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ON EVIL KRONECKER SEQUENCES AND LACUNARY
TRIGONOMETRIC PRODUCTS

by Christoph AISTLEITNER,
Roswitha HOFER & Gerhard LARCHER (*)

Abstract. — An important result of Weyl states that for every sequence
(nk)k>1 of distinct positive integers the sequence of fractional parts of (nkα)k>1
is u.d. mod 1 for almost all α. However, in this general case it is usually ex-
tremely difficult to measure the speed of convergence of the empirical distribution
of ({n1α}, . . . , {nNα}) towards the uniform distribution. In this paper we investi-
gate the case when (nk)k>1 is the sequence of evil numbers, that is the sequence of
non-negative integers having an even sum of digits in base 2. We utilize a connec-
tion with lacunary trigonometric products

∏L

`=0

∣∣sinπ2`α
∣∣, and by giving sharp

metric estimates for such products we derive sharp metric estimates for exponen-
tial sums of (nkα)k>1 and for the discrepancy of ({nkα})k>1 . Furthermore, we
provide some explicit examples of numbers α for which we can give estimates for
the discrepancy of ({nkα})k>1.

Résumé. — Un résultat important de Weyl nous dit que pour chaque suite
(nk)k>1 de nombres entiers positifs différents la suite {nkα}k>1 est équidistribuée
modulo 1 pour presque tous les réels α. Dans ce cas, il est d’habitude extrêmement
difficile de mesurer la vitesse de convergence de la distribution empirique vers
l’équidistribution.

Dans cet article, nous étudions le cas ou (nk)k>1 est la suite des nombres entiers
« méchants », donc la suite des nombres positifs la une somme de chiffres paire dans
la base 2. Nous relions ce probléme aux produits trigonométriques

∏L

l=0 ‖ sinπ2lα‖
en donnant des estimations exactes pour de tels produits et nous obtenons des
estimations exactes pour la discrépance de la suite {nkα}k>1.

En plus, nous donnons des exemples concrets de réels α pour lesquels nous
pouvons obtenir des estimations pour la discrépance de la suite {nkα}k>1.

Keywords: evil numbers, Thue–Morse sequence, (nα)-sequence, discrepancy, lacunary
trigonometric products.
Math. classification: 11B85, 11K38, 11B83, 11A63, 68R15.
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1. Introduction and statement of results

Throughout the rest of this paper, we let s2(n) denote the sum-of-digits
function of n in base 2, and we let (nk)k>1 denote the sequence of non-
negative integers which have an even sum-of-digits function in base 2, sorted
in increasing order. Furthermore, we write (mk)k>1 for the sequences of
those numbers which are not contained in (nk)k>1, sorted in increasing or-
der; thus (mk)k>1 = (1, 2, 4, 7, 8, 11, . . . ). The numbers (nk)k>1 are called
evil numbers, while the numbers (mk)k>1 are called odious numbers. These
sequences are connected to the well-known Thue–Morse sequence (tn)n>0 =
(0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, . . .), a binary sequence which is also de-
fined in terms of s2(n); more precisely, tn = 1 if s2(n) is odd and tn = 0
otherwise. The Thue–Morse sequence has many remarkable properties; for
an extensive survey see [4]. In our notation we have n ∈ (nk)k>1 if and
only if tn = 0.

In this paper we analyze exponential sums of the form
∑N
k=1 e

2πinkα

for reals α ∈ [ 0, 1) , and – what is intimately connected – products of
the form

∏L
`=0
∣∣sin π2`α

∣∣, as well as distribution properties of the sequence
({nkα})k>1. To quantify the regularity of the distribution of a finite set of
real numbers in [0, 1] we use the notion of the star-discrepancy D∗N . For
given numbers x1, . . . , xN , their star-discrepancy is defined by

D∗N (x1, . . . , xN ) = sup
a∈[0,1]

∣∣∣∣∣ 1
N

N∑
n=1

1[0,a](xn)− a

∣∣∣∣∣ .
An infinite sequence (xn)n>1 whose discrepancy D∗N tends to zero as N →
∞ is called uniformly distributed modulo one (u.d. mod 1). Informally
speaking, the star-discrepancy is a measure for the deviation between the
uniform distribution on [0, 1] and the empirical distribution of a given
point set; in probabilistic terminology this corresponds to the Kolmogorov–
Smirnov statistic. Discrepancy theory is a rich subject, which has close links
to number theory, probability theory, ergodic theory and numerical analy-
sis. For more information on discrepancy theory, we refer to the standard
monographs [12, 27].
Sequences of the form ({nα})n>1 are called Kronecker sequences. One of

the fundamental results of discrepancy theory states that such a sequence
is u.d. mod 1 if and only if α is irrational. It is also well-known that the
discrepancy of such a sequence depends on Diophantine approximation

ANNALES DE L’INSTITUT FOURIER
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properties of α. More precisely, we have

Ω

m(N)∑
n=1

an

 = ND∗N ({α}, . . . , {Nα}) = O

m(N)∑
n=1

an


as N →∞, where a1, a2, a3, . . . are the continued fraction coefficients of α
and where m(N) is defined by qm(N)−1 < N 6 qm(N) with q1 < q2 < q3 <

. . . denoting the best approximation denominators of α (see for example [12,
Corollary 1.64]). Hence

ND∗N ({α}, . . . , {Nα}) = O (logN) as N →∞

if α has bounded continued fraction coefficients, and, as a consequence of
metric results of Khintchine [26], for every ε > 0 we have

ND∗N ({α}, . . . , {Nα}) = O
(

(logN)(log logN)1+ε)
N

)
as N →∞

for almost all α ∈ R.
It is known (see [32]) and it will be re-proved implicitly in this paper

(see Section 6) that the sequence ({nkα})k>1, which we will call the evil
Kronecker sequence, is also uniformly distributed in the unit interval if and
only if α is irrational. However, it turns out to be a very difficult task to give
sharp estimates for the discrepancy of this sequence for concrete values of α.
As we will see, the discrepancy of an evil Kronecker sequence ({nkα})k>1
depends on Diophantine approximation properties and properties of the
digit representation of α in base 2. Until now there are only few (non-
trivial) cases of α where we have enough information about both of these
aspects.
Exponential sums and discrepancy theory are intimately connected. One

such connection is Weyl’s criterion, two others are the Erdős–Turán in-
equality and Koksma’s inequality. The Erdős–Turán inequality (see for ex-
ample [12, 27, 38]) states that for points x1, . . . , xN ∈ [0, 1] we have

D∗N (x1, . . . , xN ) 6 1
H + 1 +

H∑
h=1

1
h

∣∣∣∣∣ 1
N

N∑
k=1

e2πihxk

∣∣∣∣∣ ,(1.1)

where H is an arbitrary positive integer. Koksma’s inequality says that

(1.2)

∣∣∣∣∣
∫ 1

0
f(x) dx− 1

N

N∑
k=1

f(xk)

∣∣∣∣∣ 6 (Var[0,1]f)D∗N (x1, . . . , xN ),

TOME 67 (2017), FASCICULE 2



640 Christoph AISTLEITNER, Roswitha HOFER & Gerhard LARCHER

for any function f having bounded variation Var[0,1]f on [0, 1]. When com-
bined, the Erdős–Turán inequality and Koksma’s inequality show that ex-
ponential sums can be used to obtain both upper and lower bounds for the
discrepancy.
As an explicit lower bound from (1.2) we get (compare for example [27]):

(1.3) D∗N (x1, . . . , xN ) > 1
4H

∣∣∣∣∣ 1
N

N∑
k=1

e2πiHxk

∣∣∣∣∣ ,
where H is an arbitrary positive integer. Koksma’s inequality and its multi-
dimensional generalization are also the cornerstone of the application of
low-discrepancy point sets in numerical integration (so-called Quasi-Monte
Carlo integration; see for example [11, 34]).
Consequently, in this paper we will mainly be concerned with the problem

of investigating exponential sums of the form
∑N
k=1 e

2πinkα. It turns out
that this investigation relies on studying lacunary products of the form∏L
`=0
∣∣sin π2`α

∣∣. Furthermore we study the discrepancy of ({nkα})k>1. For
all three topics we obtain sharp metric results. The investigation of the
lower bound for the discrepancy leads to a challenging open problem in
Diophantine approximation. Finally, we consider two concrete non-trivial
special examples for α.
The main results of this paper are the following. (Throughout the rest

of this paper, we write exp(x) for ex.)

Theorem 1.1. — Let (nk)k>1 be the sequence of evil numbers, sorted
in increasing order, and let h 6= 0 be an integer. Let ε > 0 be arbitrary.
Then for almost all α ∈ (0, 1) we have

(1.4)

∣∣∣∣∣
N∑
k=1

e2πihnkα

∣∣∣∣∣ 6 exp
((

π√
log 2

+ ε

)
(logN)1/2(log log logN)1/2

)
for all N > N0(α, h, ε), and

(1.5)

∣∣∣∣∣
N∑
k=1

e2πihnkα

∣∣∣∣∣ > exp
((

π√
log 2

− ε
)

(logN)1/2(log log logN)1/2
)

for infinitely many N .

Note that the exponential function in (1.4) grows more slowly than any
(fixed) power of N ; but faster than any (fixed) power of logN . In other
words, as a consequence of Theorem 1.1 for every ε > 0 and every A > 0

ANNALES DE L’INSTITUT FOURIER
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we have

Ω
(

(logN)A
)

=

∣∣∣∣∣
N∑
k=1

e2πihnkα

∣∣∣∣∣ = O (Nε) as N →∞,

for almost all α.
It will turn out that Theorem 1.1 is an almost immediate consequence

of the following result on lacunary trigonometric products.

Theorem 1.2. — Let ε > 0 be arbitrary. Then for almost all α ∈ (0, 1)
we have

(1.6)
L∏
`=0

∣∣2 sin π2`α
∣∣ 6 exp

(
(π + ε)

√
L log logL

)
for all L > L0 (α, ε), and

(1.7)
L∏
`=0

∣∣2 sin π2`α
∣∣ > exp

(
(π − ε)

√
L log logL

)
for infinitely many L.

This result is a consequence of a more general result, Theorem 2.5, which
will be formulated later in Section 2 since it needs some technical prereq-
uisites.

From the lower bound in Theorem 1.1 and formula (1.3) we immediately
obtain a metric lower bound for the discrepancy D∗N ({n1α} , . . . , {nNα})
of this sequence. However in Theorem 1.3 it turns out that the true metric
order of the discrepancy D∗N ({n1α} , . . . , {nNα}) is much larger.

Theorem 1.3. — Let (nk)k>1 be the sequence of evil numbers, sorted
in increasing order. Let ε > 0 be arbitrary. Then for almost all α ∈ (0, 1)
we have

ND∗N ({n1α} , . . . , {nNα}) = O
(
N1+ logλ

log 2 +ε
)

as N →∞,(1.8)

and

ND∗N ({n1α} , . . . , {nNα}) >
(
N1+ logλ

log 2−ε
)

as N →∞(1.9)

for infinitely many N . Here λ is a real constant defined below for which it
is known that

(1.10) 0.66130 < λ < 0.66135.

TOME 67 (2017), FASCICULE 2
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The number λ in Theorem 1.3 appears in a result of Fouvry and
Mauduit [18], which states that

(1.11) I1(L) :=
∫ 1

0

L−1∏
`=0

∣∣sin π2`α
∣∣ dα = κλL (1 + o(1))

for L→∞, with constants κ > 0 and λ with 0.654336 < λ < 0.663197. In
Lemma 5.1 in Section 5 we will improve the estimate for λ to (1.10). Note
that as a consequence of (1.8) and (1.10) we have

ND∗N ({n1α} , . . . , {nNα}) = O
(
N0.404) as N →∞,

for almost all α. This should be compared with the general metric discrep-
ancy bound

(1.12) ND∗N ({b1α} , . . . , {bNα}) = O
(√

N(logN)3/2+ε
)

as N →∞

for almost all α, which holds for every strictly increasing sequence of pos-
itive integers (bk)k>1 (see [6]). It is known that in the general setting the
upper bound given by (1.12) is optimal (up to powers of logarithms; see [8]).
Thus the upper bound given in Theorem 1.3 is significantly stronger than
the general metric discrepancy bound given by (1.12). Furthermore we want
to emphasize the fact that the precision of Theorem 1.3 is quite remarkable,
in view of the fact that good bounds for the typical order of the discrepancy
are only known for a very small number of classes of parametric sequences.
One of the main objectives of Theorems 1.1 and 1.3 is to examine the

degree of “pseudorandomness” of the parametric sequences ({nkα})k>1,
and consequently also of the sequence of evil numbers and the Thue–Morse
sequence. By classical probability theory, for a sequence X1, X2, . . . of in-
dependent, identically distributed (i.i.d.) random variables having uniform
distribution on [0, 1] we have the law of the iterated logarithm (LIL)

(1.13) lim sup
N→∞

∣∣∣∑N
k=1 e

2πihXk
∣∣∣

√
2N log logN

= 1√
2

almost surely (a.s.)

and the Chung–Smirnov LIL for the Kolmogorov–Smirnov statistic (that
is, for the discrepancy)

(1.14) lim sup
N→∞

ND∗N (X1, . . . , XN )√
2N log logN

= 1
2 a.s.;

in other words, for a random sequence of points exponential sums are typi-
cally of asymptotic order roughly

√
N , and the discrepancy is typically also

of the corresponding asymptotic order. Furthermore, similar results usually
hold for exponential sums of (rkα)k>1 and for the discrepancy of ({rkα})k>1
when (rk)k>1 is a “random” increasing sequence of integers. In the simplest

ANNALES DE L’INSTITUT FOURIER
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model, when for every number n > 1 we decide independently and with fair
probability whether it should be contained in (rk)k>1 or not, then (1.13)
holds almost surely (with respect to the probability space over which the
rk’s are defined) for almost all α. In a similar fashion both results (1.13)
and (1.14) essentially remain valid when the random sequence (rk)k>1 is
constructed in a more complicated fashion (see for example [19, 20, 36]).
Thus Theorem 1.1 and Theorem 1.3 show that almost surely the asymp-

totic order of exponential sums and of the discrepancy of ({nkα})k>1 for
the evil numbers (nk)k>1 does not match the corresponding order in the
random case, by this means showing an interesting deviation from “pseu-
dorandom” behavior of the sequence (nk)k>1 itself. On the other hand, the
behavior of ({nkα})k>1 also does not match the behavior of nα-sequences
for typical values of α. More precisely, as already mentioned above, as a
consequence of metric results of Khintchine [26] and due to the fact that
the discrepancy of ({nα})n>1 can be expressed in terms of the continued
fraction expansion of α, we have

(1.15) D∗N ({α}, {2α}, . . . , {Nα}) = O
(

(logN)(log logN)1+ε)
N

)
as N → ∞ for almost all α. Consequently, by Theorem 1.3, the typical
asymptotic order of the discrepancy of parametric sequences ({nkα})k>1 is
significantly larger than that of typical nα-sequences, and by Theorem 1.1
this is also true for exponential sums. Thus, with respect to exponen-
tial sums as well as with respect to the discrepancy, parametric sequences
(nkα)k>1 generated by the evil numbers (nk)k>1 occupy a position some-
where between nα-sequences and truly random sequences. We also want
to comment on the fact that there is a huge difference between the order
of the exponential sums in Theorem 1.1 and the order of the discrepancy
in Theorem 1.3. This is a very surprising phenomenon, which is related
to problems from metric Diophantine approximation (which are implicit
in the proof of Theorem 1.3, and are briefly discussed in the concluding
Section 7).
As already mentioned earlier, it is rather difficult to give the right order

for the exponential sums in Theorem 1.1, the trigonometric products in
Theorem 1.2, and the discrepancy of ({nkα})k>1 for concrete non-trivial
examples of α. What do we mean by a “non-trivial” example? In the first
part of Section 6 we will point out the following facts:

• The order of the discrepancy of the pure Kronecker sequence
({nα})n>1 is never significantly larger than the order of the dis-
crepancy of the evil Kronecker sequences ({nkα})k>1.

TOME 67 (2017), FASCICULE 2
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• If the order of the discrepancy D∗N of the pure Kronecker sequence
satisfies ND∗N = Ω

(
N

log 3
log 4

)
then the discrepancy D̃∗N of the evil

Kronecker sequences is essentially of the same order as the discrep-
ancy of the pure Kronecker sequence.

• If the order of the discrepancy D∗N of the pure Kronecker sequence
satisfiesND∗N =O

(
N

log 3
log 4

)
then D̃∗N satisfiesND̃∗N =O

(
N

log 3
log 4 +ε

)
.

Thus an “interesting non-trivial” example means for us an example where
α is a “natural” real number such as

√
2, e, π (it seems to us that there is no

chance to handle these numbers since we do not have enough information
on their digit representation), or where α is such that D̃∗N and hence D∗N
is small (say ND̃∗N = O (Nε) – however we cannot give such examples)
or where the quality of the distribution of the sequences ({nα})n>1 and
({nkα})k>1 differ strongly. Two such examples are given in Theorem 1.4.
Especially in the first example the difference between D∗N and D̃∗N is of the
maximal possible form.

Theorem 1.4.
(a) Let α = 2

3 +
∑∞
k=1

1
42k . Then for the star-discrepancy D∗N of the pure

Kronecker sequence ({nα})n>1 we have

ND∗N = O (logN) ,

whereas for the star-discrepancy D̃∗N of the evil Kronecker sequence
({nkα})k>1 we have

ND̃∗N = O
(
N

log 3
log 4 +ε

)
and ND̃∗N = Ω

(
N

log 3
log 4−ε

)
for every ε > 0.

(b) Let γ = 0.1001011001101001 . . . be the Thue–Morse real in base 2.
Then for the star-discrepancy D∗N of the pure Kronecker sequence
({nγ})n>1 we have

ND∗N = O (Nε) for all ε > 0,

whereas for the star-discrepancy D̃∗N of the evil Kronecker sequence
({nkγ})k>1 we have

ND̃∗N = Ω
(
N0.6178775) .

We would like to point out here that there is an intimate connection be-
tween distribution properties of ({nkα})k>1 and of certain types of hybrid
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sequences. For some information on the analysis of hybrid sequences see
for example [24], [25] and [28].
As already mentioned, the proofs of Theorems 1.1 and 1.3 are based

on a connection between exponential sums of (nkα)k>1 and the lacunary
trigonometric products studied in Theorem 1.2. We will establish this con-
nection in the following lines, and exploit it in Section 2 in more detail.
For the time being, we assume that N is of the form 2L for some positive
integer L.
To analyze the exponential sums appearing in Theorem 1.1 and on the

right-hand side of (1.1), we define

Sh(N) =
N∑
k=1

e2πihnkα.

By the assumption that N = 2L we have

Sh(N) =
2N−1∑
n=0

1
2
∑

δ∈{0,1}

exp
(

2πiδ s2(n)
2

)
exp (2πihnα)

= 1
2
∑

δ∈{0,1}

∑
(η0,...,ηL)∈{0,1}L+1

exp
(

2πi
L∑
`=0

(
δ
η`
2 + η`h2`α

))

= 1
2
∑

δ∈{0,1}

L∏
`=0

 ∑
η`∈{0,1}

exp
(

2πiη`
(
δ

2 + h2`α
)) ,

which yields

|Sh(N)| 6 1
2

L∏
`=0
|2 sin πh2`α|+ 1

2

L∏
`=0
|2 cosπh2`α|(1.16)

and

|Sh(N)| >

∣∣∣∣∣12
L∏
`=0
|2 sin πh2`α| − 1

2

L∏
`=0
|2 cosπh2`α|

∣∣∣∣∣ .(1.17)

A similar analysis for the sequence (mk)k>1 shows that

(1.18)

∣∣∣∣∣
N∑
k=1

e2πihmkα

∣∣∣∣∣ 6 1
2

L∏
`=0
|2 sin πh2`α|+ 1

2

L∏
`=0
|2 cosπh2`α|,

where again we assume that N = 2L.
By taking logarithms, we can convert the trigonometric products appear-

ing in (1.16) and (1.18) into so-called lacunary sums; these sums have been

TOME 67 (2017), FASCICULE 2
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intensively investigated in Fourier analysis, and a wide range of mathemat-
ical methods is available for studying them (see the following Section 2).
Thus the theory of lacunary sums allows us to obtain an estimate for the
size of the exponential sums Sh(N) in the case when N is a power of 2;
however, it will turn out that we may also drop the condition that N is an
integral power of 2 by applying a dyadic decomposition method.
Note that by (1.15) and by the fact that the evil numbers have asymptotic

density 1/2 it is easy to show that all the conclusions of Theorem 1.1
and Theorem 1.3 remain valid if we replace the sequence (nk)k>1 by the
sequence of odious numbers (mk)k>1.
The outline of the remaining part of this paper is as follows. In Section 2

we explain the main principles of the theory of lacunary (trigonometric)
sums, and state several lemmas as well as Theorem 2.5, which we require for
the proofs of Theorem 1.1 and Theorem 1.2. In Section 3 we give the proofs
for the results stated in Section 2, and in Section 4 we give the proofs of
Theorem 1.1 and Theorem 1.2. In Section 5, we prove Theorem 1.3, and in
Section 6 we prove Theorem 1.4. Finally, in Section 7, we briefly mention
a problem from metric Diophantine approximation, which was posed by
LeVeque in [29] and is related to the proof of Theorem 1.3.

2. Probabilistic results for lacunary trigonometric
products

It is a well-known fact that so-called lacunary systems of trigonometric
functions, that is, systems of the form (cos 2πs`α)`>1 or (sin 2πs`α)`>1 for
rapidly increasing (s`)`>1, exhibit properties which are typical of sequences
of independent random variables. This similarity includes the central limit
theorem, the law of the iterated logarithm, and Kolmogorov’s “Three series”
convergence theorem. The situation is particularly well understood when
(s`)`>1 satisfies the Hadamard gap condition

(2.1) s`+1

s`
> q > 1, ` > 1.

To a certain degree this almost-independence property extends to systems
(f(s`α))`>1 for a function f which is periodic with period one and satisfies
certain regularity properties; however, in this case the number-theoretic
properties of (s`)`>1 play an important role, and the almost-independent
behavior generally fails when (2.1) is relaxed to a weaker growth condi-
tion. The case which has been investigated in the greatest detail is that
when f has bounded variation on [0, 1], since this case is (by Koksma’s
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inequality) closely connected to the discrepancy of the sequence of frac-
tional parts ({s`α})`>1, which in turn can be interpreted as the (one-sided)
Kolmogorov–Smirnov statistic adapted to the case of the uniform measure
on [0, 1].

To estimate the trigonometric products appearing in (1.16) and (1.18)
we will use the equalities

L−1∏
`=0

∣∣2 sin πh2`α
∣∣ = exp

(
L−1∑
`=0

log
∣∣2 sin πh2`α

∣∣)(2.2)

and
L−1∏
`=0

∣∣2 cosπh2`α
∣∣ = exp

(
L−1∑
`=0

log
∣∣2 cosπh2`α

∣∣) ,(2.3)

respectively, to transform the problem of lacunary trigonometric products
into a problem concerning lacunary sums. However, the functions

f1(α) := log |2 sin πα|(2.4)

and

f2(α) := log |2 cosπα|(2.5)

do not have bounded variation in [0, 1] (see the figures below). Conse-
quently, the known results are not applicable in this situation, and we have
to adopt the proof techniques in such a way that they can handle this kind
of problem.(1)

0.2 0.4 0.6 0.8 1.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.5

0.2 0.4 0.6 0.8 1.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.5

Figure 2.1. The functions f1 (left) and f2 (right).

(1)There exist a few results concerning lacunary series when f is neither required to have
bounded variation, nor to be Lipschitz- or Hölder-continuous, nor to have a modulus of
continuity of a certain regularity; see for example [31]. However, for these results the
growth requirements for (s`)`>1 are much stronger than (2.1), which means that they
are not applicable in our case, since by (2.2) and (2.3) we have to deal with lacunary
sequences growing exactly with the speed presumed in (2.1), and not faster.
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In the following we will assume that f is a measurable real function
satisfying

(2.6) f(α+ 1) = f(α),
∫ 1

0
f(α) dα = 0,

∫ 1

0
f(α)2 dα <∞,

and that (s`)`>1 is a sequence satisfying (2.1). We write

f(α) ∼
∞∑
j=1

aj cos 2πjα+ bj sin 2πjα

for the Fourier series of f , and we will assume that the Fourier coefficients
of f satisfy

(2.7) |aj | 6
1
j
, |bj | 6

1
j
, for j > 1.

The inequalities in line (2.7) appear frequently in the theory of lacunary
series, since the upper bound stated there describes precisely (up to mul-
tiplication with a constant) the maximal asymptotic order of the Fourier
coefficients of a function of bounded variation (see for example [41, p. 48]).
However, even if the function is not of bounded variation the estimates
in (2.7) may still be true; this can be seen by the fact that for the (un-
bounded) functions f1 and f2 from lines (2.4) and (2.5), respectively, we
have

f1(α) ∼
∞∑
j=1

−1
j

cos 2πjα

and

f2(α) ∼
∞∑
j=1

(−1)j+1

j
cos 2πjα.

By the way, we note that both f1 and f2 are even functions, and that both
of them satisfy (2.6).
Throughout the remaining part of this paper, we will write P for the

Lebesgue measure on the unit interval. Note that the unit interval, equipped
with Borel sets and Lebesgue measure, is a probability space, and that
accordingly every measurable function on [0, 1] can be seen as a random
variable over this probability space. We also write ‖ · ‖2 for the L2(0, 1)
norm and ‖ · ‖∞ for the supremum norm of a function, respectively.
The main technical tool in this section is the following exponential in-

equality (Lemma 2.1). Together with the subsequent lemmas it will allow
us to give an upper bound for the measure of those α for which (2.2)
and (2.3) are large (stated in Lemma 2.4). We state Lemmas 2.1–2.4 in a
slightly more general form than necessary for the proofs of Theorem 1.1
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and 1.2, and we will use them to prove an additional new theorem, namely
Theorem 2.5 below.

Lemma 2.1. — Assume that f is an even measurable function satisfy-
ing (2.6), whose Fourier coefficients satisfy (2.7). Furthermore, let (s`)`>1
be a sequence of positive integers satisfying (2.1) for some number q > 1.
Then there exists a number L0 = L0(q), such that the following holds. Let
L > L0 be given, and write p(α) for the L8-th partial sum of the Fourier
series of f . Then for all

(2.8) λ ∈
[
0, L−1/9

]
we have ∫ 1

0
exp

(
λ

L∑
`=1

p(s`α)
)
dα 6 exp

(
2λ2π2L

3

)
and ∫ 1

0
exp

(
λ

L∑
`=1

p(s`α)
)
dα 6 exp

(
12λ2

√
q

√
q − 1‖p‖

1/2
2 L

)
.

The same two conclusions hold if f is an odd function instead of an even
function.

We emphasize the fact that the number L0 in the statement of Lemma 2.1
depends only on the growth parameter q; it does not depend on the function
f or the sequence (s`)`>1. The same will be true for the numbers L0(q) in
Lemmas 2.2 and 2.4 below.
From Lemma 2.1 we will deduce the following Lemma 2.2, which is a

large-deviation bound for the maximal partial sum of a lacunary sums.

Lemma 2.2. — Let f and (s`)`>1 be as in Lemma 2.1. Then there exists
a number L0 = L0(q), such that the following holds. Let L > L0 be given,
and assume that L is an integral power of 2. Write p(α) for the L8-th partial
sum of the Fourier series of f . Then we have

P

(
α ∈ (0, 1) : max

16M6L

∣∣∣∣∣
M∑
`=1

p(s`α)

∣∣∣∣∣ > 29q
q − 1

√
L log logL

)
6

48
(logL)1.4

and, under the additional assumption that ‖p‖1/42 > L−1/100, we also have

P

(
α ∈ (0, 1) : max

16M6L

∣∣∣∣∣
M∑
`=1

p(s`α)

∣∣∣∣∣ > 43‖p‖1/42

√
q

√
q − 1

√
L log logL+

√
L

)

6
45

(logL)2 .
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The same two conclusions hold if f is an odd function instead of an even
function.

Lemma 2.3. — Let f and (s`)`>1 be as in Lemma 2.1. Let L be given,
and write r(α) for the remainder term of the L8-th partial sum of the
Fourier series of f . Then we have∫ 1

0

(
max

16M6L

∣∣∣∣∣
M∑
`=1

r(s`α)

∣∣∣∣∣
)2

dα 6
4
L4

From Lemmas 2.2 and 2.3 we will deduce the following Lemma 2.4.

Lemma 2.4. — Let f and (s`)`>1 be as in Lemma 2.1. Then there exists
a number L0 = L0(q), such that the following holds. Let L > L0 be given,
and assume that L is an integral power of 2. Then we have

P

(
α ∈ (0, 1) : max

16M6L

∣∣∣∣∣
M∑
`=1

f(s`α)

∣∣∣∣∣ >
(

30q
q − 1

)√
L log logL

)
6

49
(logL)1.4

and, under the additional assumption that ‖p‖1/42 > L−1/100, we also have

P

(
α ∈ (0, 1) : max

16M6L

∣∣∣∣∣
M∑
`=1

p(s`α)

∣∣∣∣∣ > 43‖p‖1/42

√
q

√
q − 1

√
L log logL+ 2

√
L

)

6
46

(logL)2 .

The same two conclusions hold if f is an odd function instead of an even
function.

As a consequence of Lemma 2.4 we obtain the following theorem, which
is a bounded law of the iterated logarithm and is of some interest in its
own right. As far as we know, this is the first law of the iterated logarithm
for Hadamard lacunary function series which can be applied to a class of
unbounded functions f .

Theorem 2.5. — Assume that f is an even measurable function satis-
fying (2.6), whose Fourier coefficients satisfy (2.7). Furthermore, let (s`)`>1
be a sequence of positive integers satisfying (2.1) for some number q > 1.
Then we have

lim sup
L→∞

∣∣∣∑L
`=1 f(s`α)

∣∣∣
√
L log logL

6 cq

for almost all α ∈ (0, 1), where we can choose

cq = max
{

85q
q − 1 , 122‖f‖1/42

√
q

√
q − 1

}
.
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We note in passing that from our proofs it seems that the conclusion of
Theorem 2.5 remains true if the conditions |aj | 6 j−1, |bj | 6 j−1 in (2.7)
are relaxed to |aj | 6 j−1/2−ε, |bj | 6 j−1/2−ε for some fixed ε > 0; however,
in this case the constant cq has to be replaced by some other constant cq,ε
which may also depend on ε. We will not pursue this possible generalization
any further in the present paper.
For the proofs of Theorem 1.1 and 1.2 we will also need the following

result. It has first been stated by Fortet [17]; a concise proof can be found
in [30]. This result can be seen as a special case of the more general results
in [1].

Lemma 2.6. — Let f be a function satisfying (2.6), which additionally
satisfies a Hölder continuity condition of order β for some β > 0. Then

lim sup
L→∞

∑L−1
`=0 f(2`α)√
2L log logL

= σf for almost all α,

where

(2.9) σ2
f = lim

m→∞

1
m

∫ 1

0

(
f(α) + · · ·+ f(2m−1α)

)2
dα.

3. Proofs of results from Section 2

Proof of Lemma 2.1. — The proof of Lemma 2.1, as well as the proofs
of Lemmas 2.2, 2.3, 2.4 and Theorem 2.5, uses methods of Takahashi [40]
and Philipp [35].
Assuming that f is even, the L8-th partial sum of the Fourier series of

f is of the form

p(α) =
L8∑
j=1

aj cos 2πjα,

where by assumption the coefficients aj satisfy the inequality on the left-
hand side of (2.7). We note that (2.7) implies that

(3.1) ‖p‖∞ 6
L8∑
j=1

1
j
6 1 + 8 logL.

We divide the set of integers {1, . . . , L} into blocks ∆1, . . . ,∆w of con-
secutive numbers, for some appropriate w, such that every block contains⌈
logq

(
4L8)⌉ numbers (the last block may contain less).(2) More precisely,

(2)We assume throughout that L is sufficiently large such that all appearing logarithms
are well-defined and positive.
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we set
w =

⌈
L

dlogq (4L8)e

⌉
and

∆i =
{

(i− 1)
⌈
logq

(
4L8)⌉+ 1, . . . , i

⌈
logq(4L8)

⌉}
∩ {1, . . . , L},

for 1 6 i 6 w. We set

I1 =
∫ 1

0
exp

2λ
∑

16i6w,
i even

∑
`∈∆i

p(s`α)

 dα

and

I2 =
∫ 1

0
exp

2λ
∑

16i6w,
i odd

∑
`∈∆i

p(s`α)

 dα.

Then by the Cauchy–Schwarz inequality we have

(3.2)
∫ 1

0
exp

(
λ

L∑
`=1

p(s`α)
)
dα 6

√
I1I2.

Writing
Ui =

∑
`∈∆i

p(s`α), 1 6 i 6 w,

and using the inequality

ex 6 1 + x+ x2, which is valid for |x| 6 1,

we have

(3.3)

I1 =
∫ 1

0

∏
16i6w,
i even

exp

2λ
∑
`∈∆i

p(s`α)

 dα

6
∫ 1

0

∏
16i6w,
i even

(
1 + 2λUi + 4λ2U2

i

)
dα,

where we used the fact that by (2.7), (2.8) and (3.1) we have

|2λUi| 6 2L−1/9‖p‖∞|∆i|

6 2L−1/9(1 + 8 logL)
⌈
logq(4L8)

⌉
6 1

for L > L0(q)
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Using the classical trigonometric identity

(3.4) (cos y)(cos z) = cos(y + z) + cos(y − z)
2 , for y, z ∈ R,

we have

U2
i =

∑
`∈∆i

L8∑
j=1

aj cos 2πjs`α

2

=
∑

`1,`2∈∆i

∑
16j1,j26L8

aj1aj2

(
cos(2π(j1s`1 + j2s`2))

2(3.5)

+cos(2π(j1s`1 − j2s`2))
2

)
=: Vi +Wi.(3.6)

Here we write Vi for the sum of all those cosine-functions having frequencies
in the interval

[
smin(∆i), 2L8smax(∆i)

]
, where min(∆i) and max(∆i) denote

the smallest resp. largest element of ∆i, and we write Wi for the sum of
those cosine-functions having frequencies smaller than smin(∆i). It is easy
to check that no other frequencies can occur in (3.5). We note that all the
frequencies of the cosine-functions in Ui are also contained in the interval[
smin(∆i

, 2L8smax(∆i)
]
, and write

(3.7) Xi = 2λUi + 4λ2Vi.

Using this notation we have∏
16i6w,
i even

(
1 + 2λUi + 4λ2U2

i

)
=

∏
16i6w,
i even

(
1 +Xi + 4λ2Wi

)
.

From Minkowski’s inequality and (2.7) we deduce that

Wi 6
1
2

∑
`1,`2∈∆i

∑
16j1,j26L8︸ ︷︷ ︸

|j1s`1−j2s`2 |<min(∆i)

|aj1aj2 |

6
∑

`1,`2∈∆i,
`16`2

∑
16j1,j26L

8,
j1>j2s`2/s`1−1

|aj1aj2 |(3.8)

6
∑

`1,`2∈∆i,
`16`2

∑
16j1,j26L

8,
j1>j2s`2/s`1−1

1
j1j2
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6
∑

`1,`2∈∆i,
`16`2

L8∑
j=1

1
j

1
djs`2/s`1 − 1e︸ ︷︷ ︸

62s`1/(js`2 )

6 2
∑

`1,`2∈∆i,
`16`2

L8∑
j=1

s`1

j2s`2

6 2|∆i|
q

q − 1
π2

6 .(3.9)

Another way of continuing from line (3.8) is to use the Cauchy–Schwarz
inequality, which leads to

Wi 6
∑

`1,`2∈∆i,
`16`2

∑
16j26L8

1
j2

∑
16j16L

8,
j1>j2s`2/s`1−1

|aj1 |

6
∑

`1,`2∈∆i,
`16`2

∑
16j26L8

1
j2


∑

16j16L
8,

j1>j2s`2/s`1−1

61/j2
1︷︸︸︷

a2
j1

︸ ︷︷ ︸
64s`1/(j2s`2 )



1/2 ∑
16j16L

8,
j1>j2s`2/s`1−1

a2
j1


1/2

︸ ︷︷ ︸
6‖p‖1/2

2

6 2
∑

`1,`2∈∆i,
`16`2

∑
16j6L8

√
s`1

j3s`2

‖p‖1/22

6 6
√
q

√
q − 1‖p‖

1/2
2 .(3.10)

Now assume that i1 < i2 are two indices from the set {1, . . . , w}, and
that both i1 and i2 are even. Then by construction the frequency of any
trigonometric function in Xi2 is at least twice as large as the frequency of
any trigonometric function in Xi1 . To see why this is the case, we recall
that the frequency of the largest trigonometric function in Xi2 is at most
2L8smax(∆i1 ), that the frequency of the smallest trigonometric function in
Xi1 is at least smin(∆i2 ), and that by (2.1)

smin(∆i2 )

smax(∆i1 )
> qmin(∆i2 )−max(∆i1 )

= qdlogq(4L
8)e

> 4L8.
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As a consequence for every set of distinct indices i1, . . . , iv (where the cardi-
nality v is arbitrary), all of which are even and are contained in {1, . . . , w},
the functions Xi1 , . . . , Xiv are orthogonal, i.e.,

(3.11)
∫ 1

0
Xi1 · · · · ·Xiv dα = 0

(this argument is explained in more detail in [35, 40]). Thus by (3.3), (3.6),
(3.7), (3.9), and (3.11) we have

I1 6
∫ 1

0

∏
16i6w,
i even

(
1 +Xi + 4λ2Wi

)
dα

6
∫ 1

0

∏
16i6w,
i even

(
1 +Xi + 4λ2|∆i|π2

3
q

q − 1

)
dα

=
∫ 1

0

∏
16i6w,
i even

(
1 + 4λ2|∆i|π2

3
q

q − 1

)
︸ ︷︷ ︸

does not depend on α

dα

6
∏

16i6w,
i even

exp
(

4λ2|∆i|π2

3
q

q − 1

)

= exp

 ∑
16i6w,
i even

4λ2|∆i|π2

3
q

q − 1

 .

In the same way we can get an upper bound for I2, and thus by (3.2) we
finally obtain

∫ 1

0
exp

(
λ

L∑
`=1

p(s`α)
)
dα

6 exp

 ∑
16i6w,
i even

2λ2|∆i|π2

3
q

q − 1

 exp

 ∑
16i6w,
i odd

2λ2|∆i|π2

3
q

q − 1


= exp

(
2λ2Lπ2

3
q

q − 1

)
.
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This proves the first conclusion of the lemma. In the same way we can
use (3.10) (and the corresponding upper bound for I2) to obtain

∫ 1

0
exp

(
λ

L∑
`=1

p(s`α)
)
dα 6 exp

(
12λ2

√
q

√
q − 1‖p‖

1/2
2

)
,

which proves the second conclusion of the lemma.
Thus we have proved both parts of Lemma 2.1 in the case when f is even;

the proof in the odd case can be carried out in exactly the same way. �

Proof of Lemma 2.2. — By assumption L is an integral power of 2. We
set ν = log2 L. By classical dyadic decomposition, we can write every subset
{1, . . . ,M} of {1, . . . , L} as the disjoint sum of at most one set of cardinality
2ν−1, at most one set of cardinality 2ν−2, at most one set of cardinality
2ν−3, and so on, at most one set of cardinality 2dν/4e, and additionally
at most one set of cardinality at most 2dν/4e, where all these sets contain
consecutive positive integers. To be able to represent every sets {1, . . . ,M}
in this way, we need 2µ sets of cardinality 2ν−µ, for µ ∈ {1, . . . , ν−dν/4e},
and all the sets of cardinality at most 2dν/4e starting at an integer multiple
of 2dν/4e. More precisely, the sets of cardinality 2ν−µ are of the form

{j2ν−µ + 1, . . . , (j+ 1)2ν−µ}, j ∈ {0, . . . , 2µ− 1}, µ ∈ {1, . . . , ν−dν/4e},

and the sets of cardinality at most 2ν/4 are of the form

{
j2dν/4e + 1, , . . . , j2dν/4e + w

}
,

j ∈
{

0, . . . , 2ν−dν/4e − 1
}
, w ∈

{
1, . . . , 2dν/4e

}
.

For j ∈ {0, . . . , 2µ − 1} and µ ∈ {1, . . . , ν − dν/4e}, we set

Gµ,j =α ∈ (0, 1) :
(j+1)2ν−µ∑
`=j2ν−µ+1

p(s`α) > 8q
q − 1

√
2ν−µ

√
log log 2ν−µ + µ

√
2ν−µ


Using the first part of Lemma 2.1 with

λ =
√

log log(2ν−µ)√
2ν−µ
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(note that by our construction this value of λ is admissible in Lemma 2.1,
provided that L is sufficiently large) we have

∫ 1

0
exp

√log log(2ν−µ)√
2ν−µ

(j+1)2ν−µ∑
`=j2ν−µ+1

p(s`α)

 dα

6 exp
(

2 log log(2ν−µ)qπ2

3(q − 1)

)
,

and consequently

P(Gµ,j) 6 exp
((

2π2

3 − 8
)

q

q − 1 log log(2ν−µ)− µ
)
6

1
eµ(log(2ν−µ))1.4 .

Thus we have

P

ν−dν/4e⋃
µ=1

2µ−1⋃
j=0

Gµ,j

6 ν−dν/4e∑
µ=1

2µ

eµ
(
log
(
2dν/4e

))1.4
6

20
(logL)1.4 .(3.12)

Now we set

Hj =

α ∈ (0, 1) : max
16w62dν/4e

∣∣∣∣∣∣
j2dν/4e+w∑
`=j2dν/4e+1

p(s`α)

∣∣∣∣∣∣ > √L
 ,

j ∈ {0, . . . , 2ν−dν/4e − 1}.

By (2.7), Minkowski’s inequality, and the Carleson–Hunt inequality (see
for example [37]), we have∫ 1

0
max

16w62dν/4e

 j2dν/4e+w∑
`=j2dν/4e+1

p(s`α)

6

dα


1/6

6
L8∑
j=1
|aj |

∫ 1

0
max

16w62dν/4e

 j2dν/4e+w∑
`=j2dν/4e+1

cos 2πjs`α

6

dα


1/6

6 (1 + 8 logL)cabs

∫ 1

0

 (j+1)2dν/4e∑
`=j2dν/4e+1

cos 2πjs`α

6

dα


1/6

(3.13)

for some absolute constant cabs. Estimating the integral in (3.13) can be
reduced (via (3.4)) to the problem of counting the number of solutions

TOME 67 (2017), FASCICULE 2



658 Christoph AISTLEITNER, Roswitha HOFER & Gerhard LARCHER

(`1, . . . , `6) of the Diophantine equation

s`1 ± · · · ± s`6 = 0, for indices `1, . . . , `6 in the respective index range;

we have ∫ 1

0

 (j+1)2dν/4e∑
`=j2dν/4e+1

cos 2πjs`α

6

dα


1/6

6 cq
(

2ν/4
)1/2

for some constant cq depending only on q (see, for example, [16]). As a
consequence by Markov’s inequality we obtain

P(Hj) 6 ĉq(1 + 8 logL)6L
6/8

L3 = ĉq(1 + 8 logL)6L−9/4

and

P

2ν−dν/4e−1⋃
j=0

Hj

6 L3/4ĉq(1 + 8 logL)6L−9/4

= ĉq(1 + 8 logL)6L−6/4(3.14)

for some constant ĉq depending only on q. We set

F =

ν−dν/4e⋃
µ=1

2µ−1⋃
j=0

Gµ,j

 ∪
2ν−dν/4e−1⋃

j=0
Hj

 .

Then by (3.12) and (3.14) we have

P (F ) 6 23
(logL)1.4 + ĉq(1 + 8 logL)6L−6/4(3.15)

6
24

(logL)1.4(3.16)

for sufficiently large L.
By the dyadic decomposition described at the beginning of this proof,

for every α ∈ FC (where FC denotes the complement of the set F ) we have

M∑
`=1

p(s`α) 6
ν−dν/4e∑
µ=1

(
8q
q − 1

√
2ν−µ

√
log log 2ν−µ + µ

√
2ν−µ

)
+
√
L

6
8q
q − 1(1 +

√
2)
√
L log logL+ (4 + 3

√
2)
√
L+
√
L

6
29q
q − 1

√
L log logL
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for all possible values M ∈ {1, . . . , L}. Thus we have proved that

P

(
α ∈ (0, 1) : max

16M6L

(
M∑
`=1

p(s`α)
)
>

29q
q − 1

√
L log logL

)
6

24
(logL)1.4

(3.17)

for sufficiently large L. Note that whenever the function f satisfies the
assumptions of Lemma 2.1, then the function −f also satisfies these as-
sumptions. Thus applying exactly the same arguments as above to the
functions −f and −p instead of f and p we also obtain

P

(
α∈ (0, 1) : max

16M6L

(
M∑
`=1

(−p(s`α))
)
>

29q
q−1

√
L log logL

)
6

24
(logL)1.4

for sufficiently large L, which, together with (3.17), proves the first conclu-
sion of Lemma 2.2.
The proof of the second conclusion of Lemma 2.2 is very similar to that of

the first conclusion of the lemma. We use the same dyadic decomposition,
but now we define

Gµ,j =
{
α∈ (0, 1) :

(j+1)2ν−µ∑
`=j2ν−µ+1

p(s`α) >
(

14‖p‖1/42

√
q

√
q − 1 + ‖p‖1/42 µ

)

×
√

2ν−µ
√

log log 2ν−µ
}

and use the second part of Lemma 2.1 with

λ = ‖p‖−1/4
2

√
log log(2ν−µ)√

2ν−µ

Note that this choice of λ is admissible, due to the restrictions that µ 6
ν − dν/4e and ‖p‖1/42 > L−1/100. We obtain that

∫ 1

0
exp

‖p‖−1/4
2

√
log log(2ν−µ)√

2ν−µ

(j+1)2ν−µ∑
`=j2ν−µ+1

p(s`α)

 dα

6 exp
(12√q log log(2ν−µ)

√
q − 1

)
,

and consequently

P(Gµ,j) 6 exp
(

(12− 14)
√
q

√
q − 1 log log(2ν−µ)− µ

)
6

1
eµ(log(2ν−µ))2 .
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The sets Hj can be defined in the same way as in the proof of the first part
of the lemma. Using similar calculations we obtain that

max
16L6M

∣∣∣∣∣
M∑
`=1

p(s`α)

∣∣∣∣∣
6
∞∑
µ=1

2−µ/2
(

(14 + µ) ‖p‖1/42

√
q

√
q − 1

√
L log logL

)
+
√
L

6 43‖p‖1/42

√
q

√
q − 1

√
L log logL+

√
L,

except for a set of measure at most( ∞∑
µ=1

2µ

eµ(log(L1/4))2

)
+ ĉq(1 + 8 logL)6L−9/4 6

45
(logL)2

(provided that L is sufficiently large). This proves the second part of
Lemma 2.2. �

Proof of Lemma 2.3. — The lemma follows from a simple application of
Minkowski’s inequality. We have∫ 1

0

(
max

16M6L

∣∣∣∣∣
M∑
`=1

r(s`α)

∣∣∣∣∣
)2

dα 6
L∑

M=1

∫ 1

0

(∣∣∣∣∣
M∑
`=1

r(s`α)

∣∣∣∣∣
)2

dα

6
L∑

M=1

(
M∑
`=1
‖r‖2

)2

.(3.18)

By (2.7) we have

‖r‖2 6

 ∞∑
j=L8+1

2
j2

1/2

6
2

L7/2 ,

which implies, together with (3.18), that∫ 1

0

(
max

16M6L

∣∣∣∣∣
M∑
`=1

r(s`α)

∣∣∣∣∣
)2

dα 6
4
L4 .

This proves the lemma. �

Proof of Lemma 2.4. — Assume that we have decomposed f = p + r

as in Lemmas 2.1, 2.2 and 2.3. By Lemma 2.3 and Markov’s inequality we
have

P

(
α ∈ (0, 1) : max

16M6L

∣∣∣∣∣
M∑
k=1

r(s`α)

∣∣∣∣∣ > √L
)
6

4
L5 .
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Together with Lemma 2.2 this yields

P

(
α ∈ (0, 1) : max

16M6L

∣∣∣∣∣
M∑
k=1

f(s`α)

∣∣∣∣∣ >
(

29q
q − 1 + 1

)
︸ ︷︷ ︸
630q/(q−1)

√
L log logL

)

6
48

(logN)1.4 + 4
L5 6

49
(logL)1.4

for sufficiently large L, which is the first part of Lemma 2.4.
In the same way we can deduce the second conclusion of Lemma 2.4 from

a combination of the second conclusion of Lemma 2.2 and Lemma 2.3. �

Proof of Theorem 2.5. — From Lemma 2.2 and Lemma 2.3 we can easily
deduce Theorem 2.5, using standard methods. Let us first assume that f
is either even or odd. For m > 1, we let Em denote the set defined by

Em =
{
α ∈ (0, 1) : max

16M62m

∣∣∣∣∣
M∑
`=1

f(s`α)

∣∣∣∣∣ > 30q
q − 1

√
2m log log 2m

}
.

Then by Lemma 2.6 we have

(3.19) P(Em) 6 49
(log 2m)1.4

which implies that
∞∑
m=1

P(Em) <∞.

Thus by the Borel–Cantelli lemma with probability 1 only finitely many
events Em happen; in other words, for almost all α ∈ (0, 1) we have

max
16M62m

∣∣∣∣∣
M∑
`=1

f(s`α)

∣∣∣∣∣ 6 30q
q − 1

√
2m log log 2m for m > m0(α).

As a consequence for almost all α ∈ (0, 1) we have

(3.20) lim sup
L→∞

∣∣∣∑L
`=1 f(s`α)

∣∣∣
√
L log logL

6
√

2 30q
q − 1 ,

which proves Theorem 2.5 in the case when f is either even or odd. For
general f we apply (3.20) to the even and odd part separately, which results
in an extra multiplicative factor of 2. Note that 2

√
2 · 30 6 85.
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In the same way we can use the second conclusion of Lemma 2.4 to obtain

(3.21) lim sup
L→∞

∣∣∣∑L
`=1 f(s`α)

∣∣∣
√
L log logL

6 2
√

2 · 43︸ ︷︷ ︸
6122

‖p‖1/42

√
q

√
q − 1 ,

for almost all α ∈ (0, 1). Theorem 2.5 now follows from a combination
of (3.20) and (3.21). �

4. Exponential Sums and Trigonometric Products: Proofs
of Theorem 1.1 and Theorem 1.2

Theorem 1.1 and Theorem 1.2 will follow easily from the following lemma,
which is a version of Lemma 2.6 in the case when the function f only sat-
isfies (2.7) (instead of being Hölder-continuous). We state it only for the
special case of the two functions f1 and f2 from (2.4) and (2.5).

Lemma 4.1. — For almost all α we have

lim sup
L→∞

∑L−1
`=0 f1(2`α)√
2L log logL

= π√
2

and

lim sup
L→∞

∣∣∣∑L−1
`=0 f2(2`α)

∣∣∣
√

2L log logL
= 0.

Proof. — As already noted, the functions f1 and f2 satisfy condi-
tions (2.6) and (2.7). Let a number d be given, and write p1 for the d-th
partial sum of the Fourier series of f1, and r1 for the remainder term. Then
by Lemma 2.6 we have

(4.1) lim sup
L→∞

∑L−1
`=0 p1(2`α)√
2L log logL

= σp1 for almost all α

where σp1 is defined according to (2.9) (for the function p1). Note that
Lemma 2.6 is applicable since p is a trigonometric polynomial (and con-
sequently is also Lipschitz-continuous). Note furthermore that by (2.7) we
have

‖r1‖2 6

d+1∑
j=1

1
j2

1/2

6 d−1/2.

Consequently by Theorem 2.5 we have

(4.2) lim sup
L→∞

∣∣∣∑L−1
`=0 r1(2`α)

∣∣∣
√

2L log logL
6 122d−1/8

√
2√

2− 1
for almost all α.
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Replacing f1 by f2 and replacing p1 and r1 by p2 and r2, respectively, we
obtain (4.1) and (4.2) with p1 and r1 replaced by p2 and r2, respectively.
Some standard calculations show that

σp1 → σf1 and σp2 → σf2 as d→∞.

Furthermore, the expression on the right-hand side of (4.2) clearly tends
to zero as d→∞. Thus, overall we have

(4.3) lim sup
L→∞

∑L−1
`=0 f1(2`α)√
2L log logL

= σf1 for almost all α

and

(4.4) lim sup
L→∞

∑L−1
`=0 f2(2`α)√
2L log logL

= σf2 for almost all α,

where σf1 and σf2 are defined according to (2.9). Calculating the values of
σf1 and σf2 is a simple exercise, using the Fourier series expansion of f1
and f2, respectively; it turns out that in our specific setting we have

(4.5) σ2
f1

=
∞∑
j=1

(
1
j2 + 2

∞∑
r=1

1
2rj2

)
= π2

2

and

(4.6) σ2
f2

=
∞∑
j=1

 1
j2 + 2

∞∑
r=1

(−1)j(−1)2rj︸ ︷︷ ︸
=(−1)j

1
2rj2

 = 0.

By applying the same arguments to −f1 and −f2 instead of f1 and
f2 we can get absolute values in (4.3) and (4.4), if we wish. This proves
Lemma 4.1. �

Proof of Theorem 1.1 and of Theorem 1.2.
Part 1: upper bounds. — By periodicity it is obviously sufficient to

prove Theorem 1.1 for h = 1. Let ε > 0 and α be given, and set ε̂ = ε/2.
We will assume that α is an element of the set of full measure for which
the conclusion of Lemma 4.1 holds. Then we have

(4.7)

∣∣∣∣∣
L∑
`=0

f1(2`α)

∣∣∣∣∣ 6
(
π√
2

+ ε̂

)√
2L log logL

and

(4.8)

∣∣∣∣∣
L∑
`=0

f2(2`α)

∣∣∣∣∣ 6 ε̂√2L log logL
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for all L > L0(α). Equation (4.7) already gives the upper bound in Theo-
rem 1.2. To obtain the upper bound in Theorem 1.1, let N be given, and
assume that N > 2(2L0 ). We can write

N = ηM2M + ηM−12M−1 + · · ·+ η12 + η0

for numbers (ηM , . . . , η0) ∈ {0, 1}M+1, where we assume that M is chosen
in such a way that ηM = 1; this is simply the binary representation of N .
For simplicity of writing we set NM+1 = 0 and

Nµ = ηM2M + ηM−12M−1 + · · ·+ ηµ2µ, 0 6 µ 6M.

Then clearly we have

(4.9)
N∑
k=1

e2πinkα =
M+1∑
µ=1

ηµ−1

Nµ−1∑
k=Nµ+1

e2πinkα =
M+1∑
µ=1

ηµ−1

2µ−1∑
k=1

e2πinNµ+kα.

Note that for the “odious numbers” mk we have, for every k, that

mk =
{

2k − 1 if nk = 2k − 2,
2k − 2 if nk = 2k − 1,

where nk are the “evil numbers”. Furthermore, from the special structure
of the Thue–Morse sequence we see that for 1 6 k 6 2µ−1 we have

(4.10) nNµ+k =
{

2Nµ + nk if s2(Nµ) = 0,
2Nµ +mk if s2(Nµ) = 1,

which together with (1.16), (1.18), (2.2) and (2.3) implies that∣∣∣∣∣∣
2µ−1∑
k=1

e2πinNµ+kα

∣∣∣∣∣∣ 6
(

exp
(
µ−1∑
`=0

f1(2`α)
)

+ exp
(
µ−1∑
`=0

f2(2`α)
))

,

1 6 µ 6M + 1. Thus by (4.9) and (4.10) we have∣∣∣∣∣
N∑
k=1

e2πinkα

∣∣∣∣∣ 6
M+1∑
µ=1

∣∣∣∣∣∣
2µ−1∑
k=1

e2πinNµ+kα

∣∣∣∣∣∣(4.11)

6 4M +
M+1∑

µ=dlog2 Me

∣∣∣∣∣∣
2µ−1∑
k=1

e2πinNµ+kα

∣∣∣∣∣∣
6 4M +

M+1∑
µ=dlog2 Me

(
exp

( µ−1∑
`=0

f1(2`α)
)

(4.12)

+ exp
( µ−1∑
`=0

f2(2`α)
))

.
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Using the fact that the assumption N > 2(2L0 ) implies that log2M > L0,
and also using the inequalities (4.7) and (4.8), we obtain

(4.13)
M+1∑

µ=dlog2 Me

exp
(
µ−1∑
`=0

f1(2`α)
)

6
M+1∑

µ=dlog2 Me

exp
((

π√
2

+ ε̂

)√
2(µ− 1) log log(µ− 1)

)

6M exp
((

π√
2

+ ε̂

)√
2M log logM

)
and

(4.14)
M+1∑

µ=dlog2 Me

exp
(
µ−1∑
`=0

f2(2`α)
)

6
M+1∑

µ=dlog2 Me

exp
(
ε̂
√

2(µ− 1) log log(µ− 1)
)

6M exp
(
ε̂
√

2M log logM
)
.

Combining (4.12), (4.13) and (4.14) we obtain∣∣∣∣∣
N∑
k=1

e2πinkα

∣∣∣∣∣ 6 4M + 2M exp
((

π√
2

+ ε̂

)√
2M log logM

)
6 4M + 2M exp

((
π√
2

+ ε̂

)√
2(log2N) log log(log2N)

)
.

As a consequence we have∣∣∣∣∣
N∑
k=1

e2πinkα

∣∣∣∣∣ 6 exp
((

π√
log 2

+ ε

)√
(logN) log log logN

)
for all sufficiently large N . This proves the upper bound in Theorem 1.1.

Part 2: lower bounds. — Now we prove the lower bound in Theorems 1.1
and 1.2. Again we assume that h = 1, that α and ε > 0 are fixed, and that
α is from the set of full measure for which the conclusion of Lemma 4.1
holds. Again we set ε̂ = ε/2. Then by Lemma 4.1 there exist infinitely
many values of L for which both inequalities

L∑
`=0

f1(2`α) >
(
π√
2
− ε̂
)√

2L log logL
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and
L∑
`=0

f2(2`α) 6 ε̂
√

2L log logL

hold simultaneously. The first relation already gives the lower bound in
Theorem 1.2. By (1.16) and (2.2), (2.3) we have∣∣∣∣∣∣

2L∑
k=1

e2πinkα

∣∣∣∣∣∣ > 1
2 exp

(
L∑
`=0

f1(2`α)
)
− 1

2 exp
(

L∑
`=0

f2(2`α)
)
.

Thus for infinitely many L we have

(4.15)

∣∣∣∣∣∣
2L∑
k=1

e2πinkα

∣∣∣∣∣∣
>

1
2 exp

((
π√
2
− ε̂
)√

2L log logL
)
− 1

2 exp
(
ε̂
√

2L log logL
)
.

Consequently we also have∣∣∣∣∣
N∑
k=1

e2πinkα

∣∣∣∣∣ > exp
((

π√
log 2

− ε
)√

(logN) log log logN
)

for infinitely many N . This proves the lower bound in Theorem 1.1. �

5. Discrepancy of evil Kronecker sequences: Proof of
Theorem 1.3

For given L > 1, we set

I1(L) =
∫ 1

0

(
L−1∏
`=0

∣∣2 sin(π2`α)
∣∣) dα

and

I2(L) =
∫ 1

0

(
L−1∏
`=0

∣∣2 cos(π2`α)
∣∣) dα.

Integrals of this type have been studied in great detail in [18]. For the
integral I1 it is proved there that

(5.1) 2−LI1(L) = κλL (1 + o(1))

where κ, λ are positive constants with 0.654336 6 λ 6 0.663197 (thereby
improving an earlier result of Èminyan [15]).
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Hence for every ε > 0 for L large enough we have

(5.2) I1(L) 6
(
2L
)1+log2 λ+ε

.

We will improve the estimate given for λ by Fouvry and Mauduit in the
following.

Lemma 5.1. — Let λ be defined as in (5.1). Then 0.66130 < λ <

0.66135.

Proof. — By the formula above of equation (4.2) in [18] we have

∫ 1

0

L−1∏
`=0

∣∣sin π2`α
∣∣ dα =

∫ 1

0
φj(α)

L−j−1∏
`=0

∣∣sin π2`α
∣∣ dα

where φ0(α) ≡ 1 and

φj+1(α) = 1
2

(∣∣∣sin πα2 ∣∣∣φj (α2 )+
∣∣∣cosπα2

∣∣∣φj (α+ 1
2

))
.

Furthermore, it was shown in [18] that the functions φj are symmetric
around α = 1

2 on [0, 1], and that they are concave on [0, 1]. Hence φj(0) =
min
α∈[0,1]

φj(α), and φj (1/2) = max
α∈[0,1]

φj(α).

Let qj(α) := φj(α)
φj−1(α) , mj := min

α∈[0,1]
qj(α), and Mj := max

α∈[0,1]
qj(α). Note

that qj(α) of course also is symmetric around α = 1
2 in [0, 1]. We have for

every α ∈ [0, 1]

qj+1(α) = φj+1(α)
φj(α)

=
∣∣sin πα2 ∣∣φj (α2 )+

∣∣cosπα2
∣∣φj (α+1

2
)∣∣sin πα2 ∣∣φj−1

(
α
2
)

+
∣∣cosπα2

∣∣φj−1
(
α+1

2
)

6

∣∣sin πα2 ∣∣Mjφj−1
(
α
2
)

+
∣∣cosπα2

∣∣Mjφj−1
(
α+1

2
)∣∣sin πα2 ∣∣φj−1

(
α
2
)

+
∣∣cosπα2

∣∣φj−1
(
α+1

2
)

= Mj .

Therefore Mj+1 = max
α∈[0,1]

qj(α) 6Mj .

Analogously we obtain qj+1(α) > mj for all α ∈ [0, 1]. Altogether M1 >
M2 > M3 > . . . and m1 6 m2 6 m3 6 . . ., and therefore for every k fixed
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we have ∫ 1

0

L−1∏
`=0

∣∣sin π2`α
∣∣ dα =

∫ 1

0
φL(α)dα

=
∫ 1

0

L∏
j=1

qj(α)dα

6ML−k
k

∫ 1

0
q1(α) . . . qk−1(α) dα.

Similarly we get∫ 1

0

L−1∏
`=0

∣∣sin π2`α
∣∣ dα > mL−k

k

∫ 1

0
q1(α) . . . qk−1(α) dα.

Hence

mL−k
k

∫ 1

0
q1(α) . . . qk−1(α) dα

6 κλL (1 + o(1)) 6ML−k
k

∫ 1

0
q1(α) . . . qk−1(α) dα

and consequently

(5.3) mk 6 λ 6Mk for all k > 1.

By considering the function q6(α), in the following we will prove that m6 >

0.6613 and M6 < 0.66135.

0.2 0.4 0.6 0.8 1.0

0.66130

0.66131

0.66132

0.66133

0.66134

Figure 5.1. The function q6(α).
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Wherever q6 is differentiable we have

|q6
′(α)| =

∣∣∣∣∣φ6
′(α)φ5(α)− φ6(α)φ5

′(α)
(φ5(α))2

∣∣∣∣∣
6

max
α∈[0,1]

∣∣φ6
′(α)

∣∣
φ5(0) +

φ6
( 1

2
)

(φ5(0))2 max
α∈[0,1]

∣∣φ5
′(α)

∣∣ .(5.4)

It can easily be checked for example by differentiating φ5(α) and φ6(α)
with the help of Mathematica that φ5

′(α) is the sum resp. difference of
– 32 products of absolute values of sines and cosines, each product
weighted by a factor π

1024 ,
– 32 such products weighted by π

512 ,
– 32 with weight π

256 ,
– 32 with weight π

128 ,
– 32 products with factor π

64 .
Hence ∣∣φ5

′(α)
∣∣ 6 32π

(
1

1024 + 1
512 + 1

256 + 1
128 + 1

64

)
= 31

32π.

In the same way we show that also
∣∣φ6
′(α)

∣∣ 6 31
32π. By combining these

estimates with the values of φ5(0) and φ6(1/2) in (5.4), we finally obtain
|q6
′(α)| 6 56.4.
Now we calculate

q6

( a

2800000

)
for a = 0, 1, . . . , 1400000

with the help of Mathematica and obtain

max
{
q6

( a

2800000

) ∣∣∣∣a = 0, 1, . . . , 1400000
}

= 0.66133092 . . .

min
{
q6

( a

2800000

) ∣∣∣∣a = 0, 1, . . . , 1400000
}

= 0.66131148 . . .

Hence
m6 > 0.66131145− 56.4 1

5600000 = 0.661301 . . .
and

M6 6 0.66133092 + 56.4 1
5600000 = 0.661341 . . .

By (5.3) this implies Lemma 5.1. �

Let us remark that numerical experiments with q15(α) suggest that λ =
0.661322602 . . . . It is tempting to conjecture that the precise value of λ
can be expressed in a simple way in terms of the “usual” mathematical
constants such as e, π, log 2, etc. However, we do not know what such an

TOME 67 (2017), FASCICULE 2



670 Christoph AISTLEITNER, Roswitha HOFER & Gerhard LARCHER

expression could look like, and cannot even make a reasonable guess (the
numerical argument in the proof of Lemma 5.1 does not give any hints).

Proof of Theorem 1.3.
Part 1: upper bound. — For the integral I2(L) we can use the equality

(5.5)
L−1∏
`=0

∣∣2 cos(π2`α)
∣∣ =

∣∣sin π2Lα
∣∣

sin πα 6 min
(

2L, 1
πα(1− α)

)
which holds for 0 < α < 1 and which implies that

I2(L) 6
∫ 1

0

∣∣sin π2Lα
∣∣

sin πα dα

6 2
∫ 2−L

0
2L dα+

∫ 1−2−L

2−L

1
πα(1− α) dα

6 2 + 2L log 2
π

(5.6)

(this is essentially a variant of the classical bound for the L1-norm of the
Dirichlet kernel).
For µ > 1 and ε > 0 we set

(5.7) Gµ =

α ∈ (0, 1) :
24µ∑
h=1

1
h

∣∣∣∣∣∣
2µ−1∑
k=1

e2πihnkα

∣∣∣∣∣∣ > (2µ)1+log2 λ+ε

 .

By (1.16), (5.2) and (5.6) we have∫ 1

0

24µ∑
h=1

1
h

∣∣∣∣∣∣
2µ−1∑
k=1

e2πihnkα

∣∣∣∣∣∣ dα =
24µ∑
h=1

1
h

∫ 1

0

∣∣∣∣∣∣
2µ−1∑
k=1

e2πihnkα

∣∣∣∣∣∣ dα
6

24µ∑
h=1

1
h

(I1(µ) + I2(µ))

6 (2µ)1+log2 λ+ ε
2

for sufficiently large µ. Consequently we have

P(Gµ) 6 (2µ)− ε2 .

which implies that by the Borel–Cantelli lemma with probability one only
finitely many events Gµ occur. We can show the same result if we replace
the sequence (nk)k>1 in (5.7) by (mk)k>1. In other words, for almost all α
we have

(5.8)
24µ∑
h=1

1
h

∣∣∣∣∣∣
2µ−1∑
k=1

e2πihnkα

∣∣∣∣∣∣ 6 (2µ)1+log2 λ+ε
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and the same estimate for (mk)k>1 instead of (nk)k>1, for all µ > µ0(α, ε).
Now assume that α, ε and N are given. Furthermore we assume that for

these values of α and ε the estimate (5.8) and the corresponding estimate
for (mk)k>1 instead of (nk)k>1 hold for µ > µ0, and that N > 2(4µ0). We
apply the same dyadic decomposition of N as in the proof of the upper
bound of Theorem 1.1 in Section 4. In the same way as we obtained (4.11),
together with the Koksma–Erdős–Turán inequality, we can now obtain with
M = blog2(N)c

(5.9) ND∗N ({n1α}, . . . , {nNα})

6 1 +
N∑
h=1

1
h

∣∣∣∣∣
N∑
k=1

e2πihnkα

∣∣∣∣∣
6 1 +

N∑
h=1

1
h

M+1∑
µ=1

∣∣∣∣∣∣
2µ−1∑
k=1

e2πihnNµ+kα

∣∣∣∣∣∣
6 1 +

d(log2 N)/4e∑
µ=1

N∑
h=1

1
h

∣∣∣∣∣∣
2µ−1∑
k=1

e2πihnNµ+kα

∣∣∣∣∣∣︸ ︷︷ ︸
�N1/4 logN

+
M+1∑

µ=d(log2 N)/4e+1

N∑
h=1

1
h

∣∣∣∣∣∣
2µ−1∑
k=1

e2πihnNµ+kα

∣∣∣∣∣∣ .
For the last term in (5.9) by (4.10) and (5.8) we have

M+1∑
µ=d(log2 N)/4e+1

N∑
h=1

1
h

∣∣∣∣∣∣
2µ−1∑
k=1

e2πihnNµ+kα

∣∣∣∣∣∣
6

M+1∑
µ=d(log2 N)/4e+1

24µ∑
h=1

1
h

∣∣∣∣∣∣
2µ−1∑
k=1

e2πihnNµ+kα

∣∣∣∣∣∣
6

M+1∑
µ=d(log2 N)/4e+1

(2µ)1+log2 λ+ε/2

︸ ︷︷ ︸
�(2M )1+log2 λ+ε/2

.

Since M 6 log2N , together with (5.9) we have proved that

ND∗N ({n1α}, . . . , {nNα}) 6 N1+log2 λ+ε

for all sufficiently large N , which proves the upper bound in Theorem 1.3.
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Part 2: lower bound. — By (1.3) and (1.17) for the discrepancy D∗N of
the sequence ({nkα})k>1 with N = 2L for each positive integer H we have

D∗N >
1

4H

∣∣∣∣∣ 1
N

N∑
k=1

e2πinkHα

∣∣∣∣∣
>

1
4H

L∏
`=0

∣∣sin πH2`α
∣∣− 1

4H

L∏
`=0

∣∣cosπH2`α
∣∣

︸ ︷︷ ︸
�(H‖Hα‖)−1

.

Let

fL(α) =
L∏
`=0

∣∣sin π2`α
∣∣ .

We will show below that for any given ε > 0 for almost all α there are
infinitely many L such that there exists a positive integer hL with hL 6 2L
and

(5.10) 1
hL
fL (hLα)� λL(1+ε).

It is a well-known fact in metric Diophantine approximation that for almost
all α we have h ‖hα‖ > 1

hε for all h large enough. Hence if (5.10) is true
for almost all α then there are infinitely many L such that for N = 2L we
have

D∗N � λL(1+ε) − (hL)ε(5.11)

�
(
2L
)(1+ε) logλ

log 2 −
(
2L
)ε

� N (1+ε) logλ
log 2 ,

and the desired result follows (note that log λ < 0). It remains to show the
existence of the numbers hL 6 2L which satisfy (5.10).

Let ε > 0 be given. From the definition of fL(α) it is easily seen that

(5.12) |fL(α1)− fL(α2)| 6 2L+1π|α1 − α2|;

this follows from the fact that the derivative of the function
∏L
`=0 sin π2`α

is bounded uniformly by 2L+1π. Now let gL(α) be the function defined by

gL(α) = fL(j4−L) for α ∈
[
j4−L, (j + 1)4−L

)
, for j = 0, . . . , 4L − 1.

This definition means that gL is constant on intervals of length 4−L which
lie between two integer multiples of 4−L, and coincides with fL on the left
endpoint of such intervals. By (5.12) we have

(5.13) |gL − fL| 6 2π2−L,

ANNALES DE L’INSTITUT FOURIER



EVIL KRONECKER SEQUENCES 673

which means that it is sufficient to prove (5.10) with fL replaced by gL
(remember that the value of ε > 0 was arbitrary and λ > 1/2). The reason
for using the functions gL instead of fL is that every function gL can be
written as a sum of at most 4L different characteristic functions of intervals;
consequently, we know that the set of values of α where |gL| is “large” can
be written as the union of at most 4L intervals, which implies an upper
bound for the size of the Fourier coefficients of the characteristic function
of this set (see below for details).
Let Q = Q (ε) be a positive integer which will be chosen in dependence

on ε (we assume that Q is “large”). We define real numbers

δi = λ1− i−1/2
Q , i = 0, 1, . . . , Q+ 1.

Note that δ0 < δ1 < . . . < δQ+1, δ0 = λ1+1/(2Q) < λ, and δQ+1 > 1.
Furthermore, we define

M
(i)
L :=

{
α ∈ [0, 1) : δLi < |gL (α) | 6 δLi+1

}
for i = 0, 1, . . . , Q.
Then by (5.1) and (5.13) we have

Q∑
i=0

P
(
M

(i)
L

)
δLi+1 +

(
1−

Q∑
i=0

P
(
M

(i)
L

))(
λ1+ 1

2Q

)L
>
∫ 1

0
|gL (α) | dα > κ

2λ
L

for sufficiently large L, where κ is the number from (5.1). Hence we have
Q∑
i=0

P
(
M

(i)
L

)
δLi+1 >

κ

4λ
L

for sufficiently large L. Consequently for every L large enough there is an
iL ∈ {0, . . . , Q} with

δLiL+1P
(
M

(iL)
L

)
>

κ

4(Q+ 1)λ
L,

which implies that

P
(
M

(iL)
L

)
>

κ

4(Q+ 1)

(
λ

δiL+1

)L
.

Note that, as a consequence of the construction of gL, the setM (i)
L always is

a union of at most 4L disjoint intervals. It is easily seen that by trimming the
setsM (i)

L appropriately we can always find a set R(i)
L such that R(i)

L ⊂M
(i)
L ,
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such that R(i)
L is also the union of at most 4L intervals, and such that for

the measure of the sets R(i)
L we have the exact equality

P
(
R

(iL)
L

)
= κ

4(Q+ 1)

(
λ

δiL+1

)L
.

Let η = η(ε) > 0 be a “small” number. Let HL denote the largest integer
such that

(5.14) HL 6
4(Q+ 1)

κ

(
δiL+1

λ

)L
(1 + η)L.

Note that
δiL+1

λ
> λ

1
2Q ,

and consequently we have HL > (1 + η)L for L large enough; this means
that HL grows exponentially in L. Note also that it is easily seen that
HL 6 2L for sufficiently large L (provided that η is chosen sufficiently
small), which is important for (5.11).
We will show that for almost all α for infinitely many L there is a

(5.15) h 6 HL such that {hα} ∈ R(iL)
L .

For these h then we have
|gL(hα)|

h
> δLiL

κ

4(Q+ 1)

(
λ

δiL+1

)L
(1 + η)−L

= κ

4(Q+ 1)

(
δiL
δiL+1

)L
(1 + η)−LλL

� λL(1+ε),

for Q large enough and η small enough in dependence on ε. Together
with (5.13) this will establish (5.10), as desired.
It remains to show (5.15). Let 1L(α) denote the characteristic function

of the set R(i)
L , extended with period one. Then we know that

(5.16)
∫ 1

0
1L(α) dα = κ

4Q

(
λ

δiL+1

)L
.

Setting

IL(α) = 1L(α)−
∫ 1

0
1L(ω) dω,

we clearly have
∫ 1

0 IL(α) dα = 0 and

(5.17) Var[0,1] IL 6 4L.
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From (5.16) we can easily calculate that

‖IL‖22 =
∫ 1

0
IL(α)2dα = κ

4Q

(
λ

δiL+1

)L(
1− κ

4Q

(
λ

δiL+1

)L)

6
κ

4Q

(
λ

δiL+1

)L
.(5.18)

We write

IL(α) ∼
∞∑
j=1

(aj cos 2πjα+ bj sin 2πjα)

for the Fourier series of IL (note that it has no constant term, since IL has
integral zero). In the sequel, we want to show that the sum

(5.19)
∑
h6HL

∫ 1

0
1L(hα) dα

is large in comparison with the sum

(5.20)
∑
h6HL

IL(hα),

for almost all α and infinitely many L. Since

(5.21)
∑
h6HL

1L(hα) =
∑
h6HL

∫ 1

0
1L(ω) dω +

∑
h6HL

IL(hα),

such an estimate will show that the sum on the left-hand side of (5.21) is
large (for almost all α, for infinitely many L), which in turn implies that
many of the events described in (5.15) will occur. A lower bound for (5.19)
is easy to obtain; to find an asymptotic upper bound for (5.20), we will
calculate the L2 norm of these sums, and apply the Borel–Cantelli lemma.
From (5.16) we directly obtain

(5.22)
HL∑
h=1

∫ 1

0
1L(α) dα = HL

κ

4Q

(
λ

δiL+1

)L
� (1 + η)L.

Next we estimate ∥∥∥∥∥
HL∑
h=1

IL(h·)

∥∥∥∥∥
2

,

which is relatively difficult. As a consequence of (5.17) and a classical in-
equality for the size of the Fourier coefficients of functions of bounded
variation (see for example [41, p. 48]) we have

(5.23) |aj | 6
Var[0,1]IL

2j 6
4L

j
, and similarly |bj | 6

4L

j
.
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We split the function IL into an even and an odd part (that is, into a cosine-
and a sine-series). In the sequel, we consider only the even part; the odd
part can be treated in exactly the same way. Let pL(α) denote the 43L-th
partial sum of the Fourier series of the even part of IL, and let rL(α) denote
the remainder term. Then by Minkowski’s inequality we have

(5.24)

∥∥∥∥∥
HL∑
h=1

I(even)
L (h·)

∥∥∥∥∥
2

6

∥∥∥∥∥
HL∑
h=1

pL(h·)

∥∥∥∥∥
2

+

∥∥∥∥∥
HL∑
h=1

rL(h·)

∥∥∥∥∥
2

.

Furthermore, (5.23), Minkowski’s inequality, and Parseval’s identity imply
that ∥∥∥∥∥

HL∑
h=1

rL(h·)

∥∥∥∥∥
2

6 HL‖rL‖2

6 HL

√√√√ ∞∑
j=43L+1

42L

j2

6 HL2−L

� 1.(5.25)

To estimate the first term on the right-hand side of (5.24), we expand pL
into a Fourier series and use the orthogonality of the trigonometric system.
Then we obtain

(5.26)

∥∥∥∥∥
HL∑
h=1

pL(h·)

∥∥∥∥∥
2

2

=
HL∑

n1,n2=1

43L∑
j1,j2=1︸ ︷︷ ︸

j1n1=j2n2

aj1aj2

2

=
43L∑

j1,j2=1

aj1aj2

2 #
{

(n1, n2) : 1 6 n1, n2 6 HL, j1n1 = j2n2

}
.

To estimate the size of the sum on the right-hand size of (5.26), we assume
that j1 and j2 are fixed. In the case j1 = 1 and j2 = 1, we clearly have
j1n1 = j2n2 whenever n1 = n2; thus the cardinality of the set on the right-
hand side of (5.26) is HL. If j1 = 1 and j2 = 2, then we have to count
the number of pairs (n1, n2) for which 2n1 = n2; this number is bHL/2c.
For the values j1 = 2 and j2 = 4 we also have to count the number of
pairs (n1, n2) for which 2n1 = n2; so this cardinality also is bHL/2c. The
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last example shows that the greatest common divisor of j1 and j2 plays a
role in this calculation. Using similar considerations, in the case of general
(fixed) values of j1 and j2 it turns out that we have j1n1 = j2n2 whenever

n1 = v
j2

gcd(j1, j2) , n2 = v
j1

gcd(v1, v2) for some positive integer v.

As a consequence we have

#
{

(n1, n2) : 1 6 n1, n2 6 HL, j1n1 = j2n2

}
= #

{
v > 1 : v 6 min

(
HL gcd(j1, j2)

j2
,
HL gcd(j1, j2)

j1

)}
=
⌊
HL gcd(j1, j2)

max(j1, j2)

⌋
6
HL gcd(j1, j2)√

j1j2
.

Combining this estimate with (5.26) we obtain

(5.27)

∥∥∥∥∥
HL∑
h=1

pL(h·)

∥∥∥∥∥
2

2

6 HL

43L∑
j1,j2=1

|aj1aj2 |
2

gcd(j1, j2)√
j1j2

.

The sum on the right-hand side of the last equation is called a GCD sum.
It is well-known that such sums play an important role in the metric the-
ory of Diophantine approximation; the particular sum in (5.27) probably
appeared for the first time in LeVeque’s paper [29] (see also [14] and [2]). A
precise upper bound for these sums has been obtained by Hilberdink [23].(3)

Hilberdink’s result implies that there exists an absolute constant cabs such
that

43L∑
j1,j2=1

|aj1aj2 |
2

gcd(j1, j2)√
j1j2

� exp
(
cabs

√
log(43L)√

log log 43L

) 43L∑
j=1

a2
j .

(3)The upper bounds in [23] are formulated in terms bounds for the maximal size of
the largest eigenvalue of certain matrices involving greatest common divisors (GCD
matrices). In [3] it is explained in detail how these bounds for eigenvalues of GCD
matrices can be translated into bounds for GCD sums such as the ones considered here.
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Combining this estimate with (5.18) and (5.27) (and using Parseval’s iden-
tity) we have∥∥∥∥∥

HL∑
h=1

pL(h·)

∥∥∥∥∥
2

2

� HL exp
(
cabs

√
log(43L)√

log log 43L

)
κ

4Q

(
λ

δiL+1

)L

� (1 + η)L exp
(
cabs

√
log(43L)√

log log 43L

)
,

and, together with (5.24) and (5.25), and with a similar argument for the
odd part of IL, we obtain

(5.28)

∥∥∥∥∥
HL∑
h=1

IL(h·)

∥∥∥∥∥
2

2

� (1 + η)L exp
(
cabs

√
log(43L)√

log log 43L

)
.

By Chebyshev’s inequality we have

P

(
α ∈ [0, 1) :

∣∣∣∣∣
HL∑
h=1

IL(hα)

∣∣∣∣∣ > (logHL)

∥∥∥∥∥
HL∑
h=1

IL(h·)

∥∥∥∥∥
2

)
6

1
(logHL)2 ,

and since (HL)L>1 grows exponentially in L these probabilities give a con-
vergent series when summing over L. Thus by the Borel–Cantelli lemma
with probability one only finitely many events∣∣∣∣∣

HL∑
h=1

IL(hα)

∣∣∣∣∣ > (logHL)

∥∥∥∥∥
M∑
h=1

IL(h·)

∥∥∥∥∥
2

happen, which by (5.28) implies that∣∣∣∣∣
HL∑
h=1

IL(hα)

∣∣∣∣∣� (1 + η)L/2 exp
(
ĉabs
√
L√

logL

)
for some absolute constant ĉabs. Comparing this upper bound with (5.22)
and using (5.21) we conclude that

HL∑
h=1

1L(hα)� (1 + η)L as L→∞

for almost all α. In particular we have
∞∑
L=1

HL∑
h=1

1L(hα) =∞

for almost all α, which means that for almost all α infinitely many
events (5.15) occur. As noted after equation (5.15), this proves the the-
orem. �
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6. Concrete Examples: Proof of Theorem 1.4

It is known that for all α we have

(6.1)
L∏
`=0

∣∣sin π2`α
∣∣ 6 HL

for all L, where H =
√

3
2 = 0.866 . . .. This inequality appears for example

as formula (2.10) in [18], but was already proved earlier in [21] and [33].
Thus from (1.16), (5.5) and the Weyl criterion it follows that ({nkα})k>1
is u.d. mod 1 iff α is irrational.

Hence by (1.1), (1.3), (1.16), and (1.17) for N of the form N = 2L we
have

max
h6N

1
h

∣∣∣∣∣
L∏
l=0
|2 sin πh2lα| −

L∏
l=0
|2 cosπh2lα|

∣∣∣∣∣
� ND̃∗N

�
N∑
h=1

1
h ‖hα‖

+
N∑
h=1

1
h

L∏
k=0

∣∣2 sin π2khα
∣∣

�
N∑
h=1

1
h ‖hα‖

+ (logN)N
log 3
log 4 ,

where we write D̃∗N for the star-discrepancy of the first N terms of the evil
Kronecker sequence.
From the left-hand side of this inequality it is not difficult – but we do

not want to go into the details here – to show that

max
n6N

nD̃∗n �
1

logNmax
n6N

nD∗n

for all N , where D∗N denotes the star-discrepancy of the pure Kronecker
sequence.
Furthermore it is easy to show – we again do not go into the details –

that
N∑
h=1

1
h ‖hα‖

� (logN)ND∗N for all N = 2L.

Hence for all N we have

(6.2) 1
logNmax

n6N
nD∗n � max

n6N
nD̃∗n � (logN)2 max

n6N
nD∗n+(logN)2

N
log 3
log 4 .

From this we conclude that the order of the discrepancy ND̃∗N of the evil
Kronecker sequence always is essentially (up to logarithmic factors) larger
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or equal to the order of the discrepancy ND∗N of the pure Kronecker se-
quence. In fact, the order of ND̃∗N essentially equals the order of ND∗N
plus an expression which is at most of order N

log 3
log 4 +ε. The order of the

additional expression is controlled by lacunary products of sine-functions.
Hence we conclude what we have already announced in Section 1:

– If the order of D∗N satisfies ND∗N = Ω
(
N

log 3
log 4
)
then D̃∗N essentially

is of the same order as D∗N
– If D∗N satisfies ND∗N = O

(
N

log 3
log 4
)

then D̃∗N satisfies ND̃∗N =
O
(
N

log 3
log 4 +ε)

Hence the two examples given in Theorem 1.4 show interesting non-trivial
cases where we have (almost) best possible distribution for the pure Kro-
necker sequence with bad distribution for the evil Kronecker sequence. In-
deed especially the first example gives essentially the extremal values for
D∗N and for D̃∗N , and shows that the right-hand side of (6.2) is also essen-
tially optimal.
It remains an open problem to give concrete examples α where the cor-

responding evil Kronecker sequence has “small” discrepancy D∗N , e.g., a
discrepancy of the metric order given in Theorem 1.3 or smaller. Of course
it also remains an open problem to give good estimates for D̃∗N in the case
of “natural” examples of α like α =

√
2.

Proof of Theorem 1.4.
(a). — By [39] we know that the continued fraction coefficients of the

number β :=
∑∞
k=1

1
42k are bounded. This is equivalent to the existence of

some c > 0 such that
∣∣∣β − p

q

∣∣∣ > c
q2 for all p, q ∈ Z, q > 1, i.e., |qβ − p| > c

q

for all such p and q.
This implies especially |3qβ + 2q − 3p| > c

3q for all p, q ∈ Z, q > 1, i.e.,∣∣∣β + 2
3 −

p
q

∣∣∣ > c
9
q2 for all such p, q, and hence α = β + 2

3 has bounded con-
tinued fraction coefficients. So the star-discrepancy of the pure Kronecker
sequence ({nα})n>1 satisfies ND∗N = O (logN) .
On the other hand we already know that for the star-discrepancy D̃∗N of

the evil Kronecker sequence ({nkα})k>1 with N = 2L we have

ND̃∗N �

∣∣∣∣∣
N∑
k=1

exp (2πinkα)

∣∣∣∣∣
�

∣∣∣∣∣
L∏
`=0

∣∣2 sin π2`α
∣∣− 1
‖α‖

∣∣∣∣∣ .
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We give a suitable lower bound for

ΠL :=
L∏
`=0

∣∣2 sin π2`α
∣∣

=
L∏
`=0

∣∣∣2 sin π3

∣∣∣ L∏
`=0

∣∣sin π2`α
∣∣∣∣sin π

3
∣∣

=
√

3N
log 3
log 4

L∏
`=0

∣∣∣∣∣cos (πδ`) + (−1)`+1
√

3
sin (πδ`)

∣∣∣∣∣ .
Here δ` :=

{
2`β
}
and we have used sin (x+ y) = sin x · cos y + cosx · sin y.

Note that the base 2 representation of
{

2`α
}
has one of the following ten

possible forms:

0.1010 . . .
0.0101 . . .
0.0010 . . .
0.1101 . . .
0.1110 . . .
0.1001 . . .
0.1100 . . .
0.0111 . . .
0.1011 . . .
0.0110 . . .

hence
∥∥2`α

∥∥ > 1
16 always and therefore |sinπ2`α|

|sin π
3 |

> 0.2 always.
Because of |cosπx− 1| 6 3x and |sin πx| 6 πx for x > 0 we have∣∣∣∣∣cosπδ` + (−1)`+1

√
3

sin πδ`

∣∣∣∣∣ > 1−
(

3 + π√
3

)
δ` > 1− 5δ`.

Therefore, noting that max(0.2, 1− 5x) > e−11x for x > 0, we also have
L∏
`=0

∣∣sin π2`α
∣∣∣∣sin π

3
∣∣ >

L∏
`=0

max (0.2, 1− 5δ`)

> e−11
∑L

`=0
δ`

� e−22 logL.
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So

ΠL �
1
L22N

log 3
log 4 � 1

(logN)22N
log 3
log 4

and the lower bound for D̃∗N follows. The upper bound for D̃∗N follows
from (6.2) and from the upper bound for D∗N .

(b). — It was shown in [9] that γ has approximation degree 1, hence for
the star-discrepancy of the sequence ({nα})n>1 we have ND∗N = O (Nε)
for every ε > 0. To prove the lower bound for the star-discrepancy D̃∗N of
the sequence ({nkγ})k>1, like in the proof of part (a) we have to estimate
ΠL :=

∏L
`=0
∣∣2 sin π2`γ

∣∣ from below. We will give in the following as an
additional information also an upper estimate for ΠL in order to show that
our lower estimate is rather sharp.
We may restrict ourselves to L of the form L = 8U − 1. Then

ΠL =
U−1∏
j=0

8j+7∏
`=8j

∣∣2 sin π2`γ
∣∣ .

In the following we use some well-known facts on properties of the Thue–
Morse sequence: the base 2-representation of γ = 0, γ1γ2γ3 . . . consists of
8-blocks γ8v+1 . . . γ8v+8 of the form A := 10010110 or B := 01101001.

Four such consecutive 8-blocks can occur in the following ten combina-
tions:

c1 = AABA

c2 = AABB

c3 = ABAA

c4 = ABBA

c5 = ABAB

c6 = BBAB

c7 = BBAA

c8 = BABB

c9 = BAAB

c10 = BABA

Let, for example, j be such that 28j = 0, c1 . . . . (c1 is the block of 32
digits defined above)
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For m = 0, 1, 2, . . . , 7 let

x1,m :=
{

2m · 0, c1 if {2m · 0, c1} < 1
2

2m ·
(
0, c1 + 1

232

)
if {2m · 0, c1} > 1

2

and

y1,m :=
{

2m · 0, c1 if {2m · 0, c1} > 1
2

2m ·
(
0, c1 + 1

232

)
if {2m · 0, c1} < 1

2

Then
8j+7∏
`=8j

∣∣2 sin π2`γ
∣∣ < 7∏

m=0
|2 sin πy1,m| =: U(c1) = 33.487710 . . .

8j+7∏
`=8j

∣∣2 sin π2`γ
∣∣ > 7∏

m=0
|2 sin πx1,m| =: D(c1) = 33.487705 . . .

In the same way we determine

U (ci) and d (ci) for i = 2, 3, . . . , 10.

Using the special structure of the Thue–Morse sequence as a sequence gen-
erated by a finite automaton one can use the methods from [5] to show
that the asymptotic frequencies F (ci) of the occurrence of a quadruple ci
of 8-blocks in the Thue–Morse sequence are given by

F (c1) = F (c2) = F (c3) = F (c5) = F (c6)

= F (c7) = F (c8) = F (c10) = 1
12

and
F (c4) = F (c9) = 1

6 .

Hence we get

(1− ε)U · (D (c1)D (c2)D (c3)D (c5)D (c6)D (c7)D (c8)D (c10))
U
12

· (D (c4)D (c9))
U
6

�
L∏
`=0

∣∣2 sin π2`γ
∣∣

� (1 + ε)U · (U (c1)U (c2)U (c3)U (c5)U (c6)U (c7)U (c8)U (c10))
U
12

· (U (c4)U (c9))
U
6

TOME 67 (2017), FASCICULE 2



684 Christoph AISTLEITNER, Roswitha HOFER & Gerhard LARCHER

which leads to

N0.6178775 �
L∏
`=0

∣∣2 sin π2`γ
∣∣� N0.6178777.

for ε small and L large enough. This finishes the proof. �

7. An open problem from the theory of metric
Diophantine approximation

In conclusion, we mention an open problem from the theory of Diophan-
tine approximation which is related to our proof of the lower bound in
Theorem 1.3. In metric Diophantine approximation, one is often interested
in finding conditions on (φ(q))q>1 which guarantee that∣∣∣∣α− p

q

∣∣∣∣ < φ(q)
q

has infinitely many integer solutions p, q for almost all α. Two instances
of this problem, either under the additional requirement that p, q are co-
prime (Duffin–Schaeffer conjecture) or without this additional requirement
(Catlin conjecture), constitute probably the two most important open prob-
lems in metric number theory. For the origin of the Duffin–Schaeffer con-
jecture see [13], for the Catlin conjecture see [10]. Problems of this type are
discussed in great detail in Glyn Harman’s monograph on Metric Number
Theory [22]. For a recent survey, see [7].
The problem without the requirement of coprime solutions can also be

written in the following form: Let A1, A2, . . . be intervals of length 6 1,
which are symmetric around 0. Let ψ1, ψ2, . . . denote the Lebesgue measure
(that is, the length) of these intervals. Under which conditions on ψ1, ψ2, . . .

do we have
∞∑
n=1

1An(nα) =∞

for almost all α? Here 1A denotes the characteristic function of A, extended
with period one.
Now in a first step this problem can be generalized to the case when the

intervals A1, A2, . . . are not necessarily symmetric around 0, which leads
to a problem in inhomogeneous Diophantine approximation. This type of
question is also quite well-investigated.
Perpetuating this line of thought, it is natural to ask what happens if we

do not assume that A1, A2, . . . are intervals, but if they may denote any
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measurable sets in [0, 1]. Writing ψ1, ψ2, . . . for the measure of these sets,
the question is under which conditions on ψ1, ψ2, . . . we have

∞∑
n=1

1An(nα) =∞

for almost all α. Note that a necessary condition is the divergence of the
sum of the measures, by the Borel–Cantelli lemma. It seems that hardly
anything is known about this general problem. As far as we know, this
problem was first stated by LeVeque in [29]. In this paper he answered
a conjecture of Erdős, and he formulated a generalized version of Erdős’
conjecture. We consider this as a very interesting open problem, and we
re-state it below.

Open problem. — Let A1, A2, . . . be measurable sets in [0, 1], and let
ψ1, ψ2, . . . denote their measure. Under which conditions on (ψn)n>1 is it
true that for almost all α the fractional part {nα} is contained in the set
An for infinitely many indices n; equivalently, under which conditions is it
true that

∞∑
n=1

1An(nα) =∞ almost everywhere,

where the characteristic functions are extended with period one.

A problem quite similar to this one emerged during the proof of the
lower bound of Theorem 1.3. However, the situation was comparatively
simple there, for example since we could assume there that the sets An
can be written as the sum of a moderate number of intervals. The general
problem seems to be much more complicated; LeVeque wrote that this
general problem “seems rather intractable”.
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