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NONCROSSING PARTITIONS, BRUHAT ORDER AND
THE CLUSTER COMPLEX

by Philippe BIANE & Matthieu JOSUAT-VERGÈS

Abstract. — We introduce two order relations on finite Coxeter groups which
refine the absolute and the Bruhat order, and establish some of their main proper-
ties. In particular, we study the restriction of these orders to noncrossing partitions
and show that the intervals for these orders can be enumerated in terms of the
cluster complex. The properties of our orders permit to revisit several results in
Coxeter combinatorics, such as the Chapoton triangles and how they are related,
the enumeration of reflections with full support, the bijections between clusters
and noncrossing partitions.
Résumé. — Nous introduisons deux relations d’ordre sur les groupes de Coxe-

ter finis qui raffinent l’ordre absolu et l’ordre de Bruhat, et obtenons quelques pro-
priétés essentielles. En particulier, nous étudions la restriction de ces ordres aux
partitions non-croisées, et montrons que les intervalles pour ces ordres peuvent être
comptés en termes du complexe d’amas. Les propriétés de nos ordres permettent
de revoir divers résultats en combinatoire des groupes de Coxeter finis, tels que
les triangles de Chapoton et leurs relations, l’énumération des réflexions à support
pleins, les bijections entre partitions non-croisées et amas.

1. Introduction

Let W be a Coxeter group with S a simple system of generators. There
exists several natural order relations on W , namely the left or right weak
order, the Bruhat order and the absolute order (this last order is associated
to the length function with respect to the generating set of all reflections,
see below). Two elements v, w ∈ W such that vw−1 is a reflection are
always comparable with respect to both the absolute and the Bruhat order.
In this paper we introduce two order relations on W , which we denote
by @ and �, which encode this situation, namely for any pair v, w as
above, such that v < w (here < denotes the absolute order), we define
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2242 Philippe BIANE & Matthieu JOSUAT-VERGÈS

v @· w if v <B w (here <B is the Bruhat order) and v �· w if w <B v,
then extend @· and �· to order relations on W by transitivity. We believe
that these two orders are important tools for understanding noncrossing
partitions, clusters, and their interrelations. Bessis [7, Section 6.4] suggested
to study how the different orders on W are related. The present paper can
be considered as a first step in this direction.
Some versions of the orders @ and � were considered before this work.

An order called � on the set of classical noncrossing partitions was in-
troduced independently by Belinschi and Nica [6, 24] in the context of
noncommutative probabilities, and by Senato and Petrullo [26] in order to
study Kerov polynomials. The notion of noncrossing partition can be de-
fined in terms of the geometry of the symmetric group [8] and it has been
extended to general Coxeter systems: a set of noncrossing partitions can be
associated to some Coxeter element c inW as NC(W, c) = {w ∈W |w 6 c}
(see [7, 11]). The classical case corresponds to c being the cycle (1, . . . , n)
in the symmetric group Sn. In this context, the order @ on NC(W, c) was
introduced by the second author in [21], with a different definition, in order
to give a refined enumeration of maximal chains in NC(W, c).
After defining the two order relations @ and �, we will consider the

restriction of these orders to the set of noncrossing partitions and give a
more direct characterization of the pairs v, w ∈ NC(W, c) with v @ w or
v � w. We will also introduce interval partitions for arbitrary finite Coxeter
groups, which generalize the classical interval partitions. These partitions
play an important role in this study. Then we will consider intervals for the
two orders. These turn out to be closely related to the cluster complex of
Fomin and Zelevinsky [19]. Originated from the theory of cluster algebras,
the cluster complex is a simplicial complex with vertex set the almost posi-
tive roots ofW (see Section 6 for details), associated to a standard Coxeter
element in a finite Coxeter group. Connections between noncrossing par-
titions and the cluster complex were first observed via an identity called
the F = M theorem, conjectured by Chapoton [14]. We will see that the
introduction of the two orders @ and� sheds new light on these relations.
In particular an explicit bijection between the facets of the cluster complex
and the noncrossing partitions associated with the same Coxeter element
was given by Reading [27], using the notion of c-sortable elements. Another
bijection was given in [3] in the case of bipartite Coxeter elements. We will
recast this last bijection in terms of the orders @ and �, which will allow
us to extend it to arbitrary standard Coxeter elements, using the definition
of the cluster complex by Reading. We will also give a bijection between
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NONCROSSING PARTITIONS 2243

the intervals for � and faces of the positive cluster complex. We also show
that intervals of height k for @ are equienumerated with the faces of the
cluster complex of size n− k and give a bijective proof in the case where c
is a bipartite Coxeter element. Finally the orders � and @ will allow us to
revisit the Chapoton triangles, to give new proofs of their properties and
to refine them.
This paper is organized as follows. In Section 2 we recall basic facts about

finite reflections groups, root systems and Coxeter elements. In Section 3
we define the noncrossing partitions and recall their main properties. We
also prove Proposition 3.5, showing a relation between the Bruhat order
and the Kreweras complement on NC(W, c), which plays a crucial role in
this work. Section 4 is the central part of this paper, in it we introduce the
two order relations @ and �, which are the main subject of this paper, we
characterize these relations and obtain some of their basic properties. We
give a few examples in low rank in Section 5. In Section 6 we study the
cluster complex associated to a standard Coxeter element, as defined by
Reading [27]. This simplicial complex is defined with the help of a binary
relation for which we give a new characterization. We also recall facts about
nonnesting partitions and Chapoton triangles. In Section 7 we give some
enumerative properties of the intervals of the two order relations which ex-
hibit several connections with the cluster complex. In the following section,
using the orders @ and �, we generalize the bijection of [3] between non-
crossing partitions and maximal faces of the cluster complex to encompass
arbitrary standard Coxeter elements, then we use this to give a bijection
between intervals for the order� and faces of the positive cluster complex.
The final section is devoted to some properties of the Chapoton triangles.

Acknowledgement. We thank Cesar Ceballos for explanations about
the subword complex.

2. Finite Coxeter or real reflection groups

We fix notations, recall some basic facts about real reflection groups and
refer to [10, 20] for general information about these.

TOME 69 (2019), FASCICULE 5



2244 Philippe BIANE & Matthieu JOSUAT-VERGÈS

2.1. Finite reflection groups, roots, reflections and inversions

2.1.1. Basic definitions

Let V be a finite dimensional euclidian space and W ⊂ O(V ) be a finite
real reflection group. Let S = {s1, . . . , sn} be a simple system of reflections
for W . We denote by ` the length function associated to S. The set of
all reflections in W is denoted by T . A root is a unit vector normal to the
hyperplane fixed by some t ∈ T . The choice of the simple system S imposes
a way to split roots into positive and negative roots, and each reflection
t ∈ T has an associated positive root which we denote r(t). The set of
positive roots Π is thus in bijection with T . The set of negative roots is
−Π and the set of all roots is Π ∪ (−Π). The fundamental chamber C is
the dual cone of the positive span of positive roots.
The Bruhat order, denoted by 6B , is defined as the transitive closure

of the covering relations v lB w if vw−1 ∈ T and `(v) < `(w). A left
inversion (respectively, right inversion) of w ∈ W is a t ∈ T such that
`(tw) < `(w) (respectively, `(wt) < `(w)). The set of left (respectively,
right) inversions is denoted by InvL(w) (respectively, InvR(w)). Note that
a bijection InvL(w)→ InvR(w) is given by t 7→ w−1tw.

Proposition 2.1 ([10, Proposition 4.4.6]). — For w ∈ W and t ∈ T ,
we have:

w
(
r(t)

)
=
{
−r(wtw−1) if t is a right inversion of w,
r(wtw−1) otherwise.

(2.1)

In particular, t is a right inversion of w if and only if w(r(t)) ∈ (−Π) and
a left inversion if and only if w−1(r(t)) ∈ (−Π).

Corollary 2.2. — If t1, t2 ∈ T commute then t1 ∈ InvR(w) ⇔ t1 ∈
InvR(wt2) i.e. w 6B wt1 ⇔ wt2 6B wt2t1.

If a simple reflection s ∈ S is a right (respectively, left) inversion of w,
it is called a right (respectively, left) descent of w.
If w = si1si2 . . . sir is a reduced expression for w then the r left inversions

of w are the reflections of the form

(2.2) (si1si2 . . . sil−1)sil(si1si2 . . . sil−1)−1, l = 1, . . . , r,

and of course there is a similar formula for right inversions.
The support of w ∈W , denoted by supp(w), is the subset of S containing

the simple reflections appearing in some reduced expression of w. It does
not depend on the chosen reduced expression since any two of them are
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related by a sequence of braid moves (see [10]). Equivalently, supp(w) is
the smallest J such that w ∈ WJ , see Section 2.2. We say that w has
full support, or that w is full, if supp(w) = S. Using the explicit formula
in (2.2), we have:

supp(t) ⊂ supp(w)
if t is a right or left inversion of w.

Remark 2.3. — A root r ∈ Π is in ∆ iff it cannot be written as a sum∑
r∈Π crr where the coefficients cv are > 0 and at least two of them are

nonzero. This characterizes the set of simple roots in Π. Also, the simple
roots form the unique set of n positive roots having the property that the
scalar product of any pair is nonpositive, see [20].

2.1.2. Coxeter elements

A standard Coxeter element in (W,S) is some product si1 · · · sin of all
the simple reflections in some order. It is known that all standard Cox-
eter elements are conjugate in W , but in general they do not form a full
conjugacy class. An element which is conjugate to some standard Coxeter
element is called a Coxeter element. In this paper we will mostly consider
standard Coxeter elements.

Lemma 2.4. — If c is a standard Coxeter element and s ∈ S a right
or left descent of c, then scs is also a standard Coxeter element. All stan-
dard Coxeter elements are connected to each other via a sequence of such
transformations.

See [20, Section 3.16] for a proof.
Let S = S+ ∪ S− be a partition such that all si in S+ commute and

all si in S− commute (such a partition always exists), then the standard
Coxeter element c = c+c− where c± =

∏
s∈S± s is called a bipartite Coxeter

element.

2.1.3. Absolute length and the absolute order

The absolute length is the length function associated to the generating
set T :

(2.3) `T (w) = min
{
k > 0

∣∣∣∣w can be expressed as a
product of k reflections

}
.

TOME 69 (2019), FASCICULE 5



2246 Philippe BIANE & Matthieu JOSUAT-VERGÈS

This quantity has a geometric interpretation (see [11, Proposition 2.2]):

(2.4) `T (w) = n− dim(Fix(w))

where Fix(w) = ker(w − I).
We call a factorization v = v1 . . . vk in W minimal if

(2.5) `T (v) = `T (v1) + . . .+ `T (vk).

The following elementary lemma is well known, cf. [7].

Lemma 2.5. — Let v = v1 . . . vk be a minimal factorization, then for any
subsequence i1 . . . il with 1 6 i1 < . . . < il 6 k the factorization vi1 . . . vil
is minimal, moreover vi1 . . . vil 6 v.

Proof. — If i1 = 1, i2 = 2, . . . , il = l the statement is a simple conse-
quence of the triangle inequality for `T . In the general case observe that for
any i < k the factorization v = v1 . . . vi−1v̂iv̂i+1vi+2 . . . vk with v̂i = vi+1
and v̂i+1 = v−1

i+1vivi+1 is again a minimal. Using this observation we can
move successively vi1 , vi2 , . . . , vil to the beginning and reduce to the first
case. �

Remark 2.6. — The preceding lemma implies that, contrary to the case
of reduced decomposition into simple reflections, in the case of a minimal
factorization into reflections every subword of a reduced word is reduced.
In order to avoid confusion, in this paper we will reserve the expressions
“reduced word” and “subword” to the case of factorizations into simple
reflections, related to the Bruhat order and reserve the expression “minimal
factorization” to the case of factorizations satisfying (2.5).

The absolute length (2.3) allows to define an order relation on W , the
absolute order denoted here by 6:

v 6 w if `T (w) = `T (v−1w) + `T (v).

In particular a cover relation for this order, denoted by vlw, holds if and
only if vw−1 ∈ T and `T (v) = `T (w) − 1. The following properties of the
absolute order are immediate or follow directly from Lemma 2.5.

Proposition 2.7. — The absolute order is invariant under conjugation
and inversion, namely for all u, v, w ∈W one has

(2.6) v 6 w ⇐⇒ v−1 6 w−1 ⇐⇒ uvu−1 6 uwu−1.

Let u, v, w ∈ W be such that u 6 v 6 w then u−1v 6 u−1w and
u 6 uv−1w 6 w.

ANNALES DE L’INSTITUT FOURIER
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2.2. Parabolic subgroups

2.2.1. Basic definitions

Let J ⊂ S, then the standard parabolic subgroup WJ is the subgroup
generated by J . If s ∈ S we will also use the notationW〈s〉 for the parabolic
subgroup associated with S \ {s}. A parabolic subgroup is any subgroup
conjugate to some WJ .

The parabolic subgroups have the form

P = {w ∈W | w(x) = x for all x ∈ E}

for some subspace E ⊂ V , moreover if P is a parabolic subgroup and

Fix(P ) = {x ∈ V | w(x) = x for all w ∈ P}

then P is itself a reflection group in O(Fix(P )⊥). In particular, to each
w ∈W we can associate a parabolic subgroup Γ(w):

(2.7) Γ(w) = {v ∈W | Fix(w) ⊂ Fix(v)}.

2.2.2. Simple generators and roots

Let P ⊂W be a parabolic subgroup. Then P is itself a reflection group,
with reflection set T∩P , and its roots form a subset of those ofW . A natural
set of positive roots for P is Π(P ) = Π∩P . Accordingly, there is a unique set
of simple roots ∆(P ) (see Remark 2.3 above) and a set of simple reflections
S(P ) = r−1(∆(P )). We have ∆(P ) ⊂ Π. Note that ∆(P ) ⊂ ∆ does not
hold in general, this only happens for standard parabolic subgroups.
Since there are several definitions of these sets ∆(P ) or S(P ) given in the

literature, in order to apply results from various references, it is in order
to check that they are all equivalent.

Remark 2.8. — A set of positive roots is ∆(P ) for some parabolic sub-
group P if and only if they are such that the scalar product of any pair is
nonpositive.

Proposition 2.9. — The simple reflections of P are the reflections t ∈
T ∩ P satisfying InvR(t) ∩ P = {t}.

Proof. — A reflection t ∈ P ∩T is simple as an element of P , if and only
if it has only one inversion as an element of P . Since InvR(t) ∩ P is the
right inversion set of t as an element of P , the result follows. �

TOME 69 (2019), FASCICULE 5
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Proposition 2.10. — The set ∆(P ) ⊂ Π(P ) is the unique simple sys-
tem of P such that the fundamental chamber of P contains that of W .

Proof. — Since Π(P ) ⊂ Π, the positive span of Π(P ) is included in that
of Π. Taking the dual cone reverses inclusion, so the fundamental chamber
of P contains that of W . �

2.2.3. The Bruhat graph

The Bruhat graph on the vertex set W is defined by putting an oriented
arrow w → v if vw−1 ∈ T and `(v) < `(w). The unoriented underlying
graph is the Cayley graph of W with the reflections as generating set.

Proposition 2.11 ([17]). — Let (W,S) be a Coxeter system and P a
parabolic subgroup, then the restriction of the Bruhat graph to P is the
Bruhat graph of P for its canonical generators.

In other words, if 6BP
is the Bruhat order on P and if v, w ∈ P and

vw−1 is a reflection then

v 6B w ⇐⇒ v 6BP
w.

This implies in particular that for v, w ∈ P one has

v 6BP
w =⇒ v 6B w.

The converse implication does not hold in general, see (4.1) below.

3. Noncrossing partitions

We refer to [1] for the general facts on this subject.

3.1. Definition of noncrossing partitions

Let c be a standard Coxeter element, then the set of noncrossing parti-
tions associated to c, denoted by NC(W, c), is the set of all w ∈W such that
w 6 c. In the case where W is the symmetric group Sn+1 with the Coxeter
generators si = (i, i+ 1) and c = s1 . . . sn is the cycle (1, 2, 3, . . . , n, n+ 1)
one can associate to any w ∈ NC(W, c) the partition given by its cycle
decomposition. This coincides with the classical notion of noncrossing par-
tition as defined by Kreweras, see [8, 22]. In the sequel we denote by NCn

the set of classical noncrossing partitions.

ANNALES DE L’INSTITUT FOURIER
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Endowed with the order 6 the set NC(W, c) is a lattice [11]. Since all
Coxeter elements are conjugate, the isomorphism class of this lattice struc-
ture does not depend on c. The map w 7→ Γ(w) which associates a parabolic
subgroup to a noncrossing partition is injective, moreover one has

(3.1) v 6 w ⇐⇒ Γ(v) ⊂ Γ(w)

(see for example [1, Section 5.1.3]). In particular, the codimension of the
fixed subspace, which is also the absolute length (see (2.4)) gives a rank
function on NC(W, c), which is a rank function for the lattice structure.
Parabolic subgroups can be considered as generalized set partitions so

that the map Γ gives a way to consider noncrossing partitions as particular
set partitions. In the classical case of noncrossing partitions of [1, n] for
all i < j < k < l, putting t1 = (i, k), t2 = (j, l) neither product t1t2 or
t2t1 belongs to NCn and this property characterizes the crossing of two
transpositions with disjoint supports. This leads to the following definition
of a property which will play an important role later.

Definition 3.1 (Bessis [7, Definition 2.1.1]). — Two reflections t1, t2
are called c-noncrossing if either t1t2 6 c or t2t1 6 c.

Remark 3.2.
(1) Bessis uses the notation ‖c to denote this relation, however this con-

flicts with the use of the same notation by Reading [27] to denote
another relation. We will use Reading’s notation later on (see Defi-
nition 6.3) so we will just say that two reflections are c-noncrossing
when needed, without using a specific notation for this relation.

(2) Observe that if two reflections t1, t2 do not commute then one can-
not have both t1t2 6 c and t2t1 6 c (this follows from the fact that
Γ(t1t2) = Γ(t2t1) = 〈t1, t2〉 and the injectivity of w 7→ Γ(w) on
NC(W, c)).

One can define noncrossing partitions in the same way when c is a (gen-
eral) Coxeter element, i.e. is conjugate to some standard Coxeter element.
Then any noncrossing partition w 6 c is a Coxeter element of a parabolic
subgroup, see [7, Lemma 1.4.3]. However our results crucially depend on
properties of standard Coxeter elements, therefore in the following we will
only consider such Coxeter elements.

Proposition 3.3. — Let w ∈ NC(W, c), then there exists an indexing
s1, . . . , sk of the simple generators of Γ(w) such that

w = s1 · · · sk.

TOME 69 (2019), FASCICULE 5
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Proof. — This follows from results of Reading [27]. More precisely, The-
orem 6.1 from [27] shows that w is the product, in some order, of the
so-called cover reflections of a Coxeter-sortable element. By Lemma 3.1 of
the same reference these cover reflections are the simple generators of a
parabolic subgroup.
Alternatively, this follows from the results of Brady and Watt [12]. In

the case of a bipartite Coxeter element, [12, Proposition 5.1] gives a way
to compute a valid sk, reducing the problem to finding s1, . . . , sk−1, which
can be done inductively. Using Lemma 2.4, it remains only to see how
the result is transferred from c to scs where s is a left descent of c. Let
w = s1 · · · sk be the factorization of w ∈ NC(W, c) as a product of simple
generators. If s /∈ {s1, . . . , sk}, we have sws = (ss1s) · · · (ssks) 6 scs and
the factors form a simple system, otherwise we can assume s = s1 and we
have sws = s2 · · · sks1 6 scs. �

In other words, each w ∈ NC(W, c) is a standard Coxeter element of its
own parabolic subgroup Γ(w), considered as a reflection group. Observe
that this property actually depends only on w and not on the standard
Coxeter element c such that w 6 c.
From (2) of Remark 3.2 we deduce:

Proposition 3.4. — Let c = t1 . . . tn = t′1 . . . t
′
n be two minimal factor-

izations of c into reflections, where t′1, . . . , t′n is a permutation of t1, . . . , tn,
then one can pass from one factorization to the other by a succession of
transpositions of neighbourhing commuting reflections titj → tjti.

Proof. — By induction on n, the length of c. If t1 = t′1 then use the
induction hypothesis for the Coxeter element t1c ∈ Γ(t1c). If t1 = t′j with
j > 1 then t1t′i 6 c and t′it1 6 c for all i < j therefore t1 commutes with
all t′i with i < j and we can move it to the left to reduce to the preceding
case. �

3.2. Generalized Catalan and Narayana numbers

The number of elements of NC(W, c) is the generalized Catalan number
Cat(W ). If (W,S) is an irreducible system one has

Cat(W ) =
n∏
i=1

h+ ei + 1
ei + 1

where the ei are the exponents of W and h is the Coxeter number, i.e. the
order of c as a group element. Analogously the number of elements of

ANNALES DE L’INSTITUT FOURIER
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NC(W, c) of rank k is the generalized Narayana number Nark(W ), see
e.g. [1].
Let NCF(W, c) ⊂ NC(W, c) denote the set of noncrossing partitions with

full support. Its cardinality is the positive Catalan number Cat+(W ), given
by

Cat+(W ) =
n∏
i=1

h+ ei − 1
ei + 1 .

The numbers Cat(W ) and Cat+(W ) are related by inclusion-exclusion.
The positive Narayana number Nar+

k (W ) is the number of noncrossing
partitions of rank k with full support. These numbers are related with
Narayana numbers by inclusion-exclusion.
Define the Fuß–Catalan numbers Cat(k)(W ) as

(3.2) Cat(k)(W ) =
n∏
i=1

kh+ ei + 1
ei + 1 .

This is the number of chains w1 6 · · · 6 wk in NC(W, q), see [14]. Note that
this is a polynomial in k. It can be seen as a rescaling of the polynomial∑

w∈W
t`T (w) =

n∏
i=1

(1 + tei).

3.3. The Kreweras complement

For any w ∈ NC(W, c) one defines its Kreweras complement as K(w) =
w−1c. The map K is bijective, and defines an anti-automorphism of the lat-
tice structure on NC(W, c). The map K is not involutive, rather K2(w) =
c−1wc is an automorphism of NC(W, c),6). The inverse anti-automorphism
of K is K−1(w) = cw−1. We sometimes denote Kc to mark the dependence
on c.
The Kreweras complement has a remarkable compatibility with respect

to the Bruhat order, which will play a crucial role in this paper.

Proposition 3.5.
(1) Let v, w ∈ NC(W, c) with v l w, then we have:

v >B w =⇒ K(v) >B K(w).

(2) The converse result holds under a supplementary hypothesis: let
v, w ∈ NC(W, c) with v l w, and suppose v has full support in
NC(W, c), then we have:

K(v) >B K(w) =⇒ v >B w.

TOME 69 (2019), FASCICULE 5
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Before the proof we need a lemma.

Lemma 3.6. — Let w ∈ NC(W, c) and let t be a reflection such that
tw < w and tc <B c, then tw <B w. The same holds with right multiplica-
tion: if wt < w and ct <B c, then wt <B w.

Proof. — Since tc <B c it follows that tc is a subword of length n− 1 of
a reduced expression for c, therefore tc ∈W〈s〉 for some s ∈ S.

Next, we have t /∈ W〈s〉. Indeed s is in the support of t, otherwise the
subgroup W〈s〉 would contain both t and tc, hence their product c, but
clearly c /∈W〈s〉.
As t < w 6 c, by Proposition 2.7 one has tw 6 tc, therefore tw ∈ W〈s〉.

One has w = t(tw) with t /∈W〈s〉 and tw ∈W〈s〉, therefore w /∈W〈s〉.
So s belongs to the support of w but not that of tw. It follows that

w cannot be obtained as a reduced subword of tw. Knowing that either
tw <B w or w <B tw holds, we get tw <B w as announced.

The case of right multiplication is analogous. �

Proof of Proposition 3.5. — We first prove (1). Suppose that v and w
are such that v l w, and v >B w. Let t ∈ T be the reflection such that
v = tw.
Note that tw >B w implies w−1t >B w−1, which means that t is not a

right inversion of w−1. So w−1(r(t)) ∈ Π by Proposition 2.1.
By Lemma 3.6 and the assumptions on v and w, we have tc >B c. Con-

sequently, we have c−1t >B c−1, which means that t is not a right inversion
of c−1, so r(c−1tc) = c−1(r(t)) by Proposition 2.1. Applying K(w) = w−1c

on both sides, we get K(w)(r(c−1tc)) = w−1(r(t)). But as shown above,
w−1(r(t)) ∈ Π, and it follows that c−1tc is not a right inversion for K(w).
We thus get K(w)c−1tc >B K(w). Since v = tw, after simplification this

gives K(v) >B K(w).
Now we prove (2). Let v = tw < w 6 c for a reflection t. If tc <B c

then tc ∈ W〈s〉 for some s ∈ S and tc < c therefore v < tc ∈ W〈s〉. We
deduce from this that, if v has full support, then tc >B c. If K(w) <B
K(v) then, again by Proposition 2.1 one has r(c−1tc) = c−1(r(t)) and
w−1(r(t)) = K(w)(r(c−1tc)) ∈ Π therefore t is not a left inversion for w
and tw >B w. �

3.4. An involutive automorphism for bipartite Coxeter elements

In this section we consider the particular case of bipartite Coxeter el-
ements. Consider a partition S = S+ ] S−, where S+ (respectively S−)
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contains pairwise commuting elements. Then let c+ =
∏
s∈S+ and c− =∏

s∈S− . The bipartite standard Coxeter element is c = c+c−.

Proposition 3.7. — The map L defined by

L(w) = c+wc−

is an involutive anti-automorphism of the poset NC(W, c).

Proof. — The map L is the composition of the maps w → w−1 which
is an isomorphism from NC(W, c) to NC(W, c−1), the isomorphism w 7→
c+wc+ from NC(W, c−1) to NC(W, c) and the Kreweras map K which is
an antiautomorphism of NC(W, c), therefore L is an anti-automorphism.
The fact that it is an involution follows from c2± = e. �

We call the map L the bipartite complement on NC(W, c).
Like the Kreweras complement, the bipartite complement is compatible

with the Bruhat order.

Proposition 3.8.
(1) Let v, w ∈ NC(W, c) with v l w, then we have:

v >B w =⇒ L(v) >B L(w).

(2) Let v, w ∈ NC(W, c) with vlw, and suppose that v has full support,
then we have:

L(v) >B L(w) =⇒ v >B w.

Proof. — We first prove (1). Suppose that v = tw for some reflection
t, that v < w and w <B v, then tc >B c by Lemma 3.6. It follows,
applying repeatedly Proposition 2.1, that t /∈ S+ and r(c+tc+) = c+(r(t)).
Applying the same reasoning to v = w(w−1tw) gives that c(w−1tw) >B c

and w−1tw /∈ S− therefore, since w−1(r(t)) = r(w−1tw), one has r(c−1
w −

twc−) = c−w
−1(r(t)). One has L(v) = c+tc+L(w) and L(w)−1(r(c+tc+) =

r(c−1
w −twc−) and c+tc+ is not a left inversion of L(w), thus L(v) >B L(w).
We now prove (2). Let v = tw < w for some reflection t and suppose that

v has full support. Arguing as in the proof of (2) in Proposition 3.5 we get
tc >B c moreover let t′ = v−1tv then v = wt′ and, similarly, ct′ >B c. In
particular, t is not a left inversion of c+ and t′ is not a right inversion of c−.
Suppose now that Lv >B Lw i.e. c+vc− >B c+tvc− then c+tc+ is a left
inversion of c+vc− and, since c+(r(t)) is positive we see that c−v−1(r(t)) is
a negative root. Since t′ is not a right inversion of c− we see that v−1(r(t))
is a negative root therefore w = tv <B v. �
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3.5. Interval partitions

They form a natural subset of NC(W, c) defined as follows.

Definition 3.9. — Given a Coxeter element c, an interval partition is
an element of NC(W, c) whose associated parabolic group is standard, i.e.
the interval partitions are the w ∈ NC(W, c) such that Γ(w) = WJ for some
J ⊂ S. We denote by INT(W, c) the set of interval partitions of NC(W, c).

Equivalently, w ∈W is an interval partition if and only if w 6B c. Since
a reduced word for c contains each simple reflection exactly once, it is easy
to see that each subword is a reduced word, therefore the orders 6 and
6B coincide on INT(W, c) and give it the structure of a Boolean lattice,
isomorphic to the lattice of subwords of a reduced expression for c, or to
the lattice of subsets of ∆, or of S.
One can check that, when W is the symmetric group with its canoni-

cal Coxeter generators and c is the cycle (1 . . . n), the interval partitions
coincide with the classical ones (cf. e.g. [30]).

Definition 3.10. — For w ∈ NC(W, c) we denote by w the largest
interval partition below w and by w the smallest interval partition above
w in (NC(W, c),6).

The relative Kreweras complement of w with respect to w is K(w,w) =
w−1w.

Since the restriction to INT(W, c) of the abolute order is a lattice or-
der the existence and uniqueness of w and w is immediate. One can also
characterize w by its associated simple system:

∆(Γ(w)) = ∆(Γ(w)) ∩∆(W ).

Analogously if J ⊂ S is the support of w, then the subword γ of c consisting
of elements of J is the unique Coxeter element in NC(W, c) ∩WJ and one
has γ = w, moreover w has full support in Γ(γ) = WJ . It is easy to see
that the map w 7→ w is a lattice homomorphism.

There is also a characterization of w as a maximum, which we leave to
the reader to check.

Proposition 3.11. — For w ∈ NC(W, c) one has

w = max{η ∈ INT(W, c) | η 6B w}.

We now consider the upper ideal {w ∈ NC(W, c) |w > γ} for certain
interval partitions γ.
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Proposition 3.12. — Let s ∈ S be a left descent of c (i.e. sc <B c).
(1) Let w ∈ NC(W, c) be such that s 6 w, then sw ∈W〈s〉.
(2) The map v 7→ sv defines a lattice homomorphism from NC(W〈s〉, sc)

to NC(W, c) whose image is the subset {w ∈ NC(W, c)|w > s}.
There is a similar statement with right descents.

Proof. — (1) follows from Proposition 2.7 that sw 6 sc hence sw ∈
NC(W〈s〉).
Now we prove (2). It is easy to see that if v ∈ W〈s〉 then `T (sv) =

`T (v) + 1 which implies the result, using Proposition 2.7 to see that it is a
homomorphism and the first statement to see that the map is surjective.
Finally the case of right descents follows by considering the order pre-

serving isomorphism w 7→ w−1 from NC(W, c) to NC(W, c−1). �

Corollary 3.13. — Let a be an initial subword of c and b be a final
subword with `(a) + `(b) 6 `(c), then ab ∈ INT(W, c) and the set

{w ∈ NC(W, c) | ab 6 w}

is the image of the map v 7→ avb from NC(W〈ab〉, a−1cb−1) to NC(W, c),
which is a lattice homomorphism.

Proof. — By induction on `(a)+`(b) using the preceding proposition. �
In the bipartite case, one can say more.

Proposition 3.14. — Let c be a bipartite Coxeter element then the
complement map L restricts to an involution on INT(W, c).

Proof. — It is easy to see that L corresponds to the complementation
map if one identitifes INT(W, c) with the set of subsets of ∆ or S. �

Since L is an involutive anti-automorphism one can see that, if γ ∈
INT(W, c) then L exchanges the sets {w|w = γ} and {w|w = L(γ)}.

4. Two order relations on W

4.1. Definition of the orders

Consider a Coxeter system (W,S). For any covering relation of the abso-
lute order vlw inW one has vw−1 ∈ T , therefore v and w are comparable
for the Bruhat order, namely one has v <B w if `(v) < `(w) or w <B v if
`(w) < `(v). We introduce two order relations which encode this distinction
by refining the absolute order.
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Definition 4.1. — For any covering relation v l w in W define

v @· w if v <B w,

v �· w if w <B v,

and extend these relations to order relations @ and � on W by transitive
closure.

Since @· and �· are included in l (seeing relations as sets of pairs), they
are acyclic and their transitive closures @ and � are partial orders which
are included in 6 and whose cover relations are @· and�·. This justifies the
previous definition. Also the rank function for 6 serves as a rank function
for @ and �.
The order @ was introduced by the second author in [21] on the set

NC(W, c), while � was introduced by Belinschi and Nica in [6] in the case
of classical noncrossing partitions, both with different definitions. We shall
see below that they are specializations of our definitions.
Observe that, as an immediate consequence of the definitions, one has

v @ w =⇒ v 6 w, v 6B w,

v � w =⇒ v 6 w, w 6B v.

The opposite implications, however, do not hold in general. Here is a coun-
terexample in the symmetric group S5: take (in cycle notation)

(4.1) v = (2, 4), w = (1, 5)(2, 3, 4).

We have v 6 w, `(v) = 3 and `(w) = 9. There are two elements between
v and w in the absolute order, which are (1, 5)(2, 4) and (2, 3, 4). Their
respective Coxeter lengths are 10 and 2, therefore we have:

v = (2, 4) @· (1, 5)(2, 4)�· (1, 5)(2, 3, 4) = w,

v = (2, 4)�· (2, 3, 4) @· (1, 5)(2, 3, 4) = w.

It follows that v @/ w. On the other side, we have v 6B w and a shortest
path in the Bruhat graph is (an arrow with label t represents multiplication
by t on the right):

(1, 5)(2, 3, 4) (1,3)−→ (1, 4, 2, 3, 5) (2,5)−→ (1, 4, 2)(3, 5) (3,5)−→ (1, 4, 2) (1,2)−→ (2, 4).

The respective lengths of the elements in this path are 9, 8, 5, 4, 3. Note
that v and w are both noncrossing partitions but the path goes through
elements that are not noncrossing partitions.
Let w ∈ W and let Γ(w) be the associated parabolic subgroup. Since

the orders @ and � can be defined using only the Bruhat graph and the
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absolute order, it follows from Proposition 2.11 that, on the set {v ∈W | v 6
w} the orders @ and � depend only on the Bruhat order on Γ(w) (with
its canonical system of generators).
In the sequel we shall mainly be interested in the restrictions of these

order relations to NC(W, c) for some standard Coxeter element c.

4.2. The Kreweras complement

Using the orders @ and � we can reformulate Proposition 3.5.

Proposition 4.2. — Let v, w ∈ NC(W, c) with v l w.
(1) We have:

v � w =⇒ K(w) @ K(v).

(2) Suppose v has full support in NC(W, c), then we have:

K(w) @ K(v) =⇒ v � w.(4.2)

Note that by taking the contraposition in (1) of Proposition 4.2, we see
that the same result holds with K−1 instead of K. The situation is slightly
different for (2) and we need another argument. The map ι : w 7→ w−1

leaves S and T invariant, preserves length, absolute length and support,
moreover it sends NC(W, c) to NC(W, c−1). We have

(ι ◦Kc)(w) = ι(w−1c) = c−1w = c−1ι(w−1) = (K−1
c−1 ◦ ι)(w).

Applying the map ι to Equation (4.2) shows that (2) also holds with K−1

instead of K. Using these remarks we can rephrase the proposition as fol-
lows.

Proposition 4.3. — Let v, w ∈ NC(W, c) with v l w. Then at least
one of the relations v @· w or K(w) @· K(v) holds. If both hold, neither v
nor K(w) have full support.

There are similar statements for the map L in the bipartite case, which
we leave to the reader.

4.3. Characterization and properties of the order @ on NC(W, c)

We consider a Coxeter system (W,S) and a standard Coxeter element c.
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Proposition 4.4. — Let v, w ∈ NC(W, c) and denote by 6Bw
the

Bruhat order on Γ(w), then the three properties below are equivalent:
(1) v @ w,
(2) v 6 w and v 6Bw

w,
(3) ∆(Γ(v)) ⊂ ∆(Γ(w)).

Proof. — If v @ w then, as we saw, v 6 w and v 6Bw w so that (1)
implies (2).
Suppose now that (2) holds. According to Proposition 3.3, write w as a

product of the simple reflections of Γ(w), say w = s1 · · · sk. Any v 6Bw
w

is the product of a subword si1 . . . , sil and ∆(Γ(v)) = {si1 , . . . , sil} ⊂
∆(Γ(w)) so that (2) implies (3).
Finally if ∆(Γ(v)) ⊂ ∆(Γ(w)) then by taking the generated groups one

has Γ(v) ⊂ Γ(w) and v 6 w. If `T (v) = `T (w) − 1 then vw−1 ∈ T

therefore either v <Bw
w or w <Bw

v. Since ∆(Γ(v)) ⊂ ∆(Γ(w)) but
∆(Γ(v)) 6= ∆(Γ(w)) there exists a simple reflection s ∈ ∆(Γ(w)) \∆(Γ(v)).
As v is a product of reflections in ∆(Γ(v)) it follows that w cannot be ob-
tained as a subword of any reduced decomposition of v, therefore v <Bw

w

and v is obtained by taking a subword of length k − 1 of the reduced
decomposition w = s1 · · · sk. The proof now follows by induction on the
cardinality of ∆(Γ(w)) \∆(Γ(v)), using the fact that the Bruhat graph of
the subgroups Γ(v) are obtained by restriction of the Bruhat graph of W
(Proposition 2.11). �

Property (3) was the original definition of the order @ on NC(W, c)
in [21]. Since any subset of ∆(Γ(w)) is a simple system in Γ(w) we see that
the lower ideal {v | v @ w} is isomorphic to the boolean lattice of order
rk(w), in particular its cardinality is 2rk(w), moreover on this ideal the three
order relations 6,6Bw

and @ coincide.
Note that ∆(Γ(w)) ⊂ ∆(Γ(v)) if and only if S(Γ(w)) ⊂ S(Γ(v)) using

the bijection between positive roots and reflections.
Let now c be a standard Coxeter element, since Γ(c) = W and ∆(W ) = S

it follows that the interval partitions in INT(W, c) are exactly the noncross-
ing partitions w ∈ NC(W, c) satisfying w @ c.

Proposition 4.5. — Let w ∈ NC(W, c) and γ ∈ INT(W, c) then

γ 6 w ⇐⇒ γ @ w.

Proof. — If γ @ w then obviously γ 6 w. If γ 6 w then Γ(γ) ⊂ Γ(w)
therefore S(Γ(γ)) ⊂ Γ(w). Since the elements of S(Γ(γ)) are simple reflec-
tions in W they are also simple reflections in Γ(w) therefore S(Γ(γ)) ⊂
S(Γ(w)) and γ @ w by (3) of Proposition 4.4. �
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As is clear from its definition the order @ is not invariant under conjuga-
tion and one cannot, as in the case of the abolute order, reduce the study
of @ on NC(W, c) to the case where the Coxeter element c is bipartite.
Actually we will see in Section 5 that, already for S4, the order type of the
poset (NC(W, c),@) does depend on the standard Coxeter element c.

4.4. A simplification property

The following result is similar to Proposition 2.7.

Lemma 4.6. — Let t ∈ T and u, v ∈ NC(W, c) be such that u 6 v @
vt 6 c then u @ ut 6 vt.

Proof. — First one has u 6 ut 6 vt by Proposition 2.7. Observe that
the statement of the lemma depends only on the absolute and the Bruhat
orders inside the parabolic subgroup Γ(vt) therefore we can assume that
vt = c is a standard Coxeter element. Since ct @ c there exists s ∈ S such
that ct is a standard Coxeter element in W〈s〉. It follows that u ∈W〈s〉 and
t /∈ W〈s〉 therefore ut /∈ W〈s〉 and ut cannot be obtained as a subword of a
reduced expression of u, thus u 6B ut and u @ ut. �

4.5. (NC(W, c),@) as a flag simplicial complex

We now define a symmetric binary relation on the set T of reflections
such that (NC(W, c),@) is the face poset of the associated flag simplicial
complex. Recall that a simplicial complex is called a flag simplicial complex
if, given vertices v1, . . . , vk, the set {v1, . . . , vk} is a face of the complex if
and only if for all 1 6 i < j 6 n, the set {vi, vj} is a face. In order to
define such a complex it is enough to a give the symmetric relation on the
vertices: {vi, vj} is a face.

Definition 4.7. — Let Gc be the binary relation on T such that t Gc u
if and only if

• t, u are c-noncrossing (see Definition 3.1),
• 〈r(t)|r(u)〉 6 0.

Let Ξ(W, c) denote the flag simplicial complex with vertex set T associated
to the relation Gc.
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Theorem 4.8. — The map w 7→ S(Γ(w)) is a bijection from NC(W, c)
onto Ξ(W, c). Moreover, for v, w ∈ NC(W, c) we have v @ w if and only if
S(Γ(v)) ⊂ S(Γ(w)).

Proof. — The image of w is a subset of T and taking the subgroup gen-
erated by this subset gives Γ(w). Since the map Γ, restricted to NC(W, c),
is injective it follows w 7→ S(Γ(w)) is also injective. It remains to show that
its image is Ξ(W, c).
Since S(Γ(w)) is a simple system, the scalar product of any two of its

elements is nonpositive. Moreover by Proposition 3.3, there is an indexing
S(Γ(w)) = {s1, . . . , sk} such that s1 · · · sk 6 c, consequently sisj 6 c if
i < j. It follows that si Gc sj for all i < j, therefore S(Γ(w)) ∈ Ξ(W, c).

It remains to show that the map is surjective. Let X ∈ Ξ(W, c). Because
〈r(t)|r(u)〉 6 0 for all t, u ∈ X, this is a simple system, i.e. X = S(P ) for
some parabolic subgroup P ⊂W . Now consider a directed graph G defined
as follows:

• its vertex set is X,
• there is an edge from t ∈ X to u ∈ X if 〈r(t)|r(u)〉 < 0 and tu 6 c.

It is well defined because, 〈r(t)|r(u)〉 < 0 implies tu 6= ut therefore, accord-
ing to Remark 3.2, we cannot have both tu 6 c and ut 6 c. The undirected
version of G is the Coxeter graph of P (without labels on the edges). Since
P ⊂ W is finite, a classical argument implies that G is acyclic, so that it
is possible to find an indexing X = {s1, . . . , sk} such that the existence
of a directed edge si → sj implies i < j. It follows that sisj 6 c for all
1 6 i < j 6 k.
Let us consider the case k = #X = 3, so suppose we haveX = {s1, s2, s3}

with s1s2 6 c, s1s3 6 c, and s2s3 6 c. Since s2s3 ∈ NC(W, c) and this
poset is a ranked lattice, the least upper bound of s2 and s3 is s2s3. On the
other hand, by Proposition 2.7, we get s2, s3 6 s1c therefore s2s3 6 s1c,
and consequently s1s2s3 6 c, so that X = S(Γ(s1s2s3)). The general case
follows by induction on #X and this shows the surjectivity.
Eventually, the fact that the bijection preserves the order follows from

Proposition 4.4. �

Remark 4.9. — The complex Ξ(W, c) appears in the work of Reading [27,
28]. In [28], he defines the canonical join complex of a join distributive
semilattice. In the case of the c-Cambrian lattice, this complex is precisely
our Ξ(W, c). This is essentially shown in [27, Section 6]. We thank Henri
Mühle for his careful explanations about this.
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4.6. Chains in NC(W, c)

A factorization c = t1 . . . tn where each ti is a reflection is minimal. The
number of such minimal factorizations of the cycle c is (Deligne’s formula):

n!hn

|W |
.

One can interpret this result as the counting of maximal chains inNC(W, c).
This number can be obtained from the leading term in k of Cat(k)(W ) and
the identity

∏
i(ei + 1) = |W |.

A refined enumeration of maximal chains in NC(W, c) using the relation
@· was obtained in [21].

Definition 4.10 ([21]). — For each maximal chain $ = (wi)06i6n in
NC(W, c) (i.e. we have rk(wi) = i and wi lwi+1), we define nir($) as the
number of i ∈ {0, . . . , n− 1} such that wi �· wi+1, and

M(W, q) =
∑

qnir($)

where we sum over $ maximal chain in NC(W, c).

The second author showed in [21] that this polynomial is a rescaled
version of Fuß–Catalan numbers Cat(k)(W ):

M(W, q) = n!(1− q)n Cat( q
1−q )(W ).(4.3)

Note that the inverse relation is

Cat(k)(W ) = 1
n! (1 + k)nM

(
W, k

1+k
)

and it follows from (4.3) and (3.2) that there exists a formula in terms of
the degrees of the group:

M(W, q) = n!
|W |

n∏
i=1

(
di + q(h− di)

)
.(4.4)

We use here the degrees di = ei + 1 rather than the exponents because the
formula is more compact. This relation will be used in Section 6.4.
Much more can be said in the case of the symmetric group [9], it would be

interesting to investigate the existence of similar formulas for other types.

4.7. Characterization and properties of the order �

The following proposition is the analog, for the order �, of Proposi-
tion 4.4.
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Proposition 4.11. — Let v, w ∈ NC(W, c) and denote by 6Bw
the

Bruhat order on Γ(w), then the three properties below are equivalent:
(1) v � w,
(2) v 6 w and w 6Bw

v,
(3) v ∈ Γ(w) and v has full support as an element of Γ(w).

Proof. — We have already noted that (1) implies (2).
If (2) holds then w can be obtained as a subword of a reduced decompo-

sition of v in Γ(w). Since w has full support in Γ(w) it follows that v has
full support in Γ(w) and (3) holds.
Suppose now that (3) holds, thus that v has full support in Γ(w). If

`T (v) = `T (w)− 1 then either w 6Bw
v or v 6Bw

w. Since w is a Coxeter
element in Γ(w) (cf. Proposition 3.3), if v 6Bw w then v cannot have full
support. It follows that w 6Bw

v therefore v � w. If `T (v) = `T (w) −
l, l > 1 let x = K(v) = wv−1 be the Kreweras complement of v and let
x = γ1 . . . γl be a reduced decomposition in Γ(x) ⊂ Γ(w). The sequence
x0 = e, x1 = γ1, . . . , xl = x satifies x0 = e 6Bx

x1 6Bx
. . . 6Bx

xl = x

and the Bruhat graph of Γ(x) is the restriction of the Bruhat graph of
Γ(w) therefore x0 = e 6Bw

x1 6Bw
. . . 6Bw

xl = x. Applying (2) of
Proposition 4.2 and using induction on i, one has v �· x−1

l−iw for all i. �

Let NCn be the set of classical noncrossing partitions, corresponding
to the symmetric group and the cycle (1, . . . , n) as Coxeter element, then
Belinschi and Nica [6] defined an order relation � on NCn by π � ρ if
π 6 ρ and for every block B of ρ, the minimum and the maximum of B
belong to the same block of π. It is easy to see that this agrees with our
definition in this case.

Proposition 4.12. — The poset (NC(W, c),�) has 2n connected com-
ponents. They are the lower ideals

(4.5) {w ∈ NC(W, c) | w � γ} = {w ∈ NC(W, c) | w = γ}

where γ runs through the 2n interval partitions ofW . In particular, interval
partitions are the maximal elements for the order �.

Proof. — From the characterization of � in Proposition 4.11, we can
see that the two sets on both sides of (4.5) are the same. Clearly, each
lower ideal considered here is connected, so it remains to show that they
cannot be connected with each other. Let v, w ∈ NC(W, c) with v � w,
we thus have to show v = w, i.e. v and w have the same support. Since
v � w, we have w 6B v therefore supp(w) ⊂ supp(v). If there exists

ANNALES DE L’INSTITUT FOURIER



NONCROSSING PARTITIONS 2263

s ∈ supp(v) \ supp(w) then w ∈ W〈s〉 and Γ(w) ⊂ W〈s〉 which contradicts
v ∈ Γ(v) ⊂ Γ(w). �

Since c is itself an interval partition, the poset (NCF(W, c),�) is one of
the connected components described in the previous proposition. We can
call it the main connected component. The other connected components
are of similar nature, since they can be seen as the main connected com-
ponent of a standard parabolic subgroup. It is therefore enough to study
the properties of the main connected component.

Proposition 4.13. — Let w ∈ NC(W, c), then the relative Kreweras
complement v → v−1w defines a poset anti-isomorphism

(4.6)
(
{v ∈ NC(W, c) | v � w},�

)
−→

(
{v ∈ NC(W, c) | v @ w−1w},@

)
.

Proof. — If w has full support, i.e., w = c, this follows from (2) of
Proposition 4.2. Otherwise, w has full support as an element of the standard
parabolic subgroup Γ(w). Note that we have

{v ∈ NC(W, c) | v � w} ⊂ Γ(w)

by Proposition 4.12. Therefore we can apply Proposition 4.2 in the sub-
group Γ(w) which yields the result. �

Corollary 4.14. — Upper ideals for� in NC(W,c) are boolean posets.

Proof. — It was noted above the lower ideals for @ are boolean. The
result follows from the anti-isomorphism of the previous proposition, since
boolean posets are anti-isomorphic to themselves. �

5. Examples

In this section we show a few pictures of the symmetric groups which
illustrate the main properties of our objects.

5.1. The case of S3

Permutations are denoted by their nontrivial cycles, e is the identity
element. The Cayley graph is in Figure 5.1, the Bruhat graph is obtained by
orienting the edges downwards. The graph of the relation Gc is in Figure 5.3.
The orders @ and � on S3 and on NC3 are shown in Figure 5.2. The

cover relations of @· are in black, those of �· are in red and dashed. Note
that the underlying undirected graph on S3 is the Cayley graph. The two
possible choices for the Coxeter element give isomorphic posets.
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(12)

(123) (132)

(23)

e

(13)

Figure 5.1. The Cayley graph of S3.

(12)

(123) (132)

(23)

e

(13) (12)

(123)

(23)

e

(13)

Figure 5.2. The orders @ and � on S3 (left) and on NC3 (right).

(12)

(13)

(23)

Figure 5.3. The graph of the relation Gc in S3.
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5.2. The case of S4

Here we have two nonequivalent choices for the Coxeter element: c =
(1234) or c = (1342).

5.2.1. c = (1234)

The poset NC4 with its cover relations drawn as above is in Figure 5.4.
The graph of the relation Gc is in Figure 5.5.

(1234)

()

(123)

(12)

(12)(34)

(23)

(234)

(34)

(124)

(24)

(134)

(13)

(14)(23)

(14)

Figure 5.4. The order relations @ and � on NC4.

5.2.2. c = (1243)

Here we change the Coxeter element for the bipartite element

c = (12)(34)(23) = (1243).

The poset NC4 with its cover relations drawn as above is in Figure 5.6.
The graph of the relation Gc is in Figure 5.7. We see that the graphs of Gc
and of @ for (1234) and (1243) are not isomorphic.
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(12) (34)

(23)

(14)

(24) (13)

Figure 5.5. The graph of the relation Gc in S4.

(1243)

e

(123)

(12)

(12)(34)

(23)

(243)

(34)

(124)

(24)

(143)

(13)

(13)(24)

(14)

Figure 5.6. The order relations @ and � on NC(S4, (1243)).
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(12) (34)

(23)

(14)

(24) (13)

Figure 5.7. The graph of the relation Gc on S4.

6. Cluster complex, nonnesting partitions and Chapoton
triangles

6.1. The cluster complex

The cluster complexes were introduced by Fomin and Zelevinsky in [19]
as dual to generalized associahedra, in relation with cluster algebras. In
this paper we will use the notion of c-clusters as defined by Reading [27,
Section 7], following Marsh, Reineke and Zelevinsky [23].
Let Φ>−1 = (−∆) ∪Π be the set of almost positive roots (see [19]).

Proposition 6.1 ([27]). — For each s ∈ S, let σs denote the bijection
from Φ>−1 to itself defined by:

σs(α) =
{
α if α ∈ (−∆)\{−r(s)},
s(α) if α ∈ Π ∪ {−r(s)}.

There exists a unique family of symmetric binary relations on Φ>−1 indexed
by standard Coxeter elements, denoted by ‖c, such that:

• if α, β ∈ −∆, then α ‖c β,
• if α ∈ −∆ and β ∈ Π, then α ‖c β if and only if r(−α) /∈ supp(r(β)),
• if s ∈ S is a left descent of c, then α ‖c β ⇐⇒ σs(α) ‖scs σs(β).

Remark 6.2. — Recall Remark 3.2 i) on the use of the symbol ‖c.

The definition of ‖c is not fully explicit and unicity relies on Lemma 2.4.
A more direct characterization of ‖c is given in [13] using the subword
complex. Another will be given in Proposition 6.6. Let us first review some
results from [27, 29].

Definition 6.3 ([27]). — The c-cluster complex Υ(W, c) is the flag sim-
plicial complex on the vertex set Φ>−1 defined by the relation ‖c. A c-cluster
is a maximal face of Υ(W, c).
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This complex is pure, so that every c-cluster has dimension n. Clearly,
the map σs provides an isomorphism between Υ(W, c) and Υ(W, scs) if
s ∈ S is a left descent of c. So the isomorphism type of Υ(W, c) does not
depend on c, see [27, 29] for details.
The face generating function with respect to cardinality is:∑

F∈Υ(W,c)

x#F =
n∑
k=0

Nark(W )xn−k(1 + x)k.(6.1)

In particular, taking the coefficient of xn shows that the number of clusters
is Cat(W ). Moreover (6.1) implies that the integers Nark(W ) are the entries
of the h-vector of Υ(W, c).

Definition 6.4. — The positive part of Υ(W, c), denoted by Υ+(W, c),
is the flag simplicial complex with vertex set Π and compatibility rela-
tion ‖c.

Clearly, Υ+(W, c) is a (full) subcomplex of Υ(W, c). Note that it may
happen that Υ+(W, c1) and Υ+(W, c2) are not isomorphic if c1, c2 are two
different standard Coxeter elements. The face generating function with re-
spect to cardinality is:∑

F∈Υ+(W,c)

x#F =
n∑
k=0

Nar+
k (W )xn−k(1 + x)k.(6.2)

In particular, taking the coefficient of xn shows that the number of positive
c-clusters is Cat+(W ) and the integers Nar+

k (W ) are the entries of the h-
vector of Υ+(W, c).
We give a direct characterization of ‖c in Proposition 6.6 below. It is

an extension of Brady and Watt’s results in the bipartite case [12] to any
standard Coxeter element. We begin with a lemma.

Lemma 6.5. — Suppose s ∈ S is a left descent of c, and let t ∈ T\{s}.
Then the following two conditions are equivalent:

• 〈r(s)|r(t)〉 > 0, and s, t are c-noncrossing (see Definition 3.1),
• s /∈ supp(sts).

Proof. — We begin by showing that the first condition implies the second
one.

=⇒, case 1: st 6 c. — By Proposition 3.12, we have t 6 sc and t ∈
W〈s〉 therefore s /∈ supp(t) and 〈r(s)|r(t)〉 6 0. Since we already have
〈r(s)|r(t)〉 > 0, we get 〈r(s)|r(t)〉 = 0, which means st = ts. Then s /∈
supp(sts) follows from s /∈ supp(t) since sts = t.
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=⇒, case 2: ts 6 c. — We have `T (ts) = 2 since s 6= t, therefore s 6 ts.
By Proposition 3.12, we get sts 6 sc ∈W〈s〉. It follows that s /∈ supp(sts).
⇐=, case 1: st = ts. — First note that we have 〈r(s)|r(t)〉 = 0 in this

case, so in particular it is > 0. Then, we have sts = t so s /∈ supp(t). It
follows that t 6 sc and st 6 c by Proposition 3.12.
⇐=, case 2: st 6= ts. — We have sts ∈ W〈s〉, so ts = s(sts) 6 c by

Proposition 3.12. Also, from sts ∈ W〈s〉 we get 〈r(s)|r(sts)〉 6 0. Since
s is in the orthogonal group, it preserves the scalar product and we get
〈s(r(s))|s(r(sts))〉 6 0, hence 〈−r(s)|r(t)〉 6 0 and 〈r(s)|r(t)〉 > 0 as
needed. �

Using the above lemma we can now give a more explicit characterization
of the relation ‖c.

Proposition 6.6. — Let α, β ∈ Π, then α ‖c β if and only if the
following two conditions hold:

• r−1(α), r−1(β) are c-noncrossing,
• 〈α|β〉 > 0.

Proof. — Let us introduce a family of binary relations ‖̂c on Φ>−1 by:
• if α, β ∈ Π one has α ‖̂c β if and only if 〈α|β〉 > 0 and r−1(α),
r−1(β) are c-noncrossing,

• otherwise, α ‖̂c β if and only if α ‖c β.
We show that the relations ‖̂c satisfy the rules of ‖c given in Definition 6.1.
By uniqueness it follows that ‖̂c = ‖c. The first two points in Definition 6.1
are obviously satisfied by the family ‖̂c therefore we just need to show that
they satisfy the third point. Let s be a left descent of c and α, β ∈ Φ>−1.
Case 1: α, β ∈ (−∆)\{−r(s)}. — We have then σs(α) = α, σs(β) = β,

it follows that α ‖̂c β and σs(α) ‖̂scs σs(β) both hold.
Case 2: α ∈ (−∆)\{r(s)}, β = −r(s). — One has α ‖̂c β, σs(α) = α,

σs(β) = −β > 0 and −α /∈ supp(−β) = {s} therefore σs(α) ‖̂scs σs(β).
Case 3: α, β ∈ Π\{r(s)}. — In this case, one has σs(α) = s(α) and

σs(β) = s(β). Since s ∈ O(V ) preserves the scalar product, 〈α|β〉 =
〈σs(α)|σs(β)〉, moreover r−1(σs(α))=sr−1(α)s and r−1(σs(β))=sr−1(β)s.
Therefore we have

r−1(σs(α))r−1(σs(β)) = sr−1(α)r−1(β)s,

and the conclusion follows since 6 is invariant under conjugation.
Case 4: α = −r(s), β ∈ Π\{r(s)}. — This case follows from Lemma 6.5

putting s = r−1(α) and t = sr−1(β)s.
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Case 5: α = r(s), β ∈ Π\{r(s)}. — Again use Lemma 6.5 for s = r−1(α)
and t = r−1(β).

Since the relations ‖c and ‖̂c are symmetric we have covered all cases. �
By Proposition 3.3, if w 6 c then w is a standard Coxeter element of Γ(w)

so that the complex Υ(Γ(w), w) is well defined. An interesting consequence
of Proposition 6.6 is that for t1, t2 ∈ Π(Γ(w)), we have {t1, t2} ∈ Υ(Γ(w), w)
if and only if {t1, t2} ∈ Υ(W, c). This will be used in Proposition 8.10 to
show that any positive face in Υ(W, c) is a cluster in Υ(Γ(w), w) for some
w 6 c, a result which is easily extended to all faces.
Note the similarity between Proposition 6.6 and Definition 4.7 therefore

between the two flag simplicial complexes Υ+(W, c) and Ξ(W, c). Their ver-
tex sets are respectively T and Π, and are in bijection via the map r, besides
this the only difference is the required sign of the scalar product. Despite
this they have very different properties: unlike Υ+(W, c), the simplicial
complex Ξ(W, c) is not pure and its topology can be rather complicated.

Eventually, the following result will be useful:

Proposition 6.7. — For any face F ∈ Υ+(W, c), there is an indexing
F = {α1, . . . , αk} such that r(α1) · · · r(αk) 6 c.

Proof. — It is sufficient to check this for k = n and r(α1) · · · r(αn) = c.
This case follows from [13, Proposition 2.8].
Alternatively, this follows from the work of Brady and Watt [12]. In the

case where c is a bipartite Coxeter element, [12, Note 3.3] implies the result.
It remains to show that this is preserved under the moves c → scs as in
Lemma 2.4. We omit details. �

6.2. The relation ‖c and the orders @ and �

In the simply laced case (i.e. types An, Dn and En in the classification),
using Proposition 6.6 the compatibility relation ‖c on Π can be completely
rephrased in terms of the orders @ and �, without using roots or even the
group structure. This relies on three observations:

• Each rank 2 parabolic subgroup has type A2 or A2
1 in the classifica-

tion. For any pair of distinct reflections in such a subgroup, we can
take the product in some order to get a given Coxeter element. This
means that the condition tu 6 c or ut 6 c for t, u ∈ T is equivalent
to the existence of v 6 c such that rk(v) = 2, and t 6 v, u 6 v.
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• The condition 〈r(t)|r(u)〉 > 0 means that {t, u} is not the simple
system of Γ(v), so it is equivalent to the fact that either t � v or
u� v (with v as above).

• The condition 〈r(t)|r(u)〉 = 0 means tu = ut, it is equivalent to the
fact that the interval [e, tu]6 contains only e, t, u, tu.

It follows that α ‖c β is equivalent to:
• r−1(α) and r−1(β) have a least upper bound v of rank 2,
• Either [e, v]6 = {e, r−1(α), r−1(β), v}, or r−1(α)� v or r−1(β)� v.

6.3. Nonnesting partitions

When W is a Weyl group, we have an associated root poset, defined in
terms of the crystallographic root system of W . We defined roots to be
unit vectors, which is not convenient for crystallographic root system, so
we only sketch the definition here and refer to [20, Chapter 2.9]. The idea is
to allow to have roots of different lengths, so we consider positive numbers
(aα)α∈Π and assume that the vectors aαα satisfies, for all α, β ∈ Π:

2〈aαα|aββ〉
〈aββ|aββ〉

∈ Z.

Definition 6.8. — The partial order 4 on Π is defined by α 4 β

if aββ − aαα is a linear combination of simple roots with nonnegative
coefficients and (Π,4) is called the root poset of W . We denote NN(W )
the set of antichains of (Π,4), and such an antichain is called a nonnesting
partition.

Note that in the case where W is not a Weyl group (i.e. one of I2(m),
H3, and H4 in the classification), there are ad hoc definitions of posets
having some of the expected properties of a root poset. However this fully
works only for I2(m) and H3. We don’t discuss that in more details, see [1,
Section 5.4.1] and [16].
Just as NC(W, c) and Υ(W, c), the set NN(W ) is a flag simplicial com-

plex. Its vertex set is Π, and two vertices are compatible if they are not
comparable in the root poset. This complex is not pure.

Definition 6.9. — The support of a nonnesting partition A is:

supp(A) = {δ ∈ ∆ | ∃ α ∈ A, δ 4 α}.

It is similar to the notion of support a group element w ∈ W , so there
should be no confusion. For example, note that for A ∈ NN(W ), we have
s /∈ supp(A) if and only if π ∈ NN(W〈s〉).
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6.4. Enumeration of full reflections

The number of t ∈ T with full support is Nar+
1 (W ). Chapoton [15]

obtained the formula

(6.3) Nar+
1 (W ) = nh

|W |

n∏
i=2

(ei − 1)

by a case by case verification, and he also conjectured a representation
theoretical interpretation. We show that this formula can be obtained from
the properties of �.
By Proposition 4.11, a reflection t ∈ T is full if and only if t� c, which

is equivalent to the existence of a maximal chain

e @· w1 �· w2 �· . . .�· wn = c(6.4)

with t = w1 in NC(W, c). Note that these maximal chains are those with
the maximal number of �·, as we have e @· t for t ∈ T . So their number
is the dominant coefficient in (4.4). Noticing that dn + q(h − dn) = h is a
constant, this dominant coefficient is:

n!× h
|W |

n−1∏
i=1

(h− di).(6.5)

The number of maximal chains as in (6.4) is also (n−1)! times the number
of full reflections: for a given w1 the possible choices for w2, . . . , wn are
the maximal chains in [w1, c]� which is a boolean lattice of rank n − 1
by Corollary 4.14 and their number is (n− 1)!. To get the right hand side
of (6.3) from (6.5) divided by (n− 1)!, it remains only to use the equalities
di = ei + 1, h− ei = en+1−i.

Fomin and Reading in [18, Section 13.4] asked for a better combinatorial
way to relate full reflections with objects counted by Fuß–Catalan numbers
(k-noncrossing partitions, generalized clusters, see [1]). Our derivation of
the formula does not give a full answer but recasts the problem in a more
general form: have a better combinatorial way to relate Fuß–Catalan objects
and the generating function M(w, q), thus explaining the relation (4.3).

6.5. Chapoton triangles

The F -, M - and H-triangles are polynomials in two variables defined
respectively in terms of Υ(W, c), the Möbius function of NC(W, c), and
NN(W ). The F = M and H = M theorems state that these polynomials
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are related to each other by invertible substitutions (there is an F = H the-
orem as an immediate consequence of the other two). They were conjectured
by Chapoton in [14] and [15], respectively, and proved by Athanasiadis [2]
and Thiel [31], respectively. See also [1] for generalizations.

Definition 6.10. — Let µ denote the Möbius function of NC(W, c).
The M -triangle is the polynomial:

M(x, y) =
∑

α,β∈NC(W,c)
α6β

µ(α, β)xrk(α)(−y)rk(β)−rk(α).

The F -triangle is the polynomial:

F (x, y) =
∑

F∈Υ(W,c)

x#(F∩(−∆))y#(F∩Π).

The H-triangle is the polynomial:

H(x, y) =
∑

A∈NN(W )

x#(A∩∆)y#(A∩(Π\∆)).

There exist slightly different conventions in the literature for these poly-
nomials. Here and also for related polynomials in the sequel, we always
take a convention ensuring that they have nonnegative integer coefficients,
and total degree n.

The F = M and H = M theorems relates the three polynomials as
follows:

F (x, y) = (1 + y)nH
(

x

1 + y
,

y

1 + y

)
(6.6)

= (1 + x)nM
(

x

1 + x
,
y − x
1 + x

)
,

H(x, y) = (1− y)nF
(

x

1− y ,
y

1− y

)
(6.7)

= (1 + x− y)nM
(

x

1 + x− y
,

y − x
1 + x− y

)
,

M(x, y) = (1 + y)nH
(

x

1 + y
,
y + x

1 + y

)
(6.8)

= (1− x)nF
(

x

1− x,
y + x

1− x

)
.

See [2, 14, 15, 31] for details. Note that all these relations suggest consid-
ering homogeneous polynomials in three variables, rather than only two
variables. Then the relations become mere shifts of the variables. This idea
will be used in Section 9.
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Also, the polynomials satisfy a symmetry property. The self-duality of
NC(W, c) gives

(6.9) M(x, y) = xnM

(
1
x
,

1
y

)
.

and, using (6.6),

(6.10) F (x, y) = (−1)nF (−1−x,−1−y), H(x−1, y) = ynH

(
y

x
− 1, 1

y

)
.

From the definition, it can be seen that these polynomials contains Cata-
lan, positive Catalan, Narayana, and positive Narayana numbers as special
cases. Let us also mention another interesting specialization: H(−1, 1) is
the double-positive Catalan number introduced in [5], more generally the
coefficients of H(−1, y) are the double-positive Narayana numbers. See [5,
Proposition 4.6] for the interpretation in terms of nonnesting partitions.
Using (6.6), we have

H(−1, y) = (1− y)nF
(
−1

1− y ,
1

1− y

)
and the latter expression can be interpreted as the local h-polynomial of
Υ+(W, c), see [5, Remark 4.7] and Athanasiadis and Savvidou [4].

7. Intervals for @ and � and the cluster complex

7.1. Intervals for @

7.1.1. Counting intervals

If v, w ∈ NC(W, c) and v @ w, we denote by [v, w]@ the interval:

[v, w]@ =
{
x ∈ NC(W, c) | v @ x @ w

}
.

Define the height of an interval [v, w]@ as rk(w)− rk(v).
The identity e is the smallest element in NC(W, c) for @. Moreover, if

w has rank r we have seen that the interval [e, w]@ is a boolean lattice
with 2r elements. Therefore, if r > k the number of elements v @ w with
rk(w)−rk(v) = k is equal to

(
r
k

)
. Since the number of elements of NC(W, c)

of rank r is Narr(W ), we have the following (here n is the rank of W ).

Proposition 7.1. — The number of intervals of height k for @ is
equal to

(7.1)
n∑
r=k

Nar(W, r)
(
r

k

)
.
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In the case of the symmetric group Sn, the total number of intervals for
@ is the small Schröder number sn, defined by∑

n>0
snz

n = 1 + x−
√

1− 6x+ x2

4x .

7.1.2. Relation with the cluster complex and the associahedron

We now relate (NC(W, c),@) with the cluster complex Υ(W, c) and the
associahedron, a polytope whose face complex is dual to Υ(W, c) [19]. It
is known that the h-vector of the associahedron is equal to the sequence
of W -Narayana numbers, see [3] (or (6.1), using the duality). The next
statement follows readily from (7.1) and the relation between the f - and
h-vectors.

Proposition 7.2. — The number of intervals of height k for @ is equal
to the number of faces of dimension k of the W -associahedron, or to the
number of faces of cardinality n− k of the cluster complex.

For particular values of k there are bijective proofs of the equality in
Proposition 7.2.

• For k = n: there is a unique interval of height n which is INT(W, c)
and a unique face of dimension n in the associahedron.

• For k = 0: the number of vertices of the associahedron is equal to
number of non-crossing partitions, or W -Catalan number, which is
also the number of intervals of height 0 for @. Bijective proofs of
this fact have appeared in the litterature, see Section 8.

• For k = n−1: the number of intervals of height n−1 for @ is equal
to the number of almost positive roots, which is the number of
vertices of the cluster complex. Indeed this is easy to check directly
since these intervals fall into two categories:
– the intervals [e, π] where π ∈ NC(W, c) has rank n − 1. The

Kreweras complement gives a bijection between this set and
the elements of rank 1 in NC(W, c) which are the reflections,
in bijection with the positive roots.

– the intervals [s, c]@ where s ∈ S which are in bijection with
the negative simple roots.

Observe that the study of the order @ leads naturally to the notion of
almost positive root, which is fundamental to the theory of clusters.
It would be interesting to give a bijective proof of Proposition 7.2 for

other values of k. In the case of a bipartite Coxeter element, we will give,
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in Section 8.3, a bijection between faces of size n−k of the cluster complex
and intervals of height k for @.

7.2. Intervals for �

In the case of the symmetric groupSn with the standard Coxeter element
c = (1, 2, . . . , n), the number of intervals v � w was computed in [24]
and [26], it is the so-called large Schröder number Sn−1 defined by∑

n>0
Snz

n = 1− x−
√

1− 6x+ x2

2x .

They are related to small Schröder numbers by Sn = 2sn if n > 1.
In the general case we will again show a connection with the cluster

complex. Refining the enumeration of intervals, we consider a two variable
polynomial:

(7.2) I(x, y) =
∑

v,w∈NC(W,c)
v�w

xrk(v)yrk(w)−rk(v).

It turns out to be related with the polynomial M(x, y) as follows.

Theorem 7.3. — We have:

I(x, y) = M(x− y, y), M(x, y) = I(x+ y, y).(7.3)

To prove that, first consider, for w ∈ NC(W, c):

(7.4) Iw(x) =
∑
v∈NC
v�w

xrk(v)

and

(7.5) Mw(x) = (−1)rk(w)
∑
v∈NC
v6w

µ(v, w)(−x)rk(v).

Proposition 7.4. — We have Iw(x+ 1) = Mw(x).

Proof. — The case w = c is sufficient, because we can see w itself as a
standard Coxeter element of Γ(w) and prove the identity in this subgroup.
Then Ic(x) is the rank generating function of NCF(W, c), it is therefore
given by the positive Narayana numbers and it remains to prove:

n∑
k=1

Nar+
k (1 + x)k = (−1)n

∑
v∈NC(W,c)

µ(v, c)(−x)rk(v).
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The right hand side is, using Kreweras complement:∑
v∈NC(W,c)

µ(e,K(v))(−x)rk(v) =
∑

v∈NC(W,c)

µ(e, v)(−x)n−rk(v) = xnM(0, 1
x ).

This is also xnF (0, 1
x ), via (6.6). The h-vector of Υ+(W, c) is given by

positive Narayana numbers, see (6.2), and we get the equality. �

Proof of Theorem 7.3. — Using Proposition 7.4, we have:

I(x, y) =
∑

w∈NC(W,c)

Iw(xy )yrk(w)

=
∑

w∈NC(W,c)

Mw(xy − 1)yrk(w) = M(x− y, y). �

Combining Equations (6.8) and (7.3), we obtain the relations between
I(x, y) and H(x, y):

I(x, y) = (1 + y)nH
(
x− y
1 + y

,
x

1 + y

)
,

H(x, y) = (1 + x− y)nI
(

y

1 + x− y
,

y − x
1 + x− y

)
,

and the relations between I(x, y) and F (x, y):

I(x, y) = (1− x+ y)nF
(

x− y
1− x+ y

,
x

1− x+ y

)
,

F (x, y) = (1 + x)nI
(

y

1 + x
,
y − x
1 + x

)
.

In particular, I(x, x) = F (0, x) gives the following:

Corollary 7.5. — We have∑
v,w∈NC(W,c)

v�w

xrk(w) =
∑

F∈Υ+(W,c)

x#F .

In particular, the number of intervals v � w in NC(W, c) is #Υ+(W, c).

We will give a bijective proof of the latter fact in the next section.

8. The bijection between positive faces of the cluster
complex and intervals

In order to give a bijection between Υ+(W, c) and intervals v � w in
NC(W, c), an important ingredient is a bijection between clusters and non-
crossing partitions. Such bijections have been described by Reading [27] and
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Athanasiadis et al. [3]. Although the one from [3] was only stated in the
case of a bipartite Coxeter element, it turns out to be particularly adapted
to the present situation as it can be rephrased in terms of the orders @
and �. In fact, using properties of � and @ we will extend the bijection
to cover the case of all standard Coxeter elements.

8.1. The bijection between clusters and noncrossing partitions.

We give a bijection ΨW,c between NCF(W, c) and clusters in Υ+(W, c).
Note that it is straightforward to extend such a bijection to a bijection
from NC(W, c) to clusters in Υ(W, c): if w ∈ NC(W, c) with J = supp(w),
then the image of w is

ΨWJ ,w(w) ∪ {−r(s) | s /∈ J}.

Recall that w is the interval partition such that Γ(w) = WJ and it is indeed
a standard Coxeter element of WJ . In the case of the bipartite Coxeter
element, the bijection that we obtain is actually the inverse of the bijection
in [3, Sections 5-6].

Definition 8.1. — Let w ∈ NC(W, c) then we define

ΦW,c(w) =
(

InvR(w) ∩ Γ(w)
)
∪
(

InvL(K(w)) ∩ Γ(K(w))
)
⊂ T,

ΨW,c(w) = r(ΦW,c(w)) ⊂ Π.

Let us write w andK(w) as products of their associated simple generators
as in Proposition 3.3:

w = s1 · · · sk, K(w) = sk+1 · · · sn,

then one has
c = s1 · · · sn,

and, using (2.2),
ΦW,c(w) = {t1, . . . , tn}

where:

ti =
{

(sksk−1 · · · sk+2−i)sk+1−i(sksk−1 · · · sk+2−i)−1 if 1 6 i 6 k,
(sk+1sk+2 · · · si−1)si(sk+1sk+2 · · · si−1)−1 if k + 1 6 i 6 n.

It follows that
ΨW,c(w) = {r(t1), . . . , r(tn)} ⊂ Π.

Theorem 8.2. — The map ΨW,c is a bijection from NCF(W, c) to the
set of c-clusters in Υ+(W, c).
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First observe that, by a straightforward computation:

t1 · · · tk = w,

tk+1 · · · tn = K(w),
t1 · · · tn = c.

Lemma 8.3. — Let w ∈ NCF(W, c) of rank k, ti as above, and let
1 6 i 6 k and k+ 1 6 j 6 n. Then we have wti @· w, tjK(w) @· K(w), and
w �· wtj .

Proof. — A computation gives wti = s1 · · · sk−isk+2−i · · · sk, whence the
first inequality. The second is obtained similarly. The third one follows the
second one by applying (2) of Proposition 4.2, using the fact that w has
full support. �

Lemma 8.4. — Let i, j be such that either 1 6 i < j 6 k or k+ 1 6 i <
j 6 n. Then we have:

〈r(ti)|r(tj)〉 > 0.

Proof. — We can focus on the case 1 6 i < j 6 k, the other one is
obtained similarly but with sk+1, . . . , sn instead of s1, . . . , sk. Using Propo-
sition 2.1, we have

r(ti) = r(sk · · · sk+1−i · · · sk) = sk · · · sk+2−i
(
r(sk+1−i)

)
= −sk · · · sk+1−i

(
r(sk+1−i)

)
.

The second equality follows from the fact that sk+1−i /∈ InvR(sk · · · sk+2−i)
since they have disjoint support in Γ(w). Similarly,

r(tj) = r(sk · · · sk+1−j · · · sk)
= sk · · · sk+1−i

(
r(sk−i · · · sk−j · · · sk−i)

)
.

Since sk · · · sk+1−i preserves the scalar product, it remains to show that

〈r(sk+1−i)|r(sk−i · · · sk+1−j · · · sk−i)〉 6 0.

This follows from the fact that s1, . . . , sk is a simple system, since the
positive root r(sk−i · · · sk+1−j · · · sk−i) is a positive linear combination of
the roots r(sk−i), . . . , r(sk+1−j). �

Lemma 8.5. — Let v ∈ NC(W, c) with rk(v) = n−2, and let x1, x2 ∈ T
such that c = vx1x2. Suppose v @· vx1 �· c. Then 〈r(x1)|r(x2)〉 > 0.

Proof. — The cardinality of supp(v) is at least n−2 since rk(v) = n−2.
We treat separately its possible values.
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Case 1: # supp(v) = n. — Then v ∈ NCF(W, c), so that we can apply
Proposition 4.2 to the relation v @· vx1. We get x2 �· x1x2, therefore
{x1, x2} is not a simple system in Γ(x1x2), and 〈r(x1)|r(x2)〉 > 0.
Case 2: # supp(v) = n−1. — Since v is not full, there exists an interval

partition v′ such that v l v′ @· c. With v′ = vx3 and c = v′x4, we have
vx3x4 = c, vlvx3 @· c, and x3x4 = x1x2. Since # supp(v) = n−1 > rk(v),
we see that v is not an interval partition, so that v �· vx3. By Propo-
sition 4.2, we get K(vx3) @· K(v), i.e., x4 @· x3x4. Now by Lemma 4.6,
v �· vx3 @· vx3x4 implies x3 6 vx3 @· vx3x4 and x3 @· x3x4 therefore x3
and x4 are the simple generators of Γ(x3x4).
If {x1, x2} 6= {x3, x4}, we get 〈r(x1)|r(x2)〉 > 0 by uniqueness of the

simple system {x3, x4}. Otherwise, we have x1 = x4, indeed x1 6= x3 since
v @· vx1 and v �· vx3. It follows that x2 = x3, and x3x4 = x1x2 becomes
x2x1 = x1x2 so that 〈r(x1)|r(x2)〉 = 0.
Case 3: # supp(v) = n − 2. — To avoid multiple indices, assume that

the simple reflections of W are indexed so that c = s1 · · · sn. Let J =
supp(v) = S \ {i, j} (with i < j) then v has length `T (v) = n − 2 and
v ∈ WJ therefore v is the Coxeter element of WJ = Γ(v). It follows that
v is an interval partition and v = s1 · · · ŝi · · · ŝj · · · sn (where si and sj are
omitted). Let

x3 = sn · · · sj+1sj−1 · · · si · · · sj−1sj+1 · · · sn, x4 = sn · · · sj · · · sn.

then vx3x4 = c and x3x4 = x1x2. By an argument similar to that in the
previous lemma, we have

〈r(x3)|r(x4)〉 = 〈r(sj−1 · · · si · · · sj−1)|r(sj)〉 6 0

therefore x3 and x4 are the simple generators of Γ(x1x2). The end of the
proof is as in the previous case (here x1 6= x3 because vx1 �· c and vx3 @·
c). �

Lemma 8.6. — We have 〈r(ti)|r(tj)〉 > 0 if 1 6 i 6 k and k+1 6 j 6 n.

Proof. — By Lemma 8.3, we have wti @· w �· wtj . Then we can apply
Lemma 8.5 in the subgroup Γ(wtj) to get the result. �

Proposition 8.7. — We have Ψ(w) ∈ Υ+(W, c).

Proof. — We use the criterion in Proposition 6.6. Since t1 · · · tn = c, we
have titj 6 c if i < j. The conditions on the scalar product are given by
Lemmas 8.4 and 8.6. So r(ti) ‖c r(tj) holds for 1 6 i < j 6 n and the
result follows. �
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Let us now describe the inverse map. Let F = {t1, . . . , tn} be a face
of the positive cluster complex. By Proposition 6.7, we can assume that
the ti are ordered so that t1 . . . tn = c. Moreover, by Proposition 3.4, all
orderings of the ti such that this property holds true are obtained from this
ordering by applying commutation relations among the ti. As before we let
ui = t1 . . . ti.

Lemma 8.8. — If ui−1 � ui @ ui+1 then titi+1 = ti+1ti.

Proof. — By Proposition 4.6 one has ti @ titi+1. Applying the Kreweras
complement in Γ(ui+1) and (1) of Proposition 4.2 we obtain ti+1 @ titi+1. It
follows that ti, ti+1 form a simple system in Γ(titi+1) and 〈r(ti)|r(ti+1)〉 6
0. Since ti ‖c ti+1, we also have 〈r(ti)|r(ti+1)〉 > 0, and it follows that
〈r(ti)|r(ti+1)〉 = 0 and ti, ti+1 commute. �

Lemma 8.9. — Let t, t′ ∈ T be such that tt′ = t′t and w �(1) wt �(2)

wt′t then w �(2) wt′ �(1) wt′t, where �(1),�(2) denotes any combination
of the orders @,�.

Proof. — This follows from Corollary 2.2. �

Using Lemmas 8.8 and 8.9 we can use commutation relations between
the ti to move all the � to the right and assume that, for some k, one has

e @ u1 @ u2 @ . . . @ uk � uk+1 � . . .� un = c.

Moreover, by Proposition 3.4, k and uk are uniquely determined by this
requirement. It is then easy to check

{t1, . . . , tk} = InvR(uk) ∩ Γ(uk),
{tk+1, . . . , tn} = InvL(K(uk)) ∩ Γ(K(uk)),

therefore ΨW,c(uk) = F .

8.2. The bijection between faces and intervals

Consider a positive face F = {t1, . . . , tk} ∈ Υ+(W, c). By Proposition 6.7
we can assume that the elements are indexed so that t1 · · · tk 6 c. Let also
w = t1 · · · tk.

Proposition 8.10. — In the situation described above, F is a cluster
in Υ+(Γ(w), w).
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Proof. — First note that Υ+(Γ(w), w) is well defined by Proposition 3.3.
We have titj 6 w if i < j since w = t1 · · · tk. Moreover, 〈r(ti)|r(tj)〉 > 0
since F ∈ Υ+(W, c). So F ∈ Υ+(Γ(w), w) by Proposition 6.6, and it is a
cluster since #F = `T (w) is the rank of Γ(w). �

Theorem 8.11. — With the notation as above, the map

F 7→
(
Ψ−1

Γ(w),w(F ), w
)

is a bijection from Υ+(W, c) to the set of pairs v, w ∈ NC(W, c) such that
v � w.

Proof. — First note that Ψ−1
Γ(w),w(F ) is well defined by Proposition 8.10.

By properties of the bijection Ψ, we have Ψ−1
Γ(w),w(F ) ∈ NCF(Γ(w), w). By

Proposition 4.11, this means Ψ−1
Γ(w),w(F )� w.

We can describe the inverse bijection. To a pair v, w ∈ NC(W, c) such
that v � w, we associate ΨΓ(w),w(v). Once we know that Ψ is a bijection,
it is clear that we have two inverse bijections. �

The construction can be made more explicit. Let ui = t1 · · · ti for 0 6
i 6 k. Up to some commutation among the ti, we can assume

u0 @· . . . @· uj �· uj+1 �· . . .�· uk.

Then the image of F is (uj , uk). In the other direction, let v, w ∈ NC(W, c)
with v � w, rk(v) = j and rk(w) = k. We write v and v−1w as a product
of their associated simple reflections:

v = s1 · · · sj , v−1w = sj+1 · · · sk.

Then the inverse image of (v, w) is {t1, . . . , tk} where we define t1, . . . , tk
as in the definition of Ψ:

ti =
{
sj · · · sj+1−i · · · sj if 1 6 i 6 j,
sj+1 · · · sk+1+j−i · · · sj+1 if j + 1 6 i 6 k.

Also, an immediate consequence of the construction is the following.

Definition 8.12. — Let F ∈ Υ+(W, c), and write F = {t1, . . . , tk}
such that t1 · · · tk 6 c. Then we define (number of “square” relations):

sqr(F ) = #
{
i | 0 6 i < k and t1 · · · ti @· t1 · · · ti+1

}
.

This map is extended to F ∈ Υ(W, c) by requiring sqr(F ) = sqr(F ∩Π).

By Lemma 8.8 the number sqr(F ) does not depend on the way we order
F , as long as t1 · · · tk 6 c.
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Proposition 8.13. — We have:∑
F∈Υ+(W,c)

ysqr(F )z#F =
∑

α,β∈NC(W,c)
α�β

yrk(α)zrk(β).

However, this identity is not related to the F = M theorem in a straight-
forward way, as the left hand side is seemingly unrelated to the polynomial
F (x, y). This will be clarified in Section 9.

8.3. Bijection between faces of the cluster complex and
intervals for @ in the case of a bipartite Coxeter elements

When c = c+c− is a bipartite Coxeter element, one can give a bijection
between the intervals for @ and faces of the cluster complex. For this we
need a preliminary result.
Let u� v then, by applying Proposition 3.8, we get Lv @ Lu. It follows

that S(Γ(Lv)) ⊂ S(Γ(Lu)). Let w ∈ Γ(Lu) be the element corresponding
to the set S(Γ(Lu)) \ S(Γ(Lv)) then one has w @ Lu. Let us denote by
ψ(u, v) the pair (x, y) = (w,Lu). It is clear that the pair (u, v) can be
retrieved from (x, y) therefore the map ψ is injective.

Proposition 8.14. — The map ψ yields a bijection between intervals
u� v and intervals x @ y such that x = e.

Proof. — Let u� v and (w,Lu) = ψ(u, v), we prove that w = e. Assume
on the opposite that w 6= e then there exists s ∈ S such that s ∈ S(Γ(w)) ⊂
S(Γ(Lu)) and s /∈ S(Γ(Lv)) = S(Γ(Lu)) \ S(Γ(w)). Since s 6 Lu one has
sLu 6 Lu and (Lu)s 6 Lu. It follows easily that u ∈W〈s〉 and s ∈ S(Γ(v))
which contradicts u � v. This proves that ψ maps intervals u � v to
intervals x @ y with x = e.
Conversely, let x @ y be such that x = e and let z be the element of Γ(y)

corresponding to S(Γ(y))\S(Γ(x)) then z @ y. Let us prove that Ly � Lz,
it will follow from the construction that (x, y) = ψ(Ly,Lz) and therefore
that ψ is surjective. Let J be the support of Ly then one has Ly ∈ WJ

and one can write y = cJ
c

+ (cJ+LycJ−)cJc

− with obvious notations: e.g. cJ+ is
the product of simple reflections in J ∩ S+, etc. Since (cJ+LycJ−) ∈ WJ is
follows that for s ∈ Jc one has s ∈ S(Γ(y)) moreover since x = e one
has s /∈ S(Γ(x)) therefore s ∈ S(Γ(z)). It follows that z = cJ

c

+ ωcJ
c

− with
ω ∈ WJ moreover ω @ cJ+Lyc

J
− since z @ y. Since Ly has full support in

WJ we can apply (2) of Proposition 3.8 in the group WJ and conclude that
Lz = cJ+ωc

J
− � Ly as claimed. �
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Let γ be an interval partition, corresponding to the parabolic subgroup
WJ then one can write γ = γ+γ− according to the bipartite decomposition.
Let v ∈ NC(W, c) be such that v = γ, then v = γ+v

′γ− where v′ ∈
NC(WJc , Lγ) moreover this gives a bijection between NC(WJc , Lγ) and
the set of v such that v = γ.

Using the bijection ψ−1 and composing with the bijection between in-
tervals for � and faces of the positive cluster complex we get a bijection
between intervals v @ w for @ with v = e and faces of the positive cluster
complex Υ+(W, c). It is an easy exercise to check that an interval of height
k corresponds to a face of size n− k. This bijection is then easily extended
to a bijection between intervals of @ and faces of Υ(W, c) if v = γ add the
set J to the face in Υ+(WJc , cJc).

9. Generalized F = M and H = M theorems

We show in this section that the relations between F -, H-, and M -
polynomials can be proved and even generalized using the I-polynomial
counting intervals for the order �. Here we consider homogeneous poly-
nomials on variables (xs)s∈S indexed by the simple reflections of W , and
y, z. Note that the existence of multivariate analog of the identities was
suggested by Armstrong [1, Open problem 5.3.5].
In general we denote x the set of x variables, leaving the index set im-

plicit. Moreover x+A denote that all the x variables are shifted by A, and
x is replaced by an expression to mean that all x variables are specialized
to this expression, etc.
Let

I(x, y, z) =
∑

α,β∈NC(W,c)
α�β

( ∏
s∈S\ supp(β)

xs

)
yrk(α)zrk(β)−rk(α),

F(x, y, z) =
∑

F∈Υ(W,c)

( ∏
δ∈F∩(−∆)

xr(δ)

)(y
z

)sqr(F )
z#F∩Π,

and also:

M(x, y, z) =
∑

α,β∈NC(W,c)
α6β

µ(α, β)
( ∏
s∈S\ supp(β)

xs

)
yrk(α)(−z)rk(β)−rk(α),

H(x, y, z) =
∑

A∈NN(W )

( ∏
δ∈A∩∆

(xr(δ)
z

))(y
z

)#A∩(Π\∆)
z# supp(A).
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It is straightforward to check that they are all polynomials of total degree
n. For example, note that we have sqr(f) 6 #(F ∩ Π) for F ∈ Υ(W, c)
by definition of sqr, so the power of z in F(x, y, z) is nonnegative, and we
have rk(α) 6 # supp(α) for α ∈ NC(W, c) so the polynomials I(x, y, z) and
M(x, y, z) have degree at most n.

The 2-variable polynomials from Section 6.5 are obtained as special cases,
though by different specializations:

(9.1)
F (x, y) = F(x, y, y), H(x, y) = H(x, y, 1),
M(y, z) = M(1, y, z), I(y, z) = I(1, y, z).

Theorem 9.1. — F(x, y, z) = I(x+ 1, y, z).

Proof. — First, note that

F(x, y, z) =
∑
J⊂S

(∏
s∈J

xs

)
FWS\J

(0, y, z).

Also, expanding the products in I(x+ 1, y, z) gives:

I(x+ 1, y, z) =
∑

α,β∈NC(W,c)
α�β

∑
J⊂S\ supp(β)

(∏
s∈J

xs

)
yrk(α)zrk(β)−rk(α)

=
∑
J⊂S

∑
α,β∈NC(W,c), α�β

supp(β)⊂S\J

(∏
s∈J

xs

)
yrk(α)zrk(β)−rk(α)

=
∑
J⊂S

(∏
s∈J

xs

)
IWS\J

(1, y, z).

So it suffices to prove F(0, y, z) = I(1, y, z), which is the content of Propo-
sition 8.13. �

Theorem 9.2. — M(x, y, z) = I(x, y + z, z).

Proof. — This follows from Proposition 7.4. In Iβ(yz+1) = Mβ(yz ), multi-
ply both sides by

(∏
s∈S\ supp(β) xs

)
zrk(β) and sum over β ∈ NC(W, c). �

Theorem 9.3. — H(x, y, z) = I(x− y + 1, y, z − 1).

Proof. — First write the expansion:∏
δ∈A∩∆

(xr(δ) + y

z

)
=

∑
J⊂A∩∆

(y
z

)#(A∩∆)\J ∏
δ∈J

(xr(δ)
z

)
.
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It follows:

H(x+ y, y, z) =
∑

A∈NN(W )

∑
J⊂A∩∆

(∏
δ∈J

(xr(δ)
z

))(y
z

)#(A\J)
z# supp(A)

=
∑
J⊂∆

(∏
δ∈J

xr(δ)

) ∑
A∈NN(W )
J⊂A

(y
z

)#(A\J)
z# supp(A)−#J

=
∑
J⊂∆

(∏
δ∈J

xr(δ)

)
HWS\r−1(J)

(y, y, z).

In the proof of the Theorem 9.1, we have seen that I(x+1, y, z) admits a sim-
ilar expansion on the x-variables. Consequently, I(x+1, y, z−1) also admits
a similar expansion, and it remains to show that H(y, y, z) = I(1, y, z− 1).

On one side we have:

H(y, y, z) =
∑

A∈NN(W )

y#Az# supp(A)−#A =
∑
I⊂S

#I∑
k=1

Nar+
k (WI)ykz#I−k.

On the other side,

I(1, y, z − 1) =
∑

α,β∈NC(W,c)
α�β

yrk(α)(z − 1)rk(β)−rk(α)

=
∑

α∈NC(W,c)

yrk(α)z# supp(α)−rk(α),

where the last equality follows from the binomial theorem, since the β
such that β � α form a boolean lattice whose maximal element is α, by
Proposition 4.13 and Corollary 4.14. This sum can again be expressed in
terms of the numbers Nar+

k (WI), so that H(y, y, z) = I(1, y, z − 1). �

By combining the previous theorems, we get relations between F-, H-,
and M-polynomials:

F(x, y, z) = M(x+ 1, y − z, z),(9.2)
F(x, y, z) = H(x+ y, y, z + 1),(9.3)
H(x, y, z) = M(x− y + 1, y − z + 1, z − 1).(9.4)

The next property is best seen on the H-polynomial.

Proposition 9.4. — H(x− 1, y, z) is homogeneous of degree n.

Proof. — An element A ∈ NN(W ) can be uniquely written A′∪A′′ where
A′ ∩∆ = ∅ and A′′ ⊂ ∆\ supp(A′). Note that # supp(A) = # supp(A′) +

ANNALES DE L’INSTITUT FOURIER



NONCROSSING PARTITIONS 2287

#A′′. For a fixed A′, any subset A′′ ⊂ ∆\ supp(A′) is valid, so that the
sum over A′′ factorizes and gives:∑

A∈NN(W )
A∩(Π\∆)=A′

( ∏
δ∈A∩∆

(xr(δ)
z

))(y
z

)#A∩(Π\∆)
z# supp(A)

=
( ∏
δ∈∆\ supp(A′)

(1 + xr(δ))
)(y

z

)#A′
z# supp(A′).

After a change of variables x→ x−1, the latter expression is homogeneous.
Since H(x− 1, y, z) is obtained by summing over A′, it is too. �

This homogeneity implies that the 3-variable polynomial H(x, y, z) can
be expressed in terms of the 2-variable polynomial H(y, z) = H(1, y, z). It
also implies that the F-, I-, and M-polynomials also become homogeneous
after suitable shifts in the variables. So the other 3-variable polynomials can
also be expressed in terms of their 2-variable specialization from Section 6.5.
To recover the F = M identity in Section 6.5 from the present results,

first use the homogeneity of F(x− 1, y, z − 1) (obtained from the previous
proposition together with (9.3)) to write:

F(x− 1, y, z − 1) = xnF(0, yx ,
z
x − 1),

then the substitution (x, z)→ (x+ 1, y + 1) gives:

F(x, y, y) = (1 + x)nF(0, y
1+x ,

y−x
1+x ) = (1 + x)nM(1, x

1+x ,
y−x
1+x )

where the last equality comes from (9.2). Then using (9.1), we recover the
relation between F (x, y) and M(x, y) in (6.6). Similarly, the homogeneity
of H(x− 1, y, z) gives:

(9.5) H(x− 1, y, z) = znH(xz − 1, yz , 1).

Then the substitution (x, z)→ (x+ y + 1, y + 1) gives:

H(x+ y, y, y + 1) = (1 + y)nH( x
1+y ,

y
1+y , 1).

Using (9.3) on the left hand side, then (9.1), we recover the relation between
F (x, y) and H(x, y) in (6.6).

Proposition 9.5. — H(x− 1, y, z) is symmetric in y and z.

Proof. — Similar to the expansions we have seen in this section, we have:

H(x, y, z) =
∑
J⊂S

(∏
s∈J

xs

)
HWS\J

(0, y, z).
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So we can just prove that H(0, y, z) is symmetric. By (9.5), we have

H(0, y, z) = znH( 1
z − 1, yz , 1) = znH( 1

z − 1, yz ).

By (6.10), the latter is equal to ynH( 1
y − 1, zy ), which is precisely the same

up to exchanging y and z. �

It is natural to look for an involution on nonnesting partitions that would
prove the symmetry of H(x, y, z). This is the subject of conjectures by
Panyushev [25, Conjecture 6.1], see also [15, Section 5]. To our knowledge
this is still an open problem.
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