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HORIZONTAL HOLONOMY AND FOLIATED
MANIFOLDS

by Yacine CHITOUR, Erlend GRONG,
Frédéric JEAN & Petri KOKKONEN (*)

Abstract. — We introduce horizontal holonomy groups, which are groups
defined using parallel transport only along curves tangent to a given subbundle D
of the tangent bundle. We provide explicit means of computing these holonomy
groups by deriving analogues of Ambrose–Singer’s and Ozeki’s theorems. We then
give necessary and sufficient conditions in terms of the horizontal holonomy groups
for existence of solutions of two problems on foliated manifolds: determining when a
foliation can be either (a) totally geodesic or (b) endowed with a principal bundle
structure. The subbundle D plays the role of an orthogonal complement to the
leaves of the foliation in case (a) and of a principal connection in case (b).
Résumé. — Dans cet article, nous introduisons les groupes d’holonomie hori-

zontale associés à un sous-fibré D du fibré tangent d’une variété différentielle M
munie d’une connexion linéaire. Ces groupes sont construits comme l’holonomie par
le transport parallèle (pour la connexion) uniquement le long des lacets tangents
à D. Nous faisons une étude détaillée de ces groupes et donnons en particulier des
analogues des théorèmes d’Ambrose–Singer et Ozeki sous une hypothèse d’équiré-
gularité du sous-fibré D. D’autre part nous appliquons l’holonomie horizontale à
l’étude de problèmes de feuilletages et obtenons ainsi des conditions nécessaires et
suffisantes pour que les feuilles d’un feuilletage donné soient (a) totalement géodé-
siques, ou (b) les fibres d’un fibré principal. Le sous-fibré D est choisi comme le
complément orthogonal des feuilles dans le cas (a), et comme la connexion princi-
pale dans le cas (b).

1. Introduction

Given a foliation F of a Riemannian manifold (M,g) there are several
results related to global geometry [12, 13, 24], nearly Kähler manifolds [30],
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PDEs on manifolds [3, 8, 26] and probability theory [17] relying on the prop-
erty that the leaves of F are totally geodesic submanifolds. Hence, given a
foliation F of a manifold M , it is natural to ask if M has a Riemannian
metric g that makes the leaves of F totally geodesic. Such a metric always
exists locally, but global existence is far from being trivial, see e.g. [11, 36].
If we in addition require that a given transverse subbundle D is orthog-
onal to F , an appropriate Riemannian metric may not even exist locally.
We will show that the existence of such a metric can be determined using
horizontal holonomy.
The idea of horizontal holonomy considers parallel transport only along

curves tangent to a given subbundle D ⊆ TM , often referred to as the
horizontal bundle, hence the name. Such a holonomy was first introduced
for contact manifolds in [18], partially based on ideas in [34] and generalized
later in [23]. In this paper, we both define horizontal holonomy in greater
generality and most importantly provide tools for computing it, in the form
of analogues of the theorems of Ambrose–Singer [2] and Ozeki [31].
Our above mentioned problem of totally geodesic foliations with a given

orthogonal complement can now be rewritten in terms of horizontal holo-
nomy as follows. Consider a manifold M whose tangent bundle is a direct
sum TM = D ⊕ V with V being an integrable subbundle corresponding
to a foliation F , and D being a completely controllable subbundle. Let
H ⊆ GL(Sym2 V ∗x ) be the D-horizontal holonomy group at an arbitrary
point x ∈ M , associated with a vertical connection on V . We prove that
there exists a Riemannian metric g on M such that D is the g-orthogonal
complement to V and the leaves of F are totally geodesic submanifolds
if and only H admits a fixed point which is positive definite as a qua-
dratic form on Vx. This question does not only have relevance for geometry
but also for the theory on sub-elliptic partial differential operators. To be
more precise, let L be a second order partial differential without constant
term and consider its symbol σL : T ∗M → TM as the unique bundle map
satisfying

df(σL(dg)) = 1
2 (L(fg)− fLg − gLf) , for any f, g ∈ C∞(M).

Let us consider the case where α(σLα) > 0 and the image of σL is equal
to a proper subbundle D of TM ; hence L is not elliptic. The typical ex-
ample of such an operator L is the sub-Laplacian operator associated with
a sub-Riemannian manifold. Finding a totally geodesic foliation F which
is orthogonal to D enables one to obtain results on the corresponding heat
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flow of L such as analogues of the Poincaré inequality, the Li–Yau inequal-
ity and the parabolic Harnack inequality, see e.g. [4, 5, 6, 21, 22] for details.
We emphasize that the constants involved in these inequalities depend on
the choice of foliation.
The horizontal holonomy of a vertical connection on V can also be related

to the existence of a principal bundle structure on M . Assume that the
leaves of F consist of the fibers of a fiber bundle π : M → B and that D is
a subbundle transverse to F . We can then establish a link between a trivial
horizontal holonomy and the existence of a principal bundle structure of π
with D as a principal connection.
The structure of the paper is as follows. In Section 2.1 we give the defini-

tion of horizontal holonomy of a general connection ω on a principal bundle.
In Section 2.2, we first limit ourselves to the case whereD is equiregular and
bracket-generating and we introduce the main tool for deriving our results,
namely two-vector-valued one-forms related to D that we call selectors. In
Section 2.3, we prove that the horizontal holonomy of ω is equal to the
full holonomy of a modified connection and we show that the Ambrose–
Singer and Ozeki theorem are still valid with an adapted modification of
the curvature of ω. In both cases, explicit formulas for the modified connec-
tion and curvature are given using a selector of D. We rewrite our results
in the setting of affine connections in Section 2.4 and consider horizontal
holonomy of a general subbundle D in Section 2.5 and Section 2.6.
In Section 3, we apply horizontal holonomy to vertical connections on

foliations. In Section 3.1, given a foliation F and a transversal subbundle
D, we provide both necessary and sufficient conditions for the existence
of a metric g such that F is totally geodesic with orthogonal complement
D. In Section 3.2 we use horizontal holonomy to determine when a fiber
bundle can be endowed with the structure of a principal bundle with a
given connection D. We note that holonomy in these two cases is related
to parallel transport of respectively symmetric tensors and vectors along
curves tangent to D and is not related to concepts of holonomy as in [9, 10].
Since in both cases, the conditions require the computation of horizontal
holonomy groups, we give in Subsection 3.3 explicit formulas for generating
sets of the Lie algebra of such groups in terms of curvature operators. We
deal with concrete examples in Section 4. In particular, we give examples
of foliations F that cannot be made totally geodesic, given a fixed orthog-
onal complement. We also completely describe the case of one-dimensional
foliations.

TOME 69 (2019), FASCICULE 3
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1.1. Notation and conventions

If Z is a section of a vector bundle Π: V → M , we use Z|x to denote
its value at x. The space of all smooth sections of V is denoted by Γ(V ).
If V is a subbundle of TM , Γ(V ) is considered as a subalgebra of Γ(TM).
If X is a vector field, then LX is the Lie derivative with respect to X. We
use Sym2 V to denote the symmetric square of V . If E and F are vector
spaces, then GL(E) and gl(E) denote the space of automorphisms and
endomorphisms of E, respectively and we identify the space of linear maps
from E to F with E∗ ⊗ F .

Acknowledgements. The authors thank E. Falbel for helpful com-
ments and useful insights.

2. Horizontal holonomy

2.1. Definition of horizontal holonomy group

Let M be a finite dimensional, smooth and connected manifold, π : P →
M a smooth fiber bundle and V = kerπ∗ the corresponding vertical bundle.
For x ∈ M , we use Px to denote the fiber π−1(x) over x. Let H be an
arbitrary subbundle of TP . An absolutely continuous curve c : [t0, t1]→ P

is said to be H-horizontal if ċ(t) ∈ Hc(t) for almost every t ∈ [t0, t1].
A subbundle H of TP is said to be an Ehresmann connection on π if

TP = H ⊕ V. Here π : P → M is considered as a surjective submersion.
For every x ∈ M , v ∈ TxM and p in the fiber Px, there is a unique
element hpv ∈ Hp satisfying π∗hpv = v called the H-horizontal lift of v.
Furthermore, if γ : [t0, t1]→M is an absolutely continuous curve inM with
γ(t0) = x0, a horizontal lift of γ is an H-horizontal absolutely continuous
curve c : [t0, t1]→ P that projects to γ. As any horizontal lift c(t) is solution
of the ordinary differential equation

ċ(t) = hc(t)γ̇(t),

c(t) is uniquely determined by its initial condition c(t0) ∈ Px0 on an open
subinterval of [t0, t1] containing t0. The Ehresmann connection is said to
be complete if, for every absolutely continuous γ : [t0, t1] → M , all corre-
sponding horizontal lifts are defined on [t0, t1].
A smooth fiber bundle π : P → M is called a principal G-bundle if it

admits a continuous right action P × G → P such that the connected

ANNALES DE L’INSTITUT FOURIER
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Lie group G with Lie algebra g preserves the fibers and acts freely and
transitively on them. For every g-valued function f ∈ C∞(P, g), let σ(f)
be the vector field on P defined by

(2.1) σ(f)|p = d
dtp · expG(tf(p))

∣∣∣∣
t=0

, p ∈ P.

In particular, for any element A ∈ g, we get a corresponding vector field
σ(A) by considering it as a constant function on M . Then P × g →
V, (p,A) 7→ σ(A)|p is an isomorphism of vector bundles. A connection form
ω on P is a g-valued one-form ω satisfying

ω(σ(A)|p) = A, ω(v · a) = Ad(a−1)ω(v),

for every A ∈ g, p ∈ P , v ∈ TP and a ∈ G. We say that an Ehresmann
connection H on the principal G-bundle π : P → M is principal if it is
invariant under the group action, i.e., if Hp · a = Hp·a for any p ∈ P ,
a ∈ G. An Ehresmann connection is principal if and only if there exists a
connection form ω on P such that H = kerω. In that case, H-horizontal
curves or lifts will also be referred to as ω-horizontal. Note that a principal
Ehresmann connection is complete.
In what follows,H is assumed to be a principal Ehresmann connection on

π corresponding to a connection form ω. However, non-principal Ehresmann
connections will appear elsewhere in the text. For more on Ehresmann
connections and principal bundles, we refer to [28].
Let ω be a connection form on a principal G-bundle π : P → M and let

H = kerω. For every p ∈ P , we use L ω(p) to denote the collection of all H-
horizontal lifts c : [0, 1] → P of absolutely continuous loops γ : [0, 1] → M

based in π(p) such that c(0) = p. The holonomy group of ω at p is then
defined as

Holω(p) = {a ∈ G : c(1) = p · a for some c ∈ L ω(p)} .

Since M is connected, the groups Holω(p) coincide up to conjugation.
Let us now consider an arbitrary subbundle D of TM . We want to in-

troduce a type of holonomy that only considers the loops in M that are
D-horizontal.

TOME 69 (2019), FASCICULE 3
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Definition 2.1. — For p ∈ P , let L ω,D(p) ⊂ L ω(p) be the collection
of H-horizontal lifts of all D-horizontal loops γ : [0, 1]→M based in π(p) =
x. The horizontal holonomy group of ω with respect to D is the group

Holω,D(p) = {a ∈ G : c(1) = p · a for some c ∈ L ω,D(p)}.

IfD is completely controllable (i.e., any two points inM can be connected
by a D-horizontal curve), then the groups Holω,D(p) with p ∈ P , coincide
up to conjugation. If ω and ω̃ are two connections on P , the sets L ω,D(p)
and L ω̃,D(p) may coincide for every p ∈ P even if the connections are
different. Since in this case these connections also have the same horizontal
holonomy group with respect to D, we introduce the following equivalence
relation on connections of P .

Definition 2.2. — Let π : P → M be a principal G-bundle and D a
subbundle of TM . Two connection forms ω and ω̃ are called D-equivalent if

ω(v) = ω̃(v), for any v ∈ TP satisfying π∗v ∈ D,

and we write [ω]D for the equivalence class of the connection form ω.

Any twoD-equivalent connection forms ω and ω̃ have the same horizontal
lifts to P of D-horizontal curves and hence Holω,D(p) = Holω̃,D(p) for every
p ∈ P .

Remarks 2.3.
(a) Rather than introducing the above equivalence classes, we could

have considered partial connections such as in [18]: given a principal
G-bundle π : P → M and a subbundle D of TM , a (principal)
partial connection over D is a subbundle E , invariant under the
action of G, such that π∗ maps E on D bijectively on every fiber.
For every equivalence class [ω]D, we obtain a partial connection
by E : = (π∗)−1(D) ∩ kerω. Conversely, following the argument
of [27, Theorem 2.1], one proves that any partial connection can
be extended to a full connection on π. Hence, there is a one-to-
one correspondence between partial connections and D-equivalence
classes. For us, the language of D-equivalence classes will be more
convenient.

(b) For any connection form ω, the identity component of Holω(p) is
obtained by horizontally lifting all contractible loops based at π(p).
For horizontal holonomy, we have a similar description. For any
loop γ : [0, 1] → M based in x, we say that it is D-horizontally
contractible if γ is a D-horizontal loop and if there exists a ho-
motopy [0, 1] × [0, 1] → M , (s, t) 7→ γs(t) such that γ0(t) = x,
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γ1(t) = γ(t), γs(0) = γs(1) = x and t 7→ γs(t) is a D-horizontal
curve for any s ∈ [0, 1]. The identity component of Holω,D(p) is
obtained by horizontally lifting D-horizontally contractible loops.
If D is bracket-generating, (i.e., if TM is spanned by vector fields
with values in D and their iterated brackets) then a D-horizontal
loop is D-horizontally contractible if and only if it is contractible
(see [35] and [19, Theorem 1]). As a consequence, the identity com-
ponent of Holω,D(p) is obtained by horizontally lifting contractible
D-horizontal loops. On the other hand, such a property may not
hold when D is not bracket-generating, as the following example
shows. Consider R4 with coordinates (x, y, z, w) and let D be the
span of ∂

∂x and ∂
∂y + x(w ∂

∂z − z
∂
∂w ). Fix a point (x, y, z, w) with

(z, w) 6= (0, 0). Then all D-horizontal loops starting from this point
are contained in a manifold diffeomorphic to R2 × S1 and some of
them are contractible but not D-horizontally contractible.

(c) The definition of horizontal holonomy does not change if we define
L ω,D(p) to be the collection of horizontal lifts of all loops based in
π(p) that are both D-horizontal and smooth, see [7, Theorem 2.3]
and [20, last sentence].

2.2. Equiregular subbundles and selectors

In this paragraph, we assume that the subbundle D of TM is equiregular
and bracket-generating and the corresponding definitions are given next.

Definition 2.4. — Let D be a subbundle of the tangent bundle TM
of a connected manifold M .

• We say that D is equiregular of step r if there exist a flag of sub-
bundles of TM

(2.2) 0 = D0 ( D1 = D ( D2 ( · · · ( Dr,

such that Dr is an integrable subbundle and such that Dk is the
span of vectors fields with values in D and their iterated brackets
of order less than k − 1 for any 2 6 k 6 r.

• We say that D is bracket-generating if TM is spanned by vector
fields with values in D and their iterated brackets.

• We say that D is completely controllable if any two points in M

can be connected by a D-horizontal curve.

TOME 69 (2019), FASCICULE 3
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From the above definitions, an equiregular subbundle D is bracket-
generating if and only if Dr = TM . Furthermore, D is completely control-
lable if it is bracket-generating [16, 32]. We give some examples to illustrate
the above definitions.

Examples 2.5.
(1) A subbundle is integrable if and only if it is equiregular of step 1.
(2) Consider R3 with coordinates (x, y, z). Let φ : R → R be a real

valued smooth function and define D as the span of ∂
∂x and ∂

∂y +
φ(x) ∂∂z .
(a) If φ(x) = x, then D is bracket-generating and equiregular of

step 2.
(b) If φ(x) = x2, thenD is bracket-generating, but not equiregular,

since span{X,Y, [X,Y ]} is not of constant rank, and so D2 is
not well-defined.

(c) If φ(0) = 0 and φ(x) = e−1/x2 for x 6= 0, then D is completely
controllable but neither bracket-generating nor equiregular.

(3) Consider R4 with coordinates (x, y, z, w) and let D be the span of
∂
∂x and ∂

∂y +x ∂
∂z . Then D is equiregular of step 2, but not bracket-

generating.
(4) If D has rank greater or equal to 2, a generic choice of a subbundle

D of TM is bracket generating in the sense of [29, Proposition 2].

We consider here the case when D is equiregular (of step r ∈ N) and
bracket-generating. The remaining cases are addressed in Sections 2.5
and 2.6.
For 0 6 k 6 r, we use Ann(Dk) ⊆ T ∗M to denote the subbundle of

T ∗M consisting of the covectors that vanish on Dk. In particular, Ann(Dr)
reduces to the zero section of T ∗M . The following definition introduces the
main technical tool in order to formulate our results on horizontal holonomy
groups.

Definition 2.6. — Let D be a bracket-generating, equiregular subbun-
dle of step r with the corresponding flag given as in (2.2). We say that a
two-vector-valued one-form χ ∈ Γ(T ∗M ⊗

∧2
TM) is a selector of D if it

satisfies the following two assumptions.
(1) For every 0 6 k 6 r − 1, χ(Dk+1) ⊆

∧2
Dk ⊆

∧2
TM.

(2) For every 1 6 k 6 r − 1 and one-form α with values in Ann(Dk)
and every vector v ∈ Dk+1, we have

α(v) = −dα(χ(v)).

ANNALES DE L’INSTITUT FOURIER
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Taking k = 0 in Item (1) yields that any selector must satisfy χ(D) = 0.
If χ is a selector, we use ιχ to denotes its transpose or contraction operator,
i.e., for every vector v and two-covector η one has (ιχη)(v) : = η(χ(v)).
The next lemma provides basic properties associated with selectors.

Lemma 2.7.
(1) A bracket-generating equiregular subbundle D admits at least one

selector.
(2) The set of selectors of D in Γ(T ∗M⊗

∧2
TM) is an affine subspace.

In fact, if χ0 is a selector of D, then {χ−χ0 : χ is a selector of D}
is a C∞(M)-module.

(3) Let β and η be a one-form and a two-form onM , respectively. Let χ
be a selector of D. Then there exists a unique one-form α satisfying
the system of equations

(2.3) α|D = β|D, ιχdα = ιχη.

The solution α is given by

(2.4) α = (id +ιχd)r−1β − ιχ
r−2∑
j=0

(
r − 1
j + 1

)
(dιχ)jη.

(4) Let dχ : Γ(T ∗M)→ Γ(
∧2

TM) be defined by dχ : = d(id +ιχd)r−1.
Then, for every one form β, dχβ only depends on β|D and dχβ = 0
if and only if there exists a one-form β̃ such that

β̃|D = β|D, dβ̃ = 0.

We provide an example of selectors before giving the argument of the
above lemma.

Example 2.8. — For n > 1, consider R2n+1 with coordinates (x1, . . . , xn,

y1, . . . , yn, z). For every 1 6 j 6 n, defineXj = ∂
∂xi

and Yj = ∂
∂yi

+xi ∂∂z and
let D be the span of these vector fields. The subbundle D is then bracket-
generating and equiregular of step 2. Furthermore, for every 1 6 k 6 n,
the two-vector-valued one-forms χk defined, for every 1 6 j 6 n, by

χk(Xj) = 0, χk(Yj) = 0 and χk
(
∂

∂z

)
= Xk ∧ Yk,

are selectors of D. The collection of all selectors of D is

χ1 + spanC∞(M){χj − χ1, 2 6 j 6 n}

=
{

n∑
k=1

fkχk : fk ∈ C∞(M),
n∑
k=1

fk ≡ 1
}
.

TOME 69 (2019), FASCICULE 3
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Remark 2.9. — The reason for our choice of the term “selector” is the
following. Let Z be a vector field with values in Dk+1 for some k = 0, . . . ,
r − 1. By definition, we can write Z using vector fields with values in
Dk and first order Lie brackets of vector fields with values in the same
subbundle. However, such a decomposition is not unique. The idea is that
a selector gives us a way of selecting one of these representations. That is,
if χ(Z) =

∑l
i=1Xi ∧Yi, Definition 2.6(1) and (2) ensure that we can write

Z =
l∑
i=1

[Xi, Yi] + Z2,

where the vector fields Xi, Yi and Z2 = Z−
∑k
i=1[Xi, Yi] take values in Dk.

Proof of Lemma 2.7.
(1) Endow M with a Riemannian metric g. Let Ek denote the g-

orthogonal complement of Dk−1 in Dk for 1 6 k 6 r. In other
words

D = E1, D2 = E1 ⊕⊥ E2, . . . , Dr = TM = E1 ⊕⊥ · · · ⊕⊥ Er.

For 1 6 k 6 r, let prEk denote the g-orthogonal projection onto
Ek and set prEr+1 to be equal to the zero-map. We next define a
vector-valued two-form Φ:

∧2
TM → TM as follows. Let X and

Y be two vector fields with values in Ei and Ej respectively with
i 6 j and let x ∈M . We write v = X|x and w = Y |x. We set

Φ(v, w) =
{

0 if i > 2,
prEj+1 [X,Y ]|x if i = 1.

Since prEj+1 [X,Y ]|x does not depend on the choices of sections X
and Y of respectively E1 and Ej , the vector Φ(v, w) is well defined.
The image of Φ is E2 ⊕ · · · ⊕ Er. Define χ : TM →

∧2
TM such

that χ vanishes on E1 and for any w ∈ Ek, 2 6 k 6 r, χ(w) is the
unique element in

∧2
TM satisfying

Φ(χ(w)) = w, χ(w) ∈ (ker Φ)⊥,

with the latter denoting the g-orthogonal complement of the kernel
of Φ in

∧2
TM . From this definition, (1) follows readily. Further-

more, let X and Y be two arbitrary vector fields with values in E1

and Ej respectively, with j < r. If Z = Φ(X,Y ) and α is a one-form
vanishing on Dj = E1 ⊕ · · · ⊕ Ej , then

−dα(χ(Z)) = −dα(X,Y ) = α([X,Y ]) = α(Φ(X,Y )) = α(Z),

so (2) is satisfied as well.
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(2) If χ1 and χ2 are two selectors of D, then from Definition 2.6,
we have that ξ = χ1 − χ2 is a map that satisfies ξ(Dk+1) ⊆∧2

Dk, k = 0, . . . , r− 1 and for any α ∈ Γ(AnnDk) and w ∈ Dk+1,
k = 1, . . . , r − 1, we have

dα(ξ(w)) = 0.

Clearly, the space of all such ξ is closed under addition and multi-
plication by scalars or functions.

(3) We start by showing uniqueness of a solution of (2.3). Thanks to
the linearity of the equations of (2.3), it amounts to prove that
α = 0 is the unique solution to (2.3) when β = 0 and η = 0. Such
an α must take values in Ann(D), meaning that, for every w ∈ D2,
we have dα(χ(w)) = 0 = −α(w), and so α must vanish on D2 as
well. By iterating this reasoning, it follows that α = 0.
As regards the existence of a solution of (2.3), the linearity of the

equations of (2.3) implies that it is enough to consider two cases,
namely
(i) β = 0 and
(ii) η = 0.
We start with Case (i). Since ιχη vanishes on D, it follows that
(id +ιχd2)ιχη vanishes on D2 by Definition 2.6(2). Iterating this
argument, we obtain

(id +ιχd)r−1ιχη =
r−1∑
j=0

(
r − 1
j

)
(ιχd)jιχη = 0.

Hence, ιχη = −ιχd
∑r−2
j=0

(
r−1
j+1
)
(ιχd)jιχη and so we can take

α = −
r−2∑
j=0

(
r − 1
j + 1

)
(ιχd)jιχη = −ιχ

r−2∑
j=0

(
r − 1
j + 1

)
(dιχ)jη

a solution to (2.3). Note that α vanishes on D as required, since χ
vanish on D.
We next turn to Case (ii), i.e., we assume that η = 0 in (2.3).

Define α1 = β and αk+1 = (id +ιχd)αk for k = 1, . . . , r − 1. We
show by induction on k > 1 that αk(v) = β(v) for v ∈ D and
(ιχdαk)(w) = 0 for w ∈ Dk. The conclusion trivially holds for
k = 1 since χ vanishes onD1. Furthermore, for every v ∈ D, one has
αk+1(v) = αk(v) + ιχdαk(v) = αk(v). We complete the induction
step by observing that

ιχdαk+1 = (id +ιχd)ιχdαk,
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vanishes on Dk+1 if ιχdαk vanishes on Dk. The desired solution α
is simply αr.

(4) If β1|D = β2|D, then β1 − β2 is a one-form with values in Ann(D)
and one has that

(id +ιχd)r−1(β1 − β2) = 0.

Hence dχβ1 = dχβ2.
Consider a closed one form β̃ and a one-form β such that β|D =

β̃|D. Then dχβ = dχβ̃ = (id +dιχ)r−1dβ̃ = 0. Conversely, if β is
a one-form such that dχβ = 0, then β̃ := (id +ιχd)r−1β clearly
satisfies the two equations dβ̃ = 0 and β̃|D = β|D. �

We next extend the conclusion of Lemma 2.7(3) to the context of forms
taking values in a vector bundle. For that purpose, consider a vector bundle
E →M with an affine connection ∇. The exterior covariant derivative d∇
is defined as follows: for every k-form η ∈ Γ(

∧k
T ∗M ⊗ E) with k > 0,

(i) If k = 0, then d∇η = ∇�η,
(ii) If β is a real-valued form, then d∇(η∧β) = (d∇η)∧β+(−1)kη∧dβ.

The conclusion of Lemma 2.7(3) still holds true for forms taking values in
any vector bundle if one replaces the exterior derivative d with the exterior
covariant derivative d∇. Indeed, if α is an E-valued one-form vanishing on
Dk, then for any w ∈ Dk+1 and selector χ, we have

d∇α(χ(w)) = −α(w).

Hence, we can use the same argument as in the proof of Lemma 2.7(3)
to obtain a formula for the unique solution α to the equation α|D = β|D
and ιχd∇α = ιχη for given β and η. In fact, we can get the following more
general result by using the same approach.

Corollary 2.10. — Let χ be a selector of D, Π: E → M a vector
bundle over M and β, η respectively a one-form and a two form taking
values in E. Consider an operator L : Γ(T ∗M⊗E)→ Γ(

∧2
T ∗M⊗E) such

that, for 1 6 k 6 r−1 and α ∈ Γ(T ∗M ⊗E) vanishing on Dk, one has that
(id +ιχL)α vanishes on Dk+1. Then the unique solution α to the system of
equations α|D = β|D, ιχLα = ιχη is given by

α = (id +ιχL)r−1β − ιχ
r−2∑
j=0

(
r − 1
j + 1

)
(Lιχ)jη.

Furthermore, if we define Lχ : = L(id +ιχL)r−1, then Lχα only depends
on α|D and it vanishes Lχα = 0 if and only if there exists some one-form
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β with
α|D = β|D, Lβ = 0.

2.3. Computation of horizontal holonomy groups

A central result for the characterization of the holonomy of a connection
ω in principal bundles is the Ambrose–Singer Theorem, which essentially
says that the Lie algebra of Holω can be computed from the curvature
form Ω of ω, see [2] and [27, Theorem 8.1]. Recall that in the case of
infinitesimal holonomy or in the analytic framework, the Ambrose–Singer
Theorem admits a sharpened form established by Ozeki [31]. In this section,
we provide versions of Ambrose–Singer and Ozeki Theorems describing the
horizontal holonomy group of equiregular subbundles, and which rely on
an adapted curvature form that we introduce below.
For that purpose, we consider the following notations. Let π : P → M

be a principal G-bundle where g denotes the Lie algebra of G. We define
a bracket of g-valued forms on P as next: if α and β are real valued forms
and A,B ∈ g, then

[α⊗A, β ⊗B] := (α ∧ β)⊗ [A,B].

In particular, if η is a g-valued one-form, then [η, η](v, w) = 2[η(v), η(w)].
A function f (a form η respectively) on P with values in g is called

G-equivariant if it satisfies

f(p · a) = Ad(a−1)f(p)

(η(v1 · a, . . . , vk · a) = Ad(a−1)η(v1, . . . , vk) respectively).

Consider the vector bundle AdP → M defined as the quotient (P × g)/G
with respect to the right action of G given by (p,A)·a : = (p·a,Ad(a−1)A).
Any section s ∈ Γ(AdP ) defines a unique G-equivariant map s∧ : P → g

such that s(π(p)) = (p, s∧(p))/G. In that way, one can associate with a
connection form ω on P an affine connection∇ω on AdP by letting∇ωXs be
the section of AdP corresponding to the G-equivariant function ds∧(hX).
Here, X is a vector field on M and hX denotes its ω-horizontal lift defined
by hX|p = hpX|π(p).
We have a similar identification between AdP -valued forms and

G-equivariant horizontal forms. Write H = kerω and V = kerπ∗. We
say that a form on P is horizontal if it vanishes on V. Any AdP -valued
form η ∈ Γ(

∧k
T ∗M ⊗ AdP ) corresponds uniquely to a horizontal G-

equivariant form η∧ by η(v1, . . . vk) = (p, η∧(hpv1, . . . , hpvk))/G where
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vj ∈ TxM, j = 1, . . . , k and p ∈ Px. From this definition, it follows that
d∇

ω

η corresponds to pr∗H dη∧. Moreover, if α and β are Ad(P )-valued forms,
we will use [α, β] for the Ad(P )-valued form corresponding to [α∧, β∧].
A special AdP -valued form is the curvature form Ω of the connection ω,

corresponding to the equivariant horizontal two-form Ω∧ = pr∗H dω. Note
that Ω∧(v, w) = dω(v, w) + 1

2 [ω, ω]. Moreover, for every vector fields X,Y
on M , one has that

(2.5) [hX, hY ]− h[X,Y ] = −Ω∧(hX, hY ).

The next proposition describes the horizontal holonomy group of a con-
nection ω with respect to a subbundle D as the holonomy of an adapted
connection.

Proposition 2.11. — Let π : P → M be a principal bundle over M .
Let D be an equiregular and bracket-generating subbundle of TM .

(1) Let ω be any connection form on π with corresponding curvature
form Ω. If for some selector χ of D, we have

(2.6) ιχΩ = 0,

then Holω,D(p) = Holω(p) for any p ∈ P .
(2) For any connection form ω and selector χ ofD, there exists a unique

connection ω̃ ∈ [ω]D with curvature satisfying (2.6).
As a consequence, for any connection form ω, there exists a connection
form ω̃ such that

Holω,D(p) = Holω̃,D(p) = Holω̃(p), for any p ∈ P.

In particular, Holω,D(p) is a Lie group.

The proof relies on Corollary 2.10 and on the following lemma. We
first give some extra notation. For every subset A of the Lie algebra
(Γ(TP ), [ · , · ]), we use Lie A and Liep A , p ∈ P , to denote respectively
the Lie algebra generated by A and the subspace of TpP made of the
evaluations at p of the elements of Lie A .

Lemma 2.12. — Let H and Ĥ be two subbundles of TP . For p ∈ P ,
define the orbit Op of H at p as the sets of points in P that can be reached
from p by H-horizontal curves. Define in the same way the orbit Ôp of Ĥ
at p. If

(2.7) Liep Γ(Ĥ) ⊆ Liep Γ(H), for every p ∈ P,

then Ôp ⊆ Op also holds for every p ∈ P . If equality holds true in (2.7),
then Ôp = Op.
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Note that for every points p0 and p1 of P , the orbits Op0 and Op1 are
either disjoint or coincide.
Proof. — From the Orbit theorem, see e.g. [1, Theorem 5.1], one gets

that, for every p ∈ P , Op is a connected immersed submanifold of P .
Furthermore, by [1, Corollary 5.1], we have that for every p0 ∈ P and
p ∈ Op0 , Liep Γ(H) ⊆ TpOp0 . It follows that for every p ∈ Op0 ,

Ĥp ⊆ Liep Γ(Ĥ) ⊆ Liep Γ(H) ⊆ TpOp0 .

As a consequence, Ĥ|Op0
⊂ TOp0 . Hence, for every Ĥ-horizontal curve

c : [0, 1] → P and t ∈ [0, 1], there exists a connected neighborhood Ut of
t in [0, 1] such that c(Ut) ⊆ Oc(t). Since [0, 1] is compact, we can pick
a finite number of point 0 = t0 < t1 < t2 < · · · < tk 6 1, such that
{Utj}nj=1 is an open covering of [0, 1]. Since for j = 0, . . . , k − 1, Uj and
Uj+1 are not disjoint, it must follow that the orbits Oc(tj) all coincide with
Oc(t0) = Oc(0). Hence every Ĥ-horizontal curve c with c(0) = p is contained
in Op, implying that Ôp ⊆ Op. �

We now turn to the proof of Proposition 2.11.
Proof of Proposition 2.11.
(1) For 1 6 k 6 r, consider the subbundles Ek of TP defined by

Ek = {hpv : v ∈ Dk, p ∈ P}.

For every p ∈ P , let Op and Ok
p denote the orbits of H and Ek at p

respectively. From the definition of holonomy, it follows that

Holω(p) = {a ∈ G : p · a ∈ Op}.

The same identity holds for Holω,D(p) with Op substituted by O1
p .

Hence, Holω(p) = Holω,D(p) if O1
p = Op. We next show that these

equalities hold true if equality (2.6) holds. We first prove that
Lie Γ(Ek) = Lie Γ(Ek+1) for 1 6 k 6 r − 1.

Let then 1 6 k 6 r − 1 and notice that one has the obvious in-
clusion Lie Γ(Ek) ⊆ Lie Γ(Ek+1). Equality follows if hZ ∈ Lie Γ(Ek)
for any vector field Z with values in Dk+1. Pick such a Z and let
X1, . . . , Xl, and Y1, . . . , Yl be any choice of vector fields with values
in Dk such that χ(Z) =

∑l
i=1Xi ∧ Yi. From the definition of χ, it

follows that Z =
∑l
j=1[Xj , Yj ] + Z2 where Z2 is some vector field

with values in Dk. Using (2.5) and (2.6), we deduce that

hZ =
l∑

j=1
[hXj , hYj ] + hZ2 ∈ Lie Γ(Ek).
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We finally get that Lie Γ(E1) = Lie Γ(Er) = Lie Γ(H) and conclude
the argument by using Lemma 2.12.

(2) Let ω̃ be a connection form ω̃ = ω+α∧ with α∧ being an equivariant
horizontal one-form. Write the ω̃-horizontal lift as h̃ and let Ω̃ be the
curvature form of ω̃. By definition, one has h̃pw = hpw−σ(α∧(hpw))
for any p ∈ Px, w ∈ TxM , x ∈M . Furthermore, for any vector fields
X and Y on M , we have

Ω̃∧(h̃X, h̃Y ) = dω(h̃X, h̃Y ) + dα∧(h̃X, h̃Y )
= −[α∧(hX), α∧(hY )]− σ(α∧(hX))α∧(hY )

+ σ(α∧(hY ))α∧(hX) + Ω∧(hX, hY ) + dα∧(hX, hY )
= Ω∧(hX, hY ) + dα∧(hX, hY ) + [α∧(hX), α∧(hY )]

= Ω∧(hX, hY ) + (pr∗H dα∧)(hX, hY ) + 1
2 [α∧, α∧](hX, hY ).

Consider the operator Lω : Γ(T ∗M ⊗ AdP ) → Γ(
∧2

T ∗M ⊗
AdP ), defined by

Lωβ : = d∇
ω

β + 1
2[β, β].

For 1 6 k 6 r−1, notice that if β vanishes onDk, then Lωβ(χ(w)) =
−β(w) for every w ∈ Dk+1. From the above computations, it follows
that one has the following equivalence: ω̃ ∈ [ω]D and ιχΩ̃ = 0 if and
only if the AdP -valued one-form α corresponding to α∧ satisfies the
system of equations

(2.8) α|D = 0, ιχL
ωα = −ιχΩ.

This solution exists and is unique according to Corollary 2.10. �

Using Proposition 2.11 and its argument, we can now provide the above
mentioned versions of Ambrose–Singer’s and Ozeki’s theorems for equireg-
ular subbundles.

Theorem 2.13 (Ambrose–Singer’s theorem for horizontal holonomy
group). — Let π : P →M be a principalG-bundle with connection form ω,
D a bracket-generating, equiregular subbundle of P of step r and χ a selec-
tor ofD. Define the operator Lω : Γ(T ∗M⊗AdP )→ Γ(

∧2
T ∗M⊗AdP ) by

(2.9) Lωβ : = d∇
ω

β + 1
2[β, β].

Let Ω be the curvature form of ω and define

(2.10) Ωχ : = (id +Lωιχ)r−1Ω.
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Finally, let Op0 be the set of points p ∈ P that can be reached from p0 with
ω-horizontal lifts ofD-horizontal curves. Then the Lie algebra of Holω,D(p0)
is equal to

{Ω∧χ(hpv, hpw) : v, w ∈ Tπ(p)M,p ∈ Op0}.

Proof. — Let ω̃ ∈ [ω]D be the unique element with curvature Ω̃ satisfying
ιχΩ̃ = 0. We will show that Ωχ = Ω̃. From the proof of Theorem 2.11(2),
one has that Ω̃ = Ω+Lωα, where α is the unique solution to (2.8). Accord-
ing to Corollary 2.10, one gets that α = ιχ

∑r−2
j=0

(
r−1
j+1
)
(Lωιχ)jΩ. It follows

that

Ω̃ = Ω + Lωιχ

r−2∑
j=0

(
r − 1
j + 1

)
(Lωιχ)jΩ =

r−1∑
j=0

(
r − 1
j

)
(Lωιχ)jΩ = Ωχ.

We conclude the proof of Theorem 2.13 by using Proposition 2.11 and the
usual Ambrose–Singer Theorem. �

Theorem 2.14 (Ozeki’s theorem for horizontal holonomy group). —
We use the notations of Theorem 2.13 and the following ones: let h be the
ω-horizontal lift, p0 be an arbitrary point and denote the Lie algebras of G
and Holω,D(p0) by respectively g and h. For any p ∈ P , define the subspace
a(p) of g by

a(p) = span
{
hX1hX2 . . . hXkΩ∧χ(hY1, hY2)

∣∣
p

: Y1, Y2 ∈ Γ(TM),
Xj ∈ Γ(D), k = 0, 1, . . .

}
.

Then a(p0) is a subalgebra of h. Furthermore,
(1) h is spanned by {a(p) | p ∈ Op0}.
(2) If rank a(p) is independent of p, then h = a(p0).
(3) If both ω and χ are analytic, then h = a(p0).

Proof. — By Theorem 2.11, let ω̃ ∈ [ω]D be the unique element such
that its curvature Ω̃ satisfies Ω̃(χ( · )) = 0. We then know that Holω,D(p) =
Holω̃(p). Let h̃ denote the ω̃-horizontal lift. We know that Ω̃(h̃Y1, h̃Y2) =
Ωχ(hY1, hY2). Furthermore, since Lω defined in (2.9) preserves analyticity,
the construction of ω̃ in the proof of Theorem 2.11(2) gives us that this
connection is analytic whenever ω and χ are analytic.

Consider the subspaces

b(p) = span
{̃
hZ1h̃Z2 . . . h̃ZkΩ∧χ(hY1, hY2)

∣∣
p

: Y1, Y2 ∈ Γ(TM),
Zj ∈ Γ(TM), k = 0, 1, . . .

}
.

The usual Ozeki theorem along with the above observations means that
our desired result holds true with b(p) in the place of a(p). We will show
that a(p) = b(p) to complete the proof.
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If Z is a vector field in Dk+1 with χ(Z) =
∑l
i=1Xi ∧ Yi, then

h̃Z =
l∑
i=1

[h̃Xi, h̃Yi] + h̃Z2, Xi, Yi, Z2 ∈ Γ(Dk),

since Ω̃(χ( · )) = 0. It follows that we can write h̃Z as a sum of k-th order
operators constructed with horizontal lifts of elements in D, thus yielding

b(p) = span
{̃
hZ1h̃Z2 . . . h̃ZkΩ∧χ(hY1, hY2)

∣∣
p

: Y1, Y2 ∈ Γ(TM),
Zj ∈ Γ(TM), k = 0, 1, . . .

}
= span

{̃
hX1h̃X2 . . . h̃XkΩ∧χ(hY1, hY2)

∣∣
p

: Y1, Y2 ∈ Γ(TM)
Xj ∈ Γ(D), k = 0, 1, . . .

}
.

Since ω̃ ∈ [ω]D, we have that h̃X = hX for every X ∈ Γ(D) and the result
follows. �

Remark 2.15. — Let ω be a connection on the principal G bundle P π→
M . Proposition 2.11 says that each selector χ gives us a unique connection
ω̃ ∈ [ω]D such that Holω,D(p) = Holω̃,D(p) = Holω̃(p). However, we do not
claim that these are the only elements satisfying this property. For example,
if Holω,D = G, then it trivially follows that Holω,D = Holω̃,D = Holω̃ holds
for any ω̃ ∈ [ω]D.

2.4. Horizontal Holonomy of affine connections

As in the case of usual holonomy, we can also consider the horizontal
holonomy group of an affine connection, as initiated in [23]. Let Π: V →M

be a vector bundle with an affine connection ∇. Let D be a subbundle of
TM and use LD(x) to denote the set of D-horizontal loops γ : [0, 1]→M

based at x ∈ D. For t ∈ [0, 1], let Pγ(t) : Vx → Vγ(t) denote the linear
isomorphism defined by the parallel transport along the curve γ in time t.
Then we define the horizontal holonomy group of ∇ by

Hol∇,D(x) =
{
Pγ(1) ∈ GL(Vx) : γ ∈ LD(x)

}
.

Write Hol∇,TM (x) = Hol∇(x). We say that two connections ∇ and ∇̃ are
D-equivalent if (∇v − ∇̃v)Z = 0 for any v ∈ D and Z ∈ Γ(V ). We write
[∇]D for the equivalence class of ∇ with respect to this relation. Clearly,
Hol∇̃,D(x) = Hol∇,D(x) if ∇̃ ∈ [∇]D.

The correspondence to our theory of principal bundles goes as follows.
Let ν be the rank of V and consider Rν endowed with its canonical basis
denoted by e1, . . . , eν . The frame bundle π : FGL(V ) → M of V is the
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principal GL(ν)-bundle such that for every x ∈M , the fiber FGL(V )x over
x consists of all linear isomorphisms ϕ : Rν → Vx and the group GL(ν) acts
on the right by composition.
From the affine connection ∇, we construct a corresponding principal

connection ω on FGL(V ) as follows. Define H ⊆ T FGL(V ) as the collec-
tion of all tangent vectors of smooth curves ϕ in FGL(V ) such that, for
every 1 6 j 6 ν, ϕ( · )ej is a ∇-parallel vector field along π ◦ ϕ. It is stan-
dard to check that H⊕ kerπ∗ = T FGL(V ) with H being invariant under
the group action. Hence, there exists a unique connection form ω satisfying
kerω = H.
In this case, we can identity Ad FGL(V ) with the vector bundle gl(V ) of

endomorphisms of V through the mapping (ϕ,A)/G 7→ ϕ ◦ A ◦ ϕ−1. Fur-
thermore, for any ϕ ∈ FGL(V )x, we have the correspondence Hol∇,D(x) =
ϕ◦Holω,D(ϕ)◦ϕ−1. Also, if Ω is the curvature form of ω, then R∇(v, w) =
ϕ◦Ω∧(hϕv, hϕw)◦ϕ−1, where the curvature R∇(X,Y ) = [∇X ,∇Y ]−∇[X,Y ]
is seen as a gl(V )-valued two-form.
We summarize our results so far in this setting. Let D be a bracket-

generating, equiregular subbundle of TM of step r and Π: V → M a
vector bundle over M . If ∇ is an affine connection on V , we will denote
the induced connection on gl(V ) by the same symbol. Corresponding to ∇,
define an operator L∇ : Γ(T ∗M ⊗ gl(V ))→ Γ(

∧2
T ∗M ⊗ gl(V )) by

L∇α = d∇α+ 1
2[α, α].

Then Proposition 2.11 and Theorems 2.13 and 2.14 read as follows in the
case of affine connection.

Theorem 2.16. — Let ∇ be an affine connection on V .
(1) If there exist a selector χ ofD such that ιχR∇= 0, then Hol∇,D(x) =

Hol∇(x) for any x ∈M .
(2) For every connection ∇ on V and every selector χ of D, there exists

a unique affine connection ∇̃ ∈ [∇]D such that ιχR∇̃ = 0. The
connection ∇̃ is equal to ∇+α with α ∈ Γ(T ∗M ⊗ gl(V )) given by

α = ιχ

r−2∑
j=0

(
r − 1
j + 1

)
(L∇ιχ)jR∇.

This implies in particular that Hol∇,D(x) is a Lie group.
Let χ be an arbitrary selector and define

R∇χ : = (id +L∇ιχ)r−1R∇.
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For a fixed x ∈M , let h be the Lie algebra of Hol∇,D(x),

(3) h =
{
Pγ(1)−1R∇χ (v, w)Pγ(1) : γ : [0, 1]→M is D-horizontal

γ(0) = x, γ(1) = y, v, w ∈ TyM

}
.

(4) For x ∈ M , let h denote the Lie algebra of Hol∇,D(x). For any
y ∈M , define a(y) ⊆ gl(Vy) given by

(2.11) a(y) =
{
∇X1 · · · ∇Xk

R∇χ (Y1, Y2)|y : Y1, Y2 ∈ Γ(TM),
Xi ∈ Γ(D), k = 0, 1, 2, . . .

}
,

where the symbol ∇ appearing in (2.11) denotes the connection
induced on gl(V ) by∇. Then a(x) is a subalgebra of h. Furthermore,
if γ : [0, 1]→M is any D-horizontal curve with γ(0) = x and γ(1) =
y, then Pγ(1)−1a(y)Pγ(1) is contained in h, and h is spanned by
these subalgebras. Finally, if the rank of a(y) is independent of y or
if both ∇ and χ are analytic, then a(x) = h.

Remark 2.17. — Theorem 2.16 greatly extends the results of [23] re-
garding the horizontal holonomy group of an affine connection in case the
subbundle D is equiregular and bracket-generating. Note though that it is
proved in [23] that the last conclusion of (2), namely that Holω,D(x) has
the structure of a Lie group, still holds true under the sole assumption
for D to be completely controllable. This last result has been obtained by
recasting horizontal holonomy issues within the framework of development
of one manifold onto another one (cf. [15]).

2.5. Equiregular subbundles

The case where the subbundleD is equiregular of step r but not necessar-
ily bracket-generating can be reduced to the bracket-generating situation
described previously by restricting to the leaves of the foliation of Dr.
According to Frobenius theorem, there exists a corresponding foliation F
of M tangent to Dr. Let F be a leaf of the foliation F . If x ∈ F , then
D|x ⊆ Dr|x = TxF . Hence, if p ∈ Px, then Holω,D(p) equals Holω|F ,D|F (p)
where ω|F is the restriction of ω to the principal bundle P |F → F . By
restricting to each leaf of the foliation of Dr, we are back to the case
where D is also bracket-generating. In particular, if D is integrable, then
Dr = D1 = D and Holω,D(p) = Holω|F (p) for any p ∈ Px, x ∈ F .
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2.6. General subbundle

Let D be any subbundle of TM . Define D1 = Γ(D) and, for k > 1, set

Dk+1 =
{
Y, [X,Y ] : Y ∈ Dk, X ∈ Γ(D)

}
.

For every point x ∈ M , define the growth vector of D at x ∈ M as the
sequence n(x) = (nk(x))k>1 where nk(x) = rankDk|x. We say that x ∈M
is a regular point of D if there exists a neighbourhood U of x where the
growth vector is constant. We call a point singular if it is not regular. Recall
that the set of singular points of D is closed with empty interior, cf. [25,
Section 2.1.2, p. 21].
Let π : P → M be a principal G-bundle with a connection ω. Let x

be a regular point of D, p ∈ Px and U a neighbourhood of x where the
growth vector of D is constant. We use ω|U to denote the restriction of ω
to P |U → U . Then one clearly has the following inclusions

(2.12) Holω|U ,D|U (p) ⊆ Holω,D(p) ⊆ Holω(p).

Since D|U is equiregular, it can be computed with the methods mentioned
above.

Example 2.18. — Consider R3 with coordinates (x, y, z). Define D as the
span of ∂

∂x and ∂
∂y + x2 ∂

∂z . Then any point (x, y, z) with x 6= 0 is a regular
point.

2.7. Comparison with previous results in the contact case

Assume that M is an oriented 2n+ 1-dimensional manifold and that D
is an oriented subbundle of rank 2n. Consider the skew-symmetric tensor

(2.13) R :
2∧
D → TM/D, R(X|x, Y |x) = [X,Y ]|x mod D,

for any X,Y ∈ Γ(D). As [X,Y ]|x mod D does not depend of choices of
vector fields X and Y extending X|x and Y |x, this map is a well-defined
tensor vanishing if and only if D is integrable. On the other hand, if R
is surjective and non-degenerate as a bilinear form, then D is called a
contact structure. In particular, contact structures are bracket-generating
and equiregular subbundles of step 2. In Example 2.8 for instance, the
subbundle D is a contact structure.

Horizontal holonomy was first defined for such subbundles D in [18].
On a contact manifold, by Definition 2.6(1), any selector will be a map
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χ : TM →
∧2

D that vanishes on D. It follows that χ can be considered
as a map χ : TM/D →

∧2
D. By Definition 2.6(2), the map R in (2.13) is

a left inverse to χ. Since both M and D are oriented, we get an induced
orientation on TM/D. Let ξ be a positively oriented basis of TM/D and
define χ(ξ) = χξ. Then

∧2
D = kerR⊕span{χξ}, and therefore choosing a

selector of D is equivalent to choosing a two-vector field χξ that never takes
values in kerR, up to multiplication by non-vanishing smooth functions.
Hence, Proposition 2.4 and Theorem 2.1 in [18] can be considered as special
cases of our results and we have reformulated them below in terms of D-
equivalence rather than the language of partial connections used in [18].

Corollary 2.19. — Let D be a contact structure on M . Let P → M

be a principal G-bundle with a connection form ω. Let χξ ∈ Γ(
∧2

D) be
a two-vector field that is transverse to kerR. Then there exists a unique
connection ω̃ ∈ [ω]D whose curvature Ω̃ satisfies Ω̃(χξ) = 0. Furthermore,
if p0 ∈ P , then the Lie algebra of Holω,D(p0) is spanned by {Ω̃∧(hpu, hpv) :
v, w ∈ Tπ(p)M,p ∈ Op0}.

3. Two problems on foliated manifolds

3.1. Totally geodesic foliations

Let M be an n-dimensional connected manifold and V ⊆ TM an inte-
grable subbundle of rank ν 6 n. By Frobenius Theorem, this subbundle
defines us a foliation F ofM with leaves of dimension ν. LetD be a subbun-
dle of TM such that TM = D⊕V . The issue we address below regards the
existence of a Riemannian metric g on M such that D is the g-orthogonal
complement to V and F is totally geodesic, i.e., the leaves of F are totally
geodesic submanifolds of M .
Let g be a Riemannian metric on M with corresponding Levi–Civita

connection ∇g. A submanifold F on M is called totally geodesic if the
geodesics of (F,g |TF ) are also geodesics in (M,g). Consider an integrable
subbundle V of TM and denote by D its g-orthogonal complement. Let
prV and prD be the g-orthogonal projections onto V and D, respectively.
The foliation F of V is totally geodesic if and only if

II(Z1, Z2) := prD∇
g
prV Z1

prV Z2 = 0, for every Z1, Z2 ∈ Γ(TM).

The vector-valued tensor II is symmetric and is called the second funda-
mental form of the leaves of F . Furthermore, for any vector field X ∈ Γ(D)
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and Z1, Z2 ∈ Γ(V ), one must have

0 = −2 g(X,∇g
Z1
Z2) = −2 g(X, II(Z1, Z2)) = (LX pr∗V g)(Z1, Z2).

Hence, the foliation F is totally geodesic if and only if LX pr∗V g = 0 for
every vector field X with values in D.
Choose any affine connection ∇ on V such that for any X ∈ Γ(D) and

Z ∈ Γ(V ), we have

(3.1) ∇XZ = prV [X,Z].

Such a connection is called vertical and all such vertical connections are
D-equivalent. Write g = pr∗D gD + pr∗V gV , with metric tensors gD and gV
on D and V respectively. Then F is totally geodesic if and only if

(3.2) ∇v gV = 0, for any v ∈ D.

This gives us the following reformulation of our problem. Given the direct
sum TM = D ⊕ V of subbundles such that V is integrable, under what
conditions does there exist a metric tensor gV on V which is parallel in the
directions of D with respect to a connection ∇ satisfying (3.1)?
For any connection ∇ on V satisfying (3.1), denote the induced con-

nection on Sym2 V ∗ by the same symbol. For x ∈ M , let Hol∇,D(x) ⊆
GL(Sym2 V ∗x ) be the holonomy group with respect to ∇ at x. It is clear
then that there exists gV ∈ Γ(Sym2 V ∗) satisfying (3.2) if and only if

a · gV |x = gV |x, for any a ∈ Hol∇,D(x).

Hence, if F is totally geodesic then Hol∇,D(x) admits a positive definite
fixed point for any x ∈ M . As a consequence, if there exists a metric gV
satisfying (3.2), then there exists a positive definite element in Sym2 V ∗x
belonging to the kernel of every element in the Lie algebra h of Hol∇,D(x).

Assume moreover that D is completely controllable. Then for any x ∈
M , there is a one-to-one correspondence between positive definite fixed
points of Hol∇,D(x) and all metrics gV ∈ Γ(Sym2 V ∗) satisfying (3.2),
since any such fixed point can be extended uniquely to a metric tensor
through parallel transport. If Hol∇,D(x) is connected, then there is a one-
to-one correspondence between such metrics and positive definite points in
∩A∈h kerA. In particular for the case when D is bracket-generating and
equiregular, let R∇χ be defined with respect to some selector χ of D as
in Section 2.4. Then we must have R∇χ ( · , · ) gV = 0 for any metric gV

satisfying (3.2). Recall by Remark 2.3 that Hol∇,D is connected whenever
M is simply connected and D is bracket-generating. Hence, if the latter
two conditions are satisfied for respectively M and D and R∇χ = 0, then
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there is a one-to-one correspondence between positive definite elements in
Sym2 V ∗ and metrics satisfying (3.2). We note that if e ∈ Sym2 V ∗x , then

(R∇χ (v1, v2)e)(w1, w2) = −e(R∇χ (v1, v2)w1, w2)− e(w1, R
∇
χ (v1, v2)w2),

for any vj , wj ∈ TxM , j = 1, 2, where the R∇χ on the right hand side is
defined relative to ∇ seen as a connection on V .
We summarize the findings of this section in the following theorem.

Theorem 3.1. — Let V ⊆ TM be an integrable subbundle of M and
let D be any subbundle such that TM = D⊕ V . Let ∇ be any connection
on V satisfying (3.1).

Assume that there exists a Riemannian metric g such that

(3.3) D is the g-orthogonal of V and the foliation of V is totally geodesic.

Then, for every x ∈ M , the group Hol∇,D(x) ⊆ GL(Sym2 V ∗x ), has a posi-
tive definite fixed point.
Furthermore, assume that D is completely controllable. Then M has a

Riemannian metric g satisfying (3.3) if and only if there exists a point
x ∈ M such that Hol∇,D(x) ⊆ GL(Sym2 V ∗x ) has a positive definite fixed
point.

We illustrate the difference between the case whenD is integrable and the
one whenD is completely controllable by studying a specific framework. Let
V be an integrable subbundle of TM of rank ν. Assume thatM is equipped
with a Riemannian metric g and let D be the orthogonal complement of
V . Following [33], we say that F is a Riemannian foliation if

(3.4) LZ pr∗D g = 0, for any Z ∈ Γ(V ).

Riemannian foliations locally look like a Riemannian submersion. Recall
that a surjective submersion between two Riemannian manifolds
f : (M,g) → (B,gB) is called Riemannian if g(v, w) = gB(π∗v, π∗w) for
any v, w ∈ (ker f∗)⊥. If F is a Riemannian foliation of (M,g), any point
x ∈M has a neighbourhood U such that B = U/F|U is a well-defined man-
ifold that can be given a metric gB , making the quotient map f : U → B

into a Riemannian submersion.
Let M = B × F be the product of two connected manifolds, F be the

foliation with leaves {(b, F ) : b ∈ B}, V be the corresponding integrable
subbundle, and D be any subbundle such that TM = D ⊕ V . Note that if
f : M → B is the projection, then f∗|D : D → TB is bijective on every fiber,
meaning that curves in B have D-horizontal lifts, at least for short time.
We want to know if there exists a Riemannian metric g = pr∗D gD + pr∗V gV
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such that the leaves of F are totally geodesic. Since this question does not
depend on gD, we may choose gD = f∗ gB |D for some Riemannian metric
on B. This will make F into a Riemannian foliation.
If D = f∗TB, we can choose any metric gV on V and the foliation is

totally geodesic. On the other hand, if D is completely controllable, the
choice of metric is more restrictive. Indeed, if F is totally geodesic and g is
a complete metric, then the leaves of F are homogeneous spaces. For any
smooth curve γ : [0, 1] → B consider the map φγ : γ(0) × F → γ(1) × F
sending a point (γ(0), z0) to the point (γ(1), z1) if the latter is the endpoint
of the horizontal lift of γ starting at (γ(0), z0). By [24, Proposition 3.3],
these maps are isometries. IfD is completely controllable, then the isometry
group of (b, F ) must act transitively for any b ∈ B.

Remarks 3.2.
(1) We observe that by reversing the role of D and V , we may con-

sider the following question. Given an integrable subbundle V and
complement D, when does there exist a Riemannian metric g on
M such that V and D are orthogonal and such that the foliation
F of V is Riemannian? Let ∇′ be any affine connection on D that
satisfies

∇′ZX = prV [Z,X], for any Z ∈ Γ(V ), Z ∈ Γ(D).

Then (3.4) can be reformulated as ∇′v gD = 0 for any v ∈ V where
gD = g |D. Hence, the foliation F can only be made Riemannian
with transversal subbundle D if Hol∇

′,V (x) has a positive definite
fixed point for any x ∈ M . In this case, there are no local restric-
tions, since R∇′(Z1, Z2)X = 0 for any Z1, Z2 ∈ Γ(V ), X ∈ Γ(D) by
the Jacobi identity.

(2) In general, if f : M → B is a surjective submersion, F = {f−1(b) :
b ∈ B} is a Riemannian totally geodesic foliation and g is a complete
metric, then by [24] we know that the leaves of the foliation are
isometric to some manifold F . Furthermore, if G is the isometry
group of F , then there exist a principal G-bundle P → M (with
action written on the left) such that

(3.5) M = G \ (P × F ),

The quotient is here with respect to the diagonal action.
(3) Even if TM = D ⊕ V with V not integrable, we can still define a

connection ∇ as in (3.1). Studying when there exists a metric paral-
lel with respect to∇ alongD-horizontal curves still has applications
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to the heat flow of subelliptic operators when V is not integrable,
see [21, Sections 3.3 and 3.8] and [22, Section 6.5]. Theorem 3.1 is
also applicable to this case.

3.2. Submersions and principal bundles

Let F →M
f→ B be a fiber bundle over a manifold B, with the fiber F

being a connected manifold. Let V = ker f∗ be of rank ν and let D be an
Ehresmann connection on f , i.e., a subbundle such that TM = D⊕V . The
foliation of V is given by {Mb := f−1(b) : b ∈ B}. We ask the following
question: under what conditions does there exist a group action on M

rendering f a principal bundle and D a principal connection? In order to
approach this question, we first look at its infinitesimal version, namely,
when does there exist vector fields Z1, . . . , Zν on M satisfying

(i) V = span{Z1, . . . , Zν};
(ii) for any X ∈ Γ(D) and any i = 1, . . . , ν, [Zi, X] has values in D;
(iii) g = span {Zi : i = 1, . . . , ν} is a subalgebra of Γ(TM).

If there exists a group G acting on the fibers of f : M → B such that both
f and D are principal, we can obtain the desired vector fields above by
defining Zi|x = σ(Ai) for some basis A1, . . . , Aν of the Lie algebra of G.
The map σ is here defined as in (2.1). Conversely, let Z1, . . . , Zν be vector
fields satisfying (i), (ii) and (iii). If these vector fields are also complete
and if G is the simply connected Lie group of g, we get a group action
G×M →M . By the definition of g, this group action preserves the fibers
of f and is locally free, i.e. the stabilizers Gx = {a ∈ G : a · x = x}
are discrete groups for any x ∈ M . Because of this, for any x ∈ M with
f(x) = b, the map G→Mb, a 7→ a ·x, is a surjective local diffeomorphism.
This map must be a diffeomorphism if Mb is simply connected, that is,
if F is simply connected. Hence, if F is simply connected, the group G

acts freely and transitively on every fiber and f is a principal bundle with
principal connection D.
Define S0(D) be the space of infinitesimal vertical symmetries i.e. the

space of all Z ∈ Γ(TM) such that f∗Z = 0 and such that [Z,X] has values
in D for all X ∈ Γ(D). This is a sub-algebra of Γ(TM) by the Jacobi
identity. If g is as in (iii), it will be an ν-dimensional subalgebra of S0(D).
Note that if∇ is any connection on V satisfying (3.1), then∇vZ = 0 for any
Z ∈ S0(D) and v ∈ D. In particular, this must hold for the vector fields
Z1, . . . , Zν . If D is completely controllable, S0(D) must be of dimension
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6 ν since every element Z is uniquely determined by its value at one point
through parallel transport. Hence, it follows that the requirement of (iii)
is superfluous, since if there exists vector fields Z1, . . . , Zν satisfying (i)
and (ii), then g = span{Z1, . . . , Zν} = S0(D).
We conclude the following from the above discussion.

Theorem 3.3. — Let F → M
f→ B be a fiber bundle with connected

fiber F , V := ker f∗ be the vertical bundle and D an Ehresmann connection
on f . Let ∇ be any connection on V satisfying (3.1).
If there exists a group action of some Lie group G on M such that f

becomes a principal bundle and D becomes a principal Ehresmann connec-
tion, then, for every x ∈ M , one has Hol∇,D(x) = {Id} ⊆ GL(Vx), where
Id denotes the identity mapping.

Furthermore, assume that D is completely controllable and that F is
compact and simply connected. Then f can be given the structure of a
principal bundle with principal connection D if and only if there exists a
point x ∈M such that Hol∇,D(x) = {Id} ⊆ GL(Vx).

For a related result in a special case, cf. [14]. Assume that D is bracket
generating and equiregular with a selector χ. Then R∇χ ≡ 0 is a necessary
condition for D to be a principal connection. If F is compact and simply
connected and M is simply connected as well, then the condition R∇χ ≡
0 condition is also sufficient. We emphasize that the only reason for the
assumption that F is compact, is to ensure that the vector fields Z1, . . . , Zν
mentioned above are complete.

Remark 3.4. — Theorem 3.3 has applications to sub-Riemannian geom-
etry since the Lie algebra S0(D) often appear as a subalgebra of the Lie
algebra of infinitesimal isometries. Recall first that an isometry φ of a sub-
Riemannian manifold (M,D,h) is a diffeomorphism satisfying φ∗D ⊆ D

with h(φ∗v, φ∗w) = h(v, w) for any v, w ∈ D. An infinitesimal isometry
is a vector field Z such that, for every X ∈ Γ(D), the vector field [Z,X]
takes values in D and Z h(X,X) = 2 h(X, [Z,X]). Let F → M

f→ B be a
fiber bundle over a Riemannian manifold (B,gB) and D be an Ehresmann
connection onM . Define a metric on D by h = f∗ gB |D and set V = ker f∗
for the vertical bundle with corresponding foliation F . Let g be any metric
on M such that g |D = h and V is the g-orthogonal complement of D. By
definition, f is a Riemannian submersion, F a Riemannian foliation and
hence, for every Z ∈ Γ(V ),

Z h(X,X) = 2 h(X,prD[Z,X]) for any X ∈ Γ(D).
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In order for Z to be an infinitesimal sub-Riemannian isometry, we must also
have prV [X,Z] = 0 for any X ∈ Γ(D). In other words, if ∇ is a connection
on V satisfying (3.1), then Z must be parallel along D-horizontal curves. If
Hol∇,D(x) = {Id} ⊆ GL(Vx), then V has a basis of infinitesimal isometries.

3.3. Computation of the curvature

The above problems involve the use of connections corresponding to an
affine connection ∇ satisfying (3.1). In order to apply the results of Sec-
tion 2.4, one must choose a selector and appropriate affine connections ∇.
We next give two options for the choice of ∇ and compute their curvatures.
We end with a remark on how to compute R∇χ from R∇.

3.3.1. Connection appearing from the choice of an auxiliary metric

Choose an auxiliary metric g̃ on M with D and V orthogonal and define

(3.6) ∇Y Z := prV [prD Y,Z] + prV ∇
g̃
prV Y Z, Y ∈ Γ(TM), Z ∈ Γ(V ).

To compute the curvature of this connection, we consider the curvature of
D with respect to the complement V , i.e., the vector-valued two-form R
on M defined by

R(X,Y ) = prV [prDX,prD Y ], X, Y ∈ Γ(TM).

It is a well-defined two-form since it is skew-symmetric and C∞(M)-linear
in both arguments. We extend the connection ∇ to a connection ∇̊ on M
by setting

(3.7) ∇̊YX := prV [prD Y,prV X] + prV ∇
g̃
prV Y prV X

+ prD[prV Y,prDX] + prD∇
g̃
prD Y prDX.

Proposition 3.5. — Endow M with some Riemannian metric g̃ and
consider the connection ∇ on V given by (3.6). Let II be the second fun-
damental form with respect to g̃. For any X,Y ∈ Γ(TM) and Z ∈ Γ(V ),
the curvature of ∇ is given by

R∇(X,Y ) = RF (prV X,prV Y )− (∇̊�R)(X,Y ) + S (X,Y )−S (Y,X),

where RF is the curvature of the leaves F of the foliation F with respect
to g̃|F and S (X,Y ) is the unique endomorphism satisfying the following:
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for every Z1, Z2 ∈ Γ(TM),

g̃(S (X,Y )Z1, Z2)

= g̃(X, (∇̊Z2 II)(Y,Z1)− (∇̊prV Y II)(Z1, Z2)− (∇̊Z1 II)(Y, Z2)).

Proof. — Since ∇̊ is a direct sum of a connection on D and V , we have
R∇(X,Y )Z = R∇̊(X,Y )Z for any X,Y ∈ Γ(TM), V ∈ Γ(V ). Hence, we
need to compute R∇̊(X,Y )Z for Z taking values in V .

Let us first consider the case when X and Y both take values in V . Let
F be a leaf of F . Observe that ∇̊Y Z is equal to ∇FX|FZ|F on F , the latter
connection being the Levi–Civita connection of g̃|F . Hence R∇̊(X,Y )Z =
RF (X,Y )Z.
If both X and Y takes values in D, then by the first Bianchi identity

R∇̊(X,Y )Z = prV R∇̊(X,Y )Z = prV � R∇̊(X,Y )Z

= prV � T ∇̊(T ∇̊(X,Y ), Z) + prV � (∇̊XT ∇̊)(Y, Z),

with � denoting the cyclic sum and T ∇̊ denoting the torsion tensor of ∇̊.
From the definition of ∇̊, it is simple to verify that T ∇̊ = −R. Since R
vanishes on V , we obtain

R∇̊(X,Y )Z = −(∇̊ZR)(X,Y ).

For the last part, we consider the case when X takes values in D and Y
in V respectively. Observe again from the first Bianchi identity, that one
has

0 = prV � R∇̊(X,Y )Z = R∇̊(X,Y )Z −R∇̊(X,Z)Y.
Hence, we only need to compute R∇̊(X,Y )Y to derive the result. From the
definition of ∇̊, observe that for any vector field Z with values in V , we
have

(∇̊X g̃)(Z,Z) = −2g̃(X, II(Z,Z)), (∇̊Y g̃)(Z,Z) = 0.
It follows that for any vector field Z1, Z2 taking values in V , we have

g̃(R(X,Y )Z1, Z2) = −g̃(R∇̊(X,Y )Z2, Z1)− (R∇̊(X,Y )g̃)(Z1, Z2),

(R∇̊(X,Y )g̃)(Z1, Z2) = 2g̃(X, (∇̊Y II)(Z1, Z2)).

This leads to the conclusion that

g̃(R∇̊(X,Y )Y, Z) = −g̃(R∇̊(X,Y )Z, Y )− 2g̃(X, (∇̊Y II)(Y,Z))

= −g̃(R∇̊(X,Z)Y, Y )− 2g̃(X, (∇̊Y II)(Y,Z))

= g̃(X, (∇̊Z II)(Y, Y ))− 2g̃(X, (∇̊Y II)(Y,Z)).
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As a result, we have

R∇̊(X,Y )Z = ]g̃(X, (∇̊� II)(Y,Z)− (∇̊Y II)(Z, · )− (∇̊Z II)(Y, · ))
= S (X,Y )Z. �

3.3.2. Connection appearing from a global basis

Assume that V admits a global basis of vector fields Z1, . . . Zν . Let
τ1, . . . , τν be the corresponding dual one-forms, i.e., they vanish on D and
satisfy τi(Zj) = δij for every 1 6 i, j 6 ν. Define the connection ∇ by

∇XZj := prV [prDX,Zj ],

for any j = 1, . . . , ν. It is then well-defined for any Z ∈ Γ(V ) through the
Leibniz property, i.e.,

(3.8) ∇XZ = prV [prDX,Z] +
ν∑
j=1

((prV X)τi(Z))Zi.

Proposition 3.6. — Define a gl(V )-valued one-form α by

(3.9) α(X)Zj =
n∑
i=1

αij(X)Zi, αij = prD LZi
τj .

The curvature R∇ of the connection ∇ defined in (3.8) is given by

R∇ = L∇α− [α, α].

We recall that [α, α](X,Y ) = 2α(X)α(Y )− 2α(Y )α(X).
Proof. — Similarly to the proof of Theorem 2.11(2), we can show that for

any pair of connections∇ and ∇̃ such that∇ = ∇̃+α, α ∈ Γ(T ∗M⊗gl(V )),
one has

R∇ −R∇̃ = L∇̃α, (L∇ − L∇̃)α = (d∇ − d∇̃)α = [α, α],

so R∇−R∇̃ = L∇α− [α, α]. Choose ∇̃ as the connection on V determined
by ∇̃Zi = 0 and α as in (3.9) to get the result. �

3.3.3. Computing R∇χ

Assume that D is bracket-generating and equiregular of step r. Define
η0 = R∇ as a gl(V )-valued two-form and for k = 0, . . . , r − 2, define
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ηk+1 = L∇ιχη
k for some selector χ ofD. Let ∇̊ be any connection extending

∇, with torsion T ∇̊. We then have

(3.10) ηk+1(X,Y ) = (∇̊Xιχηk)(Y )− (∇̊Y ιχηk)(X) + ηk(χ(T ∇̊(X,Y )))

+ ηk(χ(X))ηk(χ(Y ))− ηk(χ(Y ))ηk(χ(X)),

where (∇̊Xιχηk)(Y )Z = ∇̊Xηk(χ(Y ))Z − ηk(χ(∇̊XY ))Z − ηk(χ(Y ))∇̊XZ.
It follows that if R∇χ is defined as in Section 2.4, then

R∇χ =
r−1∑
j=0

(
r − 1
j

)
ηj .

4. Examples

4.1. One-dimensional foliations

Let M be a connected, simply connected manifold with a foliation F
corresponding to an integrable one-dimensional subbundle V . Let D be
any subbundle that is transverse to V . We assume that V is orientable,
i.e., V = span{Z} for some vector field Z. It follows that Ann(D), the
subbundle of T ∗M consisting of covectors vanishing on D, is oriented as
well, and we write Ann(D) = span{τ}.

Proposition 4.1. — Let τ be a non-vanishing one-form on a connected,
simply connected manifold M . Define D = ker τ and assume that dτ |∧2

D

is non-vanishing at any point. Let Z ∈ Γ(TM) and χ ∈ Γ(
∧2

D) be respec-
tively a vector field and a two-vector field such that

τ(Z) = 1, dτ(χ) = −1.

Consider the operator dτ⊗χ = d(id +ιχ⊗τd) on one-forms. Then there exists
a Riemannian metric g onM such that the foliation tangent to Z is totally
geodesic and D is orthogonal to V = span {Z} if and only if

(4.1) dτ⊗χLZτ = 0.

Recall from Lemma 2.7(4) that (4.1) is indeed independent of choice
of χ.

Proof. — Let prD and prV be the respective projections to D and V rel-
ative to the direct sum TM = D⊕V . Since pr∗D dτ never vanishes, D must
be bracket-generating and equiregular of step 2. Furthermore, if χ is any
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two-vector field such that dτ(χ) = −1, then τ ⊗ χ is a selector of D. De-
fine a metric ∇ on V by ∇XZ = prV [prDX,Z] = (LZτ)(prDX)Z for any
X ∈ Γ(TM). Define α ∈ Γ(T ∗M ⊗ gl(V )) as α(X)v = (LZτ)(prDX)v =
(LZτ)(X)v for any v ∈ V . We use Proposition 3.6 to obtain that

R∇τ⊗χ = (id +L∇ιτ⊗χ)(L∇α− [α, α]) = (id +d∇ιτ⊗χ)d∇α

= d∇(id +ιτ⊗χd∇)α = d∇(id +ιτ⊗χd∇)LZτ ⊗ idV
= (d(id +ιτ⊗χd)LZτ)⊗ idV = dτ⊗χLZτ ⊗ idV .

Since V is one-dimensional, R∇χ = 0 is a necessary condition for the ex-
istence of a metric g such that D and V are orthogonal and the foliation
of V is totally geodesic. Since M is simply connected and D is bracket-
generating, it is also a sufficient condition. �

Example 4.2. — Consider R3 with coordinates (x, y, z). Consider the fol-
lowing global basis of the tangent bundle,

X = ∂

∂x
− 1

2y
∂

∂z
,

Y = ∂

∂y
+ 1

2x
∂

∂z
,

Z = ∂

∂z
+ φ1X + φ2Y ,

where φ1 and φ2 are two smooth arbitrary functions on R3. Define D to be
the span of X and Y and let V = V (φ1, φ2) be the span of Z. For which
functions φ1 and φ2 does there exist a Riemannian metric g such that the
foliation F of V is totally geodesic and D is the g-orthogonal complement
of V ?
We define τ such that τ(X) = 0, τ(Y ) = 0 and τ(Z) = τ( ∂∂z ) = 1. Then

τ = dz + 1
2ydx− 1

2xdy.

The unique element χ in
∧2

D satisfying dτ(χ) = −1 is χ = X ∧ Y. Its Lie
derivative with respect to Z is given by

LZτ = −φ1dy + φ2dx.

Furthermore,

dχ⊗τLZτ = d(LZτ+(dLZτ)(X,Y )τ) = d(−φdy+φ2dx−(Xφ1 +Y φ2)τ)
=−dφ1 ∧ dy+dφ2 ∧ dx−d(Xφ1 +Y φ2) ∧ τ−(Xφ1 +Y φ2)dτ
= −d(Xφ1 + Y φ2) ∧ τ.
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Hence dτ⊗χLZτ = 0 if and only if X(Xφ1+Y φ2) = 0 and Y (Xφ1+Y φ2) =
0, which happens if and only if

Xφ1 + Y φ2 = C,

for some constant C.

In the special case of a Riemannian foliation, we can write the above as
follows. Let M be a simply connected Riemannian manifold with metric
g̃. Let V = spanZ be an integrable subbundle of TM with corresponding
foliation F assumed to be Riemannian. By normalizing Z, we may suppose
that ‖Z‖g̃ = 1. Let N be the mean curvature vector field of F , defined as
N = II(Z,Z) with II being the second fundamental form. Let R be the
curvature of D with respect to V , i.e., the vector-valued two-form defined
by R(X,Y ) = prV [prDX,prD Y ]. Assume that this never vanishes. For an
arbitrary function f define the gradient ∇f and horizontal gradient ∇D by
respectively

df(X) = g̃(X,∇f), df(prDX) = g̃(X,∇Df).

Then we have the following identity.

Corollary 4.3. — We can find a Riemannian metric g such that D
and V are orthogonal and F is totally geodesic if and only if there exists
f ∈ C∞(M) such that

N = −∇D log ‖R‖g̃ +∇f.

Proof. — Since R is non-vanishing, D is bracket-generating and equireg-
ular step 2. Let [ : TM → T ∗M be the bijection v 7→ g̃(v, · ). We write its
inverse as ] : T ∗M → TM and use the same symbol for the identifications
of
∧k

TM and
∧k

T ∗M through g̃. Define τ = [Z. For every X ∈ Γ(TM),
one has

(LZτ)(X) = g(Z, [prDX,Z]) = −1
2(LprD X g̃)(Z,Z)

= g̃(X, II(Z,Z)) = [N(X).

Observe furthermore that, for any X,Y ∈ Γ(D), we have

dLZτ(X,Y ) = LZdτ(X,Y ) = (LZ pr∗D dτ)(X,Y ),

since

LZ(id−pr∗D)dτ(X,Y ) = −dτ(prV [Z,X], Y )− dτ(X,prV [Z, Y ])
= −dτ(Z, Y )τ([Z,X])− dτ(X,Z)τ([Z, Y ]) = 0.
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Define a selector τ ⊗ χ of D by

χ = − 1
‖pr∗D dτ‖2

]pr∗D dτ.

Note that

dLZ(χ) = − 1
‖pr∗D dτ‖2 (LZ pr∗D dτ)(]pr∗D τ)

= − 1
‖pr∗D dτ‖2 g̃(LZ pr∗D dτ,pr∗D τ).

Furthermore, since F is a Riemannian foliation, one gets
1

‖ pr∗D dτ‖2 g̃(LZ pr∗D dτ,pr∗D τ) = Z‖ pr∗D dτ‖2

2‖ pr∗D dτ‖2 = Z log ‖ pr∗D dτ‖.

Using that ‖ pr∗D dτ‖ = ‖R‖, we apply Proposition 4.1 to deduce that there
exists a metric making D and V orthogonal and F totally geodesic if and
only if

0 = d([N − pr∗V d log ‖R‖) = d([N − pr∗V d log ‖R‖+ d log ‖R‖)
= d([N + pr∗D d log ‖R‖).

Since M is simply connected, there exists a smooth function f on M such
that [N + pr∗D d log ‖R‖ = df . Apply ] to get the desired conclusion. �

Remark 4.4. — We could have reached the conclusion of Proposition 4.1
without using horizontal holonomy as well. The argument goes as follows.
Given any Riemannian metric such that D and V are orthogonal, if V
is spanned by a unit-length vector field Z̃ and τ̃ denotes the unique one-
form verifying τ̃(D) = 0 and τ̃(Z̃) = 1, then g(X, II(Z̃, Z̃)) = (L

Z̃
τ̃)(X).

Hence, finding such a basis vector field Z̃ such that LZ̃ τ̃ = 0 is equivalent to
showing the existence of a metric making F totally geodesic and orthogonal
to D. We prove that the existence of Z̃ and (4.1).

Assume there exists such a vector field Z̃. For every smooth function f ,
set Z = Zf = ef Z̃ and τ = e−f τ̃ . One deduces that

LZτ = e−f ιZ(−df ∧ τ̃ + dτ̃) = pr∗D df.

Since this form coincides with df on D, we have by Lemma 2.7(4) that

dτ⊗χ pr∗D df = dτ⊗χdf = 0.

Conversely, if dτ⊗χLZτ = 0 then again by Lemma 2.7(4), there exists a
one-form β such that β|D = LZτ |D and dβ = 0. However, since M is
simply connected, then β = df for some function f . As LZτ(Z) = 0, it
follows that LZτ = pr∗D df. The vector field Z̃ = e−fZ consequently has
the desired properties.
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4.2. Lie groups

Let G be a connected Lie group with a connected subgroup K. Let g

and k be their respective Lie algebras. Let p be any subspace such that
g = p⊕k and define D and V by left translation of p and k respectively. The
subbundle V is then integrable with corresponding foliation F = {a ·K :
a ∈ F}. We again try to determine if there exists a Riemannian metric on
G such that D and V are orthogonal and F is a totally geodesic foliation.
We use the same notation for an element in g and its corresponding left

invariant vector field. Consider the connection ∇ on V defined by

∇AC := prV [A,C], for any A ∈ g, C ∈ k.

If A,B ∈ g and C ∈ k, the curvature of ∇ is given by

R∇(A,B)C = prV ([A,prV [B,C]]− [B, prV [A,C]]− [[A,B], C])(4.2)
= prV ([A,prD[B,C]]− [B, prD[A,C]]) .

Introduce the connection ω on GL(Sym2 V ∗) corresponding to ∇. We next
provide a positive answer to the previous question in particular cases.

(i) If K is a normal subgroup, i.e., if k is an ideal, then R∇ = 0, and
therefore Holω,D ⊆ Holω which reduces to the identity element. It
follows that any inner product on k can be extended to a Riemann-
ian metric making D orthogonal to V and the foliation of V totally
geodesic. Since

V |a = a · k = k · a, a ∈ G,

the desired Riemannian metric g is on the form g = pr∗D gD
+ pr∗V gV , where gD is an arbitrary metric on D, while gV is the
right translation of any inner product on k.

(ii) Assume that [k, p] ⊆ p. Then, one necessarily has that p+[p, p] = g,
i.e.,D is equiregular of step 2. Furthermore, for any A,B ∈ g, C ∈ k,
one has

R∇(A,B)C = −[prk[prpA,prpB], C].

Let χ be any selector ofD and notice that R∇(χ(A))C =−[prkA,C]
for any A ∈ g. Define η0 = R∇ and η1 = L∇ιχη

0. Using (3.10), we
get η1 = −R∇, and, as a consequence, R∇χ = 0. This reflects the fact
that if we give V a metric by left translation of any inner product
on k and extend this metric to TM in an arbitrary way such that
D is orthogonal to V , then F is a totally geodesic foliation.

The general case is more complicated and is left for future research.
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4.3. An example with Carnot groups

A Carnot group of step r is a simply connected nilpotent Lie group with
a Lie algebra g with a given decomposition g = g1⊕ g2⊕· · ·⊕ gr satisfying
[g1, gk] = gk+1 for 1 6 k 6 r − 1 and [g1, gr] = 0.
For such a group we have the following result, where bxc denotes the

floor function, i.e.
bxc = max{n ∈ Z : x > n}.

Proposition 4.5. — Define

p1 =
⊕
k odd

gk, p2 =
⊕
k even
k6br/2c

gk, k =
⊕
k even
k>br/2c

gk,

Let D and V be subbundles of TG obtained by left translation of p1 ⊕ p2
and k, respectively. Then there exists a Riemannian metric on M such
that D and V are orthogonal and the foliation of V is totally geodesic if
and only if [p2, k] = 0. Furthermore, if K is the connected subgroup of G
corresponding to k, then the Ehresmann connection D on π : G → G/K

can be made principal under a multiplication on the fibers of π if and only
if [p2, k] = 0.

Proof. — Observe first that the following relations hold true

(4.3) [p1, p1] = p2 ⊕ k, [p1, p2] ⊆ p1, [p1, k] ⊆ p1,

[p2, p2] ⊆ p2 ⊕ k, [p2, k] ⊆ k, [k, k] = 0.

It follows that D is equiregular of step 2. Define a connection ∇ on V as
follows. If X ∈ Γ(TM) and C ∈ k, then set

∇XC = prV [prDX,C].

From (4.3), we obtain that for any A ∈ g, we have

∇AC = [prp2 A,C].

If follows that the curvature R∇ is given for any C ∈ k by

R∇(A,B)C =
{
∇prp2 [B,A]C if A,B ∈ p1

0 if A ∈ g, B ∈ p2 ⊕ k.

By using the definition of a Carnot group, we can define a selector χ of
D such that, if C ∈ gk ⊆ k for k even and greater than br/2c, one has
χ(C) =

∑n
j=1Ai ∧ Bi with Ai ∈ g1 ⊆ p1 and Bi ∈ gk−1 ⊆ p1. Since

prp2 [Ai, Bi] = 0, we get ιχR∇ = 0, and hence R∇χ = R∇.
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If [p2, k] = 0, then R∇χ = 0. If [p2, k] 6= 0, let A ∈ p2 and C ∈ k be any pair
of elements such that [A,C] is not zero. By replacing C with ad(A)kC for
an appropriate value of k > 0, we may assume that [A, [A,C]] = 0. Write

A =
k∑
j=1

[B1
j , B

2
j ], B1

j , B
2
j ∈ p1.

Then for any metric gV on V , we have
n∑
j=1

R∇χ (B1
j , B

2
j )(gV )(C, [A,C]) = −gV ([A,C], [A,C]) < 0.

Hence R∇χ ( · , · ) gV is not equal to zero for any metric gV on V . One thus
concludes by using Theorem 3.1.
As for the second statement of principal bundle structure on π, R∇

vanishes on V if and only if [p2, k] = 0. If the latter holds, then all left
invariant vector fields C with values in V satisfy ∇C = 0 and since these
are complete, the rest follows from Theorem 3.3. �

Example 4.6. — On R2 with coordinates (x, y), define the vector fields

A = ∂

∂x
, Bk = 1

k!x
k ∂

∂y
, 0 6 k 6 n.

Note that [A,Bk+1] = Bk for any k > 0. Define g = g1 ⊕ · · · ⊕ gn+1 where

g1 = span{A,Bn}, gk = span{Bn+1−k, }, 2 6 k 6 n+ 1.

Let G be the corresponding simply connected Lie group of g. Since our Lie
algebra was nilpotent, we will use (global) exponential coordinates, giving
a point a ∈ G coordinates (r0, r1, . . . , rn, s) if a = exp(

∑n
k=0 rkBk + sA).

(i) Define k, p1 and p2 as in Propositions 4.5. Then [p2, k] = 0, so if D
and V are obtained by left translation of p1⊕p2 and k, respectively,
D is a principal connection on G/K.

(ii) Consider the Abelian subalgebra k = span{B1, . . . , Bn−1} with
complement p = span{A,B0, Bn}. Let G be a simply connected Lie
group with Lie algebra g and let K be a subgroup with Lie algebra
k. Let D and V be the subbundles of TG given by left translation
of p and k, respectively. Then D is an Ehresmann connection on

π : G→ G/K,

but not principal, since [p, k] is not contained in p. We next deter-
mine a new multiplication on the fibers of π so that D becomes
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principal. For that purpose, we consider a connection ∇ on V , such
that if A ∈ g and C ∈ k are two left invariant vector fields, then

∇AC = prV [prD A,C].

This connection satisfies (3.1) and it is simple to verify that R∇ = 0.
Hence, the foliation of V can be made totally geodesic with orthog-
onal complement D. Furthermore, D can be made into a principal
connection, as the vector fields Z1, . . . , Zn−1 defined by

Zk =
k−1∑
j=0

(−1)ksk

k! Bk−j

are complete and satisfy ∇Zk = 0.

Example 4.7. — Let Fn,r be the free nilpotent Lie group on n generators
of step r, i.e., the quotient of the free Lie group on n generators by the
subgroup corresponding to the ideal generated by the brackets of order r.
Define k, p1 and p2 as in Proposition 4.5. Then [p2, k] = 0 if and only if
r < 8. Hence, for r > 8, if D and V are defined by left translation of
respectively p1 ⊕ p1 and k, then there does not exist a Riemannian metric
making D and V orthogonal and the foliation of V totally geodesic.
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