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THE DIRICHLET PROBLEM
WITHOUT THE MAXIMUM PRINCIPLE

by Wolfgang ARENDT & A. F. M. TER ELST (*)

Abstract. — Consider the Dirichlet problem with respect to an elliptic oper-
ator

A = −
d∑

k,l=1

∂k akl ∂l −
d∑

k=1

∂k bk +
d∑

k=1

ck ∂k + c0

on a bounded Wiener regular open set Ω ⊂ Rd, where akl, ck ∈ L∞(Ω,R) and
bk, c0 ∈ L∞(Ω,C). Suppose that the associated operator on L2(Ω) with Dirichlet
boundary conditions is invertible. Then we show that for all ϕ ∈ C(∂Ω) there exists
a unique u ∈ C(Ω) ∩H1

loc(Ω) such that u|∂Ω = ϕ and Au = 0.
In the case when Ω has a Lipschitz boundary and ϕ ∈ C(Ω)∩H1/2(Ω), then we

show that u coincides with the variational solution in H1(Ω).
Résumé. — Considérons le problème de Dirichlet par rapport à un opérateur

elliptique

A = −
d∑

k,l=1

∂k akl ∂l −
d∑

k=1

∂k bk +
d∑

k=1

ck ∂k + c0

sur un ensemble ouvert régulier de Wiener borné Ω ⊂ Rd, où akl, ck ∈ L∞(Ω,R)
et bk, c0 ∈ L∞(Ω,C). Supposons que 0 n’est pas une valeur propre de A avec
conditions aux limites Dirichlet. Alors nous montrons que pour tout ϕ ∈ C(∂Ω) il
existe un unique u ∈ C(Ω) ∩H1

loc(Ω) tel que u|∂Ω = ϕ et Au = 0.
Dans le cas où Ω a une frontière Lipschitz et ϕ ∈ C(Ω)∩H1/2(Ω), nous montrons

que u coïncide avec la solution variationnelle dans H1(Ω).
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1. Introduction

Let Ω ⊂ Rd be an open bounded set with boundary Γ. Throughout
this paper we assume that d > 2. The classical Dirichlet problem is to
find for each ϕ ∈ C(Γ) a function u ∈ C(Ω) such that u|Γ = ϕ and
∆u = 0 as distribution on Ω. The set Ω is called Wiener regular if for every
ϕ ∈ C(Γ) there exists a unique u ∈ C(Ω) such that u|Γ = ϕ and ∆u = 0
as distribution on Ω.

The Dirichlet problem has been extended naturally to more general
second-order operators. For all k, l ∈ {1, . . . , d} let akl : Ω → R be a
bounded measurable function and suppose that there exists a µ > 0 such
that

(1.1) Re
d∑

k,l=1
akl(x) ξk ξl > µ |ξ|2

for all x ∈ Ω and ξ ∈ Cd. Further, for all k ∈ {1, . . . , d} let bk, ck, c0 : Ω→ C
be bounded and measurable. Define the map A : H1

loc(Ω)→ D′(Ω) by

〈Au, v〉D′(Ω)×D(Ω) =
d∑

k,l=1

∫
Ω
akl (∂ku) ∂lv +

d∑
k=1

∫
Ω
bk u ∂kv

+
d∑
k=1

∫
Ω
ck (∂ku) v +

∫
Ω
c0 u v

for all u ∈ H1
loc(Ω) and v ∈ C∞c (Ω). Given ϕ ∈ C(Γ), by a classical solution

of the Dirichlet problem we understand a function u ∈ C(Ω) ∩ H1
loc(Ω)

satisfying Au = 0 and u|Γ = ϕ. For the pure second-order case (that is bk =
ck = c0 = 0) Littman–Stampacchia–Weinberger [11] proved that for all
ϕ ∈ C(Γ) there exists a unique classical solution u. Then Stampacchia [13,
Théorème 10.2] added real valued lower order terms, under the condition
(see [13], (9.2’)) that there exists a µ′ > 0 such that

(1.2)
∫

Ω
c0 v +

d∑
k=1

∫
Ω
bk ∂kv > µ

′
∫

Ω
v

for all v ∈ C∞c (Ω)+. Gilbarg–Trudinger [10, Theorem 8.31] merely assume
that

(1.3)
∫

Ω
c0 v +

d∑
k=1

∫
Ω
bk ∂kv > 0

for all v ∈ C∞c (Ω)+ in order to obtain the same conclusion. A consequence
of these assumptions is a weak maximum principle, which implies that
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DIRICHLET PROBLEM WITHOUT MAXIMUM PRINCIPLE 765

‖u‖C(Ω) 6 ‖ϕ‖C(Γ) for all u ∈ H1
loc(Ω) ∩ C(Ω) satisfying Au = 0 and

u|Γ = ϕ. We may consider (1.3) as a kind of submarkov condition since it
is equivalent to −A1Ω 6 0 in D′(Ω).

The aim of this paper is to show that the positivity condition (1.3)
and the maximum principle are not needed for the well-posedness of the
Dirichlet problem. In addition we allow the bk and c0 to be complex valued.
In order to state the main results of this paper in a more precise way we
need a few definitions. Define the form a : H1(Ω)×H1(Ω)→ C by

(1.4) a(u, v) =
d∑

k,l=1

∫
Ω
akl (∂ku) ∂lv +

d∑
k=1

∫
Ω
bk u ∂kv

+
d∑
k=1

∫
Ω
ck (∂ku) v +

∫
Ω
c0 u v.

Let AD be the operator in L2(Ω) associated with the form a|H1
0 (Ω)×H1

0 (Ω).
In other words, AD is the realisation of the elliptic operator A in L2(Ω)
with Dirichlet boundary conditions. This operator has a compact resolvent.
Moreover, if (1.3) is valid, then kerAD = {0} by [10, Corollary 8.2]. Instead
of (1.3) we assume the condition kerAD = {0}, which is equivalent to the
uniqueness of the Dirichlet problem (cf. Proposition 2.3 below).
The main result of this paper is the following well-posedness result for

the Dirichlet problem.

Theorem 1.1. — Let Ω ⊂ Rd be an open bounded Wiener regular
set with d > 2. For all k, l ∈ {1, . . . , d} let akl : Ω → R be a bounded
measurable function and suppose that there exists a µ > 0 such that

Re
d∑

k,l=1
akl(x) ξk ξl > µ |ξ|2

for all x ∈ Ω and ξ ∈ Cd. Further, for all k ∈ {1, . . . , d} let bk, c0 : Ω → C
and ck : Ω→ R be bounded and measurable. Let AD be as above. Suppose
0 6∈ σ(AD). Then for all ϕ ∈ C(Γ) there exists a unique u ∈ C(Ω)∩H1

loc(Ω)
such that u|Γ = ϕ and Au = 0.

Moreover, there exists a constant c > 0 such that

‖u‖C(Ω) 6 c ‖ϕ‖C(Γ)

for all ϕ ∈ C(Γ), where u ∈ C(Ω) ∩ H1
loc(Ω) is such that u|Γ = ϕ and

Au = 0.

TOME 69 (2019), FASCICULE 2



766 Wolfgang ARENDT & A. F. M. TER ELST

Instead of the homogeneous equation Au = 0 one can also consider
the inhomogeneous equation Au = f0 +

∑d
k=1 ∂kfk. We shall do that in

Theorem 2.13.
Adopt the notation and assumptions of Theorem 1.1. Define P : C(Γ)→

C(Ω) by Pϕ = u, where u ∈ C(Ω) ∩ H1
loc(Ω) is such that u|Γ = ϕ and

Au = 0. Note that Pϕ is the classical solution of the Dirichlet problem.
If Ω has even a Lipschitz boundary (which implies Wiener regularity),

then there is also a variational solution of the Dirichlet problem that we
describe next. Denote by Tr: H1(Ω) → L2(Γ) the trace operator. Again
let akl, bk, ck, c0 ∈ L∞(Ω) and suppose that the ellipticity condition (1.1)
is satisfied. Further suppose that 0 6∈ σ(AD). Then for each ϕ ∈ TrH1(Ω)
there exists a unique u ∈ H1(Ω), called the variational solution, such that
Au = 0 and Tru = ϕ (cf. Lemma 2.1). Define γ : TrH1(Ω) → H1(Ω) by
setting γϕ = u.
The second result of this paper says that the variational solution and the

classical solution coincide, if both are defined.
Theorem 1.2. — Adopt the notation and assumptions of Theorem 1.1.

Suppose that Ω has a Lipschitz boundary. Let ϕ ∈ C(Γ)∩TrH1(Ω). Then
Pϕ = γϕ almost everywhere on Ω.

The last main result of this paper concerns a parabolic equation. Let Ac
denote the part of the operator AD in C0(Ω). So

D(Ac) = {u ∈ D(AD) ∩ C0(Ω) : ADu ∈ C0(Ω)}

and Ac = AD|D(Ac).
Theorem 1.3. — Adopt the notation and assumptions of Theorem 1.1.

Then −Ac generates a holomorphic C0-semigroup on C0(Ω). Moreover,
e−tAc u = e−tAD

u for all u ∈ C0(Ω) and t > 0.
In Section 2 we prove Theorem 1.1 via an iteration argument. Section 3

is devoted to the comparison of the classical and the variational solutions of
the Dirichlet problem. Theorem 1.2 is proved there with the help of a deep
result of Dahlberg [7]. We consider the semigroup on C0(Ω) in Section 4
and prove Theorem 1.3.

2. The Dirichlet problem

In this section we prove Theorem 1.1 on the well-posedness of the Dirich-
let problem. The technique is a reduction to the Stampacchia result men-
tioned in the introduction. For this reason we introduce the following two
forms and operators.

ANNALES DE L’INSTITUT FOURIER



DIRICHLET PROBLEM WITHOUT MAXIMUM PRINCIPLE 767

Adopt the notation and assumptions of Theorem 1.1. For all λ ∈ R define
the forms aλ, bλ : H1(Ω)×H1(Ω)→ C by

aλ(u, v) = a(u, v) + λ (u, v)L2(Ω)

and bλ(u, v) =
d∑

k,l=1

∫
Ω
akl (∂ku) ∂lv +

d∑
k=1

∫
Ω
ck (∂ku) v + λ

∫
Ω
u v,

where a is as in (1.4). Define similarly Aλ,Bλ : H1
loc(Ω) → D′(Ω) and let

BD be the operator associated with the sesquilinear form b0|H1
0 (Ω)×H1

0 (Ω).
It follows from ellipticity that there exists a λ0 > 0 such that

µ

2 ‖v‖
2
H1(Ω) 6 Re aλ0(v) and µ

2 ‖v‖
2
H1(Ω) 6 Re bλ0(v)

for all v ∈ H1(Ω). Note that Bλ satisfies the submarkovian condition
−Bλ1Ω 6 0, that is (1.3), and even Stampacchia’s condition (1.2) for all
λ > 0. So we can and will apply Stampacchia’s result (in the proof of
Lemma 2.8).

We first investigate the operatorAD in L2(Ω). Note that f0+
∑d
k=1 ∂kfk ∈

D′(Ω) for all f0, f1, . . . , fd ∈ L1(Ω). The next lemma is also valid if the akl
and ck are complex valued.

Lemma 2.1. — Let f1, . . . , fd ∈ L2(Ω). Let p̃ ∈ (1,∞) be such that
p̃ > 2d

d+2 . Further let f0 ∈ Lp̃(Ω). Then there exists a unique u ∈ H1
0 (Ω)

such that Au = f0 +
∑d
k=1 ∂kfk.

Proof. — There exists a unique T ∈ L(H1
0 (Ω)) such that (Tu, v)H1

0 (Ω) =
a(u, v) for all u, v ∈ H1

0 (Ω). Then T is injective because kerAD = {0}.
Moreover, the inclusion H1

0 (Ω) ↪→ L2(Ω) is compact. Hence the opera-
tor T is invertible by the Fredholm–Lax–Milgram lemma, [5, Lemma 4.1].
Clearly v 7→

∑d
k=1(fk, ∂kv)L2(Ω) is continuous from H1

0 (Ω) into C. Define
F : C∞c (Ω) → C by F (v) = 〈f0, v〉D′(Ω)×D(Ω). We claim that F extends to
a continuous function from H1

0 (Ω) into C. If d > 3, then H1
0 (Ω) ⊂ Lr(Ω),

where r = 2d
d−2 . So H

1
0 (Ω) ⊂ Lq(Ω), where q is the dual exponent of p̃. The

last inclusion is also valid if d = 2. So in any case the map F extends to a
continuous function from H1

0 (Ω) into C. Then the lemma follows. �

The next lemma is valid for a general bounded open set Ω and does not
use the condition 0 6∈ σ(AD). It is an extension of [1, Lemma 4.2].

Lemma 2.2. — Let u ∈ C0(Ω) ∩ H1
loc(Ω) and f1, . . . , fd ∈ L2(Ω). Let

p̃ ∈ (1,∞) be such that p̃ > 2d
d+2 . Further let f0 ∈ Lp̃(Ω). Suppose that

Au = f0 +
∑d
k=1 ∂kfk. Then u ∈ H1

0 (Ω).

TOME 69 (2019), FASCICULE 2



768 Wolfgang ARENDT & A. F. M. TER ELST

Proof. — As at the end of the previous proof there exists anM0 > 0 such
that |

∫
Ω f0 v| 6M0 ‖v‖H1(Ω) for all v ∈ H1

0 (Ω). SetM = M0+
∑d
k=1 ‖fk‖2.

Let ε > 0. Set vε = (Reu − ε)+. Then supp vε ⊂ Ω is compact. Hence
there exists an open Ω1 ⊂ Rd such that supp vε ⊂ Ω1 ⊂ Ω1 ⊂ Ω. Then
vε ∈ H1

0 (Ω1). Moreover,
d∑

k,l=1

∫
Ω1

akl (∂ku) ∂lv +
d∑
k=1

∫
Ω1

bk u ∂kv +
d∑
k=1

∫
Ω1

ck (∂ku) v +
∫

Ω1

c0 u v

=
∫

Ω1

f0 v +
d∑
k=1

∫
Ω1

fk ∂kv(2.1)

for all v ∈ C∞c (Ω1). Since u|Ω1 ∈ H1(Ω1) it follows that (2.1) is valid for
all v ∈ H1

0 (Ω1). Choosing v = vε gives∣∣∣∣∣∣
d∑

k,l=1

∫
Ω
akl (∂ku) ∂lvε +

d∑
k=1

∫
Ω
bk u ∂kvε +

d∑
k=1

∫
Ω
ck (∂ku) vε +

∫
Ω
c0 u vε

∣∣∣∣∣∣
6M0 ‖vε‖H1(Ω) +

d∑
k=1
‖fk‖2 ‖∂kvε‖2 6M ‖vε‖H1(Ω).

On the other hand, ∂kvε = ∂k((Reu − ε)+) = 1[Reu>ε] ∂k Reu for all
k ∈ {1, . . . , d} by [10, Lemma 7.6]. Therefore

Re
d∑

k,l=1

∫
Ω
akl (∂ku) ∂lvε + Re

d∑
k=1

∫
Ω
bk u ∂kvε

+ Re
d∑
k=1

∫
Ω
ck (∂ku) vε + Re

∫
Ω
c0 u vε

=
d∑

k,l=1

∫
Ω
akl (∂kvε) ∂lvε + Re

d∑
k=1

∫
Ω
bk u ∂kvε

+
d∑
k=1

∫
Ω
ck (∂k Reu) vε + Re

∫
Ω
c0 u vε

= Re a(vε) + ε

d∑
k=1

∫
Ω

(Re bk) ∂kvε −
d∑
k=1

∫
Ω

(Im bk) (Im u) ∂kvε

+ ε

∫
Ω

(Re c0) vε −
∫

Ω
(Im c0) (Im u) vε

>
µ

2 ‖vε‖
2
H1(Ω) − λ0 ‖vε‖22 − εM ′ |Ω|1/2 ‖vε‖H1(Ω) −M ′ ‖u‖2 ‖vε‖H1(Ω),
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where M ′ = ‖c0‖∞+
∑d
k=1 ‖bk‖∞. Since ‖vε‖2 = ‖(Reu−ε)+‖2 6 ‖u‖2 6

|Ω|1/2 ‖u‖C0(Ω), it follows that
µ

2 ‖(Reu− ε)+‖2H1(Ω) 6M
′′ ‖(Reu− ε)+‖H1(Ω) + λ0 |Ω| ‖u‖2C0(Ω)

for all ε ∈ (0, 1], where M ′′ = M +M ′ |Ω|1/2 (‖u‖C0(Ω) + 1).
Therefore the sequence ((Reu− 2−n)+)n∈N0 is bounded in H1

0 (Ω). Pass-
ing to a subsequence if necessary, we may assume without loss of generality
that there exists a w ∈ H1

0 (Ω) such that lim(Reu − 2−n)+ = w weakly in
H1

0 (Ω). Then lim(Reu − 2−n)+ = w in L2(Ω). But lim(Reu − 2−n)+ =
(Reu)+ in L2(Ω). So (Reu)+ = w ∈ H1

0 (Ω). Similarly one proves that
(Reu)−, (Im u)+, (Im u)− ∈ H1

0 (Ω). So u ∈ H1
0 (Ω). �

Lemma 2.2 together with the condition 0 6∈ σ(AD) gives the uniqueness
in Theorem 1.1.

Proposition 2.3. — For all ϕ ∈ C(Γ) there exists at most one u ∈
C(Ω) ∩H1

loc(Ω) such that u|Γ = ϕ and Au = 0.

Proof. — Let u ∈ C(Ω)∩H1
loc(Ω) and suppose that u|Γ = 0 and Au = 0.

Then u ∈ C0(Ω). Hence u ∈ H1
0 (Ω) by Lemma 2.2. Also Au = 0. Therefore

u ∈ D(AD) and ADu = 0. But 0 6∈ σ(AD). So u = 0. �

In the next proposition we use that Ω is Wiener regular.

Proposition 2.4. — Let λ > λ0 and p ∈ (d,∞]. Let f0 ∈ Lp/2(Ω) and
f1, . . . , fd ∈ Lp(Ω). Then there exists a unique u ∈ H1

0 (Ω) ∩ C0(Ω) such
that Bλu = f0 +

∑d
k=1 ∂kfk.

Proof. — Since akl and ck are real valued for all k, l ∈ {1, . . . , d} we may
assume that f0, . . . , fd are real valued. By [10, Theorem 8.31] there exists a
unique u ∈ C(Ω) ∩H1

loc(Ω) such that Bλu = f0 +
∑d
k=1 ∂kfk and u|Γ = 0.

Then u ∈ C0(Ω) and the existence follows from Lemma 2.2. The uniqueness
follows from Proposition 2.3. �

Corollary 2.5. — Let λ > λ0 and p ∈ (d,∞]. Let f0 ∈ Lp/2(Ω) and
f1, . . . , fd ∈ Lp(Ω). Let u ∈ H1

0 (Ω) and suppose that Bλu = f0+
∑d
k=1 ∂kfk.

Then u ∈ C0(Ω).

Proof. — By Proposition 2.4 there exists a ũ ∈ H1
0 (Ω)∩C0(Ω) such that

Bλũ = f0 +
∑d
k=1 ∂kfk. Then Bλ(u − ũ) = 0. So bλ(u − ũ, v) = 0 first for

all v ∈ C∞c (Ω) and then by density for all v ∈ H1
0 (Ω). Choose v = u − ũ.

Then µ
2 ‖u− ũ‖

2
H1(Ω) 6 Re bλ(u− ũ) = 0. So u = ũ ∈ C0(Ω). �

We next wish to add the other lower order terms.

TOME 69 (2019), FASCICULE 2



770 Wolfgang ARENDT & A. F. M. TER ELST

Proposition 2.6. — There exists a c > 0 such that for all Φ ∈ C1(Rd)
there exists a unique u ∈ H1(Ω) ∩ C(Ω) such that u|Γ = Φ|Γ and Au = 0.
Moreover,

‖u‖C(Ω) 6 c ‖Φ|Γ‖C(Γ).

For the proof we need some lemmas. In the next lemma we introduce a
parameter δ in order to avoid duplication of the proof.

Lemma 2.7. — Fix δ ∈ [0, λ0 + 1].
(1) For all f ∈ L2(Ω) and λ > λ0 there exists a unique u ∈ H1

0 (Ω) such
that

(2.2) bλ(u, v) =
d∑
k=1

(bk f, ∂kv)L2(Ω) + ((c0 − δ 1Ω) f, v)L2(Ω)

for all v ∈ H1
0 (Ω).

For all λ > λ0 define Rλ : L2(Ω) → L2(Ω) by Rλf = u, where u ∈ H1
0 (Ω)

is as in (2.2).
(2) There exists a c1 > 0 such that

‖Rλf‖Lq(Ω) 6 c1 (λ− λ0)−1/4 ‖f‖L2(Ω)

for all λ > λ0 and f ∈ L2(Ω), where 1
q = 1

2 −
1
4d .

(3) There exists a c2 > 1 such that

‖Rλf‖Lq(Ω) 6 c2 ‖f‖Lp(Ω)

for all λ ∈ [λ0 +1,∞), p, q ∈ [2,∞] and f ∈ Lp(Ω) with 1
q = 1

p −
1
4d .

(4) If λ > λ0, p ∈ (d,∞] and f ∈ Lp(Ω), then Rλf ∈ C0(Ω).

Proof.
(1). This follows from the Lax–Milgram theorem.
(2). Define M = ‖c0 − δ 1Ω‖L∞(Ω) +

∑d
k=1 ‖bk‖L∞(Ω). Let λ > λ0, f ∈

L2(Ω) and set u = Rλf . Then

µ

2 ‖u‖
2
H1(Ω) + (λ− λ0)‖u‖2L2(Ω)

6 Re bλ0(u) + (λ− λ0)‖u‖2L2(Ω)

= Re bλ(u)

= Re
d∑
k=1

(bk f, ∂ku)L2(Ω) + Re((c0 − δ 1Ω) f, u)L2(Ω)

6M ‖f‖L2(Ω) ‖u‖H1(Ω).

ANNALES DE L’INSTITUT FOURIER



DIRICHLET PROBLEM WITHOUT MAXIMUM PRINCIPLE 771

So ‖u‖H1(Ω) 6 2µ−1M ‖f‖L2(Ω) and

‖Rλf‖L2(Ω) = ‖u‖L2(Ω) 6

√
2

µ(λ− λ0) M ‖f‖L2(Ω).

The Sobolev embedding theorem implies that there exists a c1 > 0 such
that ‖v‖Lq1 (Ω) 6 c1 ‖v‖H1(Ω) for all v ∈ H1

0 (Ω), where 1
q1

= 1
2 −

1
2d . (The

extra factor 2 is to avoid a separate case for d = 2.) Then ‖Rλf‖Lq1 (Ω) 6
2µ−1 c1M ‖f‖L2(Ω). Hence

‖Rλf‖Lq(Ω) 6 ‖Rλf‖
1/2
L2(Ω) ‖Rλf‖

1/2
Lq1 (Ω) 6 c2 (λ− λ0)−1/4 ‖f‖L2(Ω),

where c2 = (2/µ)3/4 c
1/2
1 M .

(3). Apply Corollary 2.5 with p = 4d and λ = λ0 + 1. It follows that
Rλ0+1f ∈ C0(Ω) for all f ∈ Lp(Ω). Clearly the map Rλ0+1|Lp(Ω) : Lp(Ω)→
C0(Ω) has a closed graph. Hence it is continuous. In particular, there exists
a c3 > 0 such that ‖Rλ0+1f‖L∞(Ω) = ‖Rλ0+1f‖C0(Ω) 6 c3 ‖f‖Lp(Ω) for all
f ∈ Lp(Ω).
Let λ > λ0 + 1 and f ∈ L2(Ω). Write u = Rλf and u0 = Rλ0+1f . Then

bλ(u, v) = bλ0+1(u0, v) and bλ(u− u0, v) = −(λ−λ0− 1) (u, v)L2(Ω) for all
v ∈ H1

0 (Ω). Hence u−u0 ∈ D(BD) and (BD+λ I)(u−u0) = −(λ−λ0−1)u0.
Consequently

Rλ =
(
I − (λ− λ0 − 1) (BD + λ I)−1)Rλ0+1

for all λ > λ0 + 1. Since the semigroup generated by −BD has Gaussian
bounds, there exists a c4 > 1 such that ‖(BD + λ I)−1‖∞→∞ 6 c4 λ

−1 for
all λ > λ0 + 1. Then ‖Rλf‖L∞(Ω) 6 2c3 c4 ‖f‖Lp(Ω) for all λ > λ0 + 1 and
f ∈ Lp(Ω).
Finally let p′ ∈ (2, 4d) and let q′ ∈ (2,∞) be such that 1

q′ = 1
p′ −

1
4d .

There exists a θ ∈ (0, 1) such that 1
p′ = 1−θ

2 + θ
p . Then

1
q′ = 1−θ

q , where
1
q = 1

2 −
1
4d . Let c1 > 0 be as in Statement (2). The operator Rλ is bounded

from L2(Ω) into Lq(Ω) with norm at most c1 by Statement (2), and we
just proved that the operator Rλ is bounded from Lp(Ω) into L∞(Ω) with
norm at most 2c3 c4. Hence by interpolation the operator Rλ is bounded
from Lp′(Ω) into Lq′(Ω) with norm bounded by c1−θ1 (2c3 c4)θ 6 c1 +2c3 c4,
which gives Statement (3).
(4). This is a special case of Corollary 2.5. �

The main step in the proof of Proposition 2.6 is the next lemma.
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Lemma 2.8. — There exist λ > λ0 and c > 0 such that for all Φ ∈
C1(Ω)∩H1(Ω) there exists a unique u ∈ H1(Ω)∩C(Ω) such that u|Γ = Φ|Γ
and Aλu = 0. Moreover,

‖u‖C(Ω) 6 c ‖Φ|Γ‖C(Γ).

Proof. — Choose δ = 0 in Lemma 2.7. Let c1 and c2 be as in Lemma 2.7.
Let λ ∈ (λ0 + 1,∞) be such that c1 c2d−1

2 (λ − λ0)−1/4 (1 + |Ω|) 6 1
2 . Let

Rλ be as in Lemma 2.7. Set ϕ = Φ|Γ.
There exist unique w, w̃ ∈ H1

0 (Ω) such that aλ(w, v) = aλ(Φ, v) and
bλ(w̃, v) = bλ(Φ, v) for all v ∈ H1

0 (Ω). Then w̃ ∈ C0(Ω) by Corollary 2.5.
Define u = Φ − w and ũ = Φ − w̃. Then ũ ∈ H1(Ω) ∩ C(Ω) and ũ|Γ = ϕ.
Moreover, aλ(u, v) = 0 and bλ(ũ, v) = 0 for all v ∈ H1

0 (Ω), and ‖ũ‖C(Ω) 6
‖ϕ‖C(Γ) by the result of Stampacchia mentioned in the introduction ([13,
Théorème 3.8]).
Let v ∈ H1

0 (Ω). Then

bλ(ũ− u, v) =
d∑
k=1

(bk u, ∂kv)L2(Ω) + (c0 u, v)L2(Ω)

and ũ− u = Rλu by the definition of Rλ.
For all n ∈ {0, . . . , 2d} define pn = 4d

2d−n . Then p0 = 2, p2d−1 = 4d,
p2d = ∞ and 1

pn
= 1

pn−1
− 1

4d for all n ∈ {1, . . . , 2d}. So ‖ũ − u‖Lpn (Ω) 6

c2 ‖u‖Lpn−1 (Ω) for all n ∈ {2, . . . , 2d} and

‖ũ− u‖Lp1 (Ω) 6 c1 (λ− λ0)−1/4 ‖u‖L2(Ω)

by Lemma 2.7(3) and (2). Then

‖u‖Lp1 (Ω) 6 c1 (λ− λ0)−1/4 ‖u‖L2(Ω) + (1 + |Ω|) ‖ũ‖L∞(Ω)

and

‖u‖Lpn (Ω) 6 c2 ‖u‖Lpn−1 (Ω) + (1 + |Ω|) ‖ũ‖L∞(Ω)

for all n ∈ {2, . . . , 2d}. It follows by induction to n that

‖u‖Lpn (Ω) 6 c1 c
n−1
2 (λ− λ0)−1/4 ‖u‖L2(Ω) + (1 + |Ω|)

n−1∑
k=0

ck2 ‖ũ‖L∞(Ω)
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for all n ∈ {2, . . . , 2d}. So u ∈ Lp2d−1(Ω) = L4d(Ω) and ũ − u = Rλu ∈
C0(Ω) by Lemma 2.7(4). In particular u ∈ C(Ω). Moreover,

‖u‖L∞(Ω)

= ‖u‖Lp2d
(Ω)

6 c1 c
2d−1
2 (λ− λ0)−1/4 ‖u‖L2(Ω) + 2d (1 + |Ω|) c2d−1

2 ‖ũ‖L∞(Ω)

6 c1 c
2d−1
2 (λ− λ0)−1/4 (1 + |Ω|) ‖u‖L∞(Ω) + 2d (1 + |Ω|) c2d−1

2 ‖ũ‖L∞(Ω)

6
1
2 ‖u‖L∞(Ω) + 2d (1 + |Ω|) c2d−1

2 ‖ũ‖L∞(Ω)

by the choice of λ. So

‖u‖L∞(Ω) 6 4d (1 + |Ω|) c2d−1
2 ‖ũ‖L∞(Ω) 6 4d (1 + |Ω|) c2d−1

2 ‖ϕ‖C(Γ)

and the proof of the lemma is complete. �

We next wish to remove the λ in Lemma 2.8. For future purposes, we
consider the full inhomogeneous problem.

Proposition 2.9. — Let p ∈ (d,∞], f0 ∈ Lp/2(Ω) and let f1, . . . , fd ∈
Lp(Ω). Let u ∈ H1

0 (Ω) be such that Au = f0+
∑d
k=1 ∂kfk. Then u ∈ C0(Ω).

Proof. — Without loss of generality we may assume that p ∈ (d, 4d).
Choose λ = δ = λ0 + 1 in Lemma 2.7 and in Proposition 2.4. By Propo-
sition 2.4 there exists a unique ũ ∈ H1

0 (Ω) ∩ C0(Ω) such that Bλũ =
f0 +

∑d
k=1 ∂kfk. If v ∈ C∞c (Ω), then

bλ(ũ, v) = 〈f0 +
d∑
k=1

∂kfk, v〉D′(Ω)×D(Ω)

= a(u, v)

= bλ(u, v) +
d∑
k=1

(bk u, ∂kv)L2(Ω) + ((c0 − δ 1Ω)u, v)L2(Ω).

So

bλ(ũ− u, v) =
d∑
k=1

(bk u, ∂kv)L2(Ω) + ((c0 − δ 1Ω)u, v)L2(Ω)

and by density for all v ∈ H1
0 (Ω). Hence u − ũ = Rλu, where Rλ is as in

Lemma 2.7. For all n ∈ {0, . . . , 2d − 1} define pn = 4d
2d−n . Then u − ũ ∈

L2(Ω) = Lp0(Ω). It follows by induction to n that u ∈ Lpn−1(Ω) and
u− ũ ∈ Lpn(Ω) for all n ∈ {1, . . . , 2d− 1}, where the last part follows from
Lemma 2.7(3). Hence u − ũ ∈ Lp2d−1(Ω) = L4d(Ω) and u ∈ Lp(Ω). Then
Lemma 2.7(4) gives u− ũ = Rλu ∈ C0(Ω) and therefore u ∈ C0(Ω). �
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Corollary 2.10. — Let p ∈ (d,∞]. Then (AD)−1(Lp(Ω)) ⊂ C0(Ω).

Corollary 2.11. — There exists a c′ > 0 such that ‖(AD)−1f‖L∞(Ω) 6
c′ ‖f‖L∞(Ω) for all f ∈ L∞(Ω).

Proof. — Closed graph theorem. �

Proof of Proposition 2.6. — Let c, λ > 0 be as in Lemma 2.8 and let
c′ > 0 be as in Corollary 2.11. By Lemma 2.8 there exists a unique ũ ∈
H1(Ω) ∩ C(Ω) such that ũ|Γ = Φ|Γ and Aλũ = 0. By Lemma 2.1 there
exists a unique w ∈ H1

0 (Ω) such that a(w, v) = a(Φ|Ω, v) for all v ∈ H1
0 (Ω).

Set u = Φ|Ω − w and w̃ = Φ|Ω − ũ. Then

a(w, v) = a(Φ|Ω, v) = aλ(Φ|Ω, v)− λ (Φ, v)L2(Ω) = aλ(w̃, v)− λ (Φ, v)L2(Ω)

= a(w̃, v) + λ (w̃, v)L2(Ω) − λ (Φ, v)L2(Ω) = a(w̃, v)− λ (ũ, v)L2(Ω)

for all v ∈ H1
0 (Ω). So

a(ũ− u, v) = a(w − w̃, v) = −λ (ũ, v)L2(Ω).

Since ũ − u ∈ H1
0 (Ω) it follows that AD(ũ − u) = −λ ũ. Consequently,

u = ũ+ λ (AD)−1ũ ∈ C0(Ω) by Corollary 2.10. Moreover,

‖u‖C(Ω) = ‖u‖L∞(Ω) 6 ‖ũ‖L∞(Ω) + λ ‖(AD)−1ũ‖L∞(Ω)

6 (1 + c′ λ) ‖ũ‖L∞(Ω) 6 (1 + c′ λ) c ‖Φ|Γ‖C(Γ)

and the proof of Proposition 2.6 is complete. �

Define ||| · ||| : H1
loc(Ω)→ [0,∞] by

|||u||| = sup
δ>0

sup
Ω0⊂Ω open
d(Ω0,Γ)=δ

δ

(∫
Ω0

|∇u|2
)1/2

.

Finally we need the following Caccioppoli inequality.

Proposition 2.12. — There exists a c′ > 1 such that |||u||| 6
c′ ‖u‖L2(Ω) for all u ∈ H1(Ω) such that Au = 0.

Proof. — See [9, Theorem 4.4]. �

Now we are able to prove Theorem 1.1.
Proof of Theorem 1.1. — The uniqueness is already proved in Proposi-

tion 2.3.
Let c > 0 and c′ > 1 be as in Propositions 2.6 and 2.12. Let Φ ∈ C1(Rd)∩

H1(Rd). By Proposition 2.6 there exists a unique u ∈ H1(Ω) ∩ C(Ω) such
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that u|Γ = Φ|Γ and Au = 0. Moreover,

‖u‖C(Ω) + |||u||| 6 ‖u‖C(Ω) + c′ ‖u‖L2(Ω)

6 (2 + |Ω|) c′ ‖u‖C(Ω)

6 (2 + |Ω|) c c′ ‖Φ|Γ‖C(Γ).(2.3)

It follows from (2.3) that we can define a linear map F : {Φ|Γ : Φ ∈ C1(Rd)∩
H1(Rd)} → H1(Ω) ∩ C(Ω) by F (Φ|Γ) = u, where u ∈ H1(Ω) ∩ C(Ω) is
such that u|Γ = Φ|Γ and Au = 0. Now let ϕ ∈ C(Γ). By the Stone–
Weierstraß theorem there are Φ1,Φ2, . . . ∈ C1(Rd) ∩ H1(Rd) such that
lim Φn|Γ = ϕ in C(Γ). Set un = F (Φn|Γ) for all n ∈ N. Then it follows
from (2.3) that (un)n∈N is a Cauchy sequence in C(Ω). Let u = lim un
in C(Ω). Also (un)n∈N is a Cauchy sequence in H1

loc(Ω) by (2.3). So u ∈
H1

loc(Ω). Since Aun = 0 for all n ∈ N, one deduces that Au = 0. Moreover,
u|Γ = lim un|Γ = lim Φn|Γ = ϕ. This proves existence. Finally,

‖u‖C(Ω) = lim ‖un‖C(Ω)

6 lim(2 + |Ω|) c c′ ‖Φn|Γ‖C(Γ) = (2 + |Ω|) c c′ ‖ϕ‖C(Γ).

This completes the proof of Theorem 1.1. �

Theorem 1.1 has the following extension.

Theorem 2.13. — Adopt the notation and assumptions of Theorem 1.1.
Let ϕ ∈ C(Γ), p ∈ (d,∞], f0 ∈ Lp/2(Ω) and let f1, . . . , fd ∈ Lp(Ω).
Then there exists a unique u ∈ C(Ω) ∩ H1

loc(Ω) such that u|Γ = ϕ and
Au = f0 +

∑d
k=1 ∂kfk.

Proof. — The uniqueness follows as in the proof of Proposition 2.3.
By Lemma 2.1 there exists a u0 ∈H1

0 (Ω) such thatAu0 = f0+
∑d
k=1 ∂kfk.

Then u0 ∈ C0(Ω) by Proposition 2.9. By Theorem 1.1 there exists a u1 ∈
C(Ω)∩H1

loc(Ω) such that u1|Γ = ϕ and Au1 = 0. Define u = u0 +u1. Then
u ∈ C(Ω) ∩H1

loc(Ω). Moreover, u|Γ = ϕ and Au = f0 +
∑d
k=1 ∂kfk. �

We conclude this section with some results for the classical solution.
They will be used in Section 3 and are of independent interest. Recall that
P : C(Γ) → C(Ω) is given by Pϕ = u, where u ∈ C(Ω) ∩ H1

loc(Ω) is the
classical solution, so u|Γ = ϕ and Au = 0.

Proposition 2.14. — Let Φ ∈ C(Ω) ∩H1
loc(Ω). Suppose there exists a

w ∈ H1
0 (Ω) such that AΦ = Aw. Then w ∈ C(Ω) and P (Φ|Γ) = Φ− w.

Proof. — Write w̃ = Φ− P (Φ|Γ). Then w̃ ∈ C0(Ω) ∩H1
loc(Ω) and Aw̃ =

AΦ = Aw = f0 +
∑d
k=1 ∂kfk, where f0 = c0 w +

∑d
l=1 cl ∂lw ∈ L2(Ω) and

fk = −
∑d
l=1 alk ∂lw − bk w ∈ L2(Ω) for all k ∈ {1, . . . , d}. So w̃ ∈ H1

0 (Ω)
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by Lemma 2.2. Hence A(w̃−w) = and w̃−w ∈ kerAD = {0}. So w = w̃ =
Φ− P (Φ|Γ). �

We need the dual map of A. Define the map At : H1
loc(Ω)→ D′(Ω) by

〈Atu, v〉D′(Ω)×D(Ω) =
d∑

k,l=1

∫
Ω
alk (∂ku) ∂lv −

d∑
k=1

∫
Ω
ck u ∂kv

−
d∑
k=1

∫
Ω
bk (∂ku) v +

∫
Ω
c0 u v

for all u ∈ H1
loc(Ω) and v ∈ C∞c (Ω).

Corollary 2.15. — Suppose that akl, bk, ck ∈ W 1,∞(Ω) for all k, l ∈
{1, . . . , d}. Let Φ ∈ C(Ω). Suppose there exists a w ∈ H1

0 (Ω) such that

〈Φ,Atv〉D′(Ω)×D(Ω) = a(w, v)

for all v ∈ C∞c (Ω). Then w ∈ C(Ω) and P (Φ|Γ) = Φ− w.

Proof. — By assumption one has 〈Φ − w,Atv〉D′(Ω)×D(Ω) = 0 for all
v ∈ C∞c (Ω). Hence Φ− w ∈ H1

loc(Ω) by elliptic regularity. So Φ ∈ H1
loc(Ω)

and

〈AΦ, v〉D′(Ω)×D(Ω) = 〈Φ,Atv〉D′(Ω)×D(Ω) = a(w, v) = 〈Aw, v〉D′(Ω)×D(Ω)

for all v ∈ C∞c (Ω). Therefore AΦ = Aw and the result follows from Propo-
sition 2.14. �

The last corollary takes a very simple form for the Laplacian.

Corollary 2.16. — Let Φ ∈ C(Ω). Suppose that ∆Φ ∈ H−1(Ω). Let
w ∈ H1

0 (Ω) be such that ∆Φ = ∆w as distribution. Then w ∈ C(Ω) and
P (Φ|Γ) = Φ− w.

This corollary is a special case of [2, Theorem 1.1].

3. Variational and classical solutions: comparison

In this section we show that the variational and classical solutions of
the Dirichlet problem are the same. For that we assume throughout this
section that Ω is an open set with Lipschitz boundary. Moreover, we adopt
the assumptions and notation of Theorem 1.1. Recall that for all ϕ ∈ C(Γ)
we denote by Pϕ ∈ C(Ω) the classical solution and for all ϕ ∈ H1/2(Γ), we
denote by γϕ ∈ H1(Ω) the variational solution of the Dirichlet problem.
We shall prove in this section that they coincide if both are defined.
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The fact that they coincide for restrictions to Γ of functions in C(Ω) ∩
H1(Ω) is a consequence of Proposition 2.14. We state this as a proposition.

Proposition 3.1. — Let Φ ∈ C(Ω) ∩ H1(Ω). Then P (Φ|Γ) = γ(Φ|Γ)
almost everywhere.

So for the proof of Theorem 1.2 it suffices to show that the map Φ 7→ Φ|Γ
from C(Ω) ∩H1(Ω) into C(Γ) ∩H1/2(Γ) is surjective. This is surprisingly
difficult to prove. We first prove Theorem 1.2 for the Laplacian with the
help of Proposition 3.1 and a deep result of Dahlberg. As a consequence we
obtain the desired surjectivity result. Then as noticed earlier, Theorem 1.2
follows for our general elliptic operator.

Theorem 3.2. — Assume that akl = δkl and bk = ck = c0 = 0 for
all k, l ∈ {1, . . . , d}. Let ϕ ∈ C(Γ) ∩ H1/2(Γ). Then Pϕ = γϕ almost
everywhere.

Proof. — Let x ∈ Ω. By Dahlberg [7, Theorem 1] there exists a unique
kx ∈ L1(Γ) such that (Pϕ)(x) =

∫
Γ kx ϕdσ for all ϕ ∈ C(Γ).

Now let ϕ ∈ C(Γ) ∩H1/2(Γ). Without loss of generality we may assume
that ϕ is real valued. Then there exists a u ∈ H1(Ω,R) such that ϕ = Tru.
Since H1(Ω)∩C(Ω) is dense in H1(Ω), there exist u1, u2, . . . ∈ H1(Ω,R)∩
C(Ω) such that lim un = u in H1(Ω). Define vn = (−‖ϕ‖L∞(Γ)) ∨ un ∧
‖ϕ‖L∞(Γ) for all n ∈ N. Then vn ∈ H1(Ω) ∩ C(Ω). Write ϕn = vn|Γ =
Tr vn ∈ C(Γ)∩H1/2(Γ) for all n ∈ N. Then Pϕn = γϕn almost everywhere
for all n ∈ N by Proposition 3.1.

Note that

limϕn = lim Tr vn = (−‖ϕ‖L∞(Γ)) ∨ Tru ∧ ‖ϕ‖L∞(Γ) = ϕ

in H1/2(Γ). So by continuity of γ one deduces that γϕ = lim γϕn in H1(Ω)
and in particular in L2(Ω). Passing to a subsequence, if necessary, we may
assume that

(γϕ)(x) = lim(γϕn)(x)
for almost all x ∈ Ω. Using again that limϕn = ϕ in H1/2(Γ) and therefore
also in L2(Γ), we may assume that limϕn = ϕ almost everywhere on Γ.
Hence if x ∈ Ω, then

(Pϕ)(x) =
∫

Γ
kx ϕdσ = lim

∫
Γ
kx ϕn dσ = lim(Pϕn)(x)

by the Lebesgue dominated convergence theorem. Since Pϕn = γϕn almost
everywhere for all n ∈ N one concludes that (Pϕ)(x) = (γϕ)(x) for almost
all x ∈ Ω. �

TOME 69 (2019), FASCICULE 2



778 Wolfgang ARENDT & A. F. M. TER ELST

The desired surjectivity result is the following corollary of Theorem 3.2.

Corollary 3.3. — Let Ω ⊂ Rd be a bounded open set with Lipschitz
boundary. Let ϕ ∈ C(Γ)∩H1/2(Γ). Then there exists a u ∈ H1(Ω)∩C(Ω)
such that ϕ = u|Γ.

Proof of Theorem 1.2. — This follows from Corollary 3.3 and Proposi-
tion 3.1. �

Corollary 3.4. — Adopt the notation and assumptions of
Theorem 1.1. Suppose that Ω has a Lipschitz boundary. Let u ∈ C(Ω) ∩
H1

loc(Ω) and suppose that Au = 0. Then u ∈ H1(Ω) if and only if u|Γ ∈
H1/2(Γ).

Proof. — “⇒” is trivial.
“⇐”. Suppose u|Γ ∈ H1/2(Γ). Then u = P (u|Γ) = γ(u|Γ) ∈ H1(Ω) by

Theorem 1.2. �

4. Semigroup and holomorphy on C0(Ω)

In this section we prove Theorem 1.3. Throughout this section we adopt
the notation and assumptions of Theorem 1.1. We need several lemmas.

Lemma 4.1. — The operator Ac is invertible and, moreover, (Ac)−1 =
(AD)−1|C0(Ω).

Proof. — If v ∈ C0(Ω), then (AD)−1v ∈ C0(Ω) by Corollary 2.10. More-
over, AD((AD)−1v) = v. So (AD)−1v ∈ D(Ac) and Ac((AD)−1v) = v.
Hence Ac is surjective. Since AD is injective, also Ac is injective. Therefore
Ac is invertible and (Ac)−1 = (AD)−1|C0(Ω). �

The next proof is inspired by arguments in [1, Theorem 4.4].

Lemma 4.2. — The domain D(Ac) of the operator Ac is dense in C0(Ω).

Proof. — Let ρ ∈ M(Ω), the Banach space of all complex measures on
Ω and suppose that

∫
Ω v dρ = 0 for all v ∈ D(Ac). There exist w1, w2, . . . ∈

L2(Ω) such that sup ‖wn‖L1(Ω) < ∞ and lim
∫

Ω v wn =
∫

Ω v dρ for all
v ∈ C0(Ω).

Choose p = d+ 2 and let q ∈ (1, 2) be the dual exponent of p. It follows
from Proposition 2.9 that the operator (AD)−1 extends to a continuous
operator from W−1,p(Ω) into C0(Ω). Hence the operator (AD)−1∗ extends
to a continuous operator from M(Ω) into W 1,q

0 (Ω). In particular, there
exists a c > 0 such that ‖(AD)−1∗w‖W 1,q

0 (Ω) 6 c ‖w‖L1(Ω) for all w ∈ L2(Ω).
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For all n ∈ N set un = (AD)−1∗wn. We emphasise that un ∈ D((AD)∗).
Then sup ‖un‖W 1,q

0 (Ω) <∞. Note that W 1,q
0 (Ω) is reflexive. Hence passing

to a subsequence if necessary, there exists a u ∈W 1,q
0 (Ω) such that lim un =

u weakly in W 1,q
0 (Ω).

Let v ∈ C∞c (Ω). Then (AD)−1v ∈ D(Ac) by Lemma 4.1. Therefore

0 =
∫

Ω
(AD)−1v dρ = lim

∫
Ω

(
(AD)−1v

)
wn

= lim
(
v, (AD)−1∗wn

)
L2(Ω) = lim(v, un)L2(Ω) = lim

∫
Ω
v un = lim

∫
Ω
v u.

Hence u = 0.
Again let v ∈ C∞c (Ω). Then∫

Ω
v dρ = lim

∫
Ω
v wn = lim(v, (AD)∗un)L2(Ω) = lim a(v, un) = 0,

where we used (1.4). So ρ = 0 and D(Ac) is dense in C0(Ω). �

Now we prove that −Ac generates a holomorphic C0-semigroup.

Proof of Theorem 1.3. — Let S be the semigroup generated by −AD.
Then S has a kernel with Gaussian upper bounds by [12, Theorem 6.10]
(see also [8, Theorem 6.1] for operators with real valued coefficients and [3,
Theorems 3.1 and 4.4]). Hence the semigroup S extends consistently to a
semigroup S(p) on Lp(Ω) for all p ∈ [1,∞].
Choose p ∈ (d,∞]. Let t > 0 and u ∈ L2(Ω). Since S is a holomorphic

semigroup, one deduces that Stu ∈ D(AD) and AD Stu ∈ L2(Ω). Next
the Gaussian kernel bounds imply that St maps L2(Ω) into Lp(Ω). So
AD S2tu = StA

D Stu ∈ Lp(Ω) and

(4.1) S2tu ∈ (AD)−1(Lp(Ω)) ⊂ C0(Ω)

by Corollary 2.10. Hence StC0(Ω) ⊂ C0(Ω) for all t > 0. For all t > 0 let
Sct = St|C0(Ω) : C0(Ω) → C0(Ω). Then (Sct )t>0 is a semigroup on C0(Ω).
Moreover, using again the Gaussian kernel bounds there exists an M > 1
such that ‖Sct ‖ 6 ‖S

(∞)
t ‖ 6M for all t ∈ (0, 1].

Let t ∈ (0, 1] and u ∈ D(Ac). Then

‖(I − Sct )u‖C0(Ω) =
∥∥∥∥∫ t

0
SsAcuds

∥∥∥∥
C0(Ω)

6
∫ t

0
M ‖Acu‖∞ds = M t ‖Acu‖∞.
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So limt↓0 S
c
tu = u in C0(Ω). Since D(Ac) is dense in C0(Ω) by Lemma 4.2,

one deduces that limt↓0 S
c
tu = u in C0(Ω) for all u ∈ C0(Ω). So Sc is a

C0-semigroup.
Finally, using once more the Gaussian kernel bounds, it follows that the

semigroup Sc is holomorphic (see [3, Theorem 5.4]). �

We conclude this section by establishing Gaussian kernels which are con-
tinuous up to the boundary. For this we use the following special case of [4,
Theorem 2.1].

Proposition 4.3. — Suppose that |∂Ω| = 0. Let T be a semigroup in
L2(Ω) such that TtL2(Ω) ⊂ C(Ω) and T ∗t L2(Ω) ⊂ C(Ω) for all t > 0. Then
for all t > 0 there exists a unique kt ∈ C(Ω× Ω) such that

(Ttu)(x) =
∫

Ω
kt(x, y)u(y) dy

for all u ∈ L2(Ω) and x ∈ Ω.

We continue to denote by S the semigroup generated by −AD and we
also denote by S the holomorphic extension. For all θ ∈ (0, π] let Σ(θ) =
{z ∈ C \ {0} : | arg z| < θ} be the open sector with (half)angle θ.

Theorem 4.4. — Adopt the notation and assumptions of Theorem 1.1.
In addition assume that |∂Ω| = 0 and that bk is real valued for all k ∈
{1, . . . , d}. Let θ be the holomorphy angle of S. Then for all z ∈ Σ(θ) there
exists a unique kz ∈ C(Ω× Ω) such that the following is valid.

(1) (Szu)(x) =
∫

Ω kz(x, y)u(y) dy for all z ∈ Σ(θ), u ∈ L2(Ω) and
x ∈ Ω.

(2) kz(x, y) = 0 for all z ∈ Σ(θ) and x, y ∈ Ω with x ∈ ∂Ω or y ∈ ∂Ω.
(3) The map z 7→ kz is holomorphic from Σ(θ) into C(Ω× Ω).
(4) For all θ′ ∈ (0, θ) there exist b, c, ω > 0 such that

|kz(x, y)| 6 c |z|−d/2 eω|z| e−b
|x−y|2
|z|

for all z ∈ Σ(θ′) and x, y ∈ Ω.

Proof. — It follows from (4.1) that SzL2(Ω) ⊂ C0(Ω) for all z ∈ Σ(θ).
Since the coefficients bk are real, also the adjoint operator satisfies the
conditions of Theorem 1.1. Therefore S∗zL2(Ω) ⊂ C0(Ω) for all z ∈ Σ(θ).
It follows from Proposition 4.3 that for all z ∈ Σ(θ) there exists a unique
kz ∈ C(Ω × Ω) such that (Szu)(x) =

∫
Ω kz(x, y)u(y) dy for all u ∈ L2(Ω)

and x ∈ Ω. Since Szu ∈ C0(Ω) one deduces that kz(x, y) = 0 for all
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z ∈ Σ(θ), x ∈ ∂Ω and y ∈ Ω. Considering adjoints the same is valid with x
and y interchanged. If u, v ∈ C0(Ω), then the map

z 7→ 〈kz, u⊗ v〉C(Ω×Ω)×C(Ω×Ω)∗ = (Szu, v)L2(Ω)

is holomorphic on Σ(θ). Therefore Statement (3) is a consequence of [6,
Theorem 3.1]. The Gaussian bounds of Statement (4) follow from [3, The-
orem 5.4]. �
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