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TITS ENDOMORPHISMS AND BUILDINGS OF
TYPE F4

by Tom DE MEDTS, Yoav SEGEV & Richard M. WEISS

Abstract. — The fixed point building of a polarity of a Moufang quadrangle
of type F4 is a Moufang set, as is the fixed point building of a semi-linear automor-
phism of order 2 of a Moufang octagon that stabilizes at least two panels of one
type but none of the other. We show that these two classes of Moufang sets are,
in fact, the same, that each member of this class can be constructed as the fixed
point building of a group of order 4 acting on a building of type F4 and that the
group generated by all the root groups of any one of these Moufang sets is simple.
Résumé. — L’immeuble de points fixes d’une polarité d’un quadrangle de Mou-

fang de type F4 est un ensemble de Moufang. Il en va de même pour l’immeuble
de points fixes d’un automorphisme semi-linéaire d’ordre 2 d’un octogone de Mou-
fang qui stabilise au moins deux cloisons d’un type mais aucun de l’autre. Nous
montrons que ces deux classes d’ensembles de Moufang sont en fait identiques, que
chaque membre de cette classe peut être construit comme l’immeuble de points
fixes d’un groupe d’ordre 4 agissant sur un immeuble de type F4, et que pour cha-
cun de ces ensembles de Moufang, le groupe engendré par tous les sous-groupes
radiciels est un groupe simple.

1. Introduction

The notion of a building was introduced by J. Tits in order to give
a uniform geometric/combinatorial description of the groups of rational
points of an isotropic absolutely simple group. The buildings that arise
in this context are spherical. In [19], Tits classified irreducible spherical
buildings of rank at least 3 and this classification was extended to the
rank 2 case in [23] under the assumption that the building is Moufang
(which is automatic when the rank is at least 3).

Keywords: building, descent, polarity, Moufang set, Moufang quadrangle, Moufang
octagon.
2010 Mathematics Subject Classification: 20E42, 51E12, 51E24.
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The result of this classification is that most Moufang buildings (as defined
in Definition 2.5) are the spherical buildings associated with isotropic abso-
lutely simple algebraic groups. The exceptions are buildings determined by
algebraic data involving infinite dimensional structures, defective quadratic
or pseudo-quadratic forms, inseparable field extension and/or the square
root of a Frobenius endomorphism. Among these exceptions are the mixed
buildings of type B2, G2 and F4, the Moufang quadrangles of type F4 and
the Moufang octagons.
The classification results in [19] and [23] are proved by coordinatizing

with an appropriate algebraic structure. These methods do not reveal the
connection between the automorphism group of a Moufang building and an
associated split group which is the central concern in the theory of Galois
descent. In [11], this shortcoming is remedied with a theory of descent for
buildings. This theory provides, in particular, a combinatorial interpreta-
tion of the Tits indices which appear in [18].

In Definition 2.10, we define the notion of a descent group of a building ∆
and in Definition 3.9, we define the notion of a Galois subgroup of Aut(∆)
in the case that ∆ is Moufang. One of the fundamental results in the theory
of Galois descent in buildings in [11] says that the set of residues fixed by
a descent group Γ has, in a canonical way, the structure of a building,
which we call the fixed point building of Γ (see Theorem 2.18). This result
applies to arbitrary descent groups acting on arbitrary buildings. A second
fundamental result (proved in [15]) says that if ∆ is Moufang and Γ is a
Galois subgroup of Aut(∆) acting with finite orbits on ∆ and stabilizing
at least one proper residue of ∆, then Γ is a descent group.

A third fundamental result says that if the fixed point building of a
descent group of a Moufang building ∆ has rank 1, then the fixed point
building inherits from the Moufang condition on ∆ the structure of a Mou-
fang set. Moufang sets, which were first introduced in [21, 4.4], are a class
of 2-transitive permutation groups. The notion of a Moufang set is closely
related to the notion of a split BN -pair of rank 1. All known Moufang sets
which are proper (i.e. not sharply 2-transitive) arise as fixed point build-
ings of Moufang buildings. For a survey of recent results in the study of
Moufang sets, see [4].
Polarities (i.e. non-type-preserving automorphisms of order 2) of Mou-

fang buildings of type B2, G2 and F4 are a second source of descent groups.
In the case that the building is pseudo-split (as defined in [11, 28.16]), po-
larities give rise to the Suzuki and Ree groups. In [20], Tits characterized
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TITS ENDOMORPHISMS AND BUILDINGS OF TYPE F4 2351

Moufang octagons as the fixed point building of an arbitrary polarity of a
building of type F4.
The Moufang quadrangles of type F4 (a class of non-pseudo-split Mou-

fang buildings of type B2) were discovered in the course of classifying Mou-
fang buildings of rank 2 in [23]. Subsequently, it was shown (in [12]) that
these quadrangles can be constructed as the fixed point building of a type-
preserving Galois involution acting on a building of type F4. (It was due
to this result that the designation “of type F4” was chosen in [23].)
Among all non-pseudo-split Moufang buildings of type B2, G2 or F4, the

Moufang quadrangles of type F4 are the only ones that can have a polarity.
If a Moufang quadrangle Ξ of type F4 has a polarity ρ, then the centralizer
of ρ in Aut(Ξ) induces a Moufang set on the set Ξ〈ρ〉 of chambers fixed
by ρ. The first examples of such Moufang sets were constructed in [13]. It
is also possible for a Moufang octagon Ω to have a type-preserving Galois
involution κ such that the centralizer of κ in Aut(Ω) induces a Moufang set
on the set Ω〈κ〉 of panels fixed by κ. In [13], it was conjectured that these
two classes of Moufang sets are the same. Our main goal here is to prove
this conjecture.
In the course of verifying this conjecture, we show that each of these

Moufang sets is, in fact, the fixed point building of an elementary abelian
subgroup Γ of order 4 of the automorphism group of a building ∆ of type
F4. The group Γ is not type-preserving. For this reason, we say (in Defi-
nition 4.5) that these Moufang sets are of outer F4-type. The fixed point
building of each of the two polarities in Γ is a Moufang octagon (but the
two octagons are not, in general, isomorphic to each other) and the fixed
point building of the third involution in Γ is a Moufang quadrangle of type
F4. This lattice of fixed point buildings is all the more interesting in light of
the fact that there is no obvious connection between an arbitrary Moufang
quadrangle of type F4 and an arbitrary Moufang octagon except that they
both “descend from” a building of type F4 in characteristic 2.

The root groups of a Moufang set of outer F4-type are nilpotent of class 3
as are the root groups in the Ree groups of type G2. In every other known
proper Moufang set, the root groups are either abelian or nilpotent of
class 2.

In Sections 15–19, we show that the group generated by all the root
groups of a Moufang set of outer F4-type is simple and describe a number
of other properties of these Moufang sets.
The basic invariant of a Moufang quadrangle Ξ of type F4 is a pair of

quadratic forms q and q̂ of type F4 (as defined in Definition 5.3 below), one
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2352 Tom DE MEDTS, Yoav SEGEV & Richard M. WEISS

defined over a field K of characteristic 2 and the other over a field F such
that F 2 ⊂ K ⊂ F . The quadratic forms q and q̂ are anisotropic but have a
defect of dimension dimK2 F , respectively, dimF K. (We do not make any
assumptions about these dimensions; in particular, either one or both can
be infinite.)
Let V denote the vector space over K on which q is defined. We show

that if the Moufang quadrangle Ξ has a polarity ρ, then the quadratic forms
q and q̂ are similar to each other and there is a Tits endomorphism θ of
K (i.e. an endomorphism whose square is the Frobenius endomorphism)
with image F and a non-associative algebra structure on V with respect to
which the quadratic form q satisfies the identity

(1.1) q(uv) = q(u)q(v)θ

for all u, v ∈ V (see Propositions 6.23 and 7.9). Thus q is multiplicative
“with a twist” (cf. [7], for instance).
We call the non-associative algebras that arise in this way polarity al-

gebras. In Section 7, we describe polarity algebras in terms of a system of
axioms and deduce from these axioms equation (1.1) along with a num-
ber of other intriguing identities. In Theorem 19.1, we use some of these
identities to show that q is, up to similarity, an invariant not only of the
quadrangle Ξ, but also of the Moufang set Ξ〈ρ〉. See also [17].
Tits endomorphisms and their extensions play a central role in the study

of polarities. The first thorough study of this connection is in [22]; in fact,
it was the influence of this paper which led to the common attribution of
these endomorphisms to Tits. See, in particular, Section 8.

Convention 1.2. — If x and y are two elements of a group, we set
xy = y−1xy and

[x, y] = x−1y−1xy = (y−1)xy = x−1xy

(as in [23]). As a consequence of these conventions, the following two iden-
tities

(1.3) [xy, z] = [x, z]y · [y, z] and [x, yz] = [x, z] · [x, y]z

hold.

Acknowledgment. Much of this work was carried out while the authors
were guests of the California Institute of Technology. The third author was
partially supported by DFG-Grant MU 1281/5-1 and NSA-Grant H982301-
15-1-0009. The authors would like to thank the referee for the extraordinary
care he or she took with the manuscript.
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2. Fixed Point Buildings and Moufang Sets

Before we can give precise formulations of our main results in Section 4,
we need to introduce some basic notions.

Definition 2.1. — Let E be a field of positive characteristic p. We
will denote the Frobenius endomorphism x 7→ xp of E by FrobE . A Tits
endomorphism of E is an endomorphism of E whose square is the Frobenius
endomorphism. An octagonal set is a pair (E, θ), where E is a field of
characteristic 2 and θ is a Tits endomorphism of E.

Definition 2.2. — Let ∆ be a building. An involution of ∆ is an au-
tomorphism of order 2. A polarity of ∆ is an involution which is not type-
preserving. (We will only use this term when ∆ is of type B2, F4 or G2.)

Notation 2.3. — Let (E, θ) be an octagonal set. We denote by O(E, θ)
the Moufang octagon defined in [23, 16.9] and we denote by F4(E, θ) the
building of type F4 called F4(E,Eθ) in [26, 30.15].

Definition 2.4. — A Moufang set is a pair (X, {Ux}x∈X), where X is
a set of cardinality at least 3, Ux is a subgroup of Sym(X) fixing x and
acting sharply transitively on X\{x} for all x ∈ X and g−1Uxg = U(x)g for
all x ∈ X and all g ∈ G† := 〈Ux | x ∈ X〉. The subgroups Ux are called the
root groups of the Moufang set. A Moufang set is proper if the group G†
does not act sharply 2-transitively on X.

Definition 2.5. — As in [24, 11.2], we call a building Moufang if it is
spherical, irreducible and of rank at least 2 and for each root α, the root
group Uα (as defined in [24, 11.1]) acts transitively on the set of apartments
containing α. (There are more general notions of a Moufang building, but
they are not relevant in this paper.)

Proposition 2.6. — Let κ be an involution acting on a spherical build-
ing ∆. Then there exists an apartment of ∆ stabilized by κ.

Proof. — This holds by [11, 25.15]. �

Definition 2.7. — Let ∆ be a building and let Γ be a subgroup of
Aut(∆). A Γ-residue is a residue of ∆ stabilized by Γ. A Γ-chamber is a Γ-
residue which is minimal with respect to inclusion. A Γ-panel is a Γ-residue
P such that for some Γ-chamber C, P is minimal in the set of all Γ-residues
containing C.

Definition 2.8. — Let ∆ and Γ be as in Definition 2.7. A residue of ∆
is proper if it is different from ∆ itself. (In particular, chambers are proper

TOME 67 (2017), FASCICULE 6
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residues.) The group Γ is anisotropic if Γ stabilizes no proper residues of
∆, and Γ is isotropic if this is not the case. Thus Γ is isotropic if and only if
there exist Γ-panels. An automorphism ξ of ∆ is isotropic (or anisotropic)
if 〈ξ〉 is isotropic (or anisotropic).

Notation 2.9. — Let ∆ be a building and let Γ be an isotropic subgroup
of Aut(∆). We denote by ∆Γ the graph with vertex set the set of all Γ-
chambers, where two Γ-chambers are joined by an edge of ∆Γ if and only
if there is a Γ-panel containing them both.

Definition 2.10. — Let ∆ be a building. A descent group of ∆ is an
isotropic subgroup Γ of Aut(∆) such that each Γ-panel contains at least
three Γ-chambers.

Proposition 2.11. — Suppose that a building ∆ is Moufang as defined
in Definition 2.5. Let R be a residue of ∆, let Σ be an apartment containing
chambers of R and let UR denote the subgroup generated by the root groups
Uα for all roots α of Σ containing R ∩ Σ. Then UR is independent of the
choice of Σ.

Proof. — This holds by [11, 24.17] �

Definition 2.12. — Let R and ∆ be as in Proposition 2.11. The group
UR is called the unipotent radical of R.

Proposition 2.13. — Let R, ∆ and UR be as in Definition 2.12. Then
UR acts sharply transitively on the residues of ∆ opposite R

Proof. — This holds by [11, 24.21]. �

Definition 2.14. — Let Π be a Coxeter diagram and let (W,S) be
the corresponding Coxeter system. Thus S is both a distinguished set of
generators of the Coxeter group W and the vertex set of Π. Let J be
a subset of S such that the subdiagram ΠJ spanned by J is spherical
and let wJ denote the longest element of the Coxeter system (WJ , J),
where WJ denotes the subgroup of W generated by J . By [24, 5.11], the
map s 7→ wJswJ is an automorphism of Π. We denote this automorphism
by opJ . This map is called the opposite map of the diagram ΠJ (and
ought, in fact, to be denoted by opΠJ ). This map stabilizes every connected
component of ΠJ and acts non-trivially on a given connected component if
and only if it is isomorphic to the Coxeter diagram An for some n > 2, to
Dn for some odd n > 5, to E6 or to I2(n) for some odd n > 5. In particular,
its order is at most 2.

ANNALES DE L’INSTITUT FOURIER
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Definition 2.15. — A Tits index is a triple (Π,Θ, A) where Π is a
Coxeter diagram, Θ is a subgroup of Aut(Π) and A is a Θ-invariant subset
of the vertex set S of Π such that for each s ∈ S\A, the subdiagram of
Π spanned by A ∪Θ(s) is spherical and A is invariant under the opposite
map opA∪Θ(s) defined in Definition 2.14. Here Θ(s) denotes the Θ-orbit
containing s.

Definition 2.16. — Let T = (Π,Θ, A) be a Tits index. For each s ∈
S\A, let s̃ = wAwA∪Θ(s), where wJ for J = A and J = A ∪ Θ(s) is as in
Definition 2.14. Thus there is one element s̃ for each Θ-orbit in S\A. Let
S̃ be the set of all these elements s̃. By [11, 20.32], (W̃ , S̃) is a Coxeter
system. Let Π̃ be the corresponding Coxeter diagram. We call Π the ab-
solute Coxeter diagram of T and Π̃ the relative Coxeter diagram of T . An
algorithm for calculating the relative Coxeter diagram of a Tits index is
described in [23, 42.3.5(c)].

Example 2.17. — Let T = (Π,Θ, A), where Π is the Coxeter diagram
F4. If Θ = Aut(Π) and A = ∅, then T is a Tits index with relative Coxeter
diagram is I2(8). If Θ is trivial and A = {2, 3} with respect to the standard
numbering of the vertex set of Π, then T is a Tits index with relative
Coxeter diagram B2.

Theorem 2.18. — Let Γ be a descent group of a building ∆. Let Π
be the Coxeter diagram of ∆, let S denote the vertex set of Π and let Θ
denote the subgroup of Aut(Π) induced by Γ. Then the following hold:

(1) The graph ∆Γ defined in Notation 2.9 is a building with respect to
a canonical coloring of its edges.

(2) All Γ-chambers are residues of ∆ of the same type A ⊂ S and the
rank of ∆Γ is the number of Θ-orbits in S disjoint from A.

(3) If A is spherical, then the triple T := (Π,Θ, A) is a Tits index and
∆Γ is a building of type Π̃, where Π̃ is the relative Coxeter diagram
of T .

(4) If ∆ is Moufang and the rank of ∆Γ is at least 2, then ∆Γ is also
Moufang.

(5) Suppose that ∆ is Moufang and that the rank of ∆Γ is 1 and let
X be the set of all Γ-chambers, For each C ∈ X, let ŨC denote the
subgroup of Sym(X) induced by the centralizer CUC (Γ) of Γ in the
unipotent radical UC . Then

(X, {ŨC | C ∈ X})

is a Moufang set.

TOME 67 (2017), FASCICULE 6
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Proof. — Assertions (1) and (2) hold by [11, 22.20(v) and (viii)], asser-
tion (3) holds by [11, 22.20(iv) and (viii)] and the remaining two assertions
hold by [11, 24.31]. �

Definition 2.19. — The building ∆Γ in 2.18(1) is called the fixed point
building of Γ. The rank of ∆Γ is called the relative rank of Γ. If the rel-
ative rank of Γ is 1, we interpret ∆Γ to mean the Moufang set described
in 2.18(5).

3. Polarities and Galois subgroups

In this section we describe two ways in which descent groups arise.

Proposition 3.1. — Let ∆ be a Moufang building of type Π, where Π
is the Coxeter diagram B2, G2 or F4. Suppose that σ is a polarity of ∆
as defined in Definition 2.2 and let Γ = 〈σ〉. Then Γ is a descent group of
∆ and Γ-chambers are chambers of ∆. If Π = B2 or G2, the fixed point
building ∆Γ is a Moufang set and if Π = F4, the fixed point building ∆Γ

is a Moufang octagon.

Proof. — By Proposition 2.6, we can choose an apartment Σ stabilized
by σ. By Definition 2.14, the automorphism of Σ sending each chamber
to its unique opposite is color-preserving. By [11, 25.17], therefore, there
exists a Γ-residue R containing chambers of Σ. We can assume that R is
minimal with respect to containment.
Since Γ is not type-preserving, the type J of R is Θ-invariant, where Θ is

the automorphism group of Π. Suppose that J 6= ∅. Since J is Θ-invariant,
we must have Π = F4 and J is either {1, 4} or {2, 3} (with respect to the
standard numbering of the vertex set of the Coxeter diagram F4). Thus
R ∩ Σ is a thin building of type A1 × A1 or B2. By Definition 2.14, the
map which sends each chamber of R ∩ Σ to its unique opposite is again
color-preserving. Another application of [11, 25.17] thus implies that σ
stabilizes a proper residue of R. This contradicts the choice of R. With this
contradiction, we conclude that there are chambers of Σ fixed by σ.
Let c be a chamber of Σ fixed by σ and let d be the unique chamber of

Σ opposite c. Since σ stabilizes Σ and c, it fixes d as well. Suppose that
Π = B2 or G2. Among the roots of Σ containing c, there are two such that
c is at maximal distance from the root that is opposite in Σ. We call these
two roots α and β. They are interchanged by σ and by [23, 5.5 and 5.6],
we have Uα ∩Uβ = 1 and [Uα, Uβ ] = 1. Suppose, instead, that Π = F4. Let

ANNALES DE L’INSTITUT FOURIER
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c1 denote the unique chamber of Σ that is 1-adjacent to c, let α denote the
unique root of Σ containing c but not c1 and let β = ασ. By [24, 11.28(i)
and (iii)] with {i, j} = {1, 4}, we have Uα ∩ Uβ = 1 and [Uα, Uβ ] = 1 also
in this case. We now return to the assumption that Π is in any one of the
three cases B2, G2 or F4 and let u be a non-trivial element of Uα. Both Uα
and Uβ are contained in the unipotent radical Uc and hence b := uuσ ∈ Uc.
Since Uα ∩ Uβ = 1, we have b 6= 1 and since [Uα, Uβ ] = 1, we have bσ = b.
Thus by Proposition 2.13, d 6= db. We conclude that c, d and db are distinct
chambers fixed by Γ.

Suppose that Π is B2 or G2. Since the type of a Γ-residue is Θ-invariant,
∆ itself is the unique Γ-panel. Since there at least three Γ-chambers, Γ is
a descent group. By Theorem 2.18, the Tits index of Γ is (Π,Θ, ∅) and ∆Γ

(interpreted as in Definition 2.19) is a Moufang set.
Suppose now that Π = F4. In this case, we let Rij be the unique {i, j}-

residue containing the chamber c and we let Uij denote the group induced
on Rij by the unipotent radical Uc for {i, j} = {1, 4} and {2, 3}. Then R14
and R23 are the two Γ-panels containing c. Choose ij = 14 or 23 and let dij
be the unique chamber of Rij∩Σ opposite c. Just as above, we can choose a
non-trivial element bij in Uij centralized by σ. By [11, 24.8(iii) and 24.33],
Uij acts sharply transitively on the set of chambers of Rij opposite c. Thus
c, dij and d

bij
ij are distinct Γ-chambers contained in Rij . We conclude that

both Γ-panels R14 and R23 contain at least three Γ-chambers. By [11,
22.37], therefore, Γ is a descent group of ∆. By 2.18(3), therefore, the fixed
point building ∆Γ is of type Π̃, where Π̃ is the relative Coxeter diagram of
the Tits index (Π,Θ, ∅). By Examples 2.17, the relative Coxeter diagram
of this Tits index is I2(8). By 2.18(4), we conclude that ∆Γ is a Moufang
octagon. �

Notation 3.2. — Suppose that ∆ is Moufang. Let G◦ denote the group
of all type-preserving automorphisms of ∆, let G = Aut(∆) if ∆ is simply
laced and let G = G◦ if ∆ is not simply laced. (Thus if ∆ and ρ are as
in Proposition 3.1, then ρ 6∈ G.) Let G† denote the subgroup of Aut(∆)
generated by all the root groups of ∆. Root groups are type-preserving, so
G† ⊂ G◦.

Notation 3.3. — Let Π be a Coxeter diagram, let ∆ be a building of
type Π (as defined in [24, 7.1]) and suppose that ∆ is Moufang as defined
in Definition 2.5. Let c be a chamber of ∆ and let Σ be an apartment
containing c. Let BΠ be the set of ordered pairs of (i, j) such that {i, j}
is an edge of Π. For each (i, j) ∈ BΠ, let Rij be the unique {i, j}-residue
of ∆ containing c and let Ωij be the root group sequence of Rij based at

TOME 67 (2017), FASCICULE 6
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(Σ∩Rij , c) as defined in [11, 3.1–3.3]. The first term of Rij acts non-trivially
on the i-panel of Rij containing c.

Remark 3.4. — Let (i, j) ∈ BΠ. Interchanging i and j if necessary, there
exists an isomorphism from Ωij to one of the root group sequences described
in [23, 16.1–16.9] (by the classification of Moufang polygons). We say that
an element (i, j) of BΠ is standard if there is such an isomorphism.

Notation 3.5. — Let F be a field of characteristic p > 0 and let E/F be
an extension such that Ep ⊂ F . By identifying E with Ep via FrobE , we
can regard F as an extension of E. We can recover the extension E/F from
the extension F/E by the same trick. We describe this situation by saying
simply that we have a pair of extensions {E/F, F/E}. Let Aut(E,F ) be
the set of all elements of Aut(E) stabilizing F . This group is canonically
isomorphic to the group Aut(F,E) of all elements of Aut(F ) stabilizing E.

Notation 3.6. — Suppose that ∆ is Moufang. By [11, 28.8], the building
∆ has either a field of definition F or a pair {E/F, F/E} of defining ex-
tensions as in Notation 3.5. In the first case, we set A = Aut(F ) and in the
second case, we let A denote the group Aut(E,F ) defined in Notation 3.5.

Remark 3.7. — If the building ∆ has a pair {E/F, F/E} of defining ex-
tensions rather than a field of definition F , then ∆ ∼= BD2 (Λ) for some indif-
ferent set Λ, ∆ ∼= BF2 (Λ) for some quadratic space Λ of type F4, ∆ ∼= G2(Λ)
for some inseparable hexagonal system Λ or ∆ ∼= F4(Λ) for some insepa-
rable composition algebra Λ. (See [26, 30.15 and 30.23] for the definition
of these terms.) By [23, 35.9, 35.12 and 35.13], the pair {E/F, F/E} is an
invariant of ∆ in all these cases even though neither E nor F is an invari-
ant. (By [23, 35.6-35.8, 35.10, 35.11 and 35.14], the field of definition F is
an invariant of ∆ in every other case. Thus the group A is an invariant of
∆ in every case.)

Notation 3.8. — Suppose that ∆ is Moufang, letG be as in Notation 3.2,
let Σ, c, BΠ and Ωij be as in Notation 3.3 and let A be as in Notation 3.6.
Let (s, t) be a standard element of BΠ as defined in Remark 3.4 and let
ϕ be an isomorphism from Ωst to Θ, where Θ is one of the root group
sequences described in [23, 16.1–16.9]. For each g ∈ G acting trivially on
Σ, let gst denote the automorphism of Ωst induced by g and let g∗st denote
the automorphism ϕ−1gstϕ of Θ. By [11, (29.22) and 29.23–29.25], there
exists a unique homomorphism ψ from G to A such that the following hold:

(1) G† is contained in the kernel of ψ.
(2) For each g ∈ G acting trivially on Σ, ψ(g) is equal to the element

called λΩ(h) in [11, 29.5], where Ω = Θ and h = g∗st.
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(3) [15, 4.7(iii)] holds for all non-type-preserving elements g ∈ G.
(We are only interested here in applying ψ to type-preserving elements, so
we do not take the trouble to state (3) more precisely.) A homomorphism
ψ : G → A satisfying conditions (1)–(3) for some choice of (s, t) and ϕ is
called a Galois map of ∆. If ψ and ψ1 are two Galois maps of ∆, then there
is an inner automorphism ι of A such that ψ1 = ψ · ι (by [11, 29.25]). Thus,
in particular, all Galois maps of ∆ have the same kernel.

Definition 3.9. — A Galois subgroup of Aut(∆) is a subgroup Γ of
the group G defined in Notation 3.2 whose intersection with the kernel
of a Galois map of ∆ is trivial. Since two Galois maps differ by an inner
automorphism of the group A, this notion is independent of the choice of
the Galois map.

Theorem 3.10. — Suppose that ∆ is Moufang and that Γ is an isotropic
Galois subgroup of Aut(∆) that acts on the set of chambers of ∆ with finite
orbits. Then Γ is a descent group of ∆.

Proof. — This is [15, 12.2(ii)]. �

Notation 3.11. — Let ∆ be Moufang and let ψ be a Galois map of ∆.
A Galois involution g of ∆ is an element of order 2 in Aut(∆) such that
〈g〉 is a Galois subgroup. A χ-involution of ∆ for some χ ∈ A is a Galois
involution g such that χ = ψ(g).

Proposition 3.12. — Let ∆ be a building of type F4 and suppose
that Γ is a type-preserving Galois subgroup of Aut(∆) acting on the set
of chambers of ∆ with finite orbits such that Γ-chambers are residues of
type {2, 3} with respect to the standard numbering of the vertex set of
the Coxeter diagram F4. Then Γ is a descent group and ∆Γ is a Moufang
quadrangle of type F4.

Proof. — By Theorem 3.10, Γ is a descent group. Let T denote the Tits
index (Π,Θ, A), where Π is the Coxeter diagram F4, Θ is the trivial sub-
group of Aut(Π) and A = {2, 3}. By Example 2.17, the relative Coxeter
diagram of this index is B2. By 2.18(3), the fixed point building ∆Γ is
of type B2. By 2.18(4), we conclude that ∆Γ is a Moufang quadrangle.
By 11.11(2) below, ∆Γ is, in fact, a Moufang quadrangle of type F4. �

Proposition 3.13. — Let Ω = O(E, θ) for some octagonal set (E, θ)
and let Γ be a Galois subgroup of Aut(Ω) acting on the set of chambers of
∆ with finite orbits and fixing panels of one type but none of the other.
Then Γ is a descent group and ΩΓ is a Moufang set.

Proof. — This holds by 2.18(5) and Theorem 3.10. �
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4. Main Results

We can now state our main results. The proofs of Theorems 4.1 and 4.2
are in Section 14.

Theorem 4.1. — Let Ξ be a Moufang quadrangle of type F4 with a
polarity ρ. Then there exists an octagonal set (E, θ) and an automorphism
χ of the field E of order 2 that commutes with the Tits endomorphism θ

such that the following hold:
(1) The building

∆ := F4(E, θ)
possesses a type-preserving χ-involution ξ and a polarity σ such
that

Γ := 〈ξ, σ〉 ⊂ Aut(∆)
is a descent group of order 4.

(2) There exists an isomorphism from Ξ to the fixed point building ∆〈ξ〉
which carries the polarity ρ to the restriction of σ to ∆〈ξ〉.

(3) The fixed point buildings ∆〈σ〉 and ∆〈σξ〉 are Moufang octagons,
one isomorphic to O(E, θ) and the other to O(E, θχ).

(4) The Moufang sets ∆Γ, (∆〈ξ〉)〈σ〉, (∆〈σ〉)〈ξ〉 and (∆〈σξ〉)〈ξ〉 are canon-
ically isomorphic.

(5) The restriction of ξ to each of the two octagons in (3) is a χ-
involution which fixes panels of one type and none of the other.

Theorem 4.2. — Let (E, θ) be an octagonal set, let χ be an automor-
phism of E of order 2, let Ω = O(E, θ), let ∆ = F4(E, θ) and suppose that
there exists a χ-involution κ of Ω which fixes panels of one type but not of
the other type. Then there is a type-preserving χ-involution ξ of ∆ and a
polarity σ of ∆ such that the following hold:

(1) Γ = 〈ξ, σ〉 ⊂ Aut(∆) is a descent group of ∆ of order 4.
(2) There is an isomorphism from Ω to the fixed point building ∆〈σ〉

which carries κ to the restriction of ξ to ∆〈σ〉.
(3) 〈ξ〉-chambers are residues of type {2, 3} with respect to the standard

numbering of the vertex set of the Coxeter diagram F4, the fixed
point building Ξ := ∆〈ξ〉 is a Moufang quadrangle of type F4 and
the polarity σ of ∆ induces a polarity ρ on Ξ.

(4) The Moufang sets ∆Γ, (∆〈ξ〉)〈σ〉, (∆〈σ〉)〈ξ〉 and (∆〈σξ〉)〈ξ〉 are canon-
ically isomorphic.

(5) The automorphism χ commutes with the Tits endomorphism θ and
the fixed point building ∆〈ξσ〉 is isomorphic to O(E, θχ).
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Corollary 4.3. — The class of Moufang sets of the form Ξ〈ρ〉, where
Ξ and ρ are as in Theorem 4.1, coincides with the class of Moufang sets of
the form Ω〈κ〉, where Ω and κ are as in Theorem 4.2.

Proof. — Let Ξ, ρ, ∆ and Γ be as in Theorem 4.1. By 4.1(4), Ξ〈ρ〉 ∼= ∆Γ

and hence by 4.1(5), Ξ〈ρ〉 is isomorphic to a Moufang set of the form Ω〈κ〉,
where Ω and κ are as in Theorem 4.2. Suppose, conversely, that Ω, κ, ∆
and Γ are as in 4.2. By 4.2(4), Ω〈κ〉 ∼= ∆Γ. By 4.2(3), it follows that Ω〈κ〉
is isomorphic to a Moufang set of the form Ξ〈ρ〉, where Ξ and ρ are as in
Theorem 4.1. �

Remark 4.4. — In both Theorems 4.1 and 4.2, we are using the notion
of a χ-involution (defined in 3.11) with respect to Galois maps ψ∆, ψΩ and
ψΩξ as in Propositions 13.4 and 13.8(4).

Definition 4.5. — We call a Moufang set of the form ∆Γ, where ∆
and Γ are as in Theorem 4.1 (or 4.2) a Moufang set of outer F4-type (to
distinguish them from other Moufang sets which arise as the fixed point
buildings of type-preserving descent groups of a building of type F4; see [5]).

Remark 4.6. — With the conventions described in [11, 34.2],
• • • •............................................................. ..................................................................................................................

............................................................
...........................................................
..... .......

...........................................................

.....

is the Tits index of 〈ξ〉,
•
•

•
•

.............................................................................
.......
.......
.......
.......
.......
.......
.......
........ .............................................................................

.......
.......
.......
.......
.......
.......
.......
........

.............................................................

.............................................................

.....................................................................

......................................................................................

is the Tits index of 〈σ〉 and 〈σξ〉 and
•
•

•
•

.............................................................................
.......
.......
.......
.......
.......
.......
.......
........
.............................................................

.............................................................

.....................................................................

......................................................................................

is the Tits index of Γ, where Γ = 〈ξ, σ〉 is as in Theorem 4.1 (or 4.2).

The following is proved in Section 18.

Theorem 4.7. — The group generated by all the root groups of a Mou-
fang set of outer F4-type is simple.

5. Moufang Quadrangles of Type F4

The Moufang quadrangles of type F4 were first described in [23, Chap-
ter 14 and 16.7]; see also [2], [3] and [25]. In [11, Chapter 16], it is shown
that these quadrangles arise in the study of pseudo-reductive quotients of
parahoric subgroups of groups of absolute type E6, E7 and E8.
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Definition 5.1. — Let K be a field of characteristic 2 and let F be a
subfield such that K2 ⊂ F . We set t ∗ s = FrobK(t)s = t2s for all t ∈ K
and all s ∈ F and qF/K(s) := s for all s ∈ F . The map ∗ makes F into a
vector space over K on which the map qF/K is a quadratic form. We write
[F ]K to refer to F considered as a vector space over K with respect to ∗.

Notation 5.2. — An F4-datum is a 4-tuple S = (E/K,F, α, β), where
E/K is a separable quadratic extension with char(K) = 2, F is a subfield of
K containing K2, α is a non-zero element of F , and β is a non-zero element
of K, such that the quadratic form on VS := E ⊕ E ⊕ [F ]K given by

(a, b, s) 7→ β−1(N(a) + αN(b)) + qF/K(s) = β−1(N(a) + αN(b)) + s

is anisotropic, where N = NE/K is the norm of the extension E/K and
qF/K is as in Definition 5.1. We denote this quadratic form by qS .

Definition 5.3. — A quadratic form q over a field K is of type F4 if q
is similar to qS for some F4-datum (E/K,F, α, β). If this case, we will say
that S is a standard decomposition of q and that E is a splitting field of q.
We say that a quadratic space (K,V, q) is of type F4 if the quadratic form
q is of type F4.

Definition 5.4. — Let S = (E/K,F, α, β) be an F4-datum, let D de-
note the composite field FE2 and let [K]F denote K regarded as a vector
space over its subfield F in the standard way. By [23, 14.8], the quadratic
form q̂S on V̂S := D ⊕D ⊕ [K]F over F given by

(5.5) (x, y, t) 7→ α(N(x) + β2N(y)) + t2

is a quadratic form of type F4 with standard decomposition

(D/F,K2, β2, α−1) .

Notation 5.6. — Let S = (E/K,F, α, β) be an F4-datum, let q := qS
and V = VS be as in Notation 5.2 and let V̂ = V̂S and q̂ := q̂S be as in
Definition 5.4. Let f and f̂ denote the bilinear forms ∂q and ∂q̂ associated
with q and q̂ and let x 7→ x̄ be the non-trivial element of Gal(E/K).

We now introduce the Moufang quadrangle that corresponds to this data.

Notation 5.7. — Let S, V̂ , V , etc. be as in Notation 5.6, let

U+ := U1U2U3U4

be the group defined in terms of the isomorphisms xi : V → Ui for i = 2
and 4 and xi : V̂ → Ui for i = 1 and 3 the following commutator relations
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taken from [23, 16.7]):

[x1(x, y, t), x3(x′, y′, t′)] = x2
(
0, 0, α

(
xx̄′ + x′x̄+ β2(yȳ′ + y′ȳ)

))
,

[x2(u, v, s), x4(u′, v′, s′)] = x3
(
0, 0, β−1(uū′ + u′ū+ α(vv̄′ + v′v̄)

))
,

[x1(x, y, t), x4(u, v, s)] = x2
(
tu+ α(x̄v + βyv̄), tv + xu+ βyū,

t2s+ sα(xx̄+ β2yȳ)

+ α
(
u2xȳ + ū2x̄y + α(v̄2xy + v2x̄ȳ)

))
· x3
(
sx+ ū2y + αv2ȳ, sy + β−2(u2x+ αv2x̄),

st+ tβ−1(uū+ αvv̄)

+ α
(
β−1(xuv̄ + x̄ūv) + yūv̄ + ȳuv

))
for all (u, v, s), (u′, v′, s′) ∈ V and all (x, y, t), (x′, y′, t′) ∈ V̂ and

[U1, U2] = [U2, U3] = [U3, U4] = 1.

The group U+, its subgroups U1, . . . , U4 and the isomorphisms x1, . . . , x4
depend only on the F4-datum S. By [23, 16.7 and 32.11],

(U+, U1, U2, U3, U4)

is a root group sequence. Let
Q(S)

denote the Moufang quadrangle, Σ the apartment of Q(S) and c the cham-
ber of Σ obtained by applying [23, 8.3] to this root group sequence. There is
a canonical identification of U1, . . . , U4 with the root groups of Ξ := Q(S)
associated with the four roots of Σ containing c and we always identify U+
with the subgroup of Aut(Ξ) generated by these four root groups.

Definition 5.8. — A Moufang quadrangle of type F4 is a Moufang
quadrangle isomorphic to Q(S) (as defined in Notation 5.7) for some F4-
datum S.

Notation 5.9. — Let S = (E/K,F, α, β) and Ω := (U+, U1, . . . , U4)
be as in Notation 5.7. By [23, 28.45], there is an anti-isomorphism (as
defined in [23, 8.9]) from Ω to the root group sequence obtained by applying
Notation 5.7 to the F4-datum (D/F,K2, β2, α−1) in Definition 5.4.

Notation 5.10. — Let S and (K,V, q) be as in Notation 5.6 and let

Ω = (U+, U1, . . . , U4)

and Ξ = Q(S) be as in Notation 5.7. The quadrangle Ξ is calledQF (K,V, q)
in [23, 16.7] and BF2 (K,V, q) in [26, 30.15]. Suppose that S′ is any other
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F4-datum and let Ω′ = (U ′+, U ′1, . . . , U ′4) be the root group sequence ob-
tained by applying Notation 5.7 to S′. Then by [23, 35.12], there is a type-
preserving isomorphism from Ω to Ω′ if and only if the quadratic form qS′

is similar to q, where qS′ is the quadratic form obtained by applying Nota-
tion 5.2 to S′. In particular, Ξ ∼= Q(S′) for every standard decomposition
S′ of q (as defined in Definition 5.3).

Remark 5.11. — Let Ξ = Q(S) for some F4 datum S = (E/K,F, α, β).
By [11, 28.4] (see Notation 3.6), {K/F,F/K} is the pair of defining exten-
sions of Ξ. By [23, 35.12], it is an invariant of Ξ.

Remark 5.12. — Let s0 ∈ F ∗ and let S1 = (E/K,F, α, β/s0). Then S1
is an F4-datum, VS1 = V , V̂S1 = V̂ and the maps x1(x, y, t) 7→ x1(x, s0y, t),
x3(x, y, t) 7→ x3(x/s0, y, t/s0) and xi(u, v, s) 7→ xi(u/s0, v/s0, s/s0) for i =
2 and 4 extend to an isomorphism from Q(S) to Q(S1) (by [23, 7.5]). Thus
by reparametrizing U+, we can replace the element x4(0, 0, s0) by x4(0, 0, 1)
without changing the element x1(0, 0, 1).

Notation 5.13. — We define two maps, one from V × V̂ to V and the
other from V̂ × V to V̂ , both denoted either by · or juxtaposition, so that

(5.14) [x1(v̂), x4(v)] = x2(v · v̂)x3(v̂ · v)

in U+ for all (v̂, v) ∈ V̂ × V . (Note that we will also denote scalar multi-
plication by · or juxtaposition, but this should not cause any confusion.)

Remark 5.15. — Let (K,V, q) and f be as in Notation 5.6 and let d, e be
linearly independent elements of V such that f(d, e) = 1. Then q(d)x2+x+
q(e) = q(xd+e) 6= 0 for all x ∈ K since q is anisotropic, and the restriction
of q/q(d) to 〈e, d〉 is isometric to the norm of the quadratic extension L/K,
where L is the splitting field of the polynomial q(d)x2 + x + q(e) over K.
Note that L is also the splitting field of the polynomial x2 + x + q(d)q(e)
over K.

Theorem 5.16. — Let (K,V, q), V̂ and f be as in Notation 5.6 and let

(U+, U1, . . . , U4)

and x1, . . . , x4 be as in Notation 5.7. Let d, e be two elements of V and
let ξ be an element of V̂ such that f(d, e) = 1 and f(d, eξ) = 0. Let
α0 = f(dξ, eξ), let β0 = q(d)−1, let L be the splitting field of the polynomial
p(x) = q(d)x2 + x+ q(e) over K and let ω be a root of p(x) in L. Then the
following hold:

(1) S0 := (L/K,F, α0, β0) is a standard decomposition of q.
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(2) There exists an isometry π from (K,V, q) to (K,VS0 , qS0) send-
ing the elements d, e, dξ and eξ to (1, 0, 0), (ω, 0, 0), (0, 1, 0) and
(0, ω, 0), respectively, and (0, 0, s) to (0, 0, s) for all s ∈ F .

(3) There exists an isometry π̂ from (F, V̂ , q̂) to (F, V̂S0 , q̂S0) sending
the elements ξ, ξe · d−1, ξe · d−1 and ξd−1 to (1, 0, 0), (ω2, 0, 0),
(0, 1, 0) and (0, ω2, 0), respectively, and (0, 0, t) to (0, 0, t) for all
t ∈ K.

(4) Let (Ũ+, Ũ1, . . . , Ũ4) and x̃1, . . . , x̃4 be the root group sequence and
the isomorphisms obtained by applying Notation 5.7 to S0. Then
there is an isomorphism from U+ to Ũ+ extending the maps xi(v) 7→
x̃i(π(v)) for i = 1 and 3 and xi(v) 7→ x̃i(π̂(v)) for i = 2 and 4.

Proof. — This is proved in [3, 8.98-8.106]. See, in particular, the equa-
tions at the top of page 77 in [3]. �

Notation 5.17. — Let [s]K = (0, 0, s) ∈ V for each s ∈ F and [t]F =
(0, 0, t) ∈ V̂ for each t ∈ K. Thus t[s]K = [t2s]K and s[t]F = [st]F for all
s ∈ F and all t ∈ K.

Proposition 5.18. — The following identities hold for all t ∈ K, all
s ∈ F , all u, v, w ∈ V and all û, v̂, ŵ ∈ V̂ :

(F0) x 7→ xŵ and x̂ 7→ x̂w are linear maps from V to V and from V̂

to V̂ .
(F1) v[t]F = tv.
(F2) v̂[s]K = sv̂.
(F3) v · sŵ = vŵ · [s]F .
(F4) v̂ · tw = v̂w · [t2]K .
(F5) [t]F v = [tq(v)]F .
(F6) [s]K v̂ = [sq̂(v̂)]K .
(F7) vŵŵ = v · [q̂(ŵ)]F
(F8) v̂ww = v̂ · [q(w)2]K .
(F9) v · ŵv = q(v)vŵ.
(F10) v̂ · wv̂ = q̂(v̂)v̂w.
(F11) w(û+ v̂) = wû+ wv̂ + [f̂(ûw, v̂)]K .
(F12) ŵ(u+ v) = ŵu+ ŵv + [f(uŵ, v)]F .

Proof. — Comparing [23, 16.7] with (5.14), we can write the products
v̂ · v and v · v̂ in terms of the functions given in [23, 14.15–14.16]. The
identities (F0)–(F12) can then be verified with the help of the identities
in [23, 14.18]. �
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The identities (F0)–(F12) are the axioms of a radical quadrangular sys-
tem as defined in [3, Appendix A.3.2]. These axioms can be used to char-
acterize Moufang quadrangles of type F4 (defined in Definition 5.8 above);
see [3, §8.5] and [23, Chapter 28] for details.

Notation 5.19. — Using Notation 5.13, we can re-write the commutator
relations in Notation 5.7 as follows:

[x1(v̂), x3(û)] = x2([f̂(v̂, û)]K)
[x2(v), x4(u)] = x3([f(v, u)]F )
[x1(v̂), x4(v)] = x2(vv̂)x3(v̂v)

for all u, v ∈ V and all û, v̂ ∈ V̂ as well as [U1, U2] = [U2, U3] = [U3, U4] = 1.

6. The Polarity ρ

We continue with all the notation of the previous section.

Hypothesis 6.1. — We suppose now that the Moufang quadrangle Ξ =
Q(S) introduced in Notation 5.7 has a polarity ρ.

Remark 6.2. — By Proposition 2.6, the polarity ρ fixes an apartment.
Since ρ is a non-type-preserving involution and apartments are circuits of
length 8, ρ fixes two opposite chambers of this apartment. Since Aut(Ξ)
acts transitively on incident pairs of apartments and chambers (by [24,
11.12]), we can assume that ρ fixes the apartment Σ and the chamber c in
Notation 5.7. This means that

(6.3) ρUiρ = U5−i

for all i ∈ [1, 4].

Notation 6.4. — Let ϕ̂, ϕ̂1 : V̂ → V and ϕ, ϕ1 : V → V̂ be the unique
additive bijections such that

ρ(x1(v̂)) = x4(ϕ̂(v̂))
ρ(x2(v)) = x3(ϕ1(v))
ρ(x3(v̂)) = x2(ϕ̂1(v̂))
ρ(x4(v)) = x1(ϕ(v))

for all v ∈ V and all v̂ ∈ V̂ . By Remark 5.12, we can assume that ϕ([1]K) =
[1]F . Since ρ is of order 2, we have

ϕ̂ = ϕ−1 and ϕ̂1 = ϕ−1
1 .
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Lemma 6.5. — The following hold:
(1) ϕ = ϕ1.
(2) ϕ([q̂(ϕ(v))]K) = [q(v)]F for all v ∈ V .

Proof. — Let v ∈ V . By (5.14), (F1) and (F5), we have

[x1([1]F ), x4(v)] = x2(v)x3([q(v)]F ) .

Applying ρ, we obtain

[x1(ϕ(v)), x4([1]K)] = x2(ϕ−1
1 ([q(v)]F ))x3(ϕ1(v)) .

By (5.14), (F2) and (F6), on the other hand,

[x1(ϕ(v)), x4([1]K)] = x2([q̂(ϕ(v))]K)x3(ϕ(v)) .

Therefore ϕ(v) = ϕ1(v) and ϕ−1
1 ([q(v)]F ) = [q̂(ϕ(v))]K . �

Lemma 6.6. — ϕ−1([f(u, v)]F ) = [f̂(ϕ(u), ϕ(v))]K for all u, v ∈ V and

ϕ([f̂(û, v̂)]K) = [f(ϕ−1(û), ϕ−1(v̂))]F

for all û, v̂ ∈ V̂ . In particular, ϕ([F ]K) = [K]F and ϕ−1([K]F ) = [F ]K .

Proof. — This follows from 6.5(2). �

Proposition 6.7. — The following hold for all v ∈ V and all v̂ ∈ V̂ :
(1) ϕ(vv̂) = ϕ(v)ϕ−1(v̂).
(2) ϕ−1(v̂v) = ϕ−1(v̂)ϕ(v).

Proof. — Applying ρ to the identity (5.14), we obtain both claims
by 6.5(1). �

Notation 6.8. — By Lemma 6.6, there exists a unique additive bijection
θ from K to F such that ϕ−1([t]F ) = [tθ]K . Note that it means that

(6.9) f̂(ϕ(u), ϕ(v)) = f(u, v)θ

for all u, v ∈ V .

Proposition 6.10. — The following hold:
(1) The map θ defined in Notation 6.8 is a Tits endomorphism of K.
(2) ϕ(tv) = tθϕ(v) for all v ∈ V and all t ∈ K.
(3) q(v)θ = q̂(ϕ(v)) for all v ∈ V .
(4) u · ϕ(tv) = tθ · uϕ(v) for all u, v ∈ V and all t ∈ K.

Proof. — Choose t ∈ K and s ∈ F . By Notation 5.17 and (F2), we
have [t]F · [s]K = [st]F . Applying ϕ−1, we obtain [tθ]K · [sθ

−1 ]F = [(st)θ]K .
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By 5.17 and (F1), on the other hand, we have [tθ]K · [sθ
−1 ]F = [(sθ−1)2tθ]K .

Therefore

(6.11) (ts)θ = (sθ
−1

)2tθ.

Setting t = 1 in (6.11), we obtain

(6.12) sθ = (sθ
−1

)2.

Substituting this back into (6.11), we then have

(6.13) (ts)θ = sθtθ.

Let x = sθ
−1 . Substituting xθ for s in (6.12), we conclude that

(6.14) (xθ)θ = x2.

Thus

(6.15) (x2)θ = (xθ
2
)θ = (xθ)θ

2
= (xθ)2

for all x ∈ K. Choose u ∈ K. Then u2 and t2 are in F , so

(t2u2)θ = (t2)θ(u2)θ

by (6.13). By (6.15), it follows that θ is multiplicative. By (6.14), therefore,
θ is a Tits endomorphism. Thus (1) holds.

Now let v ∈ V and t ∈ K. Then

ϕ(tv) = ϕ(v[t]F ) by (F1)

= ϕ(v)ϕ−1([t]F ) by 6.7(1)

= ϕ(v)[tθ]K = tθϕ(v) by (F2),

so (2) holds, and

[q(v)θ]K = ϕ−1[q(v)]F
= [q̂(ϕ(v))]K by 6.5(2),

so (3) holds. Now choose another u ∈ V . Then

uϕ(tv) = u · tθϕ(v) by (2)

= uϕ(v) · [tθ]F by (F3)

= tθ · uϕ(v) by (F1).

Thus (4) holds. �
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Notation 6.16. — Let x1, . . . , x4 be as in Notation 5.7. We replace xi
by xi ·ϕ for i = 1 and 3. After these replacements, we have xi : V → Ui for
all i ∈ [1, 4],

[x1(u), x3(v)] = x2([f̂(ϕ(u), ϕ(v))]K)

and

[x2(u), x4(v)] = x3(ϕ−1([f(u, v)]F ))

= x3([f̂(ϕ(u), ϕ(v)]K)

for all u, v ∈ V by Lemma 6.6,

[x1(u), x4(v)] = x2(vϕ(u))x3
(
ϕ−1(ϕ(u)v)

)
= x2(vϕ(u))x3(uϕ(v))

for all u, v ∈ V by Proposition 6.7 and

(6.17) xi(u)ρ = x5−i(u)

for all u ∈ V and for all i ∈ [1, 4]. We define a product on V by

(6.18) uv = uϕ(v)

and a symmetric map g : V × V → [F ]K ⊂ V by

(6.19) g(u, v) = [f̂(ϕ(u), ϕ(v))]K

for all u, v ∈ V . With this notation, we have

[x1(u), x3(v)] = x2(g(u, v))
[x2(u), x4(v)] = x3(g(u, v))(6.20)
[x1(u), x4(v)] = x2(vu)x3(uv)

for all u, v ∈ V as well as [U1, U2] = [U2, U3] = [U3, U4] = 1.

Notation 6.21. — From now on, we set [t] = [tθ]K for all t ∈ K. Thus

[K] := {[t] | t ∈ K} = [F ]K

is a vector space over K with scalar multiplication given by a[t] = [aθt] for
all a, t ∈ K, and

(6.22) g(u, v) = [f(u, v)θ]K = [f(u, v)]

for all u, v ∈ V by (6.9) and (6.19).
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Proposition 6.23. — Let the multiplication on V = E ⊕E ⊕ [K] and
the map g be as in (6.18) and (6.22). Then the following hold for all u, v ∈ V
and all t ∈ K:
(R1) The map x 7→ xv from V to itself is K-linear.
(R2) v[t] = tv.
(R3) u · tv = tθ · uv.
(R4) [t]v = [tq(v)].
(R5) uv · v = q(v)θ · u.
(R6) v · uv = q(v) · vu.
(R7) u(v + w) = uv + uw + g(vu,w).

Proof. — Just for this proof, we will denote by ∗ both the map from
V × V̂ to V and the map from V̂ × V to V defined in Notation 5.13 to
distinguish them from the multiplication on V defined in (6.18). Thus, in
particular, uv = u ∗ ϕ(v) for all u, v ∈ V .

Let u, v, w ∈ V and t ∈ K. The assertion (R1) is just a special case
of (F0). We have

v[t] = v[tθ]K = v ∗ [t]F = tv

by (F1). Thus (R2) holds. The assertion (R3) follows from 6.10(iv). To see
that (R4) holds, we observe that

[t]v = [tθ]K ∗ ϕ(v)(6.24)

= [tθ q̂(ϕ(v)]K by (F6)

= [tθq(v)θ]K by 6.10(3)
= [tq(v)].

Next we have

uv · v = u ∗ [q̂(ϕ(v)]F by (F7)

= u ∗ [q(v)θ]F by 6.10(3)

= u[q(v)θ]

= q(v)θ · u by (R2),

so (R5) holds, and

v · uv = v ∗ ϕ
(
u ∗ ϕ(v)

)
= v ∗

(
ϕ(u) ∗ v) by 6.7(1)

= q(v) · vu by (F9),
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so (R6) holds. Finally, we have

u(v + w) = u ∗ ϕ(v + w)

= uv + uw + [f̂
(
ϕ(v) ∗ u, ϕ(w)

)
]K by (F11)

= uv + uw + [f̂
(
ϕ
(
v ∗ ϕ(u)

)
, ϕ(w)

)
]K by 6.7(2)

= uv + uw + [f̂
(
ϕ(vu), ϕ(w)

)
]K

= uv + uw + g(vu,w) by (6.19).

Thus (R7) holds. �

7. Polarity Algebras

In this section we introduce polarity algebras and prove a series of iden-
tities. Some (for instance Proposition 7.9) we have included only because
they are compelling, not because we will apply them later on.

Definition 7.1. — A polarity algebra is a 6-tuple (K,V, q, θ, t 7→ [t], ·),
where K is a field of characteristic 2, (K,V, q) is an anisotropic quadratic
space such that the bilinear form f := ∂q is not identically zero, θ is a Tits
endomorphism of K, t 7→ [t] is a K-linear embedding of the K-vector space
[K] = [Kθ]K defined in Definition 5.1 and Notation 6.21 into the radical
of f , so

(7.2) a[t] = [aθt]

for all a, t ∈ K, and (u, v) 7→ u · v is a multiplication on V (which we often
denote by juxtaposition), satisfying the conditions (R1)–(R7) in Proposi-
tion 6.23 with

g(u, v) = [f(u, v)]
for all u, v ∈ V in (R7).

Throughout this section we assume that (K,V, q, θ, t 7→ [t], ·) is a polarity
algebra. We let f and g be as in Definition 7.1 and we set

v−1 = q(v)−1v

for all non-zero v ∈ V . Since q is anisotropic, this is allowed.

Remark 7.3. — Let K and f be as in Definition 7.1. An anisotropic
form over a finite field is either 1-dimensional or similar to the norm of a
quadratic extension. Since f is not identically zero and its radical is non-
trivial, we conclude that K is infinite.
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Proposition 7.4. — The following hold for all u, v, w ∈ V and all
t ∈ K:

(1) g(u, uw) = 0.
(2) g(u, vw) = g(uw, v).
(3) g(u, v)w = g(q(w)u, v).
(4) tg(u, v) = g(tθu, v).

Proof. — Assertions (1) and (2) follow immediately from (R7) and as-
sertion (3) follows immediately from (R4). We have tg(u, v) = t[f(u, v)] =
[tθf(u, v)] = g(tθu, v) for all u, v ∈ V and all t ∈ K, so also assertion (4)
holds. �

Proposition 7.5. — v · wu = f(u, vw)u + f(u, v)uw + q(u)vw for all
u, v, w ∈ V .

Proof. — Let t ∈ K. By (R6), we have

(7.6) (u+ tv) · (w(u+ tv))
= q(u+ tv)(u+ tv)w

= (q(u) + tf(u, v) + t2q(v))(u+ tv)w
= q(u)uw + t

(
q(u)vw + f(u, v)uw

)
+ t2

(
q(v)uw + f(u, v)vw

)
+ t3q(v)vw .

By (R7) and (R3), on the other hand, we have

(7.7) (u+ tv) · (w(u+ tv))

= (u+ tv)
(
wu+ tθwv + g(u, tvw)

)
= u(wu+ tθwv + g(u, tvw)) + tv(wu+ tθwv + g(u, tvw))

= u(wu) + u · tθwv + ug(u, tvw) + g(wu · u, tθwv)

+ tv · wu+ t3v · wv + tv · g(u, tvw) + g(wu, tθwv · tv)

= q(u)uw + t2u · wv + ug(u, tvw) + g(wu · u, tθwv)

+ tv · wu+ t3q(v)vw + tv · g(u, tvw) + g(wu, tθwv · tv) .

Thus the sum of the expressions (7.6) and (7.7) is zero. By (R2) and 7.4(4),
this sum lies in K[t] and the coefficient of t is

q(u)vw + f(u, v)uw + f(u, vw)u+ v · wu.

To verify this, we need only observe that ug(u, tvw) = u[f(u, tvw)] =
f(u, tvw)u by (R2) and g(wu · u,wv) = q(u)g(w,wv) = 0 by (R5)
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and 7.4(1). It follows from Remark 7.3 and [23, 2.26] that the coefficient
of each power of t in this sum is zero. �

Proposition 7.8. — uv · w + uw · v = g(v, f(v, wu)w) + f(v, w)θu for
all u, v, w ∈ V .

Proof. — By (R5), we have

u(v + w) · (v + w) = q(v + w)θu

= (q(v) + f(v, w) + q(w))θu

= q(v)θu+ f(v, w)θu+ q(w)θu.

By (R5), (R6), (R7) and 7.4(3), on the other hand, we have

u(v + w) · (v + w) = (uv + uw + g(v, wu))(v + w)
= uv(v + w) + uw(v + w) + g(v, wu)(v + w)
= uv · v + uv · w + g(v · uv,w)

+ uw · v + uw · w + g(v, w · uw)
+ g(q(v)v, wu) + g(q(w)v, wu) + g(f(v, w)v, wu)

= q(v)θu+ uv · w +
1︷ ︸︸ ︷

g(q(v)vu,w)

+ uw · v + q(w)θu+
2︷ ︸︸ ︷

g(v, q(w)wu)

+
1︷ ︸︸ ︷

g(q(v)v, wu) +
2︷ ︸︸ ︷

g(q(w)v, wu) +g(v, f(v, wu)w) .

Note that

g(f(v, w)v, wu) = [f(v, w)f(v, wu)]
= [f(v, f(v, wu)w)] = g(v, f(v, wu)w) .

Therefore f(v, w)θu = uv · w + uw · v + g(v, f(v, wu)w). �

The following observation says that the quadratic form q is multiplicative
“with a twist.”

Proposition 7.9. — q(uv) = q(u)q(v)θ for all u, v ∈ V .

Proof. — Choose u,w ∈ V and recall that f(V, [K]) = 0. Setting v = [1]
in Proposition 7.5, we obtain

[1] · wu = f(u, [1]w)u+ f(u, [1])uw + q(u)[1]w.

By (R3) and (R4), therefore, [q(wu)] = q(u)[q(w)] = [q(w)q(u)θ]. �
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Proposition 7.10. — q([t]) = tθ for all t ∈ K.

Proof. — If t ∈ K, then [q([t])] = [1][t] = t[1] = [tθ] by (R2)
and (R4). �

Proposition 7.11. — The following hold for all u, v, w ∈ K:
(1) f(uv, uw) = f(v, wu)θ + q(u)f(v, w)θ
(2) f(uv,wv) = q(v)θf(u,w).
(3) (uv)−1 = u−1v−1 if u, v 6= 0.

Proof. — Let u, v, w ∈ K. We have

q(u(v + w)) = q(u)q(v + w)θ

= q(u)(q(v) + q(w) + f(v, w))θ

= q(uv) + q(uw) + q(u)f(v, w)θ

by Proposition 7.9, whereas

q(u(v + w)) = q(uv + uw + g(v, wu)) by (R7)
= q(uv) + q(uw) + q([f(v, wu)]) + f(uv, uw) by Def. 7.1

= q(uv) + q(uw) + f(v, wu)θ + f(uv, uw) by Prop. 7.10.

Thus (1) holds.
We have

q((u+ w)v) = q(u+ w)q(v)θ

= (q(u) + q(w) + f(u,w))q(v)θ

= q(uv) + q(wv) + q(v)θf(u,w) ,

by Proposition 7.9, whereas

q((u+ w)v) = q(uv + wv) = q(uv) + q(wv) + f(uv,wv)

by (R1). Thus (2) holds. Finally, we have

(uv)−1 = q(uv)−1uv

= q(u)−1q(v)−θuv = q(u)−1u · q(v)−1v = u−1v−1

by (R3) and Proposition 7.9. Thus (3) holds. �

Proposition 7.12. — The following hold for all u, v, w ∈ K:
(1) u−1 · vu = uv if u 6= 0.
(2) uv · v−1 = u if v 6= 0.

Proof. — These identities follow immediately from (R3), (R5)
and (R6). �
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Remark 7.13. — Let v ∈ V ∗. By (R1) and 7.12(2), the map x 7→ xv is
an automorphism of V . By 7.9, This map is a similitude of q with similarity
factor q(v)θ.

Proposition 7.14. — The following hold for all u, v, z, w ∈ V :

(1) g(uv · w, zv) = f(w, v)g(uv, z) + q(v)g(uw, z).
(2) g(uv · w, uz) = f(vu, z)w + f(wu, v)z + f(wu, z)v

+ f(w, v)zu+ f(w, z)vu+ f(v, z)wu.
(3) f(uv, zw) + f(uw, zv) = f(u, z)f(v, w)θ.
(4) uv · vu = q(uv)u.
(5) uv · vw = q(wv)u+ f(u,w)q(v)θw + f(uv,w)wv.
(6) uv · vw = (u · vw) · v.
(7) (vv)−1 · vv = v if v 6= 0.
(8) u−1u · u−1u = u if u 6= 0.

Proof. — On the one hand,

w · (u+ z)v
= f(w(u+ z), v)v + f(w, v)v(u+ z) + q(v)w(u+ z) by Prop. 7.5
= f(wu+ wz, v)v + f(w, v)

(
vu+ vz + g(uv, z)

)
+ q(v)

(
wu+ wz + g(uw, z) by (R7),

and on the other,

w · (u+ z)v = w · (uv + zv) by (R1)
= w · uv + w · zv + g(uv · w, zv)
= f(v, wu)v + f(v, w)vw + q(v)wu

+ f(v, wz)v + f(v, w)vz + q(v)wz
+ g(uv · w, zv) by Prop. 7.5.

Thus (1) holds.
Using Proposition 7.5, (R2) and (R7), we have

w · u(v + z) = w ·
(
uv + uz + g(vu, z)

)
= w(uv + uz) + w[f(vu, z)]
= w(uv + uz) + f(vu, z)w
= w · uv + w · uz + g(uv · w, uz) + f(vu, z)w,
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whereas

w · u(v + z) = f(wu, v + z)(v + z) + f(w, v + z)(vu+ zu) + q(v + z)wu
=
(
f(wu, v)v + f(w, v)vu+ q(v)wu

)
+
(
f(wu, z)z + f(w, z)zu+ q(z)wu

)
+ f(wu, v)z + f(wu, z)v + f(w, v)zu
+ f(w, z)vu+ f(v, z)wu

= w · uv + w · uz + f(wu, v)z + f(wu, z)v + f(w, v)zu
+ f(w, z)vu+ f(v, z)wu.

by several applications of Proposition 7.5. Thus (2) holds.
Using 7.4(2) and Proposition 7.8, we obtain

uv · w + uw · v = g(v, f(v, wu)w) + f(v, w)θu

and

f(uv, zw) + f(uw, zv) = f(uv · w, z) + f(uw · v, z)
= f(uv · w + uw · v, z)

= f(f(v, w)θu, z) = f(u, z)f(v, w)θ.

Thus (3) holds.
We have

uv · vu = f(u, uv · v)u+ f(u, uv)uv + q(u)uv · v

by Proposition 7.5 and

uv · v = uv · q(v)v−1 = q(v)θu

by 7.12(2) and (R2). Hence

uv · vu = q(u)q(v)θv = q(uv)u

by 7.4(1), Proposition 7.9 and 7.12(2). Thus (4) holds.
By Propositions 7.5 and 7.9 and (R5), we have

uv · vw = f(uv · v, w)w + f(uv,w)wv + q(w)uv · v

= f(u,w)q(v)θw + f(uv,w)wv + q(wv)u.

Thus (5) holds.
Using 7.8, we have
P︷︸︸︷
u

U︷︸︸︷
v ·

V︷︸︸︷
vw +(u · vw) · v = g(U, f(U, V P )V ) + f(U, V )θP

= g(v, f(v, vw · u)vw) + f(v, vw)θu = 0 .
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Thus (6) holds.
By (4), we have vv · vv = q(vv) · v. Hence

v = q(vv)−1vv · vv = (vv)−1(vv)

and thus (7) holds.
Using (R3), Proposition 7.9 and (4), finally, we have

u−1u · u−1u = q(u)−1q(u)−θuu · uu = q(uu)−1q(uu)u = u.

Thus (8) holds. �

Proposition 7.15. — For each nonzero a ∈ V , there exists b ∈ V such
that a = b−1b.

Proof. — This holds by 7.14(7). �

8. Tits Endomorphisms

We begin this section by proving some elementary properties of arbitrary
Tits endomorphisms in Propositions 8.2 and 8.3.

Definition 8.1. — Let (K, θ) be an octagonal set as defined in Defini-
tion 2.1. We will call an element of K a Tits trace (with respect to θ) if it
is of the form xθ + x for some x ∈ K.

Proposition 8.2. — Let (K, θ) be an octagonal set. Then the following
hold:

(1) The map x 7→ xθ + x from K to itself is additive.
(2) If uθ = u for some u ∈ K, then u = 0 or 1.
(3) If uθ + u = vθ + v for u, v ∈ K, then either u = v or u = v + 1.
(4) If zθ is a Tits trace, then so is z.
(5) u2 + u is a Tits trace for every u ∈ K.
(6) 1 is not a Tits trace.

Proof. — Since θ is additive, (1) holds. Suppose that uθ = u for some
u ∈ K, then u2 = u and hence u = 0 or 1. Thus (2) holds, and (3)
follows from (1) and (2). Suppose that zθ = uθ + u for some u ∈ K.
Let v = u + z. Then vθ = u and hence z = vθ + v. Thus (4) holds.
Applying the map x 7→ xθ + x twice to an element u ∈ K yields u2 + u.
Thus (5) holds. Suppose, finally, that uθ + u = 1 for some u ∈ K. Then
u2 = (uθ)θ = (u + 1)θ = uθ + 1 = u and hence u = 0 or 1. Thus (6)
holds. �
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Proposition 8.3. — Let θ be a Tits endomorphism of a field K, let
δ ∈ K, let L be the splitting field over K of the polynomial x2 + x+ δ and
let χ be the non-trivial element of Gal(L/K). Then the following hold:

(1) θ extends to a Tits endomorphism of L if and only if δ is a Tits
trace.

(2) If θ extends to a Tits endomorphism of L, then there are exactly
two extensions θ1 and θ2, both commute with χ and χ = θ−1

2 · θ1.

Proof. — Let γ be a root of x2 + x + δ in L. Suppose that δ = λθ + λ

for some λ ∈ K. We extend θ to an endomorphism θ1 of L by setting
γθ1 = γ + λ and

(a+ bγ)θ1 = aθ + bθγθ1

for all a, b ∈ K. We have

(γ + λ)θ1 = γθ1 + λθ

= γ + λ+ λθ

= γ + δ = γ2.

Hence θ2
1 = FrobL. Thus θ1 is a Tits endomorphism of L.

Suppose, conversely, that θ extends to a Tits endomorphism θ1 of L.
Then γθ1 = a+ bγ for some a, b ∈ K. Therefore

γ + δ = γ2 = aθ + bθγθ1

= aθ + bθ(a+ bγ)

= aθ + abθ + bθ+1γ ,

so δ = aθ + abθ and bθ+1 = 1. Hence b = bθ
2−1 = (bθ+1)θ−1 = 1 and

therefore

(8.4) δ = aθ + a,

so δ is a Tits trace and hence (1) holds. Furthermore

γχθ1 = γθ1 + 1 = a+ 1 + γ = a+ γχ = γθ1χ,

so θ1 commutes with χ and thus the product θ2 := χθ1 is a second
Tits endomorphism of L extending θ. By 8.2(3) and (8.4), there are no
others. �

We now go back to assuming that S, K, V , q, f and Ξ = Q(S) are as in
Notations 5.6 and 5.7, that ρ, ϕ and θ are as is as in Hypothesis 6.1 and
Notations 6.4 and 6.8, and that the product uv on V is as in (6.18). Our
goal for the rest of this section is to prove Proposition 8.5.
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Proposition 8.5. — Let d be a non-zero element of V . Then there
exists an element e ∈ V such that f(d, e) = 1, f(d, ed) = 0,

(8.6) f(dd, ed) = q(d)θ

as well as

(8.7) q(d)θ · de = f(de, ed) · dd+ q(d) · ed

and q(d)q(e) = f(de, ed)+f(de, ed)θ. In particular, q(d)q(e) is a Tits trace.

Proof. — By [2, Theorem 2.1(i)], there exists e ∈ V such that

(8.8) f(d, e) = 1 and f(d, ed) = 0 .

By 7.4(2), it follows that

(8.9) f(dd, e) = 0 .

By 7.4(1), we have

(8.10) f(d, dd) = 0

and by 7.4(2), we have

(8.11) f(d, dd · d) = f(dd, dd) = 0 .

By 7.11(1) and (8.8), we have

(8.12) f(dd, de) = f(d, ed)θ + q(d)f(d, e)θ = q(d)

and by 7.14(2) and (8.8), we have

f(dd, ed) = q(d)θ · f(d, e) = q(d)θ.

Thus (8.6) holds.
Choose λ ∈ K. The image of the map g is the radical of f . By (R1),

(R3) and (R7), therefore, we have

f
(
(e+ λ · dd)(e+ λ · dd), d

)
= f(ee, d) + λf(dd · e, d) + λθf(e · dd, d)

+ λθ+1f(dd · dd, d) .

We observe that f(dd · e, d) = f(dd, de) = q(d) by 7.4(2) and (8.12) as well
as

f(e · dd, d) = f(e, d · dd) by 7.4(2)
= q(d)f(e, dd) by (R6)
= 0 by (8.9),

and
f(dd · dd, d) = f(q(dd) · d, d) = q(dd)f(d, d) = 0
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by 7.14(4). It follows that

f
(
(e+ λ · dd)(e+ λ · dd), d

)
= f(ee, d) + λq(d) .

Furthermore,
f(d, e+ λ · dd) = f(d, e) = 1

by (8.8) and (8.10) and f(d, (e+λ ·dd)d) = f(d, ed) +λf(d, dd ·d) by (R1),
so, in fact,

f
(
d, (e+ λ · dd)d

)
= 0

by (8.8) and (8.11). Thus if we replace e by e+λ ·dd and λ by f(ee, d)/q(d),
we can assume that f(ee, d) = 0 while (8.8) and therefore also (8.6) remain
valid. Hence also

(8.13) f(e, de) = 0

by 7.4(2). By 7.11(1), it follows that

(8.14) f(ed, ee) = f(e, de)θ + q(e)f(d, e) = q(e).

By 7.4(1) and (8.13), we have de ∈ 〈d, e〉⊥ (where 〈d, e〉⊥ denotes the
subspace orthogonal to 〈d, e〉 with respect to the bilinear form f). Setting
ξ = d in [2, Theorem 2.1], we obtain 〈d, e〉⊥ = 〈dd, ed〉+ [K]. Hence

(8.15) de = κ · dd+ µ · ed+ [t]

for some κ, µ, t ∈ K. Therefore

f(dd, de) = f(dd, κ · dd+ µ · ed) = µ · f(dd, ed) = µ · q(d)θ

and
f(de, ed) = f(κ · dd+ µ · ed, ed) = κ · f(dd, ed) = κ · q(d)θ

by (8.6), so

(8.16) µ = q(d)1−θ

by (8.12) and

(8.17) κ = f(de, ed)/q(d)θ.

Substituting (8.16) but not (8.17) in (8.15) and applying q, we obtain

q(de) = q(d)q(e)θ = κ2q(d)θ+1 + q(d)2−2θ · q(e)q(d)θ

+ tθ + κq(d)1−θf(dd, ed)

by Propositions 7.9 and 7.10. Multiplying by q(d)θ−1 and applying (8.6),
we then obtain

q(d)θq(e)θ = κ2q(d)2θ + κq(d)θ + q(d)q(e) + tθq(d)θ−1.
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Thus κq(d)θ is a root of the polynomial

(8.18) p(x) := x2 + x+ q(d)q(e) + q(d)θq(e)θ + tθq(d)θ−1.

By 8.17, κq(d)θ = f(de, ed) and by 7.14(3) and (8.8), we have

(8.19) f(de, ed) + f(dd, ee) = f(d, e)f(e, d)θ = 1.

We conclude that f(de, ed) and f(dd, ee) are the two roots of the polyno-
mial p.
Next we observe that

q(e)θ = q(e)θf(d, e) by (8.8)
= f(de, ee) by 7.11(2)
= κ · f(dd, ee) + µ · q(e) by (8.14) and (8.15)

=
(
f(de, ed) · f(dd, ee) + q(d)q(e)

)
/q(d)θ by (8.16) and (8.17),

so
f(de, ed) · f(dd, ee) = q(d)q(e) + q(d)θq(e)θ.

Thus by (8.19), f(de, ed) is a root of the polynomial.

x2 + x+ q(d)q(e) + q(d)θq(e)θ.

Since f(de, ed) is also a root of the polynomial p(x) defined in (8.18), we
conclude that t = 0. Hence

q(d)θ · de = q(d)θ
(
κ · dd+ µ · ed

)
by (8.15)

= f(de, ed) · dd+ q(d) · ed by (8.16) and (8.17).

Thus (8.7) holds.
Let s = f(de, ed). We multiply (8.7) on the left by d. Applying (R3)

and (R7), we obtain

(8.20) q(d)2d · de = sθd · dd+ q(d)θd · ed+ g
(
s · (dd · d), q(d) · ed

)
.

By Proposition 7.5, (8.8) and (8.9), we have

d · de = f(e, dd)e+ f(e, d)ed+ q(e)dd = ed+ q(e)dd.

By (R6), we have d · dd = q(d)dd and d · ed = q(d)de. We also have

g(dd · d, ed) = g(q(d)θd, ed) = g(q(d)θdd, e) = 0

by (R5) and (8.9). Hence we can rewrite (8.20) as

q(d)2 · ed+ q(d)2q(e) · dd = sθq(d) · dd+ q(d)θ+1 · de.

Dividing by q(d) and rearranging terms, we obtain

q(d)θ · de =
(
sθ + q(d)q(e)

)
· dd+ q(d) · ed.
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Comparing this equation with (8.7), we conclude that

sθ + q(d)q(e) = s.

In other words, q(d)q(e) = f(de, ed) + f(de, ed)θ. �

9. Polar Triples

We continue to assume that S, K, F , V , q, f , Ξ = Q(S), Σ, c and
x1, . . . , x4 are as in Notations 5.6 and 5.7, that ρ, ϕ and θ are as is as in
Hypothesis 6.1 and Notations 6.4 and 6.8, and that the product uv on V is
as in (6.18). Thus F = Kθ, θ is a Tits endomorphism of K by 6.10(1) and

Ξ = QF (K,V, q) = BF2 (K,V, q)

by Notation 5.10. The main results of this section are Theorem 9.12 and
Corollary 9.26.

Proposition 9.1. — Let d and e as in Proposition 8.5 and let ξ = ϕ(d),
so that f(d, e) = 1 and f(d, eξ) = 0. Let

S0 := (L/K,Kθ, α0, β0)

be the standard decomposition of q obtained by applying Theorem 5.16 to
the triple d, e and ξ. Then α0 = β−θ0 and θ has an extension to a Tits
endomorphism of L.

Proof. — By Remark 5.15, the field L is the splitting field of the poly-
nomial

x2 + x+ q(d)q(e)

over K. Hence 8.3(1) and the last assertion in Proposition 8.5, θ has an
extension to a Tits endomorphism of L. By Theorem 5.16, we have α0 =
f(dξ, eξ) and β0 = q(d)−1. Thus by (8.6), α0 = q(d)θ = β−θ0 . �

Hypothesis 9.2. — We assume from now on that d and e are as in
Proposition 8.5 and that ξ = ϕ(d) and that the standard decomposition
S in Notation 5.6 is the standard decomposition S0 in Proposition 9.1.
Thus E/K is now the extension called L/K and α and β are now the
constants called α0 and β0 in Proposition 9.1, the Tits endomorphism θ has
an extension to the field E and βθ = α−1. The group U+ is unchanged by
this assumption, but we assume that V , V̂ and the isomorphisms x1, . . . , x4
are as in Notation 5.7 with respect to the new S.
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Notation 9.3. — By 8.3(2)), θ has exactly two extensions to E. We
denote these extensions by θ1 and θ2. Both commute with the non-trivial
element χ of Gal(E/K) and θ2 = χθ1. Let x̄ = xχ for all x ∈ E.

Remark 9.4. — Let θ1, θ2 and χ be as in Notation 9.3, let γ ∈ E be a
root of

x2 + x+ q(d)q(e)
and let i = 1 or 2. Since χ commutes with θi, we have γθi 6∈ K. Thus
E = K(γθi) and hence

D = E2F = F (γ2) = K(γθi)θi = Eθi .

Proposition 9.5. — For either i = 1 or i = 2, the map ϕ from V =
E ⊕ E ⊕ [F ]K to V̂ = D ⊕D ⊕ [K]F is given by

ϕ(a, b, s) = (aθi , β−2bθi , sθ
−1

)

for all (a, b, s) ∈ V .

Proof. — Let η = ϕ(e). Then by (R5) and (8.7), we have

dη · ξ ∈ 〈d, e〉.

Applying ϕ, we obtain

(9.6) ξe · d ∈ 〈ξ, η〉

by 6.7(1). By (6.9) and 7.4(2), we have

f̂(ξe · d, ξ) = f̂(ϕ(dη · ξ), ϕ(d))

= f(dη · ξ, d)θ = f(dη, dξ)θ.

By (8.12), it follows that f̂(ξe · d, ξ) 6= 0. Thus ξe · d and ξ are linearly
independent. By (9.6), therefore,

(9.7) η ∈ 〈ξ, ξe · d〉.

By 6.7(1) again, we have ϕ(eξ) = ηd and ϕ(dξ) = ξd. Hence by (R1), (R5)
and (9.7),

ϕ(eξ) ∈ 〈ξd, ξe〉.
By 6.10(2), ϕ is an isomorphism of vector spaces. Thus

(9.8) ϕ(〈d, e〉) = 〈ξ, ξe · d〉

and

(9.9) ϕ(〈dξ, eξ〉) = 〈ξd, ξe〉.
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Let γ, χ, θ1 and θ2 be as in Remark 9.4 and let N(x) = x · xχ and
T (x) = x+ xχ for all x ∈ E. We set ω = βγ. Thus

q̂(ξ) = q̂(ϕ(d)) = q(d)θ = β−θ = α

and ω is a root in E of q(d)x2 +x+ q(e). By Theorem 5.16, we can assume
that d = (1, 0, 0), e = (ω, 0, 0), dξ = (0, 1, 0) and eξ = (0, ω, 0) in V and
ξ = (1, 0, 0), ξe · d−1 = (ω2, 0, 0), ξd−1 = (0, 1, 0) and β2ξe = (0, ω2, 0) in
V̂ . Thus ϕ(d) = ξ = (1, 0, 0).
By Notation 6.8, (9.8) and (9.9), there exist maps ϕ1 and ϕ2 from E to

D such that

(9.10) ϕ(a, b, s) = (ϕ1(a), ϕ2(b), sθ
−1

)

for all (a, b, s) ∈ V . By 6.10(2), ϕ1 and ϕ2 are θ-linear and since ϕ(d) = ξ,
we have ϕ1(1) = 1. Furthermore, f̂(ξ, η) = f̂(ϕ(d), ϕ(e)) = f(d, e)θ = 1
and q̂(η) = q̂(ϕ(e)) = q(e)θ. By (5.5), therefore, T (ϕ1(ω)) = α−1 and
N(ϕ1(ω)) = α−1q(e)θ. Thus ϕ1(ω) is a root of q(d)θx2 + x+ q(e)θ. Hence
we can choose i ∈ {1, 2} such that

ϕ1(ω) = ωθi .

Since ϕ1(1) = 1 and ϕ1 is θ-linear, it follows that

(9.11) ϕ1 = θi .

Let v ∈ E. By [23, 16.7], we have

[x1(1, 0, 0), x4(0, v, 0)]2 = x2(αv, 0, 0)

and
[x4(1, 0, 0), x1(0, ϕ2(v), 0)]3 = x3(β−2ϕ2(v), 0, 0).

Applying ρ to the first of these equations, we obtain

[x4(1, 0, 0), x1(0, ϕ2(v), 0)]3 = x3(ϕ1(αv), 0, 0).

Hence
ϕ2(x) = ϕ1(αx) = β−2ϕ1(x) = β−2xθi .

Thus by (9.10) and (9.11), we have

ϕ(a, b, s) = (aθi , β−2bθi , sθ
−1

)

for all (a, b, s) ∈ V . �
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We summarize our results as follows:

Theorem 9.12. — Let Ξ = BF2 (K,V, q) for some quadratic space

(K,V, q)

of type F4 and suppose that ρ is a polarity of Ξ. Then there exists a
standard decomposition

S = (E/K,F, α, β)

of q and a Tits endomorphism θ of E such that the following hold:
(1) F = Kθ.
(2) α = β−θ.
(3) Ξ can be identified with Q(S) in such a way that ρ stabilizes Σ and

c and xi(u, v, s)ρ = x5−i(uθ, β−2vθ, sθ
−1) for i = 2 and 4 and all

(u, v, s) ∈ V , where Σ, c, V and xi for i ∈ [1, 4] are as in Notation 5.7
applied to S.

Proof. — By Definition 5.3, we can choose a standard decomposition S
of q and by Notation 5.10, Ξ ∼= Q(S). Let Σ and c be as in Notation 5.7
applied to S. By Remark 6.2, there exists an isomorphism ξS from Ξ with
Q(S) such that ξ−1

S ρξS stabilizes c and Σ. By Proposition 9.1, the standard
decomposition S and a Tits endomorphism θ of E can be chosen so that (1)
and (2) hold. If we identify Ξ with Q(S) via ξS and replace ρ by ξ−1ρξ for
his choice of S, then (3) holds by Proposition 9.5. �

Remark 9.13. — In Example 10.1 we give an example of Ξ, ρ, S =
(E/K,F, α, β) and θ satisfying the conditions (1) and (2) in Theorem 9.12
and a splitting field Ẽ of qS (as defined in Definition 5.3) such that the
restriction of θ to K does not have an extension to a Tits endomorphism
of Ẽ. See also Proposition 10.4. In Example 10.12, we give an example of
a Moufang quadrangle of type F4 that has non-type-preserving automor-
phisms but no polarity.

Notation 9.14. — Let Ξ, ρ, S = (E/K,F, α, β), θ, Σ, c and the identi-
fication of Ξ with Q(S) be as in Theorem 9.12, let

(U+, U1, . . . , U4)

and x1, . . . , x4 be as in Notation 5.7 applied to S, let x 7→ x̄ be as in
Notation 9.3 and let ι denote the map (a, b, s) 7→ (a, b, sθ−1) from VS =
E⊕E⊕ [F ]K to E⊕E⊕ [K], where [K] is as in Notation 6.21. We identify
V = VS with its image under ι and we reparametrize U+ by replacing xi
by ϕ · xi for i = 1 and 3 as in Notation 6.16 and then replacing xi by
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ι · xi for all i ∈ [1, 4]. Thus xi is an isomorphism from the additive group
of V = E⊕E⊕ [K] to Ui for all i ∈ [1, 4] and the following identities hold:

[x1(a, b, r), x3(a′, b′, r′)] = x2
(
0, 0, β−1(aā′ + āa′ + α(bb̄′ + b̄b′)

))
,

[x2(u, v, s), x4(u′, v′, s′)] = x3
(
0, 0, β−1(uū′ + ūu′ + α(vv̄′ + v̄v′)

))
,

[x1(a, b, r), x4(u, v, s)]

= x2
(
ru+ α(āθv + β−1bθv̄), rv + aθu+ β−1bθū,

rθs+ β−1s(aā+ αbb̄)

+ αβ−1(uθab̄+ ūθāb+ β−1(vθāb̄+ v̄θab)
))

· x3
(
sa+ α(ūθb+ β−1vθ b̄), sb+ uθa+ β−1vθā,

sθr + β−1r(uū+ αvv̄)

+ αβ−1(aθuv̄ + āθūv + β−1(bθūv̄ + b̄θuv)
))

for all (a, b, r), (a′, b′, r′), (u, v, s), (u′, v′, s′) ∈ V ,

[U1, U2] = [U2, U3] = [U3, U4] = 1

and

(9.15) xi(v)ρ = x5−i(v)

for all i ∈ [1, 4] and all v ∈ V .

Proposition 9.16. — Let Ξ, S = (E/K,F, α, β), θ, ρ and the identifi-
cation of Ξ with Q(S) be as in Theorem 9.12, let · be the multiplication on
V defined in (6.18), let x 7→ x̄ be as in Notation 9.3 and let V be identified
with E ⊕ E ⊕ [K] as in Notation 9.14. Then

(a, b, r) · (u, v, s) =
(
sa+ α(ūθb+ β−1vθ b̄), sb+ uθa+ β−1vθā,

sθr + β−1r(uū+ αvv̄)

+ αβ−1(aθuv̄ + āθūv + β−1(bθūv̄ + b̄θuv)
)

for all (a, b, r), (u, v, s) ∈ V .

Proof. — This holds by (6.20) and Notation 9.14. �

Notation 9.17. — Let Ξ, (K,V, q), θ and S = (E/K,F, α, β) and the
identification of Ξ with Q(S) be as in Theorem 9.12, so F = Kθ and
α = β−θ. We identify V with E ⊕ E ⊕ [K] as in Notation 9.14, so that

(9.18) q(u, v, t) = β−1(N(u) + αN(v)) + tθ

for all (u, v, t) ∈ V . Let [t] = (0, 0, t) for all t ∈ K and let · be the multipli-
cation on V given by the formula in Proposition 9.16. By Proposition 6.23,
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(K,V, q, θ, t 7→ [t], · ) is a polarity algebra. We denote this polarity algebra
by A = A(E/K, θ, β).

Definition 9.19. — A polar triple is a triple (E/K, θ, β), where E/K
is a separable quadratic extension in characteristic 2, θ is a Tits endomor-
phism of E such that F := Kθ ⊂ K and β is an element of K such that
the quadratic form on E ⊕ E ⊕ [K] given by (9.18) is anisotropic, where
[K] is as defined in Notation 6.21.

In the next result, we show that every polarity algebra is of the form
A(E/K, θ, β) for some polar triple (E/K, θ, β) as defined in Definition 9.19.
See also Theorem 19.1.

Theorem 9.20. — Let P = (K,V, q, θ, t 7→ [t], · ) be a polarity algebra
as defined in Definition 7.1. Then q is a quadratic form of type F4 and there
exists:

(1) a standard decomposition S = (E/K,F, α, β) of q such that α =
β−θ and F = Kθ,

(2) an extension of θ to a Tits endomorphism of E and
(3) an identification of V with E⊕E⊕[K] with respect to which t 7→ [t]

is the map t 7→ (0, 0, t), · is given by the formula in Proposition 9.16
and

q(u, v, t) = β−1(N(u) + βθN(v)) + tθ

for all (u, v, t) ∈ E⊕E⊕ [K], where N is the norm of the extension
E/K.

Proof. — Let F := Kθ, and let V̂ be the set consisting of the symbols v̂
for all v ∈ V , i.e. the map v 7→ v̂ is a bijection from V to V̂ . We make V̂
into an F -vector space by defining

s · v̂ := ŝθ−1v

for all s ∈ F and all v̂ ∈ V̂ , or equivalently,

(9.21) tθ · v̂ := t̂v

for all t ∈ K and all v ∈ V . The map q̂ : V̂ → F given by

(9.22) q̂(v̂) := q(v)θ

for all v̂ ∈ V̂ is a quadratic form over F . For each t ∈ K, we define

(9.23) [t]F := [̂t] ∈ [̂K] ⊂ V̂ ,

and for each s ∈ F , we define

(9.24) [s]K := [sθ
−1

] ∈ [K] ⊂ V .
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Next we define maps from V × V̂ to V and from V̂ ×V to V̂ (both denoted
by juxtaposition) by

(9.25) vŵ = vw and v̂w = v̂w

for all v, w ∈ V , where the multiplication on the right hand side of both
equations is the multiplication of the polarity algebra. We claim that these
data satisfy the axioms (F0)–(F12) of 5.18. To illustrate this, we will
prove (F2), (F4) and (F7) and leave the verification of the other axioms to
the reader.
So let v, w ∈ V , s ∈ F , and t ∈ K; then using (9.24), (9.25), (R2)

and (9.21), we obtain

v̂[s]K = v̂[sθ
−1

] = v̂[sθ−1 ] = ŝθ−1v = sv̂.

Thus (F2) holds. Next, by (9.25), (R3), (9.21) again and (F2), we obtain

v̂ · tw = v̂ · tw = t̂θ · vw = (tθ)θ · v̂w = t2v̂w = v̂w · [t2]K .

Thus (F4) holds. By (9.25), (R5), (9.22) and (F1), we obtain

vŵ · ŵ = vw · w = q(w)θ · v = q̂(ŵ) · v = v · [q̂(ŵ)]F .

Thus (F7) holds. This (together with the proof of the remaining identities)
shows that V and V̂ , together with the maps we just defined, form a radical
quadrangular system as defined in [3, Appendix A.3.2]. We denote this
quadrangular system by Θ.

Let Ω = (U+, U1, . . . , U4) and x1, · · · , x4 be as in Notation 5.19. By [3,
Chapter 4], Ω is a root group sequence and thus Ω determines a unique
Moufang quadrangle Ξ by [23, 7.5 and 8.5]. It follows from (9.22), (9.23),
(9.24) and (9.25) that there is a unique anti-automorphism ρ of Ω extending
the maps xi(v̂) 7→ x5−i(v) for i = 1 and 3, and xi(v) 7→ x5−i(v̂) for i = 2
and 4. The square ρ2 centralizes U+. Thus ρ induces a polarity of the
Moufang quadrangle Ξ (by [23, 7.5]).

By Definition 7.1, ∂f is not identically zero. By Notation 5.19, there-
fore, [U2, U4] 6= 1. By [23, 17.4], [U2, U4] 6= 1 and the existence of an
anti-automorphism of Ω imply that Ξ is a quadrangle of type F4. In other
words, Ξ is isomorphic to the quadrangle QF (Λ̃) = BF2 (Λ̃) obtained by
applying [23, 16.7] to some quadratic space Λ̃ = (K̃, Ṽ , q̃). of type F4. Let
Y1 = CU1(U3), let Y3 = CU3(U1) and let Y+ = Y1U2Y3U4. By (F5) and
Notation 5.19, Yi = xi([K]F ) for i = 1 and 3, Y+ is a subgroup of U+ and
(Y+, Y1, U2, Y3, U4) is a root group sequence isomorphic to the root group
sequence QQ(K,V, q) obtained by applying [23, 16.3] to (K,V, q). By [23,
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16.7], on the other hand, (Y+, Y1, U2, Y3, U4) is a root group sequence iso-
morphic to QQ(Λ̃). By [23, 35.8], it follows that K ∼= K̃ and q is similar to
q̃. Thus q is of type F4 and Ξ ∼= BF2 (K,V, q) (by [23, 35.12]). We conclude
that the quadrangular system Θ is an extension of the quadrangular sys-
tem associated with (K,V, q); see the beginning of [3, Chapter 8] for the
definition of these terms. This is exactly the situation investigated in [3,
§8.5] (and [23, Chapter 28]). By [3, Theorem 8.107], there exists a stan-
dard decomposition S of q and an isomorphism ξ from Ω to the root group
sequence ΩS obtained by applying Notation 5.7 to S extending the maps
xi([t]F ) 7→ xi(0, 0, t) for i = 1 and 3 and xi([s]K) 7→ xi(0, 0, s) for i = 2
and 4. We now replace ρ by the unique automorphism of Q(S) obtained by
applying [23, 7.5] to the automorphism ξ−1ρξ of ΩS . By (9.23) and (9.24),
we have xi(0, 0, t)ρ = xi(0, 0, tθ) for all t ∈ K. Thus θ is as in Notation 6.8.
By Proposition 9.1, we conclude that (1)–(3) hold. �

Corollary 9.26. — Every polarity algebra is of the form A(E/K, θ, β)
for some polar triple (E/K, θ, β) as defined in Definition 9.19.

Proof. — This holds by Notation 9.17 and Theorem 9.20. �

10. Two Examples

In this section, we give two examples illustrating the results of the pre-
vious section; see Remark 9.13.

Example 10.1. — Let K = F2(α, β) be a purely transcendental exten-
sion of the field F2, let E be the splitting field of the polynomial

p(x) = x2 + x+ α+ β2

over K, let γ ∈ E be a root of p(x), let θ denote the unique Tits endo-
morphism of K that maps β to α and let F = Kθ. By 8.3(1), θ has an
extension to a Tits endomorphism of E. We leave it to the reader to check
that S := (E/K,F, α−1, β) is an F4-datum as defined in Notation 5.2. Let
q = qS be the quadratic form of type F4 on E ⊕ E ⊕ [F ]K as defined in
Notation 5.2. We claim that β is not a Tits trace of K (with respect to θ).
To show this, we assume that

β = g(α, β) + g(α, β)θ = g(α, β) + g(β2, α)

for some rational function g(α, β) ∈ K. Let k = degα(g) and m = degβ(g).
(If g = g1/g2 for polynomials g1 and g2 in F2[α, β] and u = α or β, then
degu(g) = degu(g1)− degu(g2).) We have

(10.2) 1 = degβ(β) = degβ
(
g(α, β) + g(β2, α)

)
6 max(2k,m)
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and

(10.3) 1 = max(2k,m) if m 6= 2k

and
0 = degα(β) = degβ

(
g(α, β) + g(β2, α)

)
6 max(k,m)

and 0 = max(k,m) if k 6= m. By (10.2), we have 0 6= max(k,m). Thus
k = m 6= 0. Hence m 6= 2k and max(2k,m) > 2, which is impossible
by (10.3). We conclude that β is not a Tits trace inK as claimed. By 8.2(4),
it follows that also β2 is not a Tits trace in K. Let L be the splitting field
of the polynomial

p1(x) = x2 + x+ β2

over K. By 8.3(1), θ does not have an extension to a Tits endomorphism
of L. Let d = (β, 0, 0) and e = (γ, α, 0) in V . Then q(d) = q(e) = β and
f(d, e) = 1, so L is also the splitting field of q(d)x2 + x + q(e) over K.
Applying Theorem 5.16 with ξ = (1, 0, 0) ∈ V̂ , we conclude that L is a
splitting field of q. Thus the Tits endomorphism θ of K has an extension
to a Tits endomorphism of some of the splitting fields of q but there are
also splitting fields of q to which θ does not have an extension to a Tits
endomorphism.

Proposition 10.4. — Let S = (E/K,F, α, β) be an F4-datum, let Ξ =
Q(S) and suppose that θ is a Tits endomorphism of K such that F = Kθ

and α = β−θ. Choose λ ∈ K such that E is the splitting field of the
polynomial x2 + x + λ over K. Then Ξ has a polarity if and only if there
exists u ∈ K such that

λ+ αu2

is a Tits trace with respect to θ.

Proof. — Let q = qS , let f = ∂q and let γ ∈ E be a root of x2 + x+ λ.
Let V , D and V̂ be as in Notation 5.6, let d = (1, 0, 0) and e = (βγ, 0, 0)
in V and let ξ = (1, 0, 0) ∈ V̂ . Then q(d) = β−1 and q(e) = βλ. Hence
ω := βγ is a root of q(d)x2 + x+ q(e).
We suppose now that u is an element of K such that λ + αu2 is a Tits

trace and let E′ be the splitting field of x2 +x+λ+αu2 over K. By 8.3(1)
and the choice of u, we can choose a Tits endomorphism θ1 of E′ extending
θ. As in Remark 9.4, we have (E′)θ1 = (E′)2F . Since αu2 ∈ F , we can set
e′ = e+ (0, 0, αu2). Thus f(d, e′) = 1 and, by (F0) and (F6), f(d, e′ξ) = 0.
Applying Theorem 5.16 with e′ in place of e, it follows that we can assume
that E′ = E. Now let ϕ : V → V̂ be given by the formula in Proposition 9.5
and let ρ be defined by the equations in Notation 6.4 with ϕ1 = ϕ and
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ϕ̂ = ϕ̂1 = ϕ−1. Then ρ is an automorphism of U+ of order 2 mapping Ui
to U5−i for each i ∈ [1, 4]. Thus Ξ has a polarity.
Suppose, conversely, that Ξ has a polarity ρ. Our goal is to find an

element u ∈ K such that λ + αu2 is a Tits trace. By Proposition 9.1,
we can choose e′ ∈ V and ξ′ ∈ V̂ such that f(d, e′) = 1, f(d, e′ξ′) =
0 and q̂(ξ′) = α such that θ has an extension to the splitting field of
x2 +x+ q(d)q(e′) over K. Thus q(d)q(e′) is a Tits trace. Since f(d, e′) = 1,
we have e′ = (t + βγ, y + zγ, s) for some t, y, z ∈ K and some s ∈ F . Let
e′′ = e′ + (t, 0, 0). By [2, Lemma 2.1], we have f(d, e′′ξ′) = 0. We also have
q(e′′) = q(e′) + β−1t2 + t and hence q(d)q(e′′) + q(d)q(e′) = β−2t2 + β−1t.
By 8.2(5), this expression is a Tits trace. It follows that we can assume
that

(10.5) e′ = (βγ, y + zγ, s) .

Hence

q(d)q(e′) = β−2(N(βγ) + α(y2 + yz + λz2)
)

+ β−1s

= λ+ αβ−2(y2 + yz + λz2) + β−1s.

We have s = xθ for some x ∈ K and thus

(β−1s)θ = αsθ = αx2.

By 8.2(1), therefore,

(10.6)
p : = λ+ αβ−2(y2 + yz + λz2) + αx2

= λ+ αβ−2((y + βx)2 + z(y + λz)
)

is a Tits trace.
By (F12) and the choice of e′ and ξ′, we have

(10.7) f(dξ′, e′) = f(d, e′ξ′) = 0.

By (F12), we also have f(dξ′, d) = 0, from which it follows that there exist
w, u, v, r ∈ K such that

(10.8) dξ′ = (w, u+ vγ, rθ) .

By [3, 8.95], we have q(dξ′) = q(d)q̂(ξ′) = β−1α. Hence

(10.9) w2 + α(u2 + uv + λv2 + 1) + βrθ = 0 .

By (10.5), (10.7) and (10.8), we have

(10.10) βw + α(zu+ yv) = 0 .

Suppose that v = 0. Then w2 + α(u2 + 1) + βrθ = 0 by (10.9), hence
βrθ ∈ F and therefore, r = 0 since β 6∈ F . Hence α(u + 1)2 ∈ K2 and
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therefore u = 1 since α 6∈ K2. Hence w = 0. By (10.10), therefore, z = 0.
Thus by (10.6), we have p = λ+ αa2 for a = β−1(y + βx).
Suppose, finally, that v 6= 0. Then y = v−1(α−1βw + zu) by (10.10).

Hence

αβ−2z(y + λz)

= αβ−2zv−1(α−1βw + zu+ λvz)

= β−1zv−1w + β−2z2v−2 · α(uv + λv2)

= β−1zv−1w + β−2z2v−2(α(u2 + 1) + w2 + βrθ) by (10.9)

= α
(
β−1zv−1(u+ 1)

)2
+ β−1zv−1w + (β−1zv−1w)2 + β−1z2v−2rθ.

By 8.2(5) and (10.6), it follows that

(10.11) λ+ αb2 + β−1z2v−2rθ

is a Tits trace for b = β−1(zv−1(u+ 1) + (y + βx)
)
. Adding the Tits trace

β−1z2v−2rθ + (β−1z2v−2rθ)θ

to the expression (10.11), we conclude that

λ+ αb2 + (β−1z2v−2rθ)θ

is also a Tits trace. Finally, we observe that

(β−1z2v−2rθ)θ = αc2

for c = zθv−θr. Thus λ+ α(b+ c)2 is a Tits trace. �

Example 10.12. — Let K = F2(α, β) be a purely transcendental exten-
sion of the field F2, let E be the splitting field of the polynomial

p(x) = x2 + x+ 1

over K, let γ ∈ E be a root of p(x), let θ denote the unique Tits en-
domorphism of K that maps β to α and let F = Kθ. By [23, 14.25],
S := (E/K,F, α−1, β) is an F4-datum, so we can set Ξ = Q(S). There are
exactly three elements of E∗ of finite order. Let θ̂ be the unique extension
of θ to an endomorphism of E which acts trivially on these three elements
and let χ denote the non-trivial element of Gal(E/K). The endomorphism
θ̂ is, of course, not a Tits endomorphism of E. (By 8.2(6) and 8.3(1),
θ does not have an extension to a Tits endomorphism of E.) Let V , V̂ ,
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Ω := (U+, U1, . . . , U4) and x1, . . . , x4 be as in Notation 5.7, let ϕ denote
the map from V to V̂ given by

ϕ(u, v, s) = (uθ̂, β−2vθ̂, sθ
−1

)

for all (u, v, s) ∈ V and let ψ denote the automorphism of V given by

ψ(u, v, s) = (uχ, vχ, s)

for all (u, v, s) ∈ V . There is a unique anti-automorphism κ of Ω extending
the maps xi(b) 7→ x5−i(ϕ(ψ(b)) for i = 2 and 4 and xi(a) 7→ x5−i(ϕ−1(a))
for i = 1 and 3. The square of κ is an involution. By [23, 7.5], therefore, κ
gives rise to a non-type-preserving automorphism of Ξ of order 4.
We claim that Ξ does not, however, have any polarities. Let Γ be the

additive group
{a+ b

√
2 | a, b ∈ Z},

let k denote the field of Hahn series F2(tΓ) and let ν : k∗ → Γ be the
canonical valuation on k (as described, for example, in [8, 3.5.6]). There is
a unique embedding π from K to k which sends β to t and α to t

√
2. We

identify K with its image under π. Modulo this identification, there is a
unique extension of θ to a Tits endomorphism of k which we also denote by
θ. If u, v ∈ k, then the constant coefficient of t

√
2u2 is 0 and the constant

coefficient of v is the same as the constant coefficient of vθ. It follows that
there do not exist u, v ∈ k such that

1 + t
√

2u2 = v + vθ.

By Proposition 10.4 with α−1 in place of α, it follows that our Moufang
quadrangle Ξ does not have a polarity, as claimed.

11. Buildings of Type F4

The main results of this section are Theorems 11.10 and 11.11.

Notation 11.1. — Let L/E be a field extension such that char(E) = 2
and L2 ⊂ E and let ∆ = F4(L,E) as defined in [26, 30.15]. Let Φ be a root
system of type F4, let Σ be an apartment of ∆, let c be a chamber of Σ and
for each α ∈ Φ, let sα denote the corresponding reflection. Let α1, . . . , α4
be a basis of Φ ordered so that α1 and α2 are long and |sα2sα3 | = 4, let
S be the set of reflections sαi for i ∈ [1, 4] and let W = 〈S〉 be the Weyl
group of Φ. We think of the map i 7→ αi as a bijection from the vertex
set of the Coxeter diagram F4 to S. There is a unique action of W on
Σ with respect to which sαi interchanges c with the unique chamber of
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Σ that is i-adjacent to c, there is a unique chamber C of Φ contained in
the half-space determined by αi for all i ∈ [1, 4] and there is a unique W -
equivariant bijection ι from the set of chambers of Σ to the set of chambers
of Φ mapping c to C. The bijection ι induces a bijection from the set of
roots of Σ to Φ and its inverse induces an injection from Aut(Φ) to Aut(Σ).
From now on, we identify Aut(Φ) with its image under this injection and
we identify the roots of Σ with the corresponding elements of Φ. Thus for
each β ∈ Φ, we have a root group Uβ of ∆.

Theorem 11.2. — There exists a collection of isomorphisms xβ : E →
Uβ , one for each long root β of Φ, and a collection of isomorphisms xβ : L→
Uβ , one for each short root β of Φ, such that for all α, β ∈ Φ at an angle
ω < 180◦ to each other and for all s in the domain of xα and all t in the
domain of xβ , the following hold:

(1) If ω = 120◦, then α+ β ∈ Φ and [xα(s), xβ(t)] = xα+β(st).
(2) If ω = 135◦, then α and β have different lengths; if α is long, then

α+ β ∈ Φ, α+ 2β ∈ Φ and [xα(s), xβ(t)] = xα+β(st)xα+2β(st2).
(3) [xα(s), xβ(t)] = 1 if ω is neither 120◦ nor 135◦.

Proof. — This holds by [1, 5.2.2] and [19, 10.3.2]. �

Definition 11.3. — We call a set {xβ}β∈Φ satisfying the three condi-
tions in Theorem 11.2 a coordinate system for ∆.

Theorem 11.4. — Let {xβ}β∈Φ be a coordinate system for ∆, let γ ∈
Aut(Φ), let λ1, λ2 be non-zero elements of E, let λ3, λ4 be non-zero elements
of L and let χ be an element of Aut(L) stabilizing E. Then the following
hold:

(1) There exists a unique automorphism

g = gγ,λ1,λ2,λ3,λ4,χ

of ∆ that stabilizes the apartment Σ such that

xαi(t)g = xγ(αi)(λit
χ)

for all t in the domain of xαi and for all i ∈ [1, 4].
(2) If

β =
4∑
i=1

ciαi ∈ Φ ,

then
xβ(t)g = xγ(β)(λβtχ)
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for all t in the domain of xβ , where

λβ =
4∏
i=1

λcii .

Proof. — Inserting χ into [16, Lemma 58] and restricting scalars to E in
the long root groups, we obtain the existence assertion in (1); (see also [16,
Theorem 29]). The uniqueness assertion holds by [24, 9.7]. By 11.2(1)–
(3), [9, §10.2, Lemma A] and induction, it follows that (2) holds for all
β ∈ Φ+ (i.e. for all β ∈ Φ that are positive with respect to the basis
{α1, . . . , α4}). For each i ∈ [1, 4], there exists a unique j ∈ [1, 4] such that
the angle between αi and αj is 120◦. By 11.2(1), β := αi + αj ∈ Φ and
[xβ(1), x−αj (t)] = xαi(t) for all t in the domain of x−αj (which is the same
as the domain of xαj ). Conjugating by g and applying (1), we conclude that
x−αj (t)g = xγ(−α)(λ−1

j t) for all t in the domain of xαj . Thus by 11.2(1)–
(3), [9, §10.2, Lemma A] and induction again, (2) holds for all β ∈ Φ−. �

Proposition 11.5. — Every type-preserving automorphism of ∆ that
stabilizes Σ is of the form

gγ,λ1,...,λ4,χ

for some γ ∈ Aut(Φ), some λ1, λ2 ∈ E, some λ3, λ4 ∈ L and some χ ∈
Aut(L,E).

Proof. — By 11.4(1), it suffices to show that every type-preserving auto-
morphism of ∆ that stabilizes Σ pointwise is of the desired form. Let g be
such an element. By [24, 9.7], g is uniquely determined by its restrictions
to the irreducible rank 2 residues containing c. These are isomorphic to
A2(E), BD2 (Λ) and A2(L), where Λ is the indifferent set (L,L,E). By [23,
37.13], it follows that there exist λ1, λ2 ∈ E∗, λ3, λ4 ∈ L, χE ∈ Aut(E) and
χL ∈ Aut(L) such that xαi(t)g = xαi(λitχE ) for all t ∈ E if i = 1 or 2 and
xαi(t)g = xαi(λitχL) for all t ∈ L if i = 3 or 4. By [23, 37.32] applied to
the indifferent set (L,L,E), χL ∈ Aut(L,E) and the restriction of χL to
E equals χE . Thus g = gid,λ1,...,λ4,χ for χ = χL. �

Remark 11.6. — By [11, 28.8], {L/E,E/L} is the pair of defining exten-
sions of ∆; see Notation 3.5. Let G◦ and G† be as in Notation 3.2. By [24,
2.8 and 11.12], the stabilizer G†Σ induces the same group as the stabilizer
G◦Σ on Σ. Thus every element in G◦Σ is conjugate by an element in G† to
one which fixes the chamber c of Σ. By 3.8(1)–(2), therefore, we can choose
a Galois map ψ of ∆ such that

ψ(gγ,λ1,...,λ4,χ) = χ
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for all γ ∈ Aut(Φ), for all λ1, λ2 ∈ E, for all λ3, λ4 ∈ L and for all χ ∈
Aut(L,E).

Notation 11.7. — Let w1 = (sα2sα3)2 ∈ Aut(Φ), where sα2 and sα3 are
as in Notation 11.1.

Notation 11.8. — Let χ be an involution in the group Aut(L,E) defined
as in Notation 3.5, let F0 = FixL(χ), let K = F0 ∩ E and let N be the
norm of the extension L/F0. Thus F0/K is a purely inseparable extension
such that F 2

0 ⊂ K, the restriction of N to E is the norm of the extension
E/K and L is the composite EF0.

Notation 11.9. — Let χ, F0 and K be as in Notation 11.8, let F = F 2
0

and suppose that
S = (E/K,F, α, β)

is an F4-datum for some α ∈ F and some β ∈ K. Let λ1 = αβ−1, let λ2 =
α−1, let λ3 = β, let λ4 be the unique element of F0 such that λ2

4 = β−2α

and let
ξ = gw1,λ1,λ2,λ3,λ4,χ ,

where w1 is as in Notation 11.7.

In the next two results, we use the term “χ-involution” (as defined
in 3.11) with respect to the Galois map ψ chosen in Remark 11.6.

Theorem 11.10. — Let ∆ be as in Notation 11.1, let S and ξ be as
in Notation 11.9 and let Γ = 〈ξ〉. Then ξ is a type-preserving isotropic
χ-involution of ∆, Γ-chambers are residues of type {2, 3} and

∆Γ ∼= Q(S).

Proof. — This holds by [12, p. 368 at the bottom]. See [14, 17.14] for a
shorter proof. See also Remark 12.14. �

Theorem 11.11. — Let ∆ be as in Notation 11.1, let ξ be an arbitrary
type-preserving χ-involution of ∆ for some χ ∈ Aut(L,E), let Γ = 〈ξ〉 and
suppose that Γ-chambers are residues of type {2, 3}. Then the following
hold:

(1) There exist α ∈ F and β ∈ K such that ξ is conjugate by an element
in G† to

gw1,αβ−1,α−1,β,β−1√α,χ .

(2) ∆Γ is a Moufang quadrangle of type F4.
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Proof. — By [12, Lemma 3.2], for every Γ-chamber R, there exists an
apartment that is stabilized by ξ and contains chambers of R. By [24,
11.12], there exists an element δ in the group G† such that ξδ stabilizes
the apartment Σ and the unique {2, 3}-residue containing c, where Σ and
c are as in Notation 11.1. By [11, 25.17], ξδ induces the automorphism
w1 on Σ and by 3.8(1), ξδ is also a χ-involution. By Proposition 11.5
and [12, Lemma 4.3], it follows that there exist α ∈ F and β ∈ K such
that ξδ = gw1,αβ−1,α−1,β,β−1√α,χ. Thus (1) holds. By Theorem 11.10, (2)
follows from (1). �

12. F4-Buildings with Polarity

The goal of this section is to prove Proposition 12.15.

Notation 12.1. — Suppose now that Ξ, ρ, S = (E/K,F, α, β), θ and the
identification of Ξ with Q(S) are as in Theorem 9.12. Let F0 = F 1/2 in the
algebraic closure of E. Thus K ⊂ F0 and F 2

0 = F . Let L be the composite
field EF0. Choose γ ∈ K such that E = K(γ). Then L = F0(γ). In
particular, L/F0 is a separable quadratic extension. Let χ be the generator
of Gal(L/F0). The map x 7→ ((x2)θ)1/2 is the unique extension of θ to a
Tits endomorphism of L. We denote this extension by the same letter θ.
Since Kθ = F , we have F θ0 = K. Thus K = F θ0 6= Lθ = K(γθ). Since
Eθ ⊂ E, it follows that E = K(γθ). Hence Lθ = E. By 8.3(2), θ commutes
with χ. We set ∆ = F4(L,E).

Let c, Σ, Φ, {α1, . . . , α4}, the identification of Φ with the set of roots of
Σ, etc., be as in Notation 11.1 applied to ∆ = F4(L,E), let {xα}α∈Φ be as
in Theorem 11.2, let

|Φ| = {α/|α| | α ∈ Φ}
and let π be denote the bijection α 7→ α/|α| from Φ to |Φ|. We now identify
the set of roots of Σ with |Φ| via π.

Notation 12.2. — Let ẋπ(α)(t) = xα(t) for all t ∈ E and all long α ∈ Φ,
let ẋπ(α)(t) = xα(tθ−1) for all t ∈ E and all short α ∈ Φ and let Uπ(α) = Uα
for all α ∈ Φ. Thus ẋα is an isomorphism from the additive group of E
to Uα for each α ∈ |Φ| and by Theorem 11.2, if s, t ∈ E and α and β are
elements of |Φ| with an angle ω < 180◦ between them, then the following
hold:

(1) If ω = 120◦, then α+ β ∈ |Φ| and [ẋα(s), ẋβ(t)] = ẋα+β(st)
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(2) If ω = 135◦, then
√

2α+β ∈ |Φ|, α+
√

2β ∈ |Φ| and [ẋα(s), ẋβ(t)] =
ẋ√2α+β(sθt)ẋα+

√
2β(stθ).

(3) [ẋα(s), ẋβ(t)] = 1 if ω is neither 120◦ nor 135◦.

Let
B := {η1, . . . , η4}

be the image of the basis {α1, . . . , α4} of Φ under π. We set m′ =
√

2m for
each positive integer m and

abcd = aη1 + bη2 + cη3 + dη4

for all a, b, c, d ∈ N ∪
√

2N. Thus, for example,

1′2′21 =
√

2η1 + 2
√

2η2 + 2η3 + η4 .

We then set

W0 = {0100, 0010, 011′0, 01′10},
W1 = {0001, 0011, 011′1′, 01′11, 01′21},
W2 = {111′1′, 121′1′, 1′2′32, 122′1′, 132′1′},
W3 = {1′1′11, 1′1′21, 232′1′, 1′2′21, 1′2′31},
W4 = {1000, 1100, 1′1′10, 111′0, 121′0}.

Let |Φ+| denote the image under π of the set of positive roots of Φ with
respect to the basis {α1, . . . , α4}. Then

|Φ+| = W0 ∪W1 ∪W2 ∪W3 ∪W4 .

Notation 12.3. — Let R1 be the unique {2, 3, 4}-residue of ∆ containing
c, let R4 be the unique {1, 2, 3}-residue containing c, let R = R1 ∩R4 and
for i = 1 and 4, let R′i be the unique residue such that R′i ∩ Σ is opposite
R ∩ Σ in Ri ∩ Σ. Then Wi is the set of roots of Σ that contain R ∩ Σ but
are disjoint from R′i ∩ Σ for i = 1 and 4.

Notation 12.4. — There exists a unique set X of {2, 3}-residues of Σ
containing R ∩ Σ with the property that there exists a bijection i 7→ Ti
from Z8 to X such that for each i ∈ Z8, Ti−1 and Ti are opposite residues
of a residue of rank 3 of Σ. We denote by Λ the graph with vertex set X,
where Ti is adjacent to Tj whenever i− j = ±1. Thus the residues R′1 ∩ Σ
and R′4 ∩ Σ are the two vertices adjacent to R ∩ Σ in Λ.

Notation 12.5. — Let X̃ be the graph obtained from the set X in No-
tation 12.4 by replacing each vertex Ti by the unique residue T̃i of ∆ such
that T̃i∩Σ = Ti. Let Σ̃ be the graph with vertex set X̃, where T̃i is adjacent
to T̃j whenever i− j = ±1.
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Notation 12.6. — Let κ denote the unique involutory permutation of |Φ|
which interchanges abcd with dcba for all abcd ∈ |Φ|. Note that Wκ

0 = W0
andWκ

i = W5−i for each i ∈ [1, 4]. By [20, 1.2], there is a unique polarity of
∆ stabilizing c and Σ and interchanging ẋα(t) and ẋκ(α)(t) for all α ∈ |Φ|
and all t ∈ E. We denote this polarity by σ.

Notation 12.7. — Let [abcd] denote the reflection associated with the
vector abcd for all abcd ∈ |Φ|. Let r1 = [011′1′] and r4 = [1′1′10] and let R,
R1, R4, R′1 and R′4 be as in Notation 12.3. Then |r1r4| = 4. The reflection
r1 stabilizes R1 ∩ Σ and interchanges R ∩ Σ with R′1 ∩ Σ as well as W2
and W4. The reflection r4 stabilizes R4 ∩ Σ and interchanges R ∩ Σ with
R′4 ∩ Σ as well as W1 and W3. In particular, r1 induces the reflection on
the graph Λ defined in Notation 12.4 that interchanges R ∩ Σ and R′1 ∩ Σ
and r4 induces the reflection that interchanges R ∩ Σ and R′4 ∩ Σ.

Notation 12.8. — We denote by r the square of the product

[0100] · [0010].

The element r is an involution commuting with κ and with r1 and r4. It
stabilizes the residue R and hence acts trivially on the graph Λ. It stabilizes
the four sets W1, . . . ,W4 and fixes the vectors 011′1′ ∈ W1, 1′2′32 ∈ W2,
232′1′ ∈ W3 and 1′1′10 ∈ W4, but does not fix any other elements of
W1 ∪W2 ∪W3 ∪W4.

By 11.4(1), there exists a unique automorphism ζ of ∆ stabilizing Σ such
that

(12.9) ẋv(t)ζ = ẋr(v)(t)

for all t ∈ E.
We set

λm
′

= λmθ

for all λ ∈ K and all m ∈ N and let

hλ1,λ2,λ3,λ4 = g1,λ1,λ2,λθ
−1

3 ,λθ
−1

4 ,1

for all λ1, . . . , λ4 ∈ E∗. Let h = hλ1,...,λ4 for some choice of λ1, . . . , λ4 ∈ E∗.
By 11.4(2), we have

(12.10) ẋabcd(t)h = ẋabcd(λt)

for all abcd ∈ |Φ| and all t ∈ E, where

λ = λa1λ
b
2λ
c
3λ
d
4 .
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Thus, for example,

ẋ1′2′21(t)h = ẋ1′2′21(λt)

for all t ∈ L, where

λ = λθ1λ
2θ
2 λ

2
3λ4 .

Notation 12.11. — We set

ξ = gw1,β−(θ+1),βθ,β,β−(θ+1)θ−1 ,χ ,

where w1 is as in Notation 11.7. By 9.12(2) and Notation 12.1, we have
α = β−θ; thus ξ is the same as the element ξ in Notation 11.9. Note that

ẋabcd(t)ξ =
(
ẋabcd(tχ)h

)ζ
for all abcd ∈ |Φ|, where ζ is as in (12.9) and

h = hβ−(θ+1),βθ,βθ,β−(θ+1) .

Notation 12.12. — By Theorem 11.10, we already know that the auto-
morphism ξ is a type-preserving χ-involution of ∆ and that Ξ̃ := ∆〈ξ〉 is
isomorphic to Ξ. The polarity σ defined in Notation 12.6 commutes with ξ
and thus induces a polarity of Ξ̃ which we denote by ρ̃. Our goal in Propo-
sition 12.15 is to show that there is an isomorphism from Ξ̃ to Ξ which
carries ρ̃ to ρ.

Remark 12.13. — Since (by Theorem 11.10) the minimal residues stabi-
lized by ξ are of type {2, 3}, the residue R in Notation 12.3 is a chamber of
Ξ̃. Since ξ stabilizes Σ, the graph Σ̃ defined in Notation 12.5 is an apartment
of Ξ̃ containing R. The polarity ρ̃ stabilizes both R and Σ̃.

Remark 12.14. — It might appear that we are giving a new proof of
Theorem 11.10 in Proposition 12.15. In fact, however, the proof of Propo-
sition 12.15 we give relies on Remark 12.13 which, in turn, relies on the fact
that the minimal residues stabilized by ξ are of type {2, 3}. It is exactly in
the proof of this fact that the proof of Theorem 11.10 in [14] differs from
the proof in [12].

Proposition 12.15. — Let Ξ, Σ, c and ρ be as Notation 9.14 and let
Ξ̃, Σ̃, R and ρ̃ be as in Notation 12.3, Notation 12.12 and Remark 12.13.
Then there is an isomorphism from Ξ̃ to Ξ mapping the pair (Σ̃, R) to the
pair (Σ, c) that carries the polarity ρ̃ to ρ.
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Proof. — We define maps X1, . . . , X4 from V = E ⊕E ⊕ [K] to Aut(∆)
as follows:

X1(u, v, t) = ẋ0011(u)ẋ01′11(β−1ū) · ẋ0001(v)ẋ01′21(β−(θ+1)v̄) · ẋ011′1′(t)

X2(u, v, t) = ẋ121′1′(u)ẋ122′1′(β−1ū) · ẋ111′1′(v)ẋ132′1′(β−(θ+1)v̄) · ẋ1′2′32(t)

X3(u, v, t) = ẋ1′1′21(u)ẋ1′2′21(β−1ū) · ẋ1′1′11(v)ẋ1′2′31(β−(θ+1)v̄) · ẋ232′1′(t)

X4(u, v, t) = ẋ1100(u)ẋ111′0(β−1ū) · ẋ1000(v)ẋ121′0(β−(θ+1)v̄) · ẋ1′1′10(t)

for all (u, v, t) ∈ V , where x̄ = xχ for all x ∈ E. Note that

(12.16) Xi(u, v, t)ρ̃ = X5−i(u, v, t)

for all (u, v, t) ∈ V . Let Mi = Xi(V ) for all i ∈ [1, 4], let M+ denote the
subgroup generated by M1, . . . ,M4 and let

Ψ̃ := (M+,M1,M2,M3,M4).

We have Mi = C〈Uα|α∈Wi〉(ξ) for each i ∈ [1, 4]. By Notation 12.3, Re-
mark 12.13 and [11, 24.32],M1 andM4 are root groups of ∆ corresponding
to the two roots of the apartment Σ̃ containing R but not some chamber
of Σ̃ adjacent to R. By Notation 12.7, we conclude that Ψ̃ is a root group
sequence of the Moufang quadrangle Ξ̃.
It follows from 12.2(1)–(3) that the map Xi is additive and thus Mi is

abelian for all i ∈ [1, 4], that

[M1,M2] = [M2,M3] = [M3,M4] = [M1,M3] = 1,

and that

[X2(a, b, s), X4(u, v, t)] = X3(0, 0, β−1(uā+ aū) + β−(θ+1)(vb̄+ bv̄))
= X3(0, 0, f((a, b, s), (u, v, t))

for all (a, b, s), (u, v, t) ∈ V , where f = ∂q. Applying also the identi-
ties (1.3), we find that

[X1(a, 0, 0), X4(u, 0, 0)] = X2(0, aθu, 0)X3(0, uθa, 0)

[X1(a, 0, 0), X4(0, v, 0)] = X2(β−θāθv, 0, 0)X3(0, β−1vθā, 0)

[X1(a, 0, 0), X4(0, 0, s)] = X2(0, 0, sβ−1N(a))X3(sa, 0, 0)

[X1(0, b, 0), X4(0, v, 0)] = X2(β−(θ+1)bθv̄, 0, 0)X3(β−(θ+1)vθv̄, 0, 0)

[X1(0, b, 0), X4(0, 0, s)] = X2(0, 0, sβ−(θ+1)N(b))X3(0, sb, 0)

[X1(0, 0, r), X4(0, 0, s)] = X2(0, 0, rθs)X3(0, 0, sθr)

for all (a, b, r), (u, v, s) ∈ V . The commutator of an arbitrary element of
Mi with an arbitrary element of Mj for (i, j) = (1, 3) and (1, 4) is uniquely
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determined by the identities (1.3), (12.16) and the identities above. It fol-
lows that there is an isomorphism ω from Ψ̃ to the root group sequence
Ψ := (U+, U1, . . . , U4) defined by the commutator relations in Notation 9.14
sending Xi(u, v, t) to xi(u, v, t) for all (u, v, t) ∈ V and all i ∈ [1, 4].
By (9.15) and (12.16), ω carries the anti-automorphism of Ψ̃ induced by
ρ̃ to the anti-automorphism of Ψ induced by ρ. By [23, 7.5], there exists
a unique isomorphism ω1 from Ξ̃ to Ξ mapping the pair (Σ̃, R) to the
pair (Σ, c) and inducing the map ω from Ψ̃ to Ψ. By [23, 3.7], ω1 carries
ρ̃ to ρ. �

13. Moufang Octagons

Let Ω be a Moufang octagon. By [23, 17.7], Ω = O(E, θ) for some octag-
onal set (E, θ) as defined in Definition 2.1. Let ∆ = F4(E, θ) = F4(E,Eθ)
as defined in Notation 2.3.

Notation 13.1. — Let L/E and the extension of θ to L be as in No-
tation 12.1. Then θ maps the pair (L,E) to the pair (E,Eθ) and hence
induces an isomorphism from F4(L,E) to ∆. Let c, Σ, Φ and the identifi-
cation of Φ with the set of roots of Σ be as in Notation 11.1, let {xα}α∈Φ
be as in Theorem 11.2 and let σ be the polarity of F4(L,E) defined in
Notation 12.6. We identify F4(L,E) with ∆ via the isomorphism induced
by θ.

Proposition 13.2. — Ω ∼= ∆〈σ〉.

Proof. — This holds by [20, Theorem (on p. 540)]. �

For the rest of this section, we will simply identify Ω with ∆〈σ〉.

Proposition 13.3. — Every automorphism of Ω has a unique exten-
sion to a type-preserving automorphism of ∆, and all of these extensions
commute with σ.

Proof. — Let G◦ denote the group of type-preserving automorphisms of
∆ (as in Notation 3.2 applied to ∆). By [20, 1.6 and 1.13.1(ii)], every au-
tomorphism of Ω can be extended to an element in the centralizer CG◦(σ).
Suppose that g is a type-preserving automorphism of ∆ that acts trivially
on Ω. It remains only to show that g is trivial. Opposite chambers of Ω
are opposite chambers of ∆ and opposite chambers of ∆ are contained in a
unique apartment of ∆. We can thus assume that g fixes the apartment Σ
and chamber c in Notation 13.1. Since g is type-preserving, it acts trivially
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on Σ and hence normalizes the root group Uα for all α ∈ Φ. By [20, 1.5],
the map from the additive group of E to Aut(Ω) which sends t ∈ E to the
element of Aut(Ω) induced by xα1(tθ)xα4(t) is injective as is the map from
the additive group of E to Aut(Ω) which sends t ∈ E to the element of
Aut(Ω) induced by xα2(tθ)xα3(t)xα2+2α3(tθ+2). It follows that g centralizes
Uαi for each i ∈ [1, 4]. By 11.4(1), therefore, g = 1. �

By [11, 28.8], E is the defining field of Ω and {E/Eθ, Eθ/E} is the pair
of defining extensions of ∆.

Proposition 13.4. — Let A = Aut(E,Eθ) be as in Notation 3.6, let ι
denote the inclusion map from A to Aut(E) and let ψ∆ denote the Galois
map of ∆ in Remark 11.6. Then there is a unique Galois map ψΩ of Ω such
that

(13.5) ψΩ(κ) = ι(ψ∆(ζ))

for all pairs (κ, ζ), where κ ∈ Aut(Ω) and ζ is the unique extension of κ to
a type-preserving automorphism of ∆.

Proof. — Let G◦ and G† be as in Notation 3.2 applied to ∆ and let
H = Aut(Ω). By Proposition 13.3, there is a unique homomorphism ψ = ψΩ
from H to Aut(E) such that (13.5) holds. Let κ ∈ Aut(Ω) and let ζ be its
unique extension to an element of G◦. If κ lies in a root group of Ω, then
by [11, 24.32], ζ ∈ G† and hence ψ(κ) = 1. Thus ψ satisfies 3.8(1). Let d be
the chamber opposite c in Σ. Then d is a chamber of Ω opposite c. Hence
there exists a unique apartment ΣΩ containing c and d. Suppose that κ
acts trivially on ΣΩ. Then ζ acts trivially on Σ since it is type-preserving.
By Proposition 11.5, therefore,

ζ = gγ,λ1,...,λ4,χ

for some γ ∈ Aut(Φ), some λ1, λ2 ∈ Eθ, some λ3, λ4 ∈ E and some
χ ∈ Aut(E,Eθ). By Remark 11.6, ψ∆(ζ) = χ. Let B = BΠ be as in
Notation 3.3 for Π = I2(8), let (s, t) be the standard element of B as
defined in Remark 3.4 and let Θ = (Û+, Û1, . . . , Û8) be the root group
sequence and x̂1, . . . , x̂8 the isomorphisms obtained by applying [23, 16.9]
to the octagonal set (E, θ). By [20, 1.5–1.7], there exists an isomorphism
ϕ : Ωst → Θ such that there exist δ1, . . . , δ8 ∈ E∗ so that for each i ∈ [1, 8],
x̂i(u)h = x̂i(δiuχ) for all u ∈ E if i is odd and x̂i(u, v)h = x̂i(δiuχ, λθ+1

i vχ)
for all u, v ∈ E if i is even, where h := ϕ−1κϕ. Thus χ = ψΩ(κ) equals the
element called λΩ(h) in [11, 29.5] with Ω = Θ. By Notation 3.8, ψΩ is the
unique Galois map of Ω determined by ϕ. �
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Remark 13.6. — Let κ ∈ Aut(Ω) and let ζ be the unique extension
κ to a type-preserving automorphism of ∆. By Proposition 13.3, κ is an
involution if and only if ζ is. If we choose Galois maps as in Proposition 13.4,
it follows that ζ is, in fact, a χ-involution for some χ ∈ A if and only if κ is a
ι(χ)-involution, where A and ι are as in Proposition 13.4; see Notation 3.11.

Proposition 13.7. — Let κ be a Galois involution of Ω that fixes panels
of one type but none of the other type. Then κ has a unique extension to
a type-preserving Galois involution ζ of ∆, 〈ζ〉 is a descent group of ∆ and
〈ζ〉-chambers are residues of type {2, 3}.

Proof. — By Remark 13.6, κ has a unique extension to a type-preserving
Galois involution ζ of ∆. By Theorem 3.10, 〈ζ〉 is a descent group of ∆. By
Proposition 13.2, some panels of Ω are {1, 4}-residues of ∆ and the others
are {2, 3}-residues (with respect to the standard numbering of the vertex
set of the Coxeter diagram F4). Since κ fixes panels of Ω, we can choose a
J-residue R of ∆ stabilized by 〈κ, σ〉, where J is either {1, 4} or {2, 3}. Let
R1 be a minimal 〈ζ〉-residue contained in R and let J1 be its type. Since
ζ commutes with σ, R1 ∩ Rσ1 is also stabilized by ζ. By the choice of R1,
it follows that R1 is stabilized by σ. Thus J1 is a subset of J invariant
under the non-trivial automorphism of the Coxeter diagram of ∆, so either
J1 = ∅ or J1 = J . Suppose that J1 = ∅. Then R1 is contained in a unique
J ′-residue R2, where J ′ denotes the complement of J in the vertex set of
the Coxeter diagram F4. Since 〈σ, ζ〉 stabilizes R1, it must stabilize R2 as
well. This contradicts the assumption, however, that κ does not fix panels
of Ω of both types. We conclude that J1 = J and hence R1 = R. Thus R
is a 〈ζ〉-chamber.
Let Π be the Coxeter diagram of type F4 and let Θ denote the trivial

subgroup of Aut(Π). By Definitions 2.14 and 2.15, the triple (Π,Θ, {1, 4})
is not a Tits index. By 2.18(3), we conclude that J = {2, 3}. �

Proposition 13.8. — Let χ = ψ∆(ξ), where ψ∆ is as in Proposi-
tion 13.4 and ξ is as in Proposition 13.7. Then the following hold:

(1) χθ = θχ and χθ is a Tits endomorphism of E.
(2) Ωξ := ∆〈ξσ〉 is isomorphic to O(E,χθ).
(3) Proposition 13.3 holds with Ωξ and ξσ in place of Ω and σ.
(4) There exists a Galois map ψΩξ of Ωξ such that (13.5) holds with

ψΩξ in place of ψΩ.

Proof. — By 11.11(1) and the choice of ψ∆ in Proposition 13.4, we can
assume that

ξ = gw1,λ1,...,λ4,χ
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for some λ1, λ2 ∈ Eθ and some λ3, λ4 ∈ E. For each α ∈ Φ, we denote by sα
the corresponding reflection of Φ (as in Notation 11.1). Let s = sα3sα2+2α3 ,
let βi = αsi and let d = cs with respect to the action of W on Σ described
in Notation 11.1. Then β1, . . . , β4 is a basis of Φ and β1 = α1 + α2 + 2α3,
β2 = −α2−2α3, β3 = α2 +α3 and β4 = α3 +α4. The restriction of σξ to Σ
induces the unique automorphism of Φ that interchanges βi and β5−i for all
i ∈ [1, 4] (via the identification of the roots of Σ with Φ in Notation 11.1).
By 11.4(2), there exist non-zero ε3, ε

′
3, ε4 ∈ Eθ such that

(13.9) xβi(t)ξσ = xβ5−i(εitχθ)

for i = 3 and 4 and all t ∈ Eθ and

xβ3(t)σξ = xβ2(ε′3tθχ)

for all t ∈ Eθ. Since σ and ξ commute, we conclude that ε3 = ε′3 and
θχ = χθ. Thus (1) holds.

Let h = g1,ε3ε
−1
4 ,ε3,ε

−1
3 ,ε3,1. By 11.4(2) again, h centralizes Uβ3 and Uβ4

and xβ1(t)h = xβ1(ε−1
4 t) and xβ2(t)h = xβ2(ε−1

3 t) for all t ∈ F . Let ẍα =
xα · hα for all α ∈ Φ, where hα denotes the automorphism a 7→ ah of Uα.
Then {ẍα}α∈Φ is a coordinate system for ∆ (as defined in Definition 11.3),
ẍβi = xβi for i = 3 and 4 and ẍβ1(ε4t) = xβ1(t) and ẍβ2(ε3t) = xβ2(t) for
all t ∈ E. By (13.9), therefore, ẍβi(t)σξ = ẍβ5−i(tχθ) for all i ∈ [1, 4] and for
all t ∈ E. We can thus apply Propositions 13.2–13.4 with ξσ and {ẍα}α∈Φ
in place of σ and {xα}α∈Φ to conclude that (2)–(4) hold. �

14. Proofs of Theorems 4.1 and 4.2

We first prove Theorem 4.1. Suppose that Ξ and ρ satisfy the hypotheses,
let

S = (E/K,F, α, β)
and θ be as in Theorem 9.12 and let ∆ = F4(L,E) and χ be as in Nota-
tion 12.1. The Tits endomorphism θ commutes with χ; it also maps the
pair (L,E) to the pair (E,Eθ) and hence induces an isomorphism from ∆
to F4(E, θ). Let σ be as in Notation 12.6 and let ξ be as in Notation 12.11.
By Notation 12.12, [σ, ξ] = 1, ξ is a type-preserving χ-involution of ∆ and
σ induces a polarity on Ξ̃ := ∆〈ξ〉. By Proposition 3.1, the restriction of 〈σ〉
to Ξ̃ is a descent group of relative rank 1. It follows that 〈ξ, σ〉 is a descent
group of ∆. Thus (1) holds. By Proposition 12.15, (2) holds. By Propo-
sition 3.1 again, ∆〈σ〉 and ∆〈σξ〉 are Moufang octagons. By Notation 13.1
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and Proposition 13.2, the first of these octagons is isomorphic to O(E, θ)
and by 13.8(2), the second is isomorphic to O(E,χθ). Thus (3) holds.
By Proposition 3.1, ∆Γ, (∆〈ξ〉)〈σ〉, (∆〈σ〉)〈ξ〉 and (∆〈σξ〉)〈ξ〉 are all Mou-

fang sets. The underlying set of each of them is the set X of all Γ-chambers
and by 2.18(5) and [11, 24.32], the root group corresponding to a Γ-chamber
R is the permutation group induced by CΓ(UR) on X, where UR is the
unipotent radical of R in ∆. Thus (4) holds. By 2.18(2) and Theorem 11.10,
there are {2, 3}-residues of ∆ stabilized by ξ but none of type {1, 4}. By
Proposition 13.4 and 13.8(4), therefore, (5) holds. This concludes the proof
of Theorem 4.1.
We turn now to Theorem 4.2. Suppose that χ, (E, θ), ∆, Ω and κ satisfy

the hypotheses, let σ be as in Notation 13.1 and let ξ be the type-preserving
automorphism of ∆ obtained by applying Proposition 13.3 to κ. Then ξ

and σ commute and by Remark 13.6, ξ is a χ-involution. Let Γ = 〈ξ, σ〉.
Then ∆Γ = Ω〈κ〉. By Proposition 3.13, it follows that Γ is a descent group
of ∆. Thus (1) holds. Assertion (2) holds by Proposition 13.2 and the
choice of ξ. By Proposition 13.7, 〈ξ〉-chambers are of type {2, 3} and by
Proposition 3.12, Ξ := ∆〈σ〉 is a Moufang quadrangle of type F4. Since ξ
and σ commute, σ induces a polarity on Ξ. Thus (3) holds. Assertion (4)
holds for the same reason that 4.1(4) holds and assertion (5) holds by
Proposition 13.8. This concludes the proof of Theorem 4.2.

15. Moufang Sets of Outer F4-Type

Our goal in the remaining sections is to determine a few essential prop-
erties of the Moufang sets of outer F4-type defined in Definition 4.5.

Notation 15.1. — Let S, V = E ⊕ E ⊕ [K], U+, x1, . . . , x4 and θ be as
in Notation 9.14, let θK be the restriction of θ to K, let Ξ = Q(S), Σ and
c be as in Notation 5.7, let q = qS , let f = ∂q, let g be as in Notation 6.21,
let ρ be as in (9.15) and let M = (X, {Ux}x∈X) be the Moufang set Ξ〈ρ〉
obtained by applying 2.18(5) with 〈ρ〉 in place of Γ. Note that c ∈ X.

Notation 15.2. — We have c ∈ X and by 2.18(5), the centralizer CU+(ρ)
equals the root group Uc of the Moufang set M . We set U = Uc and write
U additively even though it is not, as we will see, abelian. In this section
we use (6.20) and Proposition 6.23 to compute a few basic properties of U .

Let η ∈ U+. Thus

η = x1(b)x2(w)x3(v)x4(u)
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for some b, w, u, v ∈ V . Note that f(a, g(y, z)) = 0 for all a, y, z ∈ V by
Notations 5.17 and 6.21 (and, of course, that the characteristic of K is 2).
Thus

ηρ = x4(b)x3(w)x2(v)x1(u)
= x4(b)x1(u)x3(w)x2(v + g(u,w))
= x1(u)x2(bu)x3(ub)x4(b)x3(w)x2(v + g(u,w))
= x1(u)x2(bu)x3(ub)x3(w)x3(g(b, v))x2(v + g(u,w))x4(b)
= x1(u)x2(bu+ v + g(u,w))x3(ub+ w + g(b, v))x4(b) ,

so η ∈ U if and only if b = u, w = bu+v+g(u,w) and v = ub+w+g(b, v).
Note that g(u,w) = g(u, uu) + g(u, v) = g(u, v) by 7.4(1). It follows that

(15.3) U := {x1(u)x2(w)x3(uu+ w + g(u,w))x4(u) | u,w ∈ V }.

Let

(15.4) {u,w} = x1(u)x2(w)x3(uu+ w + g(u,w))x4(u)

for all u,w ∈ V . Then

{u,w}+ {a, b} = x1(u)x2(w)x3(uu+ w + g(u,w))x4(u)
· x1(a)x2(b)x3(aa+ b+ g(a, b))x4(a)

∈ x1(u+ a)x2
(
w + b+ ua+ g(a, uu+ w + g(u,w))

)
U[3,4]

and thus

(15.5) {u,w}+ {a, b} = {u+ a,w + b+ ua+ g(a,w) + g(a, uu)}

for all u,w, a, b ∈ V . It follows that

−{u,w} = {u,w + uu+ g(u,w)}

and the commutator −{u,w} − {a, b}+ {u,w}+ {a, b} equals

(15.6) {0, ua+ au+ g(u, b) + g(a,w) + g(u, aa) + g(a, uu)}

for all u,w, a, b ∈ V .

Proposition 15.7. — U ′ = {0, V } and [U,U ′] = Z(U) = {0, [K]}. In
particular, U is nilpotent and has nilpotency class 3.

Proof. — Setting a = [1] in (15.6), we obtain

{0, u+ [q(u) + f(u, b)]} ∈ U ′

for all u, b ∈ V . For each u ∈ V \[K], there exists b such that q(u) =
f(u, b). Therefore {0, u} is in the commutator group U ′ of U for all u ∈
V \[K]. Hence U ′ = {0, V }. If we set u = 0 in (15.6), we are left with only
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{0, g(a,w)}. It follows that [U ′, U ] = {0, [K]} ⊂ Z(U), Z(U) ⊂ {[K], V }
and

(15.8) Z(U) ∩ {0, V } = {0, [K]}.

Let t ∈ K∗. By Remark 7.3, we can choose s ∈ K with s 6= 0 and s 6= t.
Since (xθ−1)θ+1 = x for all x ∈ K∗, it follows that sθ−1 6= tθ−1 and
hence sθt + stθ 6= 0. Setting u = [s] and a = [t] in (15.6), we obtain
{0, [sθt+ stθ]}. It follows that Z(U) ⊂ {0, V }. By (15.8), we conclude that
Z(U) = {0, [K]}. �

16. The Element τ

Let Ξ, Σ, c, U+, x1, . . . , x4, ρ, X, etc., be as in Notation 15.1 and let φ
and Ω = G(Θ, U+, φ) be as in [23, 7.2] with n = 4, where Θ is a circuit of
length 8 whose vertex set V (Θ) has been numbered by the integers modulo 8
so that the vertex x is adjacent to the vertex x− 1 for all x. The vertex set
of Ω consists of pairs (x,B), where x ∈ V (Θ) and B is a right coset in U+
of the subgroup φ(x). The vertices (x, φ(x)) span an apartment of Ω which
we identify with Θ via the map x 7→ (x, φ(x)). We set • = (4, φ(4)) and
? = (5, φ(5)). Thus e := {•, ?} is an edge of Ω. For all vertices (x,B) of Ω
other than • and ?, the vertex x of Θ is uniquely determined by B and we
can denote the vertex (x,B) simply by B. The elements of U+ fix • and ?
and acts on all other vertices by right multiplication.
By [23, 8.11], Ω is a Moufang quadrangle. We identify Ξ with the corre-

sponding bipartite graph as described in [24, 1.8] and let π be an isomor-
phism Σ to Θ mapping the chamber c to the edge {•, ?}. By [23, 7.5], π
extends to a unique U+-equivariant isomorphism from Ξ to Ω. We identify
Ξ with Ω via this extension, so that Σ = Θ, c = e and the polarity ρ is
an element of Aut(Ξ) stabilizing Σ and interchanging the vertices • and ?.
In particular, c and d are in X, where d = {U1, U4} is the chamber of Σ
opposite e = {•, ?}. Let U = Ue = Uc be as in Notation 15.2.
Let m1 = µΣ(x1(0, 0, 1)) and m4 = µΣ(x4(0, 0, 1)) be as in [24, 11.22].

By (9.15), conjugation by the polarity ρ interchanges x1(0, 0, 1) and
x4(0, 0, 1). By [24, 11.23], therefore, conjugation by ρ interchanges m1 and
m4. By the identities in [23, 14.18 and 32.11], m1 and m4 both have or-
der 2. By [23, 6.9], therefore, 〈m1,m4〉 is a dihedral group of order 8. In
particular, (m1m4)2 = (m4m1)2 and hence

(16.1) ν := (m1m4)2
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is centralized by ρ. The element m1 fixes the vertices ? and U1 and reflects
Σ onto itself and the element m4 fixes the vertices • and U4 and reflects Σ
onto itself. Thus, in particular, d = cν . Hence Ud = νUcν = νUν and thus
νUν acts sharply transitively on X\{d}. The map u 7→ du is a bijection
from the root group U of M to the set X\{e}. Hence there exists a unique
permutation τ of U∗ such that

(16.2) d(u)τ = cνuν

for all u ∈ U∗.
The Moufang set M is isomorphic to the Moufang set M(U, τ) defined

in [6, §3], where τ is as in (16.2). As the results [6, Theorems 3.1 and 3.2]
indicate, τ is an essential structural feature of the Moufang set M . Our
goal in this section is to compute the formula for τ in Theorem 16.9.

Using the definition of the graph Ω in [23, 7.1], one can check that the
permutation of the vertex set of Ω given in Table 1 (where Uij := U[i,j] is
as in [23, 5.1]) is an automorphism of Ω which, like m1, fixes the vertices ?
and U1 and reflects Σ onto itself. It follows from [23, 32.11] (even though
we have reparametrized U+) that m1 centralizes U3 and x4(u)m1 = x2(u)
for all u ∈ V . Since m1 maps the vertex U13 to the vertex U34, it maps
the image U13x4(u) of the vertex U13 under the element x4(u) ∈ U+ to the
image U34x2(u) of the vertex U34 under the element x4(u)m1 = x2(u) of
U+ for all u ∈ V . Similarly, it maps U12x3(u) to U4x3(u) for all u ∈ V .
It follows by [23, 3.7] that the automorphism in Table 1 is m1. By similar
arguments, the action of m4 on the vertex set of Ω is as in Table 2.
In Table 16.3, which is derived from Tables 1 and 2, we have displayed

the action of the product m1m4. We consider the vertex

U1{w, u} = U1 x2(u)x3(ww + u+ g(u,w))x4(w)

with u,w ∈ V , where {w, u} is as in (15.5), and compute the image of
this vertex under ν = (m1m4)2 in Theorem 16.9 using Table 16.3. First,
though, we need to make a few preparations.

Lemma 16.3. — Let u,w ∈ V with u 6= 0, and let v = ww+u+g(u,w) ∈
V . Then u−1v + w 6= 0.

Proof. — Suppose by contradiction that w=u−1v. By Proposition 7.4(1),

(16.4) g(u,w) = g(u, q(u)−1uv) = 0 ,
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?←−→ ?

• ←−→ U24

U1 x2(u) x3(v) x4(w)←−→ U1 x2(w) x3(v + g(u, w)) x4(u)
U12 x3(v) x4(w)←−→ U4 x2(w) x3(v)

U13 x4(w)←−→ U34 x2(w)

U4 x1(u) x2(v) x3(w) u6=0←−→ U4 x1(u−1) x2(vu−1) x3(u−1v + w)
U4 x2(v) x3(w)←−→ U12 x3(w) x4(v)

U34 x1(u) x2(v) u6=0←−→ U34 x1(u−1) x2(vu−1)
U34 x2(v)←−→ U13 x4(v)

U24 x1(u) u6=0←−→ U24 x1(u−1)

Table 16.1. The Involution m1

?←−→ U13

• ←−→ •

U1 x2(u) x3(v) x4(w) w 6=0←−→ U1 x2(w−1v + u + w−1g(u, w)) x3(vw−1) x4(w−1)
U1 x2(u) x3(v)←−→ U34 x1(v) x2(u)

U12 x3(v) x4(w) w 6=0←−→ U12 x3(vw−1) x4(w−1)
U12 x3(v)←−→ U24 x1(v)

U13 x4(w) w 6=0←−→ U13 x4(w−1)

U4 x1(u) x2(v) x3(w)←−→ U4 x1(w) x2(v + g(u, w)) x3(u)
U34 x1(u) x2(v)←−→ U1 x2(v) x3(u)

U24 x1(u)←−→ U12 x3(u)

Table 16.2. The Involution m4

so v = ww + u. Then u−1 = wv−1 by 7.12(2), so by 7.11(3), u = w−1v =
w−1(ww + u). By (R7), 7.12(1) and (16.4),

u = w−1 · ww + w−1u+ g(ww · w−1, u)

= ww + w−1u+ g(w, u) = ww + w−1u.

Hence v = ww + u = w−1u, so 7.12(1) implies w = u−1v = u−1 · w−1u =
uw−1. Then u = ww, and hence v = 0, so w = u−1v = 0, and then
u = ww = 0, a contradiction. We conclude that u−1v + w 6= 0. �
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? 7−−−→ U13

• 7−−−→ U12

U34 7−−−→ ?

U24 7−−−→ •

U1 x2(u) x3(v) x4(w) u6=07−−−→ U1 x2(u−1v + w) x3
(
vu−1 + g(u−1, w)

)
x4(u−1)

U1 x3(v) x4(w) 7−−−→ U34 x1(v) x2(w)
U12 x3(v) x4(w) 7−−−→ U4 x1(v) x2(w)

U13 x4(w) 7−−−→ U1 x2(w)

U4 x1(u) x2(v) x3(w) u6=07−−−→ U4 x1(u−1v + w) x2
(
vu−1 + g(u−1, w)

)
x3(u−1)

U4 x2(v) x3(w) v 6=07−−→ U12 x3(wv−1) x4(v−1)
U4 x3(w) 7−−−→ U24 x1(w)

U34 x1(u) x2(v) u6=07−−−→ U1 x2(vu−1) x3(u−1)

U34 x2(v) v 6=07−−→ U13 x4(v−1)

U24 x1(u) u6=07−−−→ U12 x3(u−1)

Table 16.3. The Product m1m4

Notation 16.5. — We set

N({w, u}) :=
{
q(u)q

(
u−1(ww + u+ g(u,w)) + w

)
if u 6= 0 ,

q(w)θ+2 if u = 0

for all {w, u} ∈ U . By Lemma 16.3, N({w, u}) = 0 only if w = u = 0. We
call N the norm of M .

Lemma 16.6. — Let {w, u} ∈ U . Then

N({w, u}) = q(u)θ + q(u)q(w) + q(w)θ+2 + f(u,ww)θ

+ f(u,wu) + q(w)f(u,ww) .

Proof. — This is obvious if u = 0, so assume that u 6= 0. Let v =
ww + u+ g(u,w). Then

(16.7) N({w, u}) = q(u)q(u−1v + w) = q(v)θ + f(uv,w) + q(u)q(w)

by Proposition 7.9. We have

q(v) = q(ww) + q(u) + f(u,w)θ + f(ww, u)

= q(w)θ+1 + q(u) + f(u,w)θ + f(ww, u),

TOME 67 (2017), FASCICULE 6



2412 Tom DE MEDTS, Yoav SEGEV & Richard M. WEISS

and hence

(16.8) q(v)θ = q(w)θ+2 + q(u)θ + f(u,w)2 + f(ww, u)θ.

We also have

f(uv,w) = f(u,wv) = f
(
u,w · (ww + u+ g(u,w))

)
= f

(
u,w · ww + wu+ f(u,w)w + g(uw,ww)

)
= q(w)f(u,ww) + f(u,wu) + f(u,w)2.

Combining this with (16.7) and (16.8), we obtain the required formula. �

Theorem 16.9. — Let {w, u} ∈ U∗. Then

{w, u}τ =
{
q(u)w + f(u,w)u+ u(ww + u)

N({w, u}) ,
q(w)u+ w(ww + u)

N({w, u})

}
.

Proof. — Assume first that u = 0. Then

U1{w, u} = U1{w, 0} = U1 x3(ww)x4(w).

Since {w, u} ∈ U∗, we have w 6= 0 and hence ww 6= 0. Using Table 16.3,
we obtain

U1 x3(ww)x4(w) m1m47−−−−→ U34 x1(ww)x2(w)
m1m47−−−−→ U1 x2(w · (ww)−1)x3((ww)−1).

By 7.12(1), we have w · (ww)−1 = w · w−1w−1 = w−1w−1 = (ww)−1 and
hence

U1 x2(w · (ww)−1)x3((ww)−1) = U1 x2((ww)−1)x3((ww)−1)

= U1{0, (ww)−1}.

By (16.2), therefore,
{w, 0}τ = {0, (ww)−1}.

Since
w · ww

N({w, 0}) = q(w)ww/q(w)θ+2 = (ww)−1,

we obtain the required formula.
Assume now that u 6= 0, and let v := ww+u+ g(u,w). By Lemma 16.3,

u−1v + w 6= 0. Let

a = u−1v + w,

b = vu−1 + g(u−1, w) and

c = u−1,
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so that

U1{w, u} = U1 x2(u)x3(v)x4(w) m1m47−−−−→ U1 x2(a)x3(b)x4(c),

and hence
U1{w, u}

(m1m4)2

7−−−−−−→ U1{a−1, a−1b+ c}.

Thus
{w, u}τ = {a−1, a−1b+ c}

by (16.2). Observe that

(16.10) a = u−1(ww+ u+ g(u,w)
)

+w = w+ f(u,w)u−1 + u−1(ww+ u)

by (R2) and

(16.11) b = (ww + u)u−1 + g(u,w)u−1 + g(u−1, w) = (ww + u)u−1

by 7.4(3). Also notice that

(16.12) q(a) = q(u−1v + w) = q(u)−1N({w, u})

by Notation 16.5, and hence

(16.13) a−1 = q(u)a
N({w, u}) = q(u)w + f(u,w)u+ u(ww + u)

N({w, u}) .

To compute a−1b+ c, we first notice that, by Proposition 7.5,

w · (ww + u)u−1 = f(u−1, w(ww + u))u−1

+ f(u−1, w)u−1(ww + u) + q(u−1)w(ww + u) ,

and hence

(16.14) q(u)w · (ww + u)u−1

= f(u−1, w(ww + u))u+ f(u,w)u−1(ww + u) + w(ww + u) .

Next, by 7.12(1),

(16.15) f(u,w)u · (ww + u)u−1 = f(u,w)u−1(ww + u) .

Finally, by 7.14(4),

(16.16) u(ww + u) · (ww + u)u−1 = q(u)u−1(ww + u) · (ww + u)u−1

= q(u)q
(
u−1(ww + u)

)
u−1 = q

(
u−1(ww + u)

)
u.

Also observe that

(16.17) c = u−1 = q(u)−1u = q(a)u/N({w, u})
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by (16.12). By (16.11), (16.13), (16.14), (16.15), (16.16) and (16.17), we
obtain

a−1b+ c =
f(u−1, w(ww + u))u+w(ww+u) + q

(
u−1(ww+u)

)
u+ q(a)u

N({w, u}) .

It remains to show that

(16.18) f(u−1, w(ww + u)) + q
(
u−1(ww + u)

)
+ q(a) = q(w) .

By (16.10), however, we have

q(a) = q(w) + f(u,w)2q(u−1) + q
(
u−1(ww + u)

)
+ f(u,w)f(w, u−1)

+ f
(
w, u−1(ww + u)

)
+ f(u,w)f

(
u−1, u−1(ww + u)

)
.

Notice that the last term is 0 by 7.4(1) and that

f(u,w)2q(u−1) = f(u,w)f(w, u−1) .

We conclude that

q(a) = q(w) + q
(
u−1(ww + u)

)
+ f

(
w, u−1(ww + u)

)
= q(w) + q

(
u−1(ww + u)

)
+ f

(
u−1, w(ww + u)

)
(by 7.4(2)). Thus (16.18) holds. �

17. Moufang Subsets

Our next goal is to identify three Moufang subsets of the Moufang set
M . We continue with the notation in Notation 15.1. Let G† be as in Defi-
nition 2.4 applied to M .

Remark 17.1. — Let U and τ be as in Section 16 and suppose that R is
a subgroup of U such that R∗ is τ -invariant. Let τR denote the restriction
of τ to R. By [4, 6.2.2(1)], MR := M(R, τR) (as defined in [6, §3]) is a
Moufang set. Let G†R be as in Definition 2.4 applied to MR. Let c, d and ν
be as in (16.2), let XR = {c} ∪ dR and let N = 〈R,Rν〉. By [4, 6.2.6], XR

is an N -orbit, R acts faithfully on XR and the map from the underlying
set {∞} ∪ R of MR to XR sending ∞ to c and u to du for all u ∈ R is a
bijection which induces an isomorphism from the group induced by N on
XR to G†R with kernel Z(N).

Notation 17.2. — Let Λ = (L, κ) be an arbitrary octagonal set as de-
fined in Definition 2.1. We denote by MouSu(Λ) the Moufang set corre-
sponding to the group Suz(Λ). The root groups of MouSu(Λ) are the root
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groups of Suz(Λ). Each of them is isomorphic to the group PΛ with under-
lying set L× L, where

(17.3) (a, b) · (u, v) = (a+ u, b+ v + auκ)

for all (a, b), (u, v) ∈ L× L. For each z ∈ L∗ and for each automorphism σ

of L commuting with κ (possibly trivial), let

(a, b)τz,σ =
(
z
( b

aκ+2 + ab+ bκ

)σ
, zκ+1

( a

aκ+2 + ab+ bκ

)σ)
for all (a, b) ∈ P ∗Λ. By [22, Exemple 2], we have MouSu(Λ) ∼= M(PΛ, τz,σ)
for all z ∈ L∗ and all σ ∈ Aut(L) that commute with κ.

Remark 17.4. — Let Λ = (L, κ) be as in Notation 17.2 and suppose
that |L| > 2. Let MouSu(Λ) = (X, {Ux})x∈X and let B† be the group
obtained by applying Definition 2.4 to MouSu(Λ). By [23, 33.17], we have
Ux = [B†x, Ux] for all x ∈ X.

Notation 17.5. — Let χ, θ and θK be as in Notations 9.3 and 15.1, let
θ1 = θ and let θ2 = χθ1. Thus χ commutes with θ1, and θ2 is also a Tits
endomorphism of E.

Proposition 17.6. — Let θK , θ1, θ2 and χ be as in Notation 17.5.

R0 := {{(0, 0, s), (0, 0, t)} | s, t ∈ K},
R1 := {{(a, 0, 0), (0, b, 0)} | a, b ∈ E} and
R2 := {{(0, b, 0), (a, 0, 0)} | a, b ∈ E}

and let τi denote the restriction of τ to Ri for i ∈ [0, 2]. Then θ2 is a
Tits endomorphism of E, R0, R1 and R2 are τ -invariant subgroups of U ,
M(R0, τ0) ∼= MouSu(K, θK) and M(Ri, τi) ∼= MouSu(E, θi) for i ∈ [1, 2].

Proof. — We calculate using Proposition 9.16. First note that

{[s], [t]} · {[a], [b]} = {[s] + [a], [t] + [b] + [s] · [a]}

= {[s+ a], [t+ b+ saθ]}

for all s, t, a, b ∈ K by (15.5). Let w = [s] and u = [t] for some s, t ∈ K.
Then f(u,w) = 0, q(u) = tθ and q(w) = sθ, ww + u = [sθ+1 + t]. Hence
N({w, u}) =

(
sθ+2 + st+ tθ

)θ by Lemma 16.6. Thus

{[s], [t]}τ =
{[ t

sθ+2 + st+ tθ

]
,
[ s

sθ+2 + st+ tθ

]}
by Theorem 16.9. Therefore R0 is τ -invariant subgroup of U and by Nota-
tion 17.2, the map (s, t) 7→ {[s], [t]} is an isomorphism from P(K,θK) to R0
which carries the map τ1,1 to τ0. Hence M(R0, τ0) ∼= MouSu(K, θK).
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Let w = (a, 0, 0) ∈ V and u = (0, b, 0) ∈ V for some a, b ∈ E. Then
q(w) = β−1N(a) and q(u) = β−θ1−1N(b), where N is the norm of the
extension E/K, and v := ww + u =

(
0, aθ1+1 + b, 0

)
. Hence

q(u)w + u(ww + u) =
(
β−θ1−1(aθ1+2 + ab+ bθ1)bχ, 0, 0

)
and

q(w)u+ w(ww + u) =
(
0, β−1(aθ1+2 + ab+ bθ1)aχ, 0

)
.

By (16.7), we also have

N({w, u}) = q(u)−1q
(
uv + q(u)w

)
= β−θ1−2N

(
aθ1+2 + ab+ bθ1

)
.

Setting [a, b] = {(a, 0, 0), (0, b, 0)} for all a, b ∈ E, we obtain

[a, b]τ =
[
β
( b

aθ1+2 + ab+ bθ1

)χ
, βθ1+1

( a

aθ1+2 + ab+ bθ1

)χ]
for all a, b ∈ E by Theorem 16.9. By (15.5), we have

[a, b] · [u, v] = [a+ u, b+ v + auθ1 ]

for all a, b, u, v ∈ E. Hence R1 is a τ -invariant subgroup of U and by
Notation 17.2, (a, b) 7→ [a, b] is an isomorphism from P(E,θ1) to R1 that
carries the map τβ,χ to τ1. Hence M(R1, τ1) ∼= MouSu(E, θ1).
The computations for R2 are similar. Setting

[a, b] = {(0, βaχ, 0), (b, 0, 0)},

we find that
[a, b] · [u, v] = [a+ u, b+ v + auθ2+1]

for all a, b, u, v ∈ E and

[a, b]τ =
[
βθ2−1

( b

aθ2+2 + ab+ bθ2

)χ
, β
( a

aθ2+2 + ab+ bθ2

)χ]
for all a, b ∈ E. Hence R2 is a τ -invariant subgroup of U and by Nota-
tion 17.2, the map (a, b) 7→ [a, b] is an isomorphism from P(E,θ2) to R2 that
carries the map τβθ2−1,χ to τ2. Hence M(R2, τ2) ∼= MouSu(E, θ2). �

18. Simplicity

We can now deduce Theorem 4.7 as a corollary of Proposition 17.6. Let
M , X, c, Σ and Uc be as in Notation 15.1, let G† be as in Definition 2.4
applied toM and let R0, R1 and R2 be as in Proposition 17.6. Let i ∈ [0, 2]
and let N be as in with Ri in place of R. By Remarks 7.3, 17.1, 17.4 and
Proposition 17.6, we have Ri ⊂ [Nc, Ri] ⊂ [G†, G†]. Thus 〈R0, R1, R2〉 ⊂
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[G†, G†]. By Proposition 9.16 and (15.5) and some calculation, on the other
hand, Uc = 〈R0, R1, R2〉. Since G† is generated by conjugates of Uc, it
follows that G† is perfect. To finish the proof, we proceed with a standard
argument which goes back to [10]: Let I be a non-trivial normal subgroup
of G†. Since I is normal, the product IUc is a subgroup of G†. Since G† acts
2-transitively on X, the subgroup I acts transitively. Hence the subgroup
IUc contains all the root groups of G†. Therefore, G† = IUc. Thus

G†/I ∼= IUc/I ∼= Uc/Uc ∩ I .

Since Uc is nilpotent, it follows that G†/I is nilpotent. Since G† is perfect,
the quotient G†/I is also perfect. A perfect nilpotent group must be trivial.
It follows that I = G†. Thus G† is simple. This concludes the proof of
Theorem 4.7.

19. Invariants

In this last section, we show that q is an invariant of M (where q and M
are as in Notation 15.1).

Theorem 19.1. — Let (K,V, q, θ, t 7→ [t], · ) and (K̃, Ṽ , q̃, θ̃, t 7→ [t], ∗)
be two polarity algebras as defined in Definition 7.1 and assume that the
corresponding Moufang setsM and M̃ are isomorphic. Then there is a field
isomorphism ψ : K → K̃, an additive bijection ζ : V → Ṽ and an element
e ∈ K̃× such that

(1) ζ(v · w) = e−1ζ(v) ∗ ζ(w) for all v, w ∈ V ;
(2) ζ(tv) = ψ(t)ζ(v) for all t ∈ K and all v ∈ V ;
(3) q̃(ζ(v)) = eθ̃ψ(q(v)) for all v ∈ V ; and
(4) ψ(tθ) = ψ(t)θ̃ for all t ∈ K.

In particular, the quadratic forms q and q̃ are similar.

Proof. — Let π be an isomorphism from M = (X, {Ux}x∈X) to M̃ =
(X̃, {Ũx̃}x̃∈X̃), i.e. a bijection from X to X̃ such that π−1Uzπ = Ũ(z)π for
all z ∈ X. We can assume that M , c and Σ are as in Notation 15.1. Thus
by Notation 15.2, Ux is the group U described in Section 16. Let d ∈ Σ
be the unique chamber of Σ opposite c (as in Section 16) and let c̃ and d̃
be the images of c and d under π. Let H denote the pointwise stabilizer of
{c, d} in M and let H̃ denote the pointwise stabilizer of {c̃, d̃} in M̃ . For
each b ∈ U∗c , we denote by mb the unique element in UdbUd interchanging
c and d and by µb be the unique permutation of U∗c such that

(19.2) d(a)µb = cm
−1
b
umb
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for each a ∈ U∗c . We define µ̃b̃ for each b̃ ∈ Ũc̃ analogously. Let ϕ : Uc → Ũc̃
be the isomorphism induced by π. Then

(19.3) ϕ((a)µb) = (ϕ(a))µ̃ϕ(b) for all a, b ∈ U with b 6= 1.

Let {u, v} for u, v ∈ V be as in (15.4); we define {ũ, ṽ} for ũ, ṽ ∈ Ṽ anal-
ogously. Thus U = {V, V } and Ũ = {Ṽ , Ṽ }. Recall from Proposition 15.7
that U ′ = {0, V } and Ũ ′ = {0, Ṽ }. Therefore

(19.4) ϕ({0, V }) = {0, Ṽ }

and

(19.5) {0, Ṽ } is H̃-invariant.

Let c̃ = ϕ({0, [1]}), τ1 = µ{0,[1]}, let ν be as in (16.1), let τ be as in (16.2)
and let τ̃ = ϕ−1τϕ. The product m{0,[1]}ν fixes c and d and hence lies in
H. By (16.2) and (19.2), it follows that τ1 ∈ H◦τ , where H◦ denotes the
permutation group

{u 7→ h−1uh | h ∈ H}
on U∗c . Similarly, µ̃c ∈ H̃◦τ̃ , where H̃◦ is defined analogously. By Theo-
rem 16.9 and (19.5), it follows that {0, V ∗}τ1 = {V ∗, 0} and {0, Ṽ ∗}µ̃c =
{Ṽ ∗, 0}. By (19.3), (19.4) and (19.5), therefore,

(19.6) ϕ({V ∗, 0}) = ϕ({0, V ∗}τ1) = ϕ({0, V ∗})µ̃c = {Ṽ ∗, 0}.

By (19.4) and (19.6), we conclude that there exist maps ζ : V → Ṽ and
γ : V → Ṽ such that ϕ({u, 0}) = {ζ(u), 0} and ϕ({0, v}) = {0, γ(v)} for all
u, v ∈ V . Since {u, v} = {u, 0}+ {0, v} by (15.5), we have

ϕ({u, v}) = {ζ(u), γ(v)}

for all u, v ∈ V . Therefore ζ is additive and

(19.7) γ
(
w + b+ ua+ g(a,w) + g(a, uu)

)
= γ(w) + γ(b) + ζ(u) ∗ ζ(a)

+ g̃
(
ζ(a), γ(w)

)
+ g̃
(
ζ(a), ζ(u) ∗ ζ(u)

)
for all u,w, a, b ∈ V by (15.5) since φ is a homomorphism. Setting a = 0
in (19.7), we see that also γ is additive. By (19.7), therefore,

γ(ua) + γ
(
g(a,w) + g(a, uu)

)
= ζ(u) ∗ ζ(a) + g̃

(
ζ(a), γ(w)

)
+ g̃
(
ζ(a), ζ(u) ∗ ζ(u)

)
for all u,w, a ∈ V . Substituting uu for w in this identity, we obtain

(19.8) γ(ua) = ζ(u) ∗ ζ(a) + g̃
(
ζ(a), γ(uu)

)
+ g̃
(
ζ(a), ζ(u) ∗ ζ(u)

)
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and if we set a = u in this identity, we have

γ(uu) = ζ(u) ∗ ζ(u) + g̃
(
ζ(u), γ(uu)

)
+ g̃
(
ζ(u), ζ(u) ∗ ζ(u)

)
.

Applying the map x̃ 7→ g̃(ζ(a), x̃) to this last identity, we obtain

g̃
(
ζ(a), γ(uu)

)
= g̃
(
ζ(a), ζ(u) ∗ ζ(u)

)
.

Substituting this back into (19.8) now yields

(19.9) γ(ua) = ζ(u) ∗ ζ(a)

for all u, a ∈ V . In particular,

(19.10) γ(u) = ζ(u) ∗ ζ([1]).

Now observe that by Proposition 15.7 again, γ maps [K] onto [K̃], so
by (19.10) and (R4), also ζ([K]) = [K̃]. In particular, there exists an e ∈
K̃× such that ζ([1]) = [e], and hence γ(u) = eζ(u) for all u ∈ V by (R2).
Substituting this back into (19.9) now yields (1).
Since ζ([K]) = [K̃], there is a unique map ψ : K → K̃ such that

(19.11) ζ([t]) = [eψ(t)]

for all t ∈ K. Substituting [t] for w in (1) and applying (R2), we obtain
ζ(tv) = ζ(v[t]) = e−1ζ(v)[eψ(t)] = ψ(t)ζ(v). Thus (2) holds.
Since ζ is additive, so is ψ. By (2), we have

ψ(st)ζ(u) = ζ(stu) = ψ(s)ζ(tu) = ψ(s)ψ(t)ζ(u)

for all s, t ∈ K and all u ∈ V , so ψ is multiplicative. By the definition of e,
we have ψ(1) = 1. Thus ψ is a field isomorphism.

We have [1]v = [q(v)] for all v ∈ V by (R1). Applying ζ, we obtain
using (1) that [e]∗ζ(v) = eζ([q(v)]). By (7.2), (19.11) and (R1), this implies
that [eq̃(ζ(v))] = e[eψ(q(v))] = [eθ̃+1ψ(q(v))] for all v ∈ V . Thus (3) holds.

Finally, we have t[1] = [tθ] for all t ∈ K by (7.2). Applying ζ again, we
obtain using (2) that ψ(t)ζ([1]) = ζ([tθ]) and hence, by (19.11), ψ(t)[e] =
[eψ(tθ)]. Another application of (7.2) now yields [ψ(t)θ̃e] = [eψ(tθ)] for all
t ∈ K. We conclude that (4) holds. �
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