (a0, L+)

with θ and ΨR as follows

(3.17) θ ∈ C∞(0, T ), θ(t) =


1/t for t < T/4,
1 for t ∈ (T/3, 2T/3),
1/(T − t) for t > 3T/4,
> 1 for t ∈ (0, T ),
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(3.18) ΨR(x) =
∫ L+

x

q(s) ds+B(L+ − x), x ∈ (a0, L+).

Then there exists n0 > 0 and C > 0 such that for all n > n0, for all un
satisfying

(3.19)


(∂t − ∂2

x + n2q(x)2)un = fn , (t, x) ∈ (0, T )× (a0, L+) ,
un(t, a0) = un(t, L+) = 0 , t ∈ (0, T ),
un(0, · ) = u0,n ∈ H1

0 (a0, L+) ,

with fn ∈ L2((0, T )× (a0, L+)), we have

n3
∥∥∥θ3/2une

−ϕR,n
∥∥∥2

L2((0,T )×(a0,L+))
+ n

∥∥∥θ1/2∂xune
−ϕR,n

∥∥∥2

L2((0,T )×(a0,L+))

(3.20)

6 Cn
∥∥∥θ1/2∂xun(t, L+)e−θ(t)

∥∥∥2

L2(0,T )
+ C

∥∥fne−ϕR,n∥∥2
L2((0,T )×(a0,L+)) .

Remark 3.4. — In the above statement, the restriction T ∈ (0, 4) is
purely technical to guarantee the existence of the C∞ function θ. Such
restriction can be removed with a slightly less explicit construction of the
function θ: consider η1, η2 and η3 in C∞([0, 1]) such that for all s ∈ [0, 1],

∀ i, 0 6 ηi(s) 6 1, η1(s) + η2(s) + η3(s) = 1,

and for all s in [0, 1/5], η1(s) = 1, for all s in [2/5, 3/5], η2(s) = 1, for all s
in [4/5, 1], η3(s) = 1. Define on (0, 1) the function θ̃ by

θ̃(s) = 1
s
η1(s) + η2(s) + 1

1− sη3(s).

Then, θ(t) = θ̃(t/T ) is an admissible function to use in the construction of
the weight function ϕR,n (and of the weight functions appearing later on),
in the sense that all results remain true using it.

Proof. — Based on the computations in Section 3.1 with a = a0 and b =
L+, we compute the following quantities, where the bounds are obtained
by using properties (3.14)–(3.15): for all (t, x) ∈ (0, T )× (a0, L+),

Ψ′R(x) = −q(x)−B 6 −
(
q(a0) +B

)
< 0,

Ψ′′R(x) = −q′(x) < 0,

∂xϕR,n(t, x) = nθ(t)Ψ′R(x) 6 −nθ(t)
(
q(a0) +B

)
< 0,

−∂xxϕR,n(t, x) = nθ(t)q′(x) > n θ(t) inf
[a0,b]
{q′} > 0,

FϕR,n(t, x) = nθ′(t)ΨR(x) + θ′(t)− n2θ2(t)(Ψ′R(x))2 + n2q(x)2,
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and

GϕR,n(t, x) = 2nθ(t)Ψ′R(x)
[
2nθ′(t)Ψ′R(x)− 2n2θ2(t)Ψ′′R(x)Ψ′R(x)

+2n2q′(x)q(x)
]
− nθ′′(t)ΨR(x)− θ′′(t) + nθ(t)Ψ(4)

R (x).

In the limit n→∞, the dominant term in GϕR,n is the following one and
it is positive: for all (t, x) ∈ (0, T )× [a0, L+], as θ(t) > 1,

2nθ(t)Ψ′R(x)
[
−2n2θ2(t)Ψ′′R(x)Ψ′R(x) + 2n2q′(x)q(x)

]
= 4n3θ3(t)q′(x)(−Ψ′R(x))

(
−Ψ′R(x)− q(x)

θ2(t)

)
= 4n3θ3(t)q′(x)(−Ψ′R(x))

[(
1− 1

θ(t)2

)
q(x) +B

]
> 4n3θ(t)3q′(x)(−Ψ′R(x))

[(
1− 1

θ2(t)

)
q(a0) +B

]
> 4C(B)n3θ(t)3,

where
C(B) = inf

[a0,L+]
{q′}min{B,B + q(a0)} > 0.

Let us note that, with θ as in (3.17), there exists C > 0 such that for all
t ∈ (0, T ),

(3.21) |θ′(t)| 6 C(θ(t))2, |θ′′(t)| 6 C(θ(t))3.

Thus, using furthermore that θ > 1 on (0, T ), there exists n0 > 0 such that
for all n > n0 and (t, x) ∈ (0, T )× (a0, L+),

GϕR,n(t, x) > C(B)n3θ(t)3 .

Using the computations done in Section 3.1, we thus deduce Proposi-
tion 3.3. �

From the singularity to the left end of the domain. — The goal of this
section is to prove the following result:

Proposition 3.5. — Assume (1.17). Let T ∈ (0, 4), L− > 0, and A > 0,
and define ϕL,n for n ∈ N

(3.22) ϕL,n(t, x) = nθ(t)A+ θ(t)−
√
nθ(t)

(
x2

2 + 2L−x
)
,

(t, x) ∈ (0, T )× (−L−, 0),
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with θ as in (3.17). Then there exists n0 > 0 and C > 0 such that for all
n > n0, for all un satisfying

(3.23)


(∂t − ∂2

x + n2q(x)2)un = fn , (t, x) ∈ (0, T )× (−L−, 0) ,
un(t,−L−) = un(t, 0) = 0 , t ∈ (0, T ),
un(0, · ) = u0,n ∈ H1

0 (−L−, 0) .

with fn ∈ L2((0, T )× (−L−, 0)), we have

(3.24) n3/2
∥∥∥θ3/2une

−ϕL,n
∥∥∥2

L2(Q)
+ n1/2

∥∥∥θ1/2∂xune
−ϕL,n

∥∥∥2

L2(Q)

6 Cn1/2
∥∥∥θ1/2∂xun(t, 0)e−nθ(t)A

∥∥∥2

L2(0,T )
+ C

∥∥fne−ϕL,n∥∥2
L2(Q) ,

with Q = (0, T )× (−L−, 0).

Proof. — Again, we base our proof of Proposition 3.5 on the compu-
tations in Section 3.1, this time with a = −L−, b = 0, we compute the
following quantities: for all (t, x) ∈ (0, T )× (−L−, 0),

∂xϕL,n(t, x) = −
√
nθ(t)(x+ 2L−) < −

√
nθ(t)L−,
− ∂xxϕL,n(t, x) =

√
nθ(t) > 0,

and

FϕL,n(t, x) = nθ′(t)A+ θ′(t)−
√
nθ′(t)

(
x2

2 + 2L−x
)

− nθ2(t)(x+ 2L−)2 + n2q(x)2,

and

GϕL,n(t, x) = −nθ′′(t)A− θ′′(t) +
√
nθ′′(t)

(
x2

2 + 2L−x
)

+ 4n3/2θ3(t)(x+ 2L−)2 − 4n5/2θ(t)(x+ 2L−)q′(x)q(x)

+ 4nθ′(t)θ(t)(x+ 2L−)2 .

Therefore, in order to estimate GϕL,n in (0, T ) × (−L−, 0), we use (1.17)
and (3.21) to get, for all (t, x) ∈ (0, T )× (−L−, 0),∣∣∣∣−nθ′′(t)A− θ′′(t) +

√
nθ′′(t)

(
x2

2 + 2L−x
)

+ 4nθ′(t)θ(t)(x+ 2L−)2
∣∣∣∣

6 Cnθ3(t),

while
4n3/2θ3(t)(x+ 2L−)2 > 4n3/2θ3(t)L2

−,
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and
−4n5/2θ(t)(x+ 2L−)q′(x)q(x) > 0,

because q 6 0 on (−L−, 0). Therefore, for n large enough, we have, for all
(t, x) ∈ (0, T )× (−L−, 0),

GϕL,n(t, x) > 2n3/2θ(t)3L2
−.

We finally note that, conditions (3.2)–(3.4) hold, so that we can
apply the computations done in Section 3.1. This immediately yields
Proposition 3.3. �

3.2.2. Proof of Proposition 1.5: a gluing argument

In fact, we will prove a slightly more general result than Proposition 1.5.
Namely, we shall consider the equation (1.20) with source terms, that is

(3.25)


(∂t − ∂2

x + n2q(x)2)un = fn , (t, x) ∈ (0, T )× (−L−, L+) ,
un(t,−L−) = un(t, L+) = 0 , t ∈ (0, T ) ,
un(0, · ) = u0,n ∈ H1

0 (−L−, L+) .

where fn ∈ L2((0, T )× (−L−, L+)), and we prove the following result:

Proposition 3.6. — Assume that q satisfies (1.17). For every T0 > 0
and ε > 0, there exists C > 0 such that, for every n ∈ N, any solution
of (3.25) with u0,n ∈ H1

0 (−L−, L+) and fn ∈ L2((0, T0) × (−L−, L+))
satisfies

(3.26) ‖un(T0)‖L2(−L−,L+) 6 C exp
(
n

(∫ L+

0
q(s) ds+ ε

))
×
[
‖∂xun( · , L+)‖L2(0,T0) + ‖fn‖L2((0,T0)×(−L−,L+))

]
.

Proof. — We will prove Proposition 3.6 only in the case T0 ∈ (0, 4). If
T0 > 4, one can apply the result of Proposition 3.6 on the time interval
(T0 − 2, T0).
We thus take T0 ∈ (0, 4) and ε > 0, and we choose L0 > 0 small enough

to get

(3.27)
∫ 0

−L0

q(s)ds− 2q(−L0)(L+ + L0) 6 ε,

which is possible from (1.17).
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We then define a0 = −L0, the function ΨR as in (3.18) with B =
−2q(−L0) on the interval (−L0, L+), and we set

(3.28) A = ΨR

(
−L0

2

)
.

Let n0 ∈ N be large enough so that Propositions 3.3 and 3.5 respectively
hold for solutions of (3.19) and (3.23) with T = T0.
In the following argument, we consider a generic n > n0 and un the

corresponding solution of (3.25) with initial datum u0,n ∈ H1
0 (−L−, L+)

and fn ∈ L2((0, T0)× (−L−, L+)).

Step 1: Cut-off argument. — We choose two cut-off functions ηL = ηL(x)
and ηR = ηR(x) such that

(3.29) ηL, ηR ∈ C∞(−L−, L+),

ηL(x) =
{

1 if x 6 −L0/3,
0 if x > 0,

ηR(x) =
{

1 if x > −2L0/3,
0 if x 6 −L0,

and we set

(3.30)
{
uL,n(t, x) = un(t, x)ηL(x), (t, x) ∈ (0, T0)× (−L−, L+),
uR,n(t, x) = un(t, x)ηR(x), (t, x) ∈ (0, T0)× (−L−, L+).

According to the construction of the cut-off functions, it is clear that uL,n
satisfies (3.23) with source term fL,n = fnηL + [ηL, ∂xx]un and that uR,n
satisfies (3.19) with source term fR,n = fnηR + [ηR, ∂xx]un.

Therefore, applying Proposition 3.5 to uL,n, we obtain a positive constant
C such that

n3/2
∥∥∥θ3/2uL,ne

−ϕL,n
∥∥∥2

L2((0,T0)×(−L−,0))

+ n1/2
∥∥∥θ1/2∂xuL,ne

−ϕL,n
∥∥∥2

L2((0,T0)×(−L−,0))

6 C
∥∥fL,ne−ϕL,n∥∥2

L2((0,T0)×(−L−,0)) .
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Using now the properties (3.29) of the cut-off function ηL, we thus obtain

n3/2
∥∥∥θ3/2une

−ϕL,n
∥∥∥2

L2((0,T0)×(−L−,−L0/3))

+ n1/2
∥∥∥θ1/2∂xune

−ϕL,n
∥∥∥2

L2((0,T0)×(−L−,−L0/3))

6 C
(∥∥(|∂xun|+ |un|)e−ϕL,n

∥∥2
L2((0,T0)×(−L0/3,0))

+
∥∥fne−ϕL,n∥∥2

L2((0,T0)×(−L−,0))

)
.

One can similarly apply Proposition 3.3 and, after similar considerations,
obtain a positive contant C such that

n3
∥∥∥θ3/2une

−ϕR,n
∥∥∥2

L2((0,T0)×(−2L0/3,L+))

+ n
∥∥∥θ1/2∂xune

−ϕR,n
∥∥∥2

L2((0,T0)×(−2L0/3,L+))

6 C
(
n
∥∥∥θ1/2∂xun(t, L+)e−θ(t)

∥∥∥2

L2(0,T0)

+
∥∥(|∂xun|+ |un|)e−ϕR,n

∥∥2
L2((0,T0)×(−L0,−2L0/3))

+
∥∥fne−ϕR,n∥∥2

L2((0,T0)×(−L0,L+))

)
.

Therefore, summing up the two last estimates, we obtain

(3.31) n3/2
∥∥∥θ3/2une

−ϕL,n
∥∥∥2

L2((0,T0)×(−L−,−L0/3))

+ n1/2
∥∥∥θ1/2∂xune

−ϕL,n
∥∥∥2

L2((0,T0)×(−L−,−L0/3))

+ n3
∥∥∥θ3/2une

−ϕR,n
∥∥∥2

L2((0,T0)×(−2L0/3,L+))

+ n
∥∥∥θ1/2∂xune

−ϕR,n
∥∥∥2

L2((0,T0)×(−2L0/3,L+))

6 Cn
∥∥∥θ1/2∂xun(t, L+)e−θ(t)

∥∥∥2

L2(0,T0)

+ C ‖fn‖2L2((0,T0)×(−L−,L+))

+ C
∥∥(|∂xun|+ |un|)e−ϕL,n

∥∥2
L2((0,T0×(−L0/3,0))

+ C
∥∥(|∂xun|+ |un|)e−ϕR,n

∥∥2
L2((0,T0)×(−L0,−2L0/3)) .
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Step 2: Absorption of the last two terms. — We prove that, for n large
enough

(3.32) C
∥∥(|∂xun|+ |un|)e−ϕL,n

∥∥2
L2((0,T0)×(−L0/3,0))

6
1
2

(
n3
∥∥∥θ3/2une

−ϕR,n
∥∥∥2

L2((0,T0)×(−2L0/3,L+))

+n
∥∥∥θ1/2∂xune

−ϕR,n
∥∥∥2

L2((0,T0)×(−2L0/3,L+))

)
and

(3.33) C
∥∥(|∂xun|+ |un|)e−ϕR,n

∥∥2
L2((0,T0)×(−L0,−2L0/3))

6
1
2

(
n3/2

∥∥∥θ3/2une
−ϕL,n

∥∥∥2

L2((0,T0)×(−L−,−L0/3))

+n1/2
∥∥∥θ1/2∂xune

−ϕL,n
∥∥∥2

L2((0,T0)×(−L−,−L0/3))

)
so that the last two terms of the right hand side of (3.31) can be absorbed
by the left-hand side for large n. To get these estimates, the key points are
the following relations: for all t ∈ (0, T0),

sup
x∈[−L0/3,0]

{−ϕL,n(t, x)} 6 inf
x∈[−L0/3,0]

{−ϕR,n(t, x)},(3.34)

sup
x∈[−L0,−2L0/3]

{−ϕR,n(t, x)} 6 inf
x∈[−L0,−2L0/3]

{−ϕL,n(t, x)}.(3.35)

In order to prove (3.34) and (3.35), we first remark that for all t ∈ (0, T0),
x 7→ −ϕL,n(t, x) and x 7→ −ϕR,n(t, x) are increasing functions, so that the
proof of (3.34)–(3.35) reduces to prove, for all t ∈ (0, T0),

−ϕL,n(t, 0) 6 −ϕR,n(t,−L0/3),(3.36)
−ϕR,n(t,−2L0/3) 6 −ϕL,n(t,−L0).(3.37)

Now, with the choice of A in (3.28), we have

−ϕL,n(t, 0) = −nθ(t)A− θ(t) by (3.22)
= −nθ(t)ΨR(−L0/2)− θ(t) by (3.28)
6 −nθ(t)ΨR(−L0/3)− θ(t) because (−ΨR) is increasing
6 −ϕR,n(t,−L0/3) by (3.16)
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and

−ϕR,n(t,−2L0/3) = −nθ(t)ΨR(−2L0/3)− θ(t) by (3.16)
= +nθ(t) (ΨR(−L0/2)−ΨR(−2L0/3))

− nθ(t)A− θ(t) by (3.28)

= −ϕL,n(t,−L0)−
√
nθ(t)

(
L2

0
2 − 2L−L0

)
+ nθ(t) (ΨR(−L0/2)−ΨR(−2L0/3))

6 −ϕL,n(t,−L0) by (3.22),

where the last inequality holds for n large enough, because ΨR(−L0/2) <
ΨR(−2L0/3), thus proving estimates (3.34)–(3.35) for n large enough.
Using (3.34)–(3.35) for n large enough, we get, for n large enough,

1
2
∥∥(|∂xun|+ |un|)e−ϕL,n

∥∥2
L2((0,T0)×(−L0/3,0))

6
1
2
∥∥(|∂xun|+ |un|)e−ϕR,n

∥∥2
L2((0,T0)×(−L0/3,0))

6
∥∥une−ϕR,n∥∥2

L2((0,T0)×(− 2
3L0,L+))+

∥∥∂xune−ϕR,n∥∥2
L2((0,T0)×(− 2

3L0,L+)),

and, similarly

1
2
∥∥(|∂xun|+ |un|)e−ϕR,n

∥∥2
L2((0,T0)×(−L0,−2L0/3))

6
1
2
∥∥(|∂xun|+ |un|)e−ϕL,n

∥∥2
L2((0,T0)×(−L0,−2L0/3))

6
∥∥une−ϕL,n∥∥2

L2((0,T0)×(−L−,−L0
3 ))+

∥∥∂xune−ϕL,n∥∥2
L2((0,T0)×(−L−,−L0

3 )).

These two inequalities imply (3.32) and (3.33) for n large enough, because
θ > 1 on (0, T0).

Step 3: Conclusion. — We thus deduce from (3.31), (3.32) and (3.33)
that, for n large enough,

(3.38) n1/2
∥∥∥θ3/2une

−ϕL,n
∥∥∥2

L2((0,T0)×(−L−,−L0/3))

+ n2
∥∥∥θ3/2une

−ϕR,n
∥∥∥2

L2((0,T0)×(−2L0/3,L+))

6 C
∥∥∥θ1/2∂xun(t, L+)e−θ(t)

∥∥∥2

L2(0,T0)
+ C ‖fn‖2L2((0,T0)×(−L−,L+) .

Note that, for every (t, x) ∈ (T0/4, 3T0/4)× (−L0, L+),

−ϕR,n(t, x) = −nΨR(x)− 1 > −nΨR(−L0)− 1
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because (−ΨR) is increasing and for every (t, x) ∈ (T0/4, 3T0/4)×(−L−, 0),

− ϕL,n(t, x) = −nA− 1 +
√
n

(
x2

2 + 2L−x
)

= −nΨR(−L0)− 1 + n[ΨR(−L0)−A] +
√
n

(
x2

2 + 2L−x
)

> −nΨR(−L0)− 1 + n[ΨR(−L0)−ΨR(−L0/2)]− 3
2
√
nL2
− (by (3.28))

> −nΨR(−L0)− 1

for n large enough, because ΨR(−L0) > ΨR(−L0/2). Using also that
sup[0,T0] θ(t)1/2e−θ(t) <∞ and θ = 1 on (T0/4, 3T0/4), we obtain, for some
constant C > 0 independent of n,

(3.39) ‖un‖L2((T0/4,3T0/4)×(−L−,L+))

6 CenΨR(−L0)
(
‖∂xun( · , L+)‖L2(0,T0) + ‖fn‖L2((0,T0)×(−L−,L+)

)
.

Note that, by (3.27),

(3.40) ΨR(−L0) =
∫ L+

−L0

q(s) ds− 2q(−L0)(L+ + L0) 6
∫ L+

0
q(s)ds+ ε.

To conclude Proposition 3.6, we use rough energy estimates as follows. For
t ∈ (0, T0), we multiply the equation (3.25) by un:

d
dt

(∫ L+

−L−
|un(t, x)|2 dx

)
+
∫ L+

−L−
|∂xun(t, x)|2 dx

6 ‖fn(t)‖L2(−L−,L+) ‖un(t)‖L2(−L−,L+) .

Using Poincaré’s inequality, we thus get, for all t ∈ (0, T0),

d
dt

(∫ L+

−L−
|un(t, x)|2 dx

)
6 C ‖fn(t)‖2L2(−L−,L+) ,

from which we easily deduce that

T0

2 ‖un(T0)‖2L2(−L−,L+) 6 ‖un‖
2
L2((T0/4,3T0/4)×(−L−,L+))

+ C ‖fn‖2L2((0,T0)×(−L−,L+)) .

We thus deduce (3.26) from (3.39)–(3.40) and this last estimate. �
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3.2.3. Observability in time T > T∗: Proof of Theorem 1.4(1)

In order to prove Theorem 1.4(1), we shall combine the observability
estimate of Proposition 1.5 and a dissipation result, that we state below
and whose proof is given in Section 4.3:

Lemma 3.7. — There exists C > 0 such that, for all n ∈ N, any solution
un of (1.20), with initial datum u0,n ∈ L2(−L−, L+), satisfies, for all t > 0,

(3.41) ‖un(t)‖L2(−L−,L+) 6 exp(−(nq′(0)− C
√
n)t) ‖u0,n‖L2(−L−,L+) .

Given T > T∗ with T∗ as in (1.19), we choose T0 > 0 such that 2T0 <

T − T∗ and apply Proposition 1.5 with ε = q′(0)T0: there exists a constant
C independent of n such that for all n and un solution of (1.20),

‖un(T0)‖L2(−L−,L+)

6 C exp
(
n

∫ L+

0
q(s)ds+ nq′(0)T0

)
‖∂xun( · , L+)‖L2(0,T0)

6 C exp (nq′(0)(T∗ + T0)) ‖∂xun( · , L+)‖L2(0,T0) .

Combined with Lemma 3.7 applied on the time interval (T0, T∗), we obtain

‖un(T )‖L2(−L−,L+)

6 C exp
(
−nq′(0) (T − T∗ − 2T0) + C

√
n(T − T0)

)
‖∂xun( · , L+)‖L2(0,T0)

Consequently, the equations (1.20) are uniformly observable from x = L+
in time T , in the sense that there exists C > 0 such that for all n ∈ N, the
solutions un of (1.20) with u0,n ∈ H1

0 (−L−, L+) satisfy

‖un(T )‖L2(−L−,L+) 6 C ‖∂xun(t, L+)‖L2(0,T ) .

We thus deduce the observability of system (1.16) on (0, T )×Γ, by Bessel–
Parseval equality.

3.3. Heisenberg equation

The goal of this section is to prove Theorem 1.6(1). In order to do this, as
before, we take advantage of the tensorized structure of the 3-d Heisenberg
equation by developing the solution u of (1.24) in Fourier series with respect
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to both variables y and z, and therefore consider the following family of
one-dimensional heat equations, indexed by n and p in Z:

(3.42)


(∂t − ∂2

x + (nx+ p)2)un,p(t, x) = 0 , (t, x)∈(0, T )×(−L−, L+) ,
un,p(t,−L−) = un,p(t, L+) = 0 , t ∈ (0, T ) ,
un,p(0, · ) = u0,n,p ∈ H1

0 (−L−, L+) ,

for which we will prove observability estimates with an observation at x =
L+ when T > T∗ with T∗ as in (1.26). To be more precise, for T > T∗, we
will show that there exists a constant C > 0 such that for all n and p in Z,
any solution un,p of (3.42) with u0,n,p ∈ H1

0 (−L−, L+) satisfies

(3.43) ‖un,p(T )‖L2(−L−,L+) 6 C ‖∂xun,p(t, L+)‖L2(0,T ) .

In order to prove observability properties (3.43) for solutions of (3.42), it
will be convenient to write

(3.44) (nx+ p)2 = n2(x− α)2, with α = − p
n
,

to underline the link between the equations (3.42) and the Grushin equa-
tion (1.20). But this writing is allowed only for n ∈ Z∗, and we thus handle
separately the case n = 0.

In the case n = 0, we are considering the family of 1-d heat equation
with positive potential p2 indexed by p ∈ Z and given by

(3.45)


(∂t − ∂2

x + p2)u0,p(t, x) = 0 , (t, x)∈(0, T )×(−L−, L+) ,
u0,p(t,−L−) = u0,p(t, L+) = 0 , t ∈ (0, T ) ,
u0,p(0, · ) = u0,0,p ∈ H1

0 (−L−, L+) ,

When p = 0, the usual observability estimate for the heat equation reads:
there exists a constant C > 0 such that for all solution u0,0 of (3.45) with
p = 0 and initial datum in H1

0 (−L−, L+),

‖u0,0(T )‖L2(−L−,L+) 6 C ‖∂xu0,0(t, L)‖L2(0,T ) .

It is readily seen that if u0,p solves (3.45) for some p ∈ Z, then u0,pe
p2t

solves (3.45) with p = 0. Thus one can apply the previous estimate to
u0,pe

p2t and straightforward bounds show that for all p ∈ Z, any solution
u0,p of (3.45) with initial datum in H1

0 (−L−, L+) satisfies

(3.46) ‖u0,p(T )‖L2(−L−,L+) 6 C ‖∂xu0,p(t, L)‖ .L2(0,T ).

We then consider the case n ∈ Z∗ and p ∈ Z. Based on the writing (3.44),
we consider, instead of (3.42), the (larger) family of problems, indexed by
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n ∈ Z and α ∈ R,
(3.47)

(∂t − ∂2
x + n2(x− α)2)un,α(t, x) = 0 , (t, x) ∈ (0, T )× (−L−, L+) ,

un,α(t,−L−) = un,α(t, L+) = 0 , t ∈ (0, T ) ,
un,α(0, · ) = u0,n,α ∈ H1

0 (−L−, L+)

which we will prove to be observable in time T > T∗ with T∗ as in (1.26)
uniformly with respect to n ∈ Z and α ∈ R:

Proposition 3.8. — Let T∗ be as in (1.26). For every T > T∗, there
exists C > 0 such that, for every n ∈ Z, α ∈ R and u0,n,α ∈ L2(−L−, L+),
the solution of (3.47) satisfies

(3.48)
∫ L+

−L−
|un,α(T, x)|2dx 6 C

∫ T

0
|∂xun,α(t, L+)|2dt .

Considering also that equation (3.47) does not depend on the sign of n,
from now on we suppose that n ∈ N. Clearly, equation (3.47) is degerenate
only if α belongs to [−L−, L+]. Therefore, in the arguments afterwards,
we shall deal independently with the cases α ∈ [−L− − δ, L+ + δ] and
α ∈ R \ [−L− − δ, L+ + δ], where δ > 0 is an arbitrary small parameter.

3.3.1. Cost estimate for α in the interval [−L− − δ, L+ + δ]

In the case α ∈ [−L− − δ, L+ + δ], the potential q(x) = (x − α) might
cancel anywhere in the interval (−L−, L+). Therefore, we shall be cautious
and adapt the result we obtained for the Grushin equation, proving first
an estimate on the cost of observability in this case, then an estimate on
the rate of the dissipation of the semi-group (3.47).

Proposition 3.9. — Let δ > 0 and T > 0.
There exists C = C(δ, T ) > 0 such that, for every α ∈ [−L−− δ, L+ + δ],

n ∈ N and u0,n,α ∈ H1
0 (−L−, L+), the solution un,α of (3.47) satisfies

(3.49)
∫ L+

−L−
|un,α(T, x)|2dx

6 C exp
(

2n
(

(L+ + L−)2

2 + 2δ(L+ + L−)
))∫ T

0
|∂xun,α(t, L+)|2dt .

Proof. — Let δ > 0 and α ∈ [−L− − δ, L+ + δ]. As before, we assume,
without loss of generality, that T ∈ (0, 4). The proof of Proposition 3.9
strongly relies on Proposition 3.3 with the choices

a0 = −L−, L+ = L+, qα(x) = x− α, Bα = L− + α+ 2δ.
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As qα obviously satisfies (3.14) and Bα satisfies

Bα > δ > 0, qα(−L−) +Bα = 2δ > 0,

Proposition 3.3 applies to (3.47), with the weight function

ϕn,α(t, x) = nθ(t)Ψα(x) + θ(t), (t, x) ∈ (0, T )× (−L−, L+),

with θ as in (3.17) and Ψα defined as

Ψα(x) =
∫ L+

x

(s− α) ds+Bα(L+ − x)

=1
2
(
(L+ − α)2 − (x− α)2)+ (L− + α+ 2δ)(L+ − x)

=(L+ − x)
(
x+ L+

2 + L− + 2δ
)
.

Still, we need to check the uniformity of the constants n0 and C in Propo-
sition 3.3 for α ∈ [−L− − δ, L+ + δ]. We thus remark that we have the
identities, for (t, x) ∈ (0, T )× (−L−, L+),

−∂xxϕn,α(t, x) = nθ(t),
∂xϕn,α(t, L+) = nθ(t)(−L+ + α−Bα) = −nθ(t)(L+ + L− + 2δ).

It thus remains to bound

Gϕn,α(t, x)

= 2nθ(t)Ψ′α(x)
[
2nθ′(t)Ψ′α(x)− 2n2θ2(t)Ψ′′α(x)Ψ′α(x) + 2n2q′α(x)qα(x)

]
− nθ′′(t)Ψα(x)− θ′′(t) + nθ(t)Ψ(4)

α (x)

from below, uniformly with respect to α ∈ [−L− − δ, L+ + δ]. Arguing as
in the proof of Proposition 3.3, we first remark that

2nθ(t)Ψ′α(x)
[
−2n2θ2(t)Ψ′′α(x)Ψ′R,α(x) + 2n2q′α(x)qα(x)

]
= 4n3θ(t)3(−Ψ′R,α(x))

(
−Ψ′R,α(x)− qα(x)

θ2(t)

)
> 4C(Bα)n3θ(t)3,

where C(Bα) = min{Bα, Bα + (−L− − α)} > δ > 0. We thus easily derive
that, for all (t, x) ∈ (0, T )× (−L−, L+),

Gϕn,α(t, x) > 4n3θ(t)3 + 4n2θ(t)θ′(t)|Ψ′α(x)|2 − nθ′′(t)Ψα(x)− θ′′(t).

Now, it is easy to check that

sup
α∈[−L−−δ,L++δ]

sup
x∈[−L−,L+]

{|Ψ′α(x)|+ |Ψα(x)|} <∞,
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so that there exists a constant C > 0 independent of α ∈ [−L−− δ, L+ + δ]
such that for all (t, x) ∈ (0, T )× (−L−, L+),

Gϕn,α(t, x) > 4n3θ(t)3 − Cn2θ(t)3.

It easily follows that there exists n0 ∈ N and C > 0 such that for all
n > n0, α ∈ [−L− − δ, L+ + δ], and u0,n,α ∈ H1

0 (−L−, L+), the solution
un,α of (3.47) satisfies:

n3
∥∥∥θ3/2un,αe

−ϕR,n,α
∥∥∥2

L2((0,T )×(−L−,L+))

6 Cn
∥∥∥θ1/2∂xun,α(t, L+)e−θ(t)

∥∥∥2

L2(0,T )
.

This leads in particular, with a constant C independent of n > n0 and
α ∈ [−L− − δ, L+ + δ], that any solution un,α of (3.47) satisfies:

e
−n sup[−L−,L+]{ΨR,α(x)}−1 ‖un,α‖L2((T/4,3T/4)×(−L−,L+))

6
∥∥∥θ3/2un,αe

−ϕR,n,α
∥∥∥
L2((T/4,3T/4)×(−L−,L+))

6
∥∥∥θ1/2∂xun,α(t, L+)e−θ(t)

∥∥∥
L2(0,T )

6 C ‖∂xun,α(t, L)‖L2(0,T ) .

Straightforward computations then yield

sup
[−L−,L+]

{Ψα(x)} = Ψα(−L−) = (L+ + L−)2

2 + 2δ(L+ + L−).

We thus immediately deduce that any solution un,α of (3.47) satisfies

‖un,α‖L2((T/4,3T/4)×(−L−,L+))

6 C exp
(
n

(
(L+ + L−)2

2 + 2δ(L+ + L−)
))
‖∂xun,α(t, L)‖L2(0,T ) ,

for some C > 0 independent of n > n0 and α ∈ [−L− − δ,−L+ + δ].The
fact that the observability property (3.49) holds then uniformly for n > n0
and α ∈ [−L− − δ,−L+ + δ] immediately follows from the dissipativity of
the equation (3.47).
Now, as n0 is independent of α,

sup
n∈{0,...,n0}

sup
α∈[−L−−δ,L++δ]

∥∥n2qα(x)2∥∥
L∞(−L−,L+) = n2

0(L+ − L−)2,

so that Theorem A.1 easily gives the observability property (3.49) uniformly
for n ∈ {0, . . . , n0} and α ∈ [−L− − δ,−L+ + δ].
Proposition 3.9 immediately follows. �
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3.3.2. Cost estimate for α ∈ R \ [−L− − δ, L+ + δ]

In that case, the potential q(x) = (x−α) is nowhere zero in the interval
(−L−, L+). For that reason, we will use a rather rough estimate on the cost
of observability in this case, which is a consequence of [21]. Namely, Corol-
lary A.2 applied to the family of potentials V (x) = n2(x−α)2 immediately
implies that

Proposition 3.10. — Let δ > 0 and T > 0. There exists C = C(T ) > 0
such that for every α ∈ R \ [−L−, L+], n ∈ N and u0,n,p ∈ H1

0 (−L−, L+),
the solution un,α of (3.47) satisfies∫ L+

−L−
|un,α(T, x)|2dx

6 C exp
(
Cn4/3 max{L+ − α,−L− − α}4/3

)∫ T

0
|∂xun,α(t, L+)|2dt .

3.3.3. Estimate of the rate of dissipation of (3.47)

We claim the following result:

Lemma 3.11. — For all α ∈ R and all n ∈ N, there exists λn,α > 0 such
that any solution un,α of (3.47) with u0,n,α ∈ L2(−L−, L+) satisfies, for
all t > 0,

(3.50) ‖un,α(t)‖L2(−L−,L+) 6 exp(−λn,αt) ‖u0,n,α‖L2(−L−,L+) ,

where λn,α satisfies

(3.51) λn,α >


n ,

n2(L− + α)2 when α 6 −L−,
n2(α− L+)2 when α > L+.

The proof of Lemma 3.11 is given in Section 4.4.

3.3.4. Proof of Proposition 3.8

We are now in position to prove Proposition 3.8. Let T > T∗ = (L+ +
L−)2/2. We take

T0 > 0 such that 2T0 < T − T∗, and δ := T0

2(L+ + L−) ,

and consider three different cases, α ∈ [−L−− δ, L+ + δ], α 6 −L−− δ and
α > L+ + δ.
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First case: α ∈ [−L− − δ, L+ + δ]. — We apply Proposition 3.9 with
T = T0 and use Lemma 3.11 on the time interval [T0, T ]: We obtain a
constant C > 0 independent of α ∈ [−L− − δ, L+ + δ] such that for every
n ∈ N and un,α solution of (3.42) with u0,n,α ∈ H1

0 (−L−, L+),

‖un,α(T )‖L2(−L−,L+) 6 e
−λn,α(T−T0)‖un,α(T0)‖L2(−L−,L+)

6 Ce−n(T−T0)e
n

(
(L++L−)2

2 +2δ(L++L−)
)
‖∂xun,α( · , L+)‖L2(0,T )

6 C exp (−n (T − T∗ − 2T0)) ‖∂xun,α( · , L+)‖L2(0,T )

6 C‖∂xun,α( · , L+)‖L2(0,T ) .

Second case: α 6 −L− − δ. — We apply Proposition 3.10 with T = T0
and use Lemma 3.11 on the time interval [T0, T ]: We obtain a constant
C > 0 independent of α 6 −L− − δ such that for every n ∈ N and un,α
solution of (3.42) with u0,n,α ∈ H1

0 (−L−, L+),

‖un,α(T )‖L2(−L−,L+) 6 e
−λn,α(T−T0)‖un,α(T0)‖L2(−L−,L+)

6 Ce−n
2(L−+α)2(T−T0) exp

(
Cn4/3(L+ − α)4/3

)
‖∂xun,α( · , L+)‖L2(0,T ).

We now remark that there exists C = C(δ) such that for all α 6 −L− − δ,

(L− + α)2 >
1
C
α2, and (L+ − α)4/3 6 C|α|4/3,

while T − T0 > T∗. We thus deduce that, for all n ∈ N and α 6 −L− − δ,
any solution un,α of (3.42) with u0,n,α ∈ H1

0 (−L−, L+) satisfies

‖un,α(T )‖L2(−L−,L+)

6 C exp
(
−T∗
C
n2α2 + Cn4/3|α|4/3

)
‖∂xun,α( · , L+)‖L2(0,T ),

where C is independent of α 6 −L− − δ and n ∈ N. As

sup
n∈N

sup
α6−L−−δ

{
−T∗
C
n2α2 + Cn4/3|α|4/3

}
6 sup
ρ∈R+

{
−T∗
C
ρ2 + Cρ4/3

}
<∞,

we get a constant C independent of α 6 −L− − δ and n ∈ N such that
for all n ∈ N and α 6 −L− − δ, any solution un,α of (3.42) with u0,n,α ∈
H1

0 (−L−, L+) satisfies

‖un,α(T )‖L2(−L−,L+) 6 C‖∂xun,α( · , L+)‖L2(0,T ).

Third case: α > L+ + δ. — This case can be dealt with as in the second
case by applying Proposition 3.10 with T = T0 and Lemma 3.11 on the
time interval (T0, T ). The detailed proof is left to the reader as it relies on
exactly the same arguments as in the second case.
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End of the proof of Proposition 3.8. — The proof of the uniform ob-
servability inequality (3.48) then easily follows from the fact that if α ∈ R,
then we necessarily are in one of the cases discussed above. �

3.3.5. End of the proof of Theorem 1.6(1)

Combining the uniform observability estimates (3.46) proved uniformly
with respect to p ∈ Z and Proposition 3.8, we get the following observability
inequality when T > T∗: For T > T∗, there exists a constant C > 0 such
that for all n ∈ Z and p ∈ Z, any solution un,p of (3.42) with u0,n,p ∈
H1

0 (−L−, L+) satisfies (3.43).
Applying Parseval’s identity, one then immediately obtains the observ-

ability inequality (1.25), which proves Theorem 1.6(1).

3.3.6. The case of observations on both sides of the domain: Proof of
Theorem 1.7

The goal of this section is to give a sketch of the proof of Theorem 1.7.
We consider again system (3.47), and our purpose is to prove that for all
T > T∗ = (L+ + L−)2/8, there exists C > 0 such that, for every n ∈ Z,
α ∈ R and u0,n,α ∈ H1

0 (−L−, L+), the solution of (3.47) satisfies

(3.52)
∫ L+

−L−
|un,α(T, x)|2dx

6 C
∫ T

0
(|∂xun,α(t,−L−)|2 + |∂xun,α(t, L+)|2)dt .

The strategy to prove this result is very similar to the one of the proof
of Proposition 3.8, but this time, one should could consider three different
cases depending on the location of α (here δ > 0 is an arbitrary small
parameter):

(1) the case α ∈ R \ [−L− − δ, L+ + δ],
(2) the case α ∈ IR =

[
L+−L−

2 , L+ + δ
]
,

(3) the case α ∈ IL =
[
−L− − δ, L+−L−

2

]
.

We already considered case (1) in Section 3.3.4, whereas case (3) reduces
to case (2) by the change of variable x ↔ −x + (L+ − L−). Therefore we
only gives a hint on how to prove (3.52) in case (2). From now on we assume
that α belongs to IR.
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The key point is again to obtain a precise estimate on the cost of ob-
servability of equation (3.47), uniformly in α. Doing the change of variable
x̃ = x−α in (3.47), we see that ũn,α(x̃) = un,α(x) verifies the system (3.25)
in (0, T ) × (−L̃−, L̃+), L̃− = L− + α, L̃+ = L+ − α, with q(x̃) = x̃. It is
therefore tempting to apply directly Proposition 3.6, which would give the
result, but we should guarantee that all the constants appearing in the
proof of this proposition can be chosen independent of α. This can be done
by a careful reading of sections 3.2.1 and 3.2.2, and using that α belongs
to the bounded interval IR (the proof is left to the reader).
Hence, for any T0 > 0 and ε > 0, there exists a constant C such that

for every n ∈ N and α ∈ IR, any un,α solution of (3.47) with u0,n,α ∈
H1

0 (−L−, L+) satisfies

‖un,α(T0)‖L2((−L−,L+)) 6 Ce
n

(
(L+−α)2

2 +ε
)
‖∂xun,α( · , L+)‖L2(0,T0).

As for δ small enough,

max
α∈IR

(L+ − α)2

2 = (L+ + L−)2

8 ,

we obtain

‖un,α(T0)‖L2((−L−,L+))

6 Ce
n

(
(L++L−)2

8 +ε
)(
‖∂xun,α( · ,−L−)‖L2(0,T0) + ‖∂xun,α( · , L+)‖L2(0,T0)

)
which, combined with Lemma 3.11, gives the desired result.

3.4. Inverse problem for the 2D Grushin equation: Proof of
Theorem 1.8

The goal of this section is to prove Theorem 1.8. To that end, we consider

(3.53)


(∂t − ∂2

x + n2|x|2)un = fn , (t, x) ∈ (0, T )× (−L−, L+) ,
un(t,−L−) = un(t, L+) = 0 , t ∈ (0, T ) ,
un(0, · ) = u0,n ∈ H1

0 (−L−, L+) .

with a source term of the form

(3.54) fn(t, x) = R(t, x)kn(x) for (t, x) ∈ (0, T )× (−L−, L+),

where R = R(t, x) is assumed to be known and to satisfy (1.29). Then,
Theorem 1.8 is a consequence of Parseval’s identity and the following result.

TOME 70 (2020), FASCICULE 1



294 Karine BEAUCHARD, Jérémi DARDÉ & Sylvain ERVEDOZA

Theorem 3.12. — Let T∗ be defined by (1.19), T > T∗, T0, T1 be
such that (1.30) holds, and assume that R satisfies (1.29). There exists
C > 0 such that, for all n ∈ N∗, for every kn ∈ L2(−L−, L+) and
u0,n ∈ L2(−L−, L+), the solution un of (3.53) with a source term as
in (3.54) satisfies

(3.55)
∫ L

−L
|kn(x)|2dx

6 C

(∫ T

T0

|∂t∂xun(t, L+)|2dt+
∫ L+

−L−
|(−∂2

x + n2x2)un(T1, x)|2dx
)
.

Let us emphasize that Theorem 3.12 is relevant for large values of n.
Indeed, for a given n ∈ N, as noticed in [4], the works [25, 33] immediately
yields the existence of a constant Cn depending on n such that (3.55) holds
for any solution un of (3.53) with u0,n ∈ L2(−L−, L+). We will therefore
focus on the proof of Theorem 3.12 for large values of n ∈ N, i.e. on the
existence of n0 ∈ N and a constant C > 0 such that for all n > n0, any
solution un of (3.53) with u0,n ∈ L2(−L−, L+) satisfies (3.55).

The proof of Theorem 3.12 relies on the following corollary of Proposi-
tion 3.6 and Lemma 3.7.

Proposition 3.13. — Let T > T∗. There exists C > 0 and a sequence
of positive real numbers (εn)n∈N∗ converging to zero as n→∞, such that
for every n ∈ N, u0,n ∈ L2(−L−, L+), fn ∈ L2((0, T ) × (−L−, L+)), the
solution of (3.53) with source term fn ∈ L2((0, T )× (−L−, L+)) satisfies∫ L+

−L−
|un(T, x)|2dx 6 C

∫ T

0
|∂xun(t, L+)|2dt+ εn‖fn‖2L2((0,T )×(−L−,L+)) .

Proof of Proposition 3.13. — Let T > T∗ and T0 > 0 be such that
2T0 < T −T∗. For n ∈ N, let Sn(t) be the semi-group corresponding to the
equation (3.53).
From the Duhamel formula, any solution un of (3.53) satisfies:

un(T ) = Sn(T − T0)un(T0) +
∫ T

T0

Sn(T − t)fn(t)dt.

Therefore, applying Lemma 3.7 and the Cauchy–Schwarz inequality, we
get, for any solution un of (3.53),

‖un(T )‖L2(−L−,L+)

6 e−n(T−T0)‖un(T0)‖L2(−L−,L+) +
∫ T

T0

e−n(T−t)‖fn(t)‖L2(−L−,L+)dt
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6 e−n(T−T0)‖un(T0)‖L2(−L−,L+) + 1√
2n
‖fn‖L2((T0,T )×(−L−,L+)) .

Thus

‖un(T )‖2L2(−L−,L+)

6 2e−2n(T−T0)‖un(T0)‖2L2(−L−,L+) + 1
n
‖fn‖2L2((0,T )×(−L−,L+)) .

Applying Proposition 3.6 with q(x) = x in time T0 and ε = T0, we obtain,
for any solution un of (3.53) with source term fn ∈ L2((0, T )×(−L−, L+)),

‖un(T )‖2L2(I) 6 2Ce−2n(T−T∗−2T0)
∫ T

0
|∂xun(t, L+)|2dt

+
(

2Ce−2n(T−T∗−2T0) + 1
n

)
‖fn‖2L2((0,T )×(−L−,L+)) ,

with a constant C independent of n. From this last estimate, we easily
deduce Proposition 3.13 as T − T∗ − 2T0 > 0. �

Proof of Theorem 3.12. — Let T > T∗, T0, T1 as in (1.30), and assume
that R satisfies (1.29). Let then n ∈ N and let un be the solution of (3.53)
with fn as in (3.54).
Setting R0 = inf(−L−,L+) |R(T1, x)| (> 0 according to (1.29)), we have

R0|kn(x)| 6 |R(T1, x)kn(x)| = |fn(T1, x)|

6 |∂tun(T1, x)|+ |(−∂2
x + n2x2)un(T1, x)|

thus∫ L+

−L−
|kn(x)|2dx 6 2

R2
0

(∫ L+

−L−
|∂tun(T1, x)|2dx

+
∫ L+

−L−
|(−∂2

x + n2x2)un(T1, x)|2dx
)
.

We apply Proposition 3.13 to ∂tun between the times T0 and T1 (thus
corresponding to T = T1 − T0 in Proposition 3.13, which is larger than
T∗ in (1.30)), noticing ∂tun solves the Grushin equation (1.20) with source
term ∂tR(t, x)kn(x):∫ L+

−L−
|∂tun(T1, x)|2dx 6 C

∫ T1

T0

|∂x∂tun(t, L+)|2dt

+ εn‖∂tR‖2L2(0,T ;L∞(−L−,L+))‖kn‖
2
L2(−L−,L+) ,

for a constant C > 0 independent of n and εn which converges to 0 as
n→∞.
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Thus there exists n0 ∈ N such that we can guarantee that for all n > n0,
2
R2

0
εn‖∂tR‖2L2(0,T ;L∞(−L−,L+)) 6

1
2 ,

and then for all n > n0,∫ L+

−L−
|kn(x)|2dx 6 4C

R2
0

∫ T1

T0

|∂x∂tun(t, L+)|2dt

+ 4
R2

0

∫ L+

−L−
|(−∂2

x + n2x2)un(T1, x)|2dx ,

which concludes the proof of the estimate (3.55) uniformly for n > n0.
As said above, the case n 6 n0 follows immediately from the works [25,

33], then allowing to conclude Theorem 3.12. �

Theorem 1.8 then follows immediately by Parseval’s identity from The-
orem 3.12.

4. On the rate of dissipation of the semigroups

4.1. In a bounded domain of Rd: Proof of Lemma 2.3

Lemma 2.3 can be proved by writing the equation (1.8) satisfied by un
using the semigroup formalism under the form u′n + Gµnun = 0, where, for
µ ∈ R, Gµ is the operator defined on L2(Ωx) by

(4.1) D(Gµ) = H2(Ωx) ∩H1
0 (Ωx) , Gµψ := −∆xψ + µ2|x|2ψ.

It is clear that Gµ is a positive self-adjoint operator on L2(Ωx) and has
compact resolvent. Therefore, its first eigenvalue λµ is characterized by the
Rayleigh formula:

λµ = inf
{∫

Ωx

(
|∇ϕ(x)|2 + µ2|x|2ϕ(x)2

)
dx;ϕ ∈ H1

0 (Ωx) , ‖ϕ‖L2(Ωx) = 1
}

> inf
{∫

Rdx

(
|∇ϕ(x)|2 + µ2|x|2ϕ(x)2

)
dx;

ϕ ∈ H1(Rdx) ∩ L2(Rdx , |x|dx) , ‖ϕ‖L2(Rdx ) = 1
}

= µ inf
{∫

Rdx

(
|∇φ(x)|2 + |x|2φ(x)2

)
dx;

φ ∈ H1(Rdx) ∩ L2(Rdx , |x|dx) , ‖ϕ‖L2(Rdx ) = 1
}
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where this last identity is obtained via the change of variable ϕ(x) =
|µ|dx/4φ(

√
|µ|x).

This last expression corresponds, again via Rayleigh formula, to the first
eigenvalue of the harmonic oscillator −∆x + |x|2 on L2(Rdx) with domain
H2(Rdx) ∩ L2(Rdx , |x|2 dx), which is known to be equal to dx, see [24,
Section 2.1]. This implies that λµ > dxµ.

Now, as a solution un of the equation (1.8) satisfies u′n + Gµnun = 0,
and Gµn is a positive self-adjoint operator with compact resolvent whose
smallest eigenvalue is larger than dxµn, we readily deduce Lemma 5.1.

4.2. On an interval (0, L): Proof of Lemma 2.7

Similarly as Lemma 2.3, Lemma 2.7 is based on an estimate of the small-
est eigenvalue of the operators GD,n and GN,n defined for each n ∈ N on
L2(0, L) by

GD,nψ = −∂xxψ + n2x2ψ, D(GD,n) = H2(0, L) ∩H1
0 (0, L),(4.2)

GN,nψ = −∂xxψ + n2x2ψ,(4.3)

D(GN,n) = {ψ ∈ H2(0, L), with ∂xψ(0) = 0, ψ(L) = 0},

corresponding respectively to the equations (1.14) and (1.15).
Again, for all n ∈ N, GD,n and GN,n are positive self-adjoint operators

on L2(0, L) with compact resolvent, and the first eigenvalue λD,n of GD,n
as well as the first eigenvalue λN,n of GN,n can be estimated using Rayleigh
formula.
Let us now focus on bounding λD,n from below.

λD,n = inf
{∫ L

0

(
|ϕ′(x)|2 + n2|x|2ϕ(x)2

)
dx;ϕ∈H1

0 (0, L) , ‖ϕ‖L2(0,L) =1
}

> inf
{∫

R+

(
|ϕ′(x)|2 + n2|x|2ϕ(x)2

)
dx;

ϕ ∈ H1
0 (R∗+) ∩ L2(R∗+, |x|dx) , ‖ϕ‖L2(R∗+) = 1

}

= n inf
{∫

Rdx

(
|φ′(x)|2 + |x|2φ(x)2

)
dx;

φ ∈ H1
0 (R∗+) ∩ L2(R∗+, |x|dx) , ‖φ‖L2(R∗+) = 1

}
,
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where we have used the transformation ϕ(x) = 4
√
nφ(
√
nx) in the last

identity. Now, the Rayleigh formula implies that the quantity

inf
{∫

Rdx

(
|φ′(x)|2 + |x|2φ(x)2

)
dx;

φ ∈ H1
0 (R∗+) ∩ L2(R∗+, |x|dx) , ‖φ‖L2(R∗+) = 1

}
coincides with the first eigenvalue of the operator HD defined on L2(R∗+) by

HDψ = −∂xxψ + x2ψ,

D(HD) = {ψ ∈ H2(R∗+) ∩H1
0 (R∗+), x2ψ ∈ L2(R∗+)}.

(Note that HD is a self-adjoint positive definite operator with compact
resolvent.) By symmetry arguments, it is clear that any eigenvector ψ0 of
HD, when extended oddly on R, is an odd eigenvector of the harmonic os-
cillator −∂xx+x2 defined on L2(R) with domain H2(R)∩L2(R, |x|2dx). As
the spectrum of the harmonic oscillator is well-known, see [24, Section 2.1],
it follows that the smallest eigenvalue of the operator HD equals 3, and
actually corresponds to the second eigenvalue of the harmonic operator on
R. We have thus proved that λD,n > 3n.
Similarly, one shows that

λN,n = n inf
{∫

Rdx

(
|φ′(x)|2 + |x|2φ(x)2

)
dx;

φ ∈ H1(R∗+) ∩ L2(|x|dx) , ‖φ‖L2(R∗+) = 1
}
.

The quantity

inf
{∫

Rdx

(
|φ′(x)|2 + |x|2φ(x)2

)
dx;

φ ∈ H1(R∗+) ∩ L2(R∗+, |x|dx) , ‖φ‖L2(R∗+) = 1
}

then coincides with the first eigenvalue of the operator HN defined on
L2(R∗+) by

HNψ = −∂xxψ + x2ψ,

D(HN ) = {ψ ∈ H2(R∗+), x2ψ ∈ L2(R∗+), with ∂xψ(0) = 0}.
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Consequently, the eigenvalues of HN coincide with the eigenvalues of the
harmonic operator −∂xx + x2 defined on L2(R) with domain H2(R) ∩
L2(R, |x|2dx) corresponding to even eigenfunctions. From [24, Section 2.1],
it follows that the first eigenvalue of HN equals 1, and thus λN,n > n.
Lemma 2.3 then easily follows, as the equation (1.14), respectively (1.15),

can be written under the form u′n + GD,nun = 0, respectively u′n +
GN,nun = 0.

4.3. On the rate of dissipation of the generalized Grushin
equations: Proof of Lemma 3.7

Let q satisfies (1.17). As in the proofs of Lemma 2.3, 2.7, we will estimate
the smallest eigenvalue of the operator Gn,q defined on L2(−L−, L+) by

Gn,qψ = −∂xxψ + n2q(x)2ψ, D(Gn,q) = H2 ∩H1
0 (−L−, L+).

Again, Gn,q is a self-adjoint positive definite operator with compact resol-
vent, so if we call λn,q its smallest eigenvalue, Lemma 2.7 will follow from
an estimate of the form: there exists C > 0 such that for all n ∈ N,

(4.4) λn,q > nq
′(0)− C

√
n.

Again, we use the Rayleigh formula:

λn,q = inf
{∫ L+

−L−

(
ϕ′(x)2 + n2q(x)2ϕ(x)2

)
dx;(4.5)

ϕ ∈ H1
0 (−L−, L+) , ‖ϕ‖L2(−L−,L+) = 1

}

> inf
{∫

R

(
ϕ′(x)2 + n2q̃(x)2ϕ(x)2

)
dx;

ϕ ∈ H1(R) ∩ L2(|x|dx) , ‖ϕ‖L2(R) = 1
}
,

where q̃ denotes any C2 extension of q over R such that q̃(x)/x converges
to 1 as |x| → ∞ and vanishes only at x = 0. Using Rayleigh formula, the
quantity

inf
{∫

R

(
ϕ′(x)2 + n2q̃(x)2ϕ(x)2

)
dx;ϕ∈H1(R)∩L2(|x|dx) , ‖ϕ‖L2(R) =1

}
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coincides with the first eigenvalue of the operator Hq,n defined on L2(R)
by

Hq,nψ = −∂xxψ + n2(q̃(x))2ψ, D(Hq,n) = {ψ ∈ H2(R), x2ψ ∈ L2(R)}.

With the assumptions (1.17) on q and on the choice of the extension q̃,
we are thus in position to apply [24, Proposition 2.2.1 and Remark 2.2.2],
which precisely states that, for n large enough, the first eigenvalue of Hq,n

is bounded from below by nq′(0)− C
√
n.

We readily deduce (4.4) and then Lemma 2.7.

4.4. Proof of Lemma 3.11

Lemma 3.11 is again based on a bound from below of the first eigenvalue
of the operator Gn,α defined for n ∈ N and α ∈ R on L2(−L−, L+) by

(4.6) Gn,αψ = −∂xxψ+n2(x−α)2ψ, D(Gn,α) = H2 ∩H1
0 (−L−, L+).

These operators are self-adjoint, positive definite, and have compact resol-
vent. It follows that the dissipation estimate (3.50) in Lemma 3.11 obviously
holds with λn,α being the first eigenvalue of Gn,α.
We thus estimate the first eigenvalue λn,α of Gn,α for n ∈ N and α ∈ R:

λn,α = inf
{∫ L+

−L−

(
ϕ′(x)2 + n2(x− α)2ϕ(x)2

)
dx;(4.7)

ϕ ∈ H1
0 (−L−, L+) , ‖ϕ‖L2(−L−,L+) = 1

}

> inf
{∫

R

(
ϕ′(x)2 + n2(x− α)2ϕ(x)2

)
dx;

ϕ ∈ H1(R) ∩ L2(|x|dx) , ‖ϕ‖L2(R) = 1
}

= inf
{∫

R

(
ϕ′(x)2 + n2x2ϕ(x)2

)
dx;

ϕ ∈ H1(R) ∩ L2(|x|dx) , ‖ϕ‖L2(R) = 1
}
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= n inf
{∫

R

(
φ′(x)2 + x2φ(x)2

)
dx;

φ ∈ H1(R) ∩ L2(|x|dx) , ‖ϕ‖L2(R) = 1
}

= n ,

which proves the first inequality in (3.51).
When α /∈ [−L−, L+], for every ϕ ∈ H1

0 (−L−, L+),∫ L+

−L−

(
ϕ′(x)2 + n2(x− α)2ϕ(x)2

)
dx

> n2
(

inf
[−L−,L+]

(x− α)
)2 ∫ L+

−L−
ϕ(x)2dx,

which immediately proves the second and third inequality in (3.51) by using
the variational characterization (4.7).

5. Optimality results

The goal of this section is to prove the optimality results stated in
items (2) of Theorems 1.1, 1.3, 1.4 and 1.6.

In fact, all the proofs of these results are very similar. We shall there-
fore spend most of this section on the most intricate case, namely the one
corresponding to Theorem 1.4(2).

5.1. Proof of Theorem 1.4(2): Non observability in time T < T∗
for Grushin equations

We are going to prove that, if system (1.16) is observable on (0, T )× Γ,
then T > T∗. To that end, we will apply the observability inequality (1.18)
to a particular solution of the Grushin equation, with separate variables.

Let Gn,q be the operator defined by

(5.1) D(Gn,q) = H2 ∩H1
0 (−L−, L+) , Gn,q = −∂2

x + n2q(x)2,

λn,q be its smallest eigenvalue, ϕn,q be the associated eigenfunction,

(5.2)


−ϕ′′n,q(x) + n2q(x)2ϕn,q(x) = λn,qϕn,q(x) , x ∈ (−L−, L+) ,
ϕn,q(−L−) = ϕn,q(L+) = 0 ,
‖ϕn,q‖L2(−L−,L+) = 1 .
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We then consider the following solutions of system (1.16)

(5.3) un(t, x, y) = ϕn,q(x)e−λn,qt sin(ny) .

The observability inequality (1.18) for this sequence of specific solution un
then writes, for all n ∈ N,

(5.4) e−2λn,qT 6 C
1− e−2λn,qT

2λn,q
ϕ′n,q(L+)2 6

C

λn,q
ϕ′n,q(L+)2 .

We shall show that, as C is a constant which does not depend on n, this
cannot be satisfied if the time T is too small.
The main points are thus the following ones:
• a precise estimate of λn,q, see Proposition 5.1 below,
• an Agmon estimate on ϕn,q, allowing to estimate precisely ϕ′n,q(L),
see Proposition 5.2 below.

The precise estimate on λn,q reads as follows:

Proposition 5.1. — Let L− > 0, L+ > 0, q ∈ C3([−L−, L+],R) sat-
isfying (1.17). Let Gn,q be the operator defined by (5.1) and λn,q be its
smallest eigenvalue. Then there exists a constant C > 0 such that, for n
large enough,

|λn,q − nq′(0)| 6 C
√
n.

The proof of Proposition 5.1 is done in Section 5.1.1.
Agmon estimates allow to prove the following result:

Proposition 5.2. — Let L−, L+, q, Gn,q and λn,q be as in Proposi-
tion 5.1 and ϕn,q be the eigenfunction of Gn,q associated to the eigenvalue
λn,q, see (5.2). For every ε > 0 there exists C = C(ε) > 0 such that, for n
large enough

|ϕ′n,q(L+)| 6 C exp
(
−n

(∫ L+

0
q(s)ds− ε

))
.

The proof of Proposition 5.2 is given in Section 5.1.2.
Let us now explain how Proposition 5.1 and Proposition 5.2 imply The-

orem 1.4(2). Indeed assume that the time T is such that system (1.16) is
observable in time T through {L+}× (0, π). Then, applying the observabil-
ity inequality (1.18) to the solutions un in (5.3), we get the existence of a
constant C > 0 such that for all n ∈ N, (5.4) holds. Now, from Proposi-
tion 5.1, for all n ∈ N large enough,

e−2λn,qT > e−2nq′(0)T−C
√
nT ,
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while from Proposition 5.1 and Proposition 5.2, for any ε > 0, there exists
C such that for all n ∈ N,

1
λn,q
|ϕ′n,q(L+)|2 6 C(ε)n exp

(
−2n

∫ L+

0
q(s) ds+ 2nε

)
.

Therefore, the inequality (5.4) implies that for any ε > 0, there exists C
such that for all n ∈ N large enough,

e−2nq′(0)T−C
√
nT 6 CC(ε)n exp

(
−2n

∫ L+

0
q(s) ds+ 2nε

)
.

Looking at the asymptotics n→∞, this inequality implies:

q′(0)T −
∫ L+

0
q(s) ds+ 2ε > 0.

Now, as ε > 0 is arbitrary, we let it go to zero, and we have thus obtained:

T >
1

q′(0)

∫ L+

0
q(s) ds,

which concludes the proof of Theorem 1.4(2).

5.1.1. Proof of Proposition 5.1

The proof of the lower bound λn,q > nq′(0) − C
√
n for n large enough

has been done in Section 4.3.
To prove the upper bound λn,q 6 nq′(0) +

√
n we consider ε > 0 such

that −L−+ε < 0 < L+−ε, θ ∈ C∞(R) supported on (−L−+ε/2, L+−ε/2)
such that 0 6 θ 6 1, θ = 1 on (−L− + ε, L+ − ε) and the function

(5.5) ϕ(x) = Cnθ(x) exp
(
−n
∫ x

0
q(s)ds

)
where 1

C2
n

=
∫ L+

−L−
θ(x)2 exp

(
−2n

∫ x

0
q(s)ds

)
dx .

We deduce from the inequality |q(s)| 6 ‖q′‖∞|s| that C2
n = O

n→∞
(
√
n).

Indeed,

1
C2
n

>
1√
n

∫ (L+−ε)
√
n

(−L−+ε)
√
n

e−‖q
′‖∞y2

dy .
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We have
−ϕ′′(x) + n2q(x)2ϕ(x) = nq′(x)ϕ(x)

+ Cn(2nq(x)θ′(x)− θ′′(x))e−n
∫ x

0
q(s)ds

, x ∈ (−L−, L+),
ϕ(−L−) = ϕ(L+) = 0 ,
‖ϕ‖L2(−L−,L+) = 1 ,

thus by multiplying the first identity by ϕ and integrating by parts, we get∫ L+

−L−

(
ϕ′(x)2 + n2q(x)2ϕ(x)2

)
dx = nq′(0) + I1 + I2

where

I1 = nC2
n

∫ L+

−L−
[q′(x)− q′(0)]θ(x)2e

−2n
∫ x

0
q(s)dsdx

= C2
n

∫ L+

−L−

d
dx

[ [q′(x)− q′(0)]θ(x)2

2q(x)

]
e
−2n

∫ x
0
q(s)dsdx

6

∥∥∥∥ d
dx

[ [q′(x)− q′(0)]
2q(x)

]∥∥∥∥
∞

+ C2
n

∫ L+

−L−
2θ′(x)θ(x) [q′(x)− q′(0)]

2q(x) e
−2n

∫ x
0
q(s)dsdx

6 C
(

1 +
√
ne
−2n

∫ L+−ε

0
q(s)ds +

√
ne
−2n

∫ 0

−L−+ε
|q(s)|ds)

= O
n→∞

(1),

and

I2 = C2
n

∫ L+

−L−
(2nq(x)θ′(x)− θ′′(x))θ(x)e−2n

∫ x
0
q(s)dsdx

6 Cn3/2
(
e
−2n

∫ L+−ε

0
q(s)ds + e

−2n
∫ 0

−L−+ε
|q(s)|ds)

= O
n→∞

(1) ,

in which in both estimates, we used the fact that θ′ is supported in the set
[−L−,−L− + ε] ∪ [L+ − ε, L+] and that∫ L+−ε

0
q(s) ds > 0,

∫ −L−
0

q(s) ds =
∫ 0

−L−
|q(s)|ds > 0,

due to the assumptions (1.17).
Now, plugging ϕ in (4.5), we immediately obtain the upper bound λn,q 6

nq′(0) + C
√
n, which concludes the proof of Proposition 5.1 (in fact, we

have proved slightly better, namely λn,q 6 nq′(0) + C).
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5.1.2. Proof of Proposition 5.2

To simplify the notations, we drop the subscript q. Let ε ∈ (0, 1). We
introduce the function

(5.6) gn(x) := ϕn(x) exp
(
n
√

1− ε
∫ x

0
q(s)ds

)
that satisfies
−g′′n(x) + 2n

√
1− εq(x)g′n(x)

+
(
εn2q(x)2 + n

√
1− εq′(x)− λn

)
gn(x) = 0 , x ∈ (−L−, L+) ,

gn(−L−) = gn(L+) = 0 ,

and ∫ L+

−L−

(
|g′n(x)|2 + (εn2q(x)2 − λn)|gn(x)|2

)
dx = 0 .

Let
δn := 2q′(0)

εn
.

For any x ∈ (−L−, L+) that satisfies q(x)2 > δn we have

εn2q(x)2 − λn > εn2δn − nq′(0)− C
√
n = nq′(0)− C

√
n > 0

for n large enough. Therefore, for n large enough,∫ L+

−L−
|g′n(x)|2dx 6 −

∫
{q2<δn}

(εn2q(x)2 − λn)|gn(x)|2dx

6 Cn
∫
{q2<δn}

|ϕn(x)|2e2n
√

1−ε
∫ x

0
qdx.

For n large enough, the set {q2 < δn} is close to 0, where q(x) ∼ q′(0)x.
Thus, if q2(x) < δn then the size of x is almost

√
δn/q

′(0), implying in
particular x 6

√
2δn/q′(0), and

√
1− ε n

∫ x

0
|q(s)|ds 6

√
1− εn

(
q′(0)x

2

2 + Cx3
)

6
√

1− ε nδn
q′(0)

(
1 + C

√
δn

)
6

2
ε

for n large enough.
We get a positive constant C = C(ε) > 0 such that, for n large enough,∫ L+

−L−
|g′n(x)|2dx 6 Cn .
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We deduce from this H1
0 -estimate and the equation solved by gn that, for

n large enough,
‖g′′n‖L2(−L−,L+) 6 Cn

5/2,

for some constant C = C(ε) > 0.
We then write

|g′n(L+)|2 =
∫ L+

0
∂x(x|g′n|2) dx

6 ‖g′n‖2L2(−L−,L+) + L+‖g′n‖2L2(−L−,L+)‖g
′′
n‖2L2(−L−,L+)

6 Cn3.

Using now the identity

ϕ′n(L+) = g′n(L+) exp
(
−n
√

1− ε
∫ L+

0
q(s)ds

)
,

and the fact that ε > 0 is arbitrary small, we obtain Proposition 5.2 for ε
small enough. The case of large ε is then obvious.

Remark 5.3. — The exact same arguments show that the time given
in (1.23) is indeed the critical time of observability for (1.16) when observ-
ing from both lateral boundaries, i.e. for the observability inequality (1.22)
to hold.

5.2. Proof of Theorem 1.1(2)

First, we shall indicate that when dx = 1, Theorem 1.1(2) is already
proved in [3, Theorem 5 for γ = 1]. Also note that the proof of Theo-
rem 1.4(2) given above immediately yields Theorem 1.1(2) in this case.
In order to show that Theorem 1.1(2) holds when dx > 1, one should

follow the same steps as in Section 5.1 and prove the following two propo-
sitions:

Proposition 5.4. — Let Gµ be as in (4.1) with Ωx = B(0, L) ⊂ Rdx
for some L > 0, and let λµ be its smallest eigenvalue. Then there exists a
constant C > 0 such that, for µ large enough,

|λµ − µdx| 6 C
√
µ.

Proposition 5.5. — Within the setting of Proposition 5.4 and ϕµ be
the eigenfunction of Gµ associated to the eigenvalue λµ. For every ε > 0
there exists C = C(ε) > 0 such that, for µ large enough

‖∂νϕµ(L)‖L2(∂B(0,L)) 6 C exp
(
−µL

2

2 + µε

)
.
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The proofs of Propositions 5.4 and 5.5 closely follow the ones of Propo-
sitions 5.1 and 5.2, by working on

ϕ(x) = Cµθ(|x|) exp
(
−µ |x|

2

2

)
instead of (5.5) for the proof of Proposition 5.4, and on

gµ(x) = ϕµ(x) exp
(
−µ(1− ε) |x|

2

2

)
instead of (5.6) for the proof of Proposition 5.4. Details are left to the
reader.
Based on Propositions 5.4 and 5.5, Theorem 1.1 easily follows from the

same considerations as in Section 5.1.

5.3. Proof of Theorem 1.3(2)

Here again, we only sketch the proof of Theorem 1.3(2) as it closely
follows the one of Theorem 1.4 presented in Section 5.1.

Proposition 5.6. — For n ∈ N, let GD,n be as in (4.2) and GN,n be
as in (4.3), and let λD,n, respectively λN,n, be the smallest eigenvalue of
GD,n, respectively GN,n. Then there exists a constant C > 0 such that, for
n large enough,

|λD,n − 3n| 6 C
√
n, |λN,n − n| 6 C

√
n.

Proposition 5.7. — Within the setting of Proposition 5.6 and ϕD,n,
respectively ϕN,n, be the eigenfunction of GD,n, respectively GN,n associ-
ated to the eigenvalue λD,n, respectively λN,n. For every ε > 0 there exists
C = C(ε) > 0 such that, for n large enough

|ϕ′N,n(L)| 6 C exp
(
−nL

2

2 + nε

)
, |∂xϕ′D,n(L)| 6 C exp

(
−nL

2

2 + nε

)
.

The proof of Proposition 5.7 readily follows the one of Proposition 5.2
and is therefore left to the reader.

The proof of Proposition 5.6 has to be slightly modified when considering
the Dirichlet case, in which one should take

ϕ(x) = Cnθ(x)x exp
(
−nx

2

2

)
instead of (5.5) for the proof of Proposition 5.6 in the Dirichlet case. Details
are left to the reader.
Again, once Propositions 5.6 and 5.7 are proved, Theorem 1.3(2) easily

follows.

TOME 70 (2020), FASCICULE 1



308 Karine BEAUCHARD, Jérémi DARDÉ & Sylvain ERVEDOZA

5.4. Proof of Theorem 1.6(2): Non observability in time T < T∗
for Heisenberg equations

We are going to prove that, if system (1.24) is observable on (0, T )× Γ,
then T > T∗. To that end, we will apply the observability inequality to
a particular solution of the Heisenberg equation, with separate variables.
Let ε > 0, and α ∈ Q such that −L− < α < −L− + ε, and let λn,α be
the smallest eigenvalue and ϕn,α the corresponding eigenfunction of the
operator Gn,α in (4.6).
We write α = −pα/nα with (pα, nα) ∈ N2. For k ∈ N, we consider the

subsequence (nk, pk) = (knα, kpα) and define

uk,α(t, x, y, z) = ϕnk,α(x)e−λnk,αte−inkze−ipky.

By construction, for each k ∈ N, uk is a solution of (1.24), and the observ-
ability inequality (1.25) applied to uk,α implies, for k large,

e−2λnk,αT 6 C
1

2λnk,α
ϕ′nk,α(L+)2 .

By Propositions 5.1 and 5.2 applied with (−L−, L+) = (−L−−α,L+−α)
and q(x) = x, following the argument in Section 5.1, we obtain that, for all
ε > 0,

T >
1
2(L+ − α)2 − ε.

Now, ε > 0 is arbitrary, and α is any rational number larger than −L−.
This leads that T has to be larger than (L+ +L−)2/2 as claimed in Theo-
rem 1.6(2).

Appendix A. On the cost of observability of the heat
equation with potential

In this section, we recall the result of [21, Theorem 1.2 and Section 8.6]
for the cost of observability of the heat equation with a potential.

Theorem A.1 ([21, Theorem 1.2 and Section 8.6]). — Let Ω be a
smooth bounded domain of Rd, d > 1, and Γ be a non-empty open subset
of ∂Ω. Then there exists a constant C = C(Ω,Γ) > 0 such that for all
T > 0, V ∈ L∞((0, T )× Ω), ϕ0 ∈ H1

0 (Ω), the solution ϕ of

(A.1)


∂tϕ−∆ϕ+ V ϕ = 0, in (0, T )× Ω,
ϕ = 0, on (0, T )× ∂Ω,
ϕ(0, · ) = ϕ0, in Ω,
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satisfies the following observability property

‖ϕ(T )‖L2(Ω) 6 C ‖∂νϕ‖L2((0,T )×Γ)

× exp
(
C

(
1 + 1

T
+ T ‖V ‖L∞((0,T )×Ω) + ‖V ‖2/3L∞((0,T )×Ω)

))
.

One of the main consequence of Theorem A.1 is the fact that, for all
M > 0, the cost of observability of the heat equation with potential V ∈
L∞((0, T ) × Ω) with ‖V ‖L∞((0,T )×Ω) 6 M observed during a time T is
bounded by a constant C = C(T,M).
We shall also use the following consequence of Theorem A.1.

Corollary A.2. — Let Ω be a smooth bounded domain of Rd, d > 1,
and Γ be a non-empty open subset of ∂Ω. Then there exists a constant
C = C(Ω,Γ) > 0 such that for all T > 0, V ∈ L∞((0, T )× Ω) with V > 0,
ϕ0 ∈ H1

0 (Ω), the solution ϕ of (A.1) satisfies the following observability
property

(A.2) ‖ϕ(T )‖L2(Ω) 6 C ‖∂νϕ‖L2((0,T )×Γ)

× exp
(
C

(
1 + 1

T
+ ‖V ‖2/3L∞((0,T )×Ω)

))
.

Proof. — Let V ∈ L∞((0, T )×Ω) with V > 0 and consider the solution
ϕ of (A.1). As V > 0, multiplying (A.1) by ϕ(t, · ) and integrating between
the times T0 and T , we easily get that, for all T0 ∈ (0, T ),

‖ϕ(T )‖L2(Ω) 6 ‖ϕ(T0)‖L2(Ω) .

Therefore, applying (A.1) to ϕ on the time interval (0, T0), there exists a
constant C > 0 independent of V such that for all T0 ∈ (0, T ],

(A.3) ‖ϕ(T )‖L2(Ω)

6 C ‖∂νϕ‖L2((0,T0)×Γ)

× exp
(
C

(
1+ 1

T0
+T0 ‖V ‖L∞((0,T0)×Ω) +‖V ‖2/3L∞((0,T0)×Ω)

))
6 C ‖∂νϕ‖L2((0,T )×Γ)

× exp
(
C

(
1+ 1

T0
+T0 ‖V ‖L∞((0,T )×Ω) +‖V ‖2/3L∞((0,T )×Ω)

))
.
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If T > ‖V ‖−1/3
L∞((0,T )×Ω), we choose T0 = ‖V ‖−1/3

L∞((0,T )×Ω), so that

1 + 1
T0

+ T0 ‖V ‖L∞((0,T )×Ω) + ‖V ‖2/3L∞((0,T )×Ω)

= 1 + ‖V ‖1/3L∞((0,T )×Ω) + 2 ‖V ‖2/3L∞((0,T )×Ω)

6 3
(

1 + ‖V ‖2/3L∞((0,T )×Ω)

)
.

If T 6 ‖V ‖−1/3
L∞((0,T )×Ω), we choose T0 = T , so that

1 + 1
T0

+ T0 ‖V ‖L∞((0,T )×Ω) + ‖V ‖2/3L∞((0,T )×Ω)

= 1 + 1
T

+ T ‖V ‖L∞((0,T )×Ω) + ‖V ‖2/3L∞((0,T )×Ω)

6 1 + 1
T

+ 2 ‖V ‖2/3L∞((0,T )×Ω)

6 2
(

1 + 1
T

+ ‖V ‖2/3L∞((0,T )×Ω)

)
.

Therefore, choosing T0 ∈ (0, T ] appropriately in (A.3), we can always
get the observability inequality (A.2), for a constant C independent of
T and V . �
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